kvm_main.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. bool kvm_rebooting;
  79. EXPORT_SYMBOL_GPL(kvm_rebooting);
  80. static bool largepages_enabled = true;
  81. static struct page *hwpoison_page;
  82. static pfn_t hwpoison_pfn;
  83. static struct page *fault_page;
  84. static pfn_t fault_pfn;
  85. inline int kvm_is_mmio_pfn(pfn_t pfn)
  86. {
  87. if (pfn_valid(pfn)) {
  88. int reserved;
  89. struct page *tail = pfn_to_page(pfn);
  90. struct page *head = compound_trans_head(tail);
  91. reserved = PageReserved(head);
  92. if (head != tail) {
  93. /*
  94. * "head" is not a dangling pointer
  95. * (compound_trans_head takes care of that)
  96. * but the hugepage may have been splitted
  97. * from under us (and we may not hold a
  98. * reference count on the head page so it can
  99. * be reused before we run PageReferenced), so
  100. * we've to check PageTail before returning
  101. * what we just read.
  102. */
  103. smp_rmb();
  104. if (PageTail(tail))
  105. return reserved;
  106. }
  107. return PageReserved(tail);
  108. }
  109. return true;
  110. }
  111. /*
  112. * Switches to specified vcpu, until a matching vcpu_put()
  113. */
  114. void vcpu_load(struct kvm_vcpu *vcpu)
  115. {
  116. int cpu;
  117. mutex_lock(&vcpu->mutex);
  118. cpu = get_cpu();
  119. preempt_notifier_register(&vcpu->preempt_notifier);
  120. kvm_arch_vcpu_load(vcpu, cpu);
  121. put_cpu();
  122. }
  123. void vcpu_put(struct kvm_vcpu *vcpu)
  124. {
  125. preempt_disable();
  126. kvm_arch_vcpu_put(vcpu);
  127. preempt_notifier_unregister(&vcpu->preempt_notifier);
  128. preempt_enable();
  129. mutex_unlock(&vcpu->mutex);
  130. }
  131. static void ack_flush(void *_completed)
  132. {
  133. }
  134. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  135. {
  136. int i, cpu, me;
  137. cpumask_var_t cpus;
  138. bool called = true;
  139. struct kvm_vcpu *vcpu;
  140. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  141. raw_spin_lock(&kvm->requests_lock);
  142. me = smp_processor_id();
  143. kvm_for_each_vcpu(i, vcpu, kvm) {
  144. if (kvm_make_check_request(req, vcpu))
  145. continue;
  146. cpu = vcpu->cpu;
  147. /* Set ->requests bit before we read ->mode */
  148. smp_mb();
  149. if (cpus != NULL && cpu != -1 && cpu != me &&
  150. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  151. cpumask_set_cpu(cpu, cpus);
  152. }
  153. if (unlikely(cpus == NULL))
  154. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  155. else if (!cpumask_empty(cpus))
  156. smp_call_function_many(cpus, ack_flush, NULL, 1);
  157. else
  158. called = false;
  159. raw_spin_unlock(&kvm->requests_lock);
  160. free_cpumask_var(cpus);
  161. return called;
  162. }
  163. void kvm_flush_remote_tlbs(struct kvm *kvm)
  164. {
  165. int dirty_count = kvm->tlbs_dirty;
  166. smp_mb();
  167. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  168. ++kvm->stat.remote_tlb_flush;
  169. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  170. }
  171. void kvm_reload_remote_mmus(struct kvm *kvm)
  172. {
  173. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  174. }
  175. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  176. {
  177. struct page *page;
  178. int r;
  179. mutex_init(&vcpu->mutex);
  180. vcpu->cpu = -1;
  181. vcpu->kvm = kvm;
  182. vcpu->vcpu_id = id;
  183. init_waitqueue_head(&vcpu->wq);
  184. kvm_async_pf_vcpu_init(vcpu);
  185. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  186. if (!page) {
  187. r = -ENOMEM;
  188. goto fail;
  189. }
  190. vcpu->run = page_address(page);
  191. r = kvm_arch_vcpu_init(vcpu);
  192. if (r < 0)
  193. goto fail_free_run;
  194. return 0;
  195. fail_free_run:
  196. free_page((unsigned long)vcpu->run);
  197. fail:
  198. return r;
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  201. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  202. {
  203. kvm_arch_vcpu_uninit(vcpu);
  204. free_page((unsigned long)vcpu->run);
  205. }
  206. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  207. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  208. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  209. {
  210. return container_of(mn, struct kvm, mmu_notifier);
  211. }
  212. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  213. struct mm_struct *mm,
  214. unsigned long address)
  215. {
  216. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  217. int need_tlb_flush, idx;
  218. /*
  219. * When ->invalidate_page runs, the linux pte has been zapped
  220. * already but the page is still allocated until
  221. * ->invalidate_page returns. So if we increase the sequence
  222. * here the kvm page fault will notice if the spte can't be
  223. * established because the page is going to be freed. If
  224. * instead the kvm page fault establishes the spte before
  225. * ->invalidate_page runs, kvm_unmap_hva will release it
  226. * before returning.
  227. *
  228. * The sequence increase only need to be seen at spin_unlock
  229. * time, and not at spin_lock time.
  230. *
  231. * Increasing the sequence after the spin_unlock would be
  232. * unsafe because the kvm page fault could then establish the
  233. * pte after kvm_unmap_hva returned, without noticing the page
  234. * is going to be freed.
  235. */
  236. idx = srcu_read_lock(&kvm->srcu);
  237. spin_lock(&kvm->mmu_lock);
  238. kvm->mmu_notifier_seq++;
  239. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  240. spin_unlock(&kvm->mmu_lock);
  241. srcu_read_unlock(&kvm->srcu, idx);
  242. /* we've to flush the tlb before the pages can be freed */
  243. if (need_tlb_flush)
  244. kvm_flush_remote_tlbs(kvm);
  245. }
  246. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  247. struct mm_struct *mm,
  248. unsigned long address,
  249. pte_t pte)
  250. {
  251. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  252. int idx;
  253. idx = srcu_read_lock(&kvm->srcu);
  254. spin_lock(&kvm->mmu_lock);
  255. kvm->mmu_notifier_seq++;
  256. kvm_set_spte_hva(kvm, address, pte);
  257. spin_unlock(&kvm->mmu_lock);
  258. srcu_read_unlock(&kvm->srcu, idx);
  259. }
  260. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  261. struct mm_struct *mm,
  262. unsigned long start,
  263. unsigned long end)
  264. {
  265. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  266. int need_tlb_flush = 0, idx;
  267. idx = srcu_read_lock(&kvm->srcu);
  268. spin_lock(&kvm->mmu_lock);
  269. /*
  270. * The count increase must become visible at unlock time as no
  271. * spte can be established without taking the mmu_lock and
  272. * count is also read inside the mmu_lock critical section.
  273. */
  274. kvm->mmu_notifier_count++;
  275. for (; start < end; start += PAGE_SIZE)
  276. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  277. need_tlb_flush |= kvm->tlbs_dirty;
  278. spin_unlock(&kvm->mmu_lock);
  279. srcu_read_unlock(&kvm->srcu, idx);
  280. /* we've to flush the tlb before the pages can be freed */
  281. if (need_tlb_flush)
  282. kvm_flush_remote_tlbs(kvm);
  283. }
  284. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  285. struct mm_struct *mm,
  286. unsigned long start,
  287. unsigned long end)
  288. {
  289. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  290. spin_lock(&kvm->mmu_lock);
  291. /*
  292. * This sequence increase will notify the kvm page fault that
  293. * the page that is going to be mapped in the spte could have
  294. * been freed.
  295. */
  296. kvm->mmu_notifier_seq++;
  297. /*
  298. * The above sequence increase must be visible before the
  299. * below count decrease but both values are read by the kvm
  300. * page fault under mmu_lock spinlock so we don't need to add
  301. * a smb_wmb() here in between the two.
  302. */
  303. kvm->mmu_notifier_count--;
  304. spin_unlock(&kvm->mmu_lock);
  305. BUG_ON(kvm->mmu_notifier_count < 0);
  306. }
  307. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  308. struct mm_struct *mm,
  309. unsigned long address)
  310. {
  311. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  312. int young, idx;
  313. idx = srcu_read_lock(&kvm->srcu);
  314. spin_lock(&kvm->mmu_lock);
  315. young = kvm_age_hva(kvm, address);
  316. spin_unlock(&kvm->mmu_lock);
  317. srcu_read_unlock(&kvm->srcu, idx);
  318. if (young)
  319. kvm_flush_remote_tlbs(kvm);
  320. return young;
  321. }
  322. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  323. struct mm_struct *mm,
  324. unsigned long address)
  325. {
  326. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  327. int young, idx;
  328. idx = srcu_read_lock(&kvm->srcu);
  329. spin_lock(&kvm->mmu_lock);
  330. young = kvm_test_age_hva(kvm, address);
  331. spin_unlock(&kvm->mmu_lock);
  332. srcu_read_unlock(&kvm->srcu, idx);
  333. return young;
  334. }
  335. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  336. struct mm_struct *mm)
  337. {
  338. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  339. int idx;
  340. idx = srcu_read_lock(&kvm->srcu);
  341. kvm_arch_flush_shadow(kvm);
  342. srcu_read_unlock(&kvm->srcu, idx);
  343. }
  344. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  345. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  346. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  347. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  348. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  349. .test_young = kvm_mmu_notifier_test_young,
  350. .change_pte = kvm_mmu_notifier_change_pte,
  351. .release = kvm_mmu_notifier_release,
  352. };
  353. static int kvm_init_mmu_notifier(struct kvm *kvm)
  354. {
  355. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  356. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  357. }
  358. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  359. static int kvm_init_mmu_notifier(struct kvm *kvm)
  360. {
  361. return 0;
  362. }
  363. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  364. static struct kvm *kvm_create_vm(void)
  365. {
  366. int r, i;
  367. struct kvm *kvm = kvm_arch_alloc_vm();
  368. if (!kvm)
  369. return ERR_PTR(-ENOMEM);
  370. r = kvm_arch_init_vm(kvm);
  371. if (r)
  372. goto out_err_nodisable;
  373. r = hardware_enable_all();
  374. if (r)
  375. goto out_err_nodisable;
  376. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  377. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  378. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  379. #endif
  380. r = -ENOMEM;
  381. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  382. if (!kvm->memslots)
  383. goto out_err_nosrcu;
  384. if (init_srcu_struct(&kvm->srcu))
  385. goto out_err_nosrcu;
  386. for (i = 0; i < KVM_NR_BUSES; i++) {
  387. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  388. GFP_KERNEL);
  389. if (!kvm->buses[i])
  390. goto out_err;
  391. }
  392. r = kvm_init_mmu_notifier(kvm);
  393. if (r)
  394. goto out_err;
  395. kvm->mm = current->mm;
  396. atomic_inc(&kvm->mm->mm_count);
  397. spin_lock_init(&kvm->mmu_lock);
  398. raw_spin_lock_init(&kvm->requests_lock);
  399. kvm_eventfd_init(kvm);
  400. mutex_init(&kvm->lock);
  401. mutex_init(&kvm->irq_lock);
  402. mutex_init(&kvm->slots_lock);
  403. atomic_set(&kvm->users_count, 1);
  404. spin_lock(&kvm_lock);
  405. list_add(&kvm->vm_list, &vm_list);
  406. spin_unlock(&kvm_lock);
  407. return kvm;
  408. out_err:
  409. cleanup_srcu_struct(&kvm->srcu);
  410. out_err_nosrcu:
  411. hardware_disable_all();
  412. out_err_nodisable:
  413. for (i = 0; i < KVM_NR_BUSES; i++)
  414. kfree(kvm->buses[i]);
  415. kfree(kvm->memslots);
  416. kvm_arch_free_vm(kvm);
  417. return ERR_PTR(r);
  418. }
  419. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  420. {
  421. if (!memslot->dirty_bitmap)
  422. return;
  423. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  424. vfree(memslot->dirty_bitmap_head);
  425. else
  426. kfree(memslot->dirty_bitmap_head);
  427. memslot->dirty_bitmap = NULL;
  428. memslot->dirty_bitmap_head = NULL;
  429. }
  430. /*
  431. * Free any memory in @free but not in @dont.
  432. */
  433. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  434. struct kvm_memory_slot *dont)
  435. {
  436. int i;
  437. if (!dont || free->rmap != dont->rmap)
  438. vfree(free->rmap);
  439. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  440. kvm_destroy_dirty_bitmap(free);
  441. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  442. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  443. vfree(free->lpage_info[i]);
  444. free->lpage_info[i] = NULL;
  445. }
  446. }
  447. free->npages = 0;
  448. free->rmap = NULL;
  449. }
  450. void kvm_free_physmem(struct kvm *kvm)
  451. {
  452. int i;
  453. struct kvm_memslots *slots = kvm->memslots;
  454. for (i = 0; i < slots->nmemslots; ++i)
  455. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  456. kfree(kvm->memslots);
  457. }
  458. static void kvm_destroy_vm(struct kvm *kvm)
  459. {
  460. int i;
  461. struct mm_struct *mm = kvm->mm;
  462. kvm_arch_sync_events(kvm);
  463. spin_lock(&kvm_lock);
  464. list_del(&kvm->vm_list);
  465. spin_unlock(&kvm_lock);
  466. kvm_free_irq_routing(kvm);
  467. for (i = 0; i < KVM_NR_BUSES; i++)
  468. kvm_io_bus_destroy(kvm->buses[i]);
  469. kvm_coalesced_mmio_free(kvm);
  470. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  471. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  472. #else
  473. kvm_arch_flush_shadow(kvm);
  474. #endif
  475. kvm_arch_destroy_vm(kvm);
  476. kvm_free_physmem(kvm);
  477. cleanup_srcu_struct(&kvm->srcu);
  478. kvm_arch_free_vm(kvm);
  479. hardware_disable_all();
  480. mmdrop(mm);
  481. }
  482. void kvm_get_kvm(struct kvm *kvm)
  483. {
  484. atomic_inc(&kvm->users_count);
  485. }
  486. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  487. void kvm_put_kvm(struct kvm *kvm)
  488. {
  489. if (atomic_dec_and_test(&kvm->users_count))
  490. kvm_destroy_vm(kvm);
  491. }
  492. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  493. static int kvm_vm_release(struct inode *inode, struct file *filp)
  494. {
  495. struct kvm *kvm = filp->private_data;
  496. kvm_irqfd_release(kvm);
  497. kvm_put_kvm(kvm);
  498. return 0;
  499. }
  500. #ifndef CONFIG_S390
  501. /*
  502. * Allocation size is twice as large as the actual dirty bitmap size.
  503. * This makes it possible to do double buffering: see x86's
  504. * kvm_vm_ioctl_get_dirty_log().
  505. */
  506. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  507. {
  508. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  509. if (dirty_bytes > PAGE_SIZE)
  510. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  511. else
  512. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  513. if (!memslot->dirty_bitmap)
  514. return -ENOMEM;
  515. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  516. return 0;
  517. }
  518. #endif /* !CONFIG_S390 */
  519. /*
  520. * Allocate some memory and give it an address in the guest physical address
  521. * space.
  522. *
  523. * Discontiguous memory is allowed, mostly for framebuffers.
  524. *
  525. * Must be called holding mmap_sem for write.
  526. */
  527. int __kvm_set_memory_region(struct kvm *kvm,
  528. struct kvm_userspace_memory_region *mem,
  529. int user_alloc)
  530. {
  531. int r;
  532. gfn_t base_gfn;
  533. unsigned long npages;
  534. unsigned long i;
  535. struct kvm_memory_slot *memslot;
  536. struct kvm_memory_slot old, new;
  537. struct kvm_memslots *slots, *old_memslots;
  538. r = -EINVAL;
  539. /* General sanity checks */
  540. if (mem->memory_size & (PAGE_SIZE - 1))
  541. goto out;
  542. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  543. goto out;
  544. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  545. goto out;
  546. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  547. goto out;
  548. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  549. goto out;
  550. memslot = &kvm->memslots->memslots[mem->slot];
  551. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  552. npages = mem->memory_size >> PAGE_SHIFT;
  553. r = -EINVAL;
  554. if (npages > KVM_MEM_MAX_NR_PAGES)
  555. goto out;
  556. if (!npages)
  557. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  558. new = old = *memslot;
  559. new.id = mem->slot;
  560. new.base_gfn = base_gfn;
  561. new.npages = npages;
  562. new.flags = mem->flags;
  563. /* Disallow changing a memory slot's size. */
  564. r = -EINVAL;
  565. if (npages && old.npages && npages != old.npages)
  566. goto out_free;
  567. /* Check for overlaps */
  568. r = -EEXIST;
  569. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  570. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  571. if (s == memslot || !s->npages)
  572. continue;
  573. if (!((base_gfn + npages <= s->base_gfn) ||
  574. (base_gfn >= s->base_gfn + s->npages)))
  575. goto out_free;
  576. }
  577. /* Free page dirty bitmap if unneeded */
  578. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  579. new.dirty_bitmap = NULL;
  580. r = -ENOMEM;
  581. /* Allocate if a slot is being created */
  582. #ifndef CONFIG_S390
  583. if (npages && !new.rmap) {
  584. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  585. if (!new.rmap)
  586. goto out_free;
  587. new.user_alloc = user_alloc;
  588. new.userspace_addr = mem->userspace_addr;
  589. }
  590. if (!npages)
  591. goto skip_lpage;
  592. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  593. unsigned long ugfn;
  594. unsigned long j;
  595. int lpages;
  596. int level = i + 2;
  597. /* Avoid unused variable warning if no large pages */
  598. (void)level;
  599. if (new.lpage_info[i])
  600. continue;
  601. lpages = 1 + ((base_gfn + npages - 1)
  602. >> KVM_HPAGE_GFN_SHIFT(level));
  603. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  604. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  605. if (!new.lpage_info[i])
  606. goto out_free;
  607. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  608. new.lpage_info[i][0].write_count = 1;
  609. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  610. new.lpage_info[i][lpages - 1].write_count = 1;
  611. ugfn = new.userspace_addr >> PAGE_SHIFT;
  612. /*
  613. * If the gfn and userspace address are not aligned wrt each
  614. * other, or if explicitly asked to, disable large page
  615. * support for this slot
  616. */
  617. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  618. !largepages_enabled)
  619. for (j = 0; j < lpages; ++j)
  620. new.lpage_info[i][j].write_count = 1;
  621. }
  622. skip_lpage:
  623. /* Allocate page dirty bitmap if needed */
  624. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  625. if (kvm_create_dirty_bitmap(&new) < 0)
  626. goto out_free;
  627. /* destroy any largepage mappings for dirty tracking */
  628. }
  629. #else /* not defined CONFIG_S390 */
  630. new.user_alloc = user_alloc;
  631. if (user_alloc)
  632. new.userspace_addr = mem->userspace_addr;
  633. #endif /* not defined CONFIG_S390 */
  634. if (!npages) {
  635. r = -ENOMEM;
  636. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  637. if (!slots)
  638. goto out_free;
  639. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  640. if (mem->slot >= slots->nmemslots)
  641. slots->nmemslots = mem->slot + 1;
  642. slots->generation++;
  643. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  644. old_memslots = kvm->memslots;
  645. rcu_assign_pointer(kvm->memslots, slots);
  646. synchronize_srcu_expedited(&kvm->srcu);
  647. /* From this point no new shadow pages pointing to a deleted
  648. * memslot will be created.
  649. *
  650. * validation of sp->gfn happens in:
  651. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  652. * - kvm_is_visible_gfn (mmu_check_roots)
  653. */
  654. kvm_arch_flush_shadow(kvm);
  655. kfree(old_memslots);
  656. }
  657. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  658. if (r)
  659. goto out_free;
  660. /* map the pages in iommu page table */
  661. if (npages) {
  662. r = kvm_iommu_map_pages(kvm, &new);
  663. if (r)
  664. goto out_free;
  665. }
  666. r = -ENOMEM;
  667. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  668. if (!slots)
  669. goto out_free;
  670. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  671. if (mem->slot >= slots->nmemslots)
  672. slots->nmemslots = mem->slot + 1;
  673. slots->generation++;
  674. /* actual memory is freed via old in kvm_free_physmem_slot below */
  675. if (!npages) {
  676. new.rmap = NULL;
  677. new.dirty_bitmap = NULL;
  678. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  679. new.lpage_info[i] = NULL;
  680. }
  681. slots->memslots[mem->slot] = new;
  682. old_memslots = kvm->memslots;
  683. rcu_assign_pointer(kvm->memslots, slots);
  684. synchronize_srcu_expedited(&kvm->srcu);
  685. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  686. kvm_free_physmem_slot(&old, &new);
  687. kfree(old_memslots);
  688. return 0;
  689. out_free:
  690. kvm_free_physmem_slot(&new, &old);
  691. out:
  692. return r;
  693. }
  694. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  695. int kvm_set_memory_region(struct kvm *kvm,
  696. struct kvm_userspace_memory_region *mem,
  697. int user_alloc)
  698. {
  699. int r;
  700. mutex_lock(&kvm->slots_lock);
  701. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  702. mutex_unlock(&kvm->slots_lock);
  703. return r;
  704. }
  705. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  706. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  707. struct
  708. kvm_userspace_memory_region *mem,
  709. int user_alloc)
  710. {
  711. if (mem->slot >= KVM_MEMORY_SLOTS)
  712. return -EINVAL;
  713. return kvm_set_memory_region(kvm, mem, user_alloc);
  714. }
  715. int kvm_get_dirty_log(struct kvm *kvm,
  716. struct kvm_dirty_log *log, int *is_dirty)
  717. {
  718. struct kvm_memory_slot *memslot;
  719. int r, i;
  720. unsigned long n;
  721. unsigned long any = 0;
  722. r = -EINVAL;
  723. if (log->slot >= KVM_MEMORY_SLOTS)
  724. goto out;
  725. memslot = &kvm->memslots->memslots[log->slot];
  726. r = -ENOENT;
  727. if (!memslot->dirty_bitmap)
  728. goto out;
  729. n = kvm_dirty_bitmap_bytes(memslot);
  730. for (i = 0; !any && i < n/sizeof(long); ++i)
  731. any = memslot->dirty_bitmap[i];
  732. r = -EFAULT;
  733. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  734. goto out;
  735. if (any)
  736. *is_dirty = 1;
  737. r = 0;
  738. out:
  739. return r;
  740. }
  741. void kvm_disable_largepages(void)
  742. {
  743. largepages_enabled = false;
  744. }
  745. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  746. int is_error_page(struct page *page)
  747. {
  748. return page == bad_page || page == hwpoison_page || page == fault_page;
  749. }
  750. EXPORT_SYMBOL_GPL(is_error_page);
  751. int is_error_pfn(pfn_t pfn)
  752. {
  753. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  754. }
  755. EXPORT_SYMBOL_GPL(is_error_pfn);
  756. int is_hwpoison_pfn(pfn_t pfn)
  757. {
  758. return pfn == hwpoison_pfn;
  759. }
  760. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  761. int is_fault_pfn(pfn_t pfn)
  762. {
  763. return pfn == fault_pfn;
  764. }
  765. EXPORT_SYMBOL_GPL(is_fault_pfn);
  766. static inline unsigned long bad_hva(void)
  767. {
  768. return PAGE_OFFSET;
  769. }
  770. int kvm_is_error_hva(unsigned long addr)
  771. {
  772. return addr == bad_hva();
  773. }
  774. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  775. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  776. gfn_t gfn)
  777. {
  778. int i;
  779. for (i = 0; i < slots->nmemslots; ++i) {
  780. struct kvm_memory_slot *memslot = &slots->memslots[i];
  781. if (gfn >= memslot->base_gfn
  782. && gfn < memslot->base_gfn + memslot->npages)
  783. return memslot;
  784. }
  785. return NULL;
  786. }
  787. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  788. {
  789. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  790. }
  791. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  792. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  793. {
  794. int i;
  795. struct kvm_memslots *slots = kvm_memslots(kvm);
  796. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  797. struct kvm_memory_slot *memslot = &slots->memslots[i];
  798. if (memslot->flags & KVM_MEMSLOT_INVALID)
  799. continue;
  800. if (gfn >= memslot->base_gfn
  801. && gfn < memslot->base_gfn + memslot->npages)
  802. return 1;
  803. }
  804. return 0;
  805. }
  806. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  807. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  808. {
  809. struct vm_area_struct *vma;
  810. unsigned long addr, size;
  811. size = PAGE_SIZE;
  812. addr = gfn_to_hva(kvm, gfn);
  813. if (kvm_is_error_hva(addr))
  814. return PAGE_SIZE;
  815. down_read(&current->mm->mmap_sem);
  816. vma = find_vma(current->mm, addr);
  817. if (!vma)
  818. goto out;
  819. size = vma_kernel_pagesize(vma);
  820. out:
  821. up_read(&current->mm->mmap_sem);
  822. return size;
  823. }
  824. int memslot_id(struct kvm *kvm, gfn_t gfn)
  825. {
  826. int i;
  827. struct kvm_memslots *slots = kvm_memslots(kvm);
  828. struct kvm_memory_slot *memslot = NULL;
  829. for (i = 0; i < slots->nmemslots; ++i) {
  830. memslot = &slots->memslots[i];
  831. if (gfn >= memslot->base_gfn
  832. && gfn < memslot->base_gfn + memslot->npages)
  833. break;
  834. }
  835. return memslot - slots->memslots;
  836. }
  837. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  838. gfn_t *nr_pages)
  839. {
  840. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  841. return bad_hva();
  842. if (nr_pages)
  843. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  844. return gfn_to_hva_memslot(slot, gfn);
  845. }
  846. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  847. {
  848. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  849. }
  850. EXPORT_SYMBOL_GPL(gfn_to_hva);
  851. static pfn_t get_fault_pfn(void)
  852. {
  853. get_page(fault_page);
  854. return fault_pfn;
  855. }
  856. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  857. bool *async, bool write_fault, bool *writable)
  858. {
  859. struct page *page[1];
  860. int npages = 0;
  861. pfn_t pfn;
  862. /* we can do it either atomically or asynchronously, not both */
  863. BUG_ON(atomic && async);
  864. BUG_ON(!write_fault && !writable);
  865. if (writable)
  866. *writable = true;
  867. if (atomic || async)
  868. npages = __get_user_pages_fast(addr, 1, 1, page);
  869. if (unlikely(npages != 1) && !atomic) {
  870. might_sleep();
  871. if (writable)
  872. *writable = write_fault;
  873. npages = get_user_pages_fast(addr, 1, write_fault, page);
  874. /* map read fault as writable if possible */
  875. if (unlikely(!write_fault) && npages == 1) {
  876. struct page *wpage[1];
  877. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  878. if (npages == 1) {
  879. *writable = true;
  880. put_page(page[0]);
  881. page[0] = wpage[0];
  882. }
  883. npages = 1;
  884. }
  885. }
  886. if (unlikely(npages != 1)) {
  887. struct vm_area_struct *vma;
  888. if (atomic)
  889. return get_fault_pfn();
  890. down_read(&current->mm->mmap_sem);
  891. if (is_hwpoison_address(addr)) {
  892. up_read(&current->mm->mmap_sem);
  893. get_page(hwpoison_page);
  894. return page_to_pfn(hwpoison_page);
  895. }
  896. vma = find_vma_intersection(current->mm, addr, addr+1);
  897. if (vma == NULL)
  898. pfn = get_fault_pfn();
  899. else if ((vma->vm_flags & VM_PFNMAP)) {
  900. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  901. vma->vm_pgoff;
  902. BUG_ON(!kvm_is_mmio_pfn(pfn));
  903. } else {
  904. if (async && (vma->vm_flags & VM_WRITE))
  905. *async = true;
  906. pfn = get_fault_pfn();
  907. }
  908. up_read(&current->mm->mmap_sem);
  909. } else
  910. pfn = page_to_pfn(page[0]);
  911. return pfn;
  912. }
  913. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  914. {
  915. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  916. }
  917. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  918. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  919. bool write_fault, bool *writable)
  920. {
  921. unsigned long addr;
  922. if (async)
  923. *async = false;
  924. addr = gfn_to_hva(kvm, gfn);
  925. if (kvm_is_error_hva(addr)) {
  926. get_page(bad_page);
  927. return page_to_pfn(bad_page);
  928. }
  929. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  930. }
  931. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  932. {
  933. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  934. }
  935. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  936. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  937. bool write_fault, bool *writable)
  938. {
  939. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  940. }
  941. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  942. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  943. {
  944. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  945. }
  946. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  947. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  948. bool *writable)
  949. {
  950. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  951. }
  952. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  953. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  954. struct kvm_memory_slot *slot, gfn_t gfn)
  955. {
  956. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  957. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  958. }
  959. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  960. int nr_pages)
  961. {
  962. unsigned long addr;
  963. gfn_t entry;
  964. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  965. if (kvm_is_error_hva(addr))
  966. return -1;
  967. if (entry < nr_pages)
  968. return 0;
  969. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  970. }
  971. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  972. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  973. {
  974. pfn_t pfn;
  975. pfn = gfn_to_pfn(kvm, gfn);
  976. if (!kvm_is_mmio_pfn(pfn))
  977. return pfn_to_page(pfn);
  978. WARN_ON(kvm_is_mmio_pfn(pfn));
  979. get_page(bad_page);
  980. return bad_page;
  981. }
  982. EXPORT_SYMBOL_GPL(gfn_to_page);
  983. void kvm_release_page_clean(struct page *page)
  984. {
  985. kvm_release_pfn_clean(page_to_pfn(page));
  986. }
  987. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  988. void kvm_release_pfn_clean(pfn_t pfn)
  989. {
  990. if (!kvm_is_mmio_pfn(pfn))
  991. put_page(pfn_to_page(pfn));
  992. }
  993. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  994. void kvm_release_page_dirty(struct page *page)
  995. {
  996. kvm_release_pfn_dirty(page_to_pfn(page));
  997. }
  998. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  999. void kvm_release_pfn_dirty(pfn_t pfn)
  1000. {
  1001. kvm_set_pfn_dirty(pfn);
  1002. kvm_release_pfn_clean(pfn);
  1003. }
  1004. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1005. void kvm_set_page_dirty(struct page *page)
  1006. {
  1007. kvm_set_pfn_dirty(page_to_pfn(page));
  1008. }
  1009. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1010. void kvm_set_pfn_dirty(pfn_t pfn)
  1011. {
  1012. if (!kvm_is_mmio_pfn(pfn)) {
  1013. struct page *page = pfn_to_page(pfn);
  1014. if (!PageReserved(page))
  1015. SetPageDirty(page);
  1016. }
  1017. }
  1018. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1019. void kvm_set_pfn_accessed(pfn_t pfn)
  1020. {
  1021. if (!kvm_is_mmio_pfn(pfn))
  1022. mark_page_accessed(pfn_to_page(pfn));
  1023. }
  1024. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1025. void kvm_get_pfn(pfn_t pfn)
  1026. {
  1027. if (!kvm_is_mmio_pfn(pfn))
  1028. get_page(pfn_to_page(pfn));
  1029. }
  1030. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1031. static int next_segment(unsigned long len, int offset)
  1032. {
  1033. if (len > PAGE_SIZE - offset)
  1034. return PAGE_SIZE - offset;
  1035. else
  1036. return len;
  1037. }
  1038. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1039. int len)
  1040. {
  1041. int r;
  1042. unsigned long addr;
  1043. addr = gfn_to_hva(kvm, gfn);
  1044. if (kvm_is_error_hva(addr))
  1045. return -EFAULT;
  1046. r = copy_from_user(data, (void __user *)addr + offset, len);
  1047. if (r)
  1048. return -EFAULT;
  1049. return 0;
  1050. }
  1051. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1052. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1053. {
  1054. gfn_t gfn = gpa >> PAGE_SHIFT;
  1055. int seg;
  1056. int offset = offset_in_page(gpa);
  1057. int ret;
  1058. while ((seg = next_segment(len, offset)) != 0) {
  1059. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1060. if (ret < 0)
  1061. return ret;
  1062. offset = 0;
  1063. len -= seg;
  1064. data += seg;
  1065. ++gfn;
  1066. }
  1067. return 0;
  1068. }
  1069. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1070. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1071. unsigned long len)
  1072. {
  1073. int r;
  1074. unsigned long addr;
  1075. gfn_t gfn = gpa >> PAGE_SHIFT;
  1076. int offset = offset_in_page(gpa);
  1077. addr = gfn_to_hva(kvm, gfn);
  1078. if (kvm_is_error_hva(addr))
  1079. return -EFAULT;
  1080. pagefault_disable();
  1081. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1082. pagefault_enable();
  1083. if (r)
  1084. return -EFAULT;
  1085. return 0;
  1086. }
  1087. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1088. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1089. int offset, int len)
  1090. {
  1091. int r;
  1092. unsigned long addr;
  1093. addr = gfn_to_hva(kvm, gfn);
  1094. if (kvm_is_error_hva(addr))
  1095. return -EFAULT;
  1096. r = copy_to_user((void __user *)addr + offset, data, len);
  1097. if (r)
  1098. return -EFAULT;
  1099. mark_page_dirty(kvm, gfn);
  1100. return 0;
  1101. }
  1102. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1103. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1104. unsigned long len)
  1105. {
  1106. gfn_t gfn = gpa >> PAGE_SHIFT;
  1107. int seg;
  1108. int offset = offset_in_page(gpa);
  1109. int ret;
  1110. while ((seg = next_segment(len, offset)) != 0) {
  1111. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1112. if (ret < 0)
  1113. return ret;
  1114. offset = 0;
  1115. len -= seg;
  1116. data += seg;
  1117. ++gfn;
  1118. }
  1119. return 0;
  1120. }
  1121. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1122. gpa_t gpa)
  1123. {
  1124. struct kvm_memslots *slots = kvm_memslots(kvm);
  1125. int offset = offset_in_page(gpa);
  1126. gfn_t gfn = gpa >> PAGE_SHIFT;
  1127. ghc->gpa = gpa;
  1128. ghc->generation = slots->generation;
  1129. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1130. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1131. if (!kvm_is_error_hva(ghc->hva))
  1132. ghc->hva += offset;
  1133. else
  1134. return -EFAULT;
  1135. return 0;
  1136. }
  1137. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1138. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1139. void *data, unsigned long len)
  1140. {
  1141. struct kvm_memslots *slots = kvm_memslots(kvm);
  1142. int r;
  1143. if (slots->generation != ghc->generation)
  1144. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1145. if (kvm_is_error_hva(ghc->hva))
  1146. return -EFAULT;
  1147. r = copy_to_user((void __user *)ghc->hva, data, len);
  1148. if (r)
  1149. return -EFAULT;
  1150. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1151. return 0;
  1152. }
  1153. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1154. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1155. {
  1156. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1157. offset, len);
  1158. }
  1159. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1160. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1161. {
  1162. gfn_t gfn = gpa >> PAGE_SHIFT;
  1163. int seg;
  1164. int offset = offset_in_page(gpa);
  1165. int ret;
  1166. while ((seg = next_segment(len, offset)) != 0) {
  1167. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1168. if (ret < 0)
  1169. return ret;
  1170. offset = 0;
  1171. len -= seg;
  1172. ++gfn;
  1173. }
  1174. return 0;
  1175. }
  1176. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1177. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1178. gfn_t gfn)
  1179. {
  1180. if (memslot && memslot->dirty_bitmap) {
  1181. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1182. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1183. }
  1184. }
  1185. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1186. {
  1187. struct kvm_memory_slot *memslot;
  1188. memslot = gfn_to_memslot(kvm, gfn);
  1189. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1190. }
  1191. /*
  1192. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1193. */
  1194. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1195. {
  1196. DEFINE_WAIT(wait);
  1197. for (;;) {
  1198. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1199. if (kvm_arch_vcpu_runnable(vcpu)) {
  1200. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1201. break;
  1202. }
  1203. if (kvm_cpu_has_pending_timer(vcpu))
  1204. break;
  1205. if (signal_pending(current))
  1206. break;
  1207. schedule();
  1208. }
  1209. finish_wait(&vcpu->wq, &wait);
  1210. }
  1211. void kvm_resched(struct kvm_vcpu *vcpu)
  1212. {
  1213. if (!need_resched())
  1214. return;
  1215. cond_resched();
  1216. }
  1217. EXPORT_SYMBOL_GPL(kvm_resched);
  1218. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1219. {
  1220. ktime_t expires;
  1221. DEFINE_WAIT(wait);
  1222. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1223. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1224. expires = ktime_add_ns(ktime_get(), 100000UL);
  1225. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1226. finish_wait(&vcpu->wq, &wait);
  1227. }
  1228. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1229. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1230. {
  1231. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1232. struct page *page;
  1233. if (vmf->pgoff == 0)
  1234. page = virt_to_page(vcpu->run);
  1235. #ifdef CONFIG_X86
  1236. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1237. page = virt_to_page(vcpu->arch.pio_data);
  1238. #endif
  1239. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1240. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1241. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1242. #endif
  1243. else
  1244. return VM_FAULT_SIGBUS;
  1245. get_page(page);
  1246. vmf->page = page;
  1247. return 0;
  1248. }
  1249. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1250. .fault = kvm_vcpu_fault,
  1251. };
  1252. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1253. {
  1254. vma->vm_ops = &kvm_vcpu_vm_ops;
  1255. return 0;
  1256. }
  1257. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1258. {
  1259. struct kvm_vcpu *vcpu = filp->private_data;
  1260. kvm_put_kvm(vcpu->kvm);
  1261. return 0;
  1262. }
  1263. static struct file_operations kvm_vcpu_fops = {
  1264. .release = kvm_vcpu_release,
  1265. .unlocked_ioctl = kvm_vcpu_ioctl,
  1266. .compat_ioctl = kvm_vcpu_ioctl,
  1267. .mmap = kvm_vcpu_mmap,
  1268. .llseek = noop_llseek,
  1269. };
  1270. /*
  1271. * Allocates an inode for the vcpu.
  1272. */
  1273. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1274. {
  1275. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1276. }
  1277. /*
  1278. * Creates some virtual cpus. Good luck creating more than one.
  1279. */
  1280. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1281. {
  1282. int r;
  1283. struct kvm_vcpu *vcpu, *v;
  1284. vcpu = kvm_arch_vcpu_create(kvm, id);
  1285. if (IS_ERR(vcpu))
  1286. return PTR_ERR(vcpu);
  1287. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1288. r = kvm_arch_vcpu_setup(vcpu);
  1289. if (r)
  1290. return r;
  1291. mutex_lock(&kvm->lock);
  1292. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1293. r = -EINVAL;
  1294. goto vcpu_destroy;
  1295. }
  1296. kvm_for_each_vcpu(r, v, kvm)
  1297. if (v->vcpu_id == id) {
  1298. r = -EEXIST;
  1299. goto vcpu_destroy;
  1300. }
  1301. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1302. /* Now it's all set up, let userspace reach it */
  1303. kvm_get_kvm(kvm);
  1304. r = create_vcpu_fd(vcpu);
  1305. if (r < 0) {
  1306. kvm_put_kvm(kvm);
  1307. goto vcpu_destroy;
  1308. }
  1309. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1310. smp_wmb();
  1311. atomic_inc(&kvm->online_vcpus);
  1312. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1313. if (kvm->bsp_vcpu_id == id)
  1314. kvm->bsp_vcpu = vcpu;
  1315. #endif
  1316. mutex_unlock(&kvm->lock);
  1317. return r;
  1318. vcpu_destroy:
  1319. mutex_unlock(&kvm->lock);
  1320. kvm_arch_vcpu_destroy(vcpu);
  1321. return r;
  1322. }
  1323. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1324. {
  1325. if (sigset) {
  1326. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1327. vcpu->sigset_active = 1;
  1328. vcpu->sigset = *sigset;
  1329. } else
  1330. vcpu->sigset_active = 0;
  1331. return 0;
  1332. }
  1333. static long kvm_vcpu_ioctl(struct file *filp,
  1334. unsigned int ioctl, unsigned long arg)
  1335. {
  1336. struct kvm_vcpu *vcpu = filp->private_data;
  1337. void __user *argp = (void __user *)arg;
  1338. int r;
  1339. struct kvm_fpu *fpu = NULL;
  1340. struct kvm_sregs *kvm_sregs = NULL;
  1341. if (vcpu->kvm->mm != current->mm)
  1342. return -EIO;
  1343. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1344. /*
  1345. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1346. * so vcpu_load() would break it.
  1347. */
  1348. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1349. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1350. #endif
  1351. vcpu_load(vcpu);
  1352. switch (ioctl) {
  1353. case KVM_RUN:
  1354. r = -EINVAL;
  1355. if (arg)
  1356. goto out;
  1357. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1358. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1359. break;
  1360. case KVM_GET_REGS: {
  1361. struct kvm_regs *kvm_regs;
  1362. r = -ENOMEM;
  1363. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1364. if (!kvm_regs)
  1365. goto out;
  1366. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1367. if (r)
  1368. goto out_free1;
  1369. r = -EFAULT;
  1370. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1371. goto out_free1;
  1372. r = 0;
  1373. out_free1:
  1374. kfree(kvm_regs);
  1375. break;
  1376. }
  1377. case KVM_SET_REGS: {
  1378. struct kvm_regs *kvm_regs;
  1379. r = -ENOMEM;
  1380. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1381. if (!kvm_regs)
  1382. goto out;
  1383. r = -EFAULT;
  1384. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1385. goto out_free2;
  1386. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1387. if (r)
  1388. goto out_free2;
  1389. r = 0;
  1390. out_free2:
  1391. kfree(kvm_regs);
  1392. break;
  1393. }
  1394. case KVM_GET_SREGS: {
  1395. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1396. r = -ENOMEM;
  1397. if (!kvm_sregs)
  1398. goto out;
  1399. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1400. if (r)
  1401. goto out;
  1402. r = -EFAULT;
  1403. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1404. goto out;
  1405. r = 0;
  1406. break;
  1407. }
  1408. case KVM_SET_SREGS: {
  1409. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1410. r = -ENOMEM;
  1411. if (!kvm_sregs)
  1412. goto out;
  1413. r = -EFAULT;
  1414. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1415. goto out;
  1416. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1417. if (r)
  1418. goto out;
  1419. r = 0;
  1420. break;
  1421. }
  1422. case KVM_GET_MP_STATE: {
  1423. struct kvm_mp_state mp_state;
  1424. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1425. if (r)
  1426. goto out;
  1427. r = -EFAULT;
  1428. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1429. goto out;
  1430. r = 0;
  1431. break;
  1432. }
  1433. case KVM_SET_MP_STATE: {
  1434. struct kvm_mp_state mp_state;
  1435. r = -EFAULT;
  1436. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1437. goto out;
  1438. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1439. if (r)
  1440. goto out;
  1441. r = 0;
  1442. break;
  1443. }
  1444. case KVM_TRANSLATE: {
  1445. struct kvm_translation tr;
  1446. r = -EFAULT;
  1447. if (copy_from_user(&tr, argp, sizeof tr))
  1448. goto out;
  1449. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1450. if (r)
  1451. goto out;
  1452. r = -EFAULT;
  1453. if (copy_to_user(argp, &tr, sizeof tr))
  1454. goto out;
  1455. r = 0;
  1456. break;
  1457. }
  1458. case KVM_SET_GUEST_DEBUG: {
  1459. struct kvm_guest_debug dbg;
  1460. r = -EFAULT;
  1461. if (copy_from_user(&dbg, argp, sizeof dbg))
  1462. goto out;
  1463. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1464. if (r)
  1465. goto out;
  1466. r = 0;
  1467. break;
  1468. }
  1469. case KVM_SET_SIGNAL_MASK: {
  1470. struct kvm_signal_mask __user *sigmask_arg = argp;
  1471. struct kvm_signal_mask kvm_sigmask;
  1472. sigset_t sigset, *p;
  1473. p = NULL;
  1474. if (argp) {
  1475. r = -EFAULT;
  1476. if (copy_from_user(&kvm_sigmask, argp,
  1477. sizeof kvm_sigmask))
  1478. goto out;
  1479. r = -EINVAL;
  1480. if (kvm_sigmask.len != sizeof sigset)
  1481. goto out;
  1482. r = -EFAULT;
  1483. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1484. sizeof sigset))
  1485. goto out;
  1486. p = &sigset;
  1487. }
  1488. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1489. break;
  1490. }
  1491. case KVM_GET_FPU: {
  1492. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1493. r = -ENOMEM;
  1494. if (!fpu)
  1495. goto out;
  1496. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1497. if (r)
  1498. goto out;
  1499. r = -EFAULT;
  1500. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1501. goto out;
  1502. r = 0;
  1503. break;
  1504. }
  1505. case KVM_SET_FPU: {
  1506. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1507. r = -ENOMEM;
  1508. if (!fpu)
  1509. goto out;
  1510. r = -EFAULT;
  1511. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1512. goto out;
  1513. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1514. if (r)
  1515. goto out;
  1516. r = 0;
  1517. break;
  1518. }
  1519. default:
  1520. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1521. }
  1522. out:
  1523. vcpu_put(vcpu);
  1524. kfree(fpu);
  1525. kfree(kvm_sregs);
  1526. return r;
  1527. }
  1528. static long kvm_vm_ioctl(struct file *filp,
  1529. unsigned int ioctl, unsigned long arg)
  1530. {
  1531. struct kvm *kvm = filp->private_data;
  1532. void __user *argp = (void __user *)arg;
  1533. int r;
  1534. if (kvm->mm != current->mm)
  1535. return -EIO;
  1536. switch (ioctl) {
  1537. case KVM_CREATE_VCPU:
  1538. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1539. if (r < 0)
  1540. goto out;
  1541. break;
  1542. case KVM_SET_USER_MEMORY_REGION: {
  1543. struct kvm_userspace_memory_region kvm_userspace_mem;
  1544. r = -EFAULT;
  1545. if (copy_from_user(&kvm_userspace_mem, argp,
  1546. sizeof kvm_userspace_mem))
  1547. goto out;
  1548. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1549. if (r)
  1550. goto out;
  1551. break;
  1552. }
  1553. case KVM_GET_DIRTY_LOG: {
  1554. struct kvm_dirty_log log;
  1555. r = -EFAULT;
  1556. if (copy_from_user(&log, argp, sizeof log))
  1557. goto out;
  1558. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1559. if (r)
  1560. goto out;
  1561. break;
  1562. }
  1563. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1564. case KVM_REGISTER_COALESCED_MMIO: {
  1565. struct kvm_coalesced_mmio_zone zone;
  1566. r = -EFAULT;
  1567. if (copy_from_user(&zone, argp, sizeof zone))
  1568. goto out;
  1569. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1570. if (r)
  1571. goto out;
  1572. r = 0;
  1573. break;
  1574. }
  1575. case KVM_UNREGISTER_COALESCED_MMIO: {
  1576. struct kvm_coalesced_mmio_zone zone;
  1577. r = -EFAULT;
  1578. if (copy_from_user(&zone, argp, sizeof zone))
  1579. goto out;
  1580. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1581. if (r)
  1582. goto out;
  1583. r = 0;
  1584. break;
  1585. }
  1586. #endif
  1587. case KVM_IRQFD: {
  1588. struct kvm_irqfd data;
  1589. r = -EFAULT;
  1590. if (copy_from_user(&data, argp, sizeof data))
  1591. goto out;
  1592. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1593. break;
  1594. }
  1595. case KVM_IOEVENTFD: {
  1596. struct kvm_ioeventfd data;
  1597. r = -EFAULT;
  1598. if (copy_from_user(&data, argp, sizeof data))
  1599. goto out;
  1600. r = kvm_ioeventfd(kvm, &data);
  1601. break;
  1602. }
  1603. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1604. case KVM_SET_BOOT_CPU_ID:
  1605. r = 0;
  1606. mutex_lock(&kvm->lock);
  1607. if (atomic_read(&kvm->online_vcpus) != 0)
  1608. r = -EBUSY;
  1609. else
  1610. kvm->bsp_vcpu_id = arg;
  1611. mutex_unlock(&kvm->lock);
  1612. break;
  1613. #endif
  1614. default:
  1615. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1616. if (r == -ENOTTY)
  1617. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1618. }
  1619. out:
  1620. return r;
  1621. }
  1622. #ifdef CONFIG_COMPAT
  1623. struct compat_kvm_dirty_log {
  1624. __u32 slot;
  1625. __u32 padding1;
  1626. union {
  1627. compat_uptr_t dirty_bitmap; /* one bit per page */
  1628. __u64 padding2;
  1629. };
  1630. };
  1631. static long kvm_vm_compat_ioctl(struct file *filp,
  1632. unsigned int ioctl, unsigned long arg)
  1633. {
  1634. struct kvm *kvm = filp->private_data;
  1635. int r;
  1636. if (kvm->mm != current->mm)
  1637. return -EIO;
  1638. switch (ioctl) {
  1639. case KVM_GET_DIRTY_LOG: {
  1640. struct compat_kvm_dirty_log compat_log;
  1641. struct kvm_dirty_log log;
  1642. r = -EFAULT;
  1643. if (copy_from_user(&compat_log, (void __user *)arg,
  1644. sizeof(compat_log)))
  1645. goto out;
  1646. log.slot = compat_log.slot;
  1647. log.padding1 = compat_log.padding1;
  1648. log.padding2 = compat_log.padding2;
  1649. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1650. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1651. if (r)
  1652. goto out;
  1653. break;
  1654. }
  1655. default:
  1656. r = kvm_vm_ioctl(filp, ioctl, arg);
  1657. }
  1658. out:
  1659. return r;
  1660. }
  1661. #endif
  1662. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1663. {
  1664. struct page *page[1];
  1665. unsigned long addr;
  1666. int npages;
  1667. gfn_t gfn = vmf->pgoff;
  1668. struct kvm *kvm = vma->vm_file->private_data;
  1669. addr = gfn_to_hva(kvm, gfn);
  1670. if (kvm_is_error_hva(addr))
  1671. return VM_FAULT_SIGBUS;
  1672. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1673. NULL);
  1674. if (unlikely(npages != 1))
  1675. return VM_FAULT_SIGBUS;
  1676. vmf->page = page[0];
  1677. return 0;
  1678. }
  1679. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1680. .fault = kvm_vm_fault,
  1681. };
  1682. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1683. {
  1684. vma->vm_ops = &kvm_vm_vm_ops;
  1685. return 0;
  1686. }
  1687. static struct file_operations kvm_vm_fops = {
  1688. .release = kvm_vm_release,
  1689. .unlocked_ioctl = kvm_vm_ioctl,
  1690. #ifdef CONFIG_COMPAT
  1691. .compat_ioctl = kvm_vm_compat_ioctl,
  1692. #endif
  1693. .mmap = kvm_vm_mmap,
  1694. .llseek = noop_llseek,
  1695. };
  1696. static int kvm_dev_ioctl_create_vm(void)
  1697. {
  1698. int r;
  1699. struct kvm *kvm;
  1700. kvm = kvm_create_vm();
  1701. if (IS_ERR(kvm))
  1702. return PTR_ERR(kvm);
  1703. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1704. r = kvm_coalesced_mmio_init(kvm);
  1705. if (r < 0) {
  1706. kvm_put_kvm(kvm);
  1707. return r;
  1708. }
  1709. #endif
  1710. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1711. if (r < 0)
  1712. kvm_put_kvm(kvm);
  1713. return r;
  1714. }
  1715. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1716. {
  1717. switch (arg) {
  1718. case KVM_CAP_USER_MEMORY:
  1719. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1720. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1721. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1722. case KVM_CAP_SET_BOOT_CPU_ID:
  1723. #endif
  1724. case KVM_CAP_INTERNAL_ERROR_DATA:
  1725. return 1;
  1726. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1727. case KVM_CAP_IRQ_ROUTING:
  1728. return KVM_MAX_IRQ_ROUTES;
  1729. #endif
  1730. default:
  1731. break;
  1732. }
  1733. return kvm_dev_ioctl_check_extension(arg);
  1734. }
  1735. static long kvm_dev_ioctl(struct file *filp,
  1736. unsigned int ioctl, unsigned long arg)
  1737. {
  1738. long r = -EINVAL;
  1739. switch (ioctl) {
  1740. case KVM_GET_API_VERSION:
  1741. r = -EINVAL;
  1742. if (arg)
  1743. goto out;
  1744. r = KVM_API_VERSION;
  1745. break;
  1746. case KVM_CREATE_VM:
  1747. r = -EINVAL;
  1748. if (arg)
  1749. goto out;
  1750. r = kvm_dev_ioctl_create_vm();
  1751. break;
  1752. case KVM_CHECK_EXTENSION:
  1753. r = kvm_dev_ioctl_check_extension_generic(arg);
  1754. break;
  1755. case KVM_GET_VCPU_MMAP_SIZE:
  1756. r = -EINVAL;
  1757. if (arg)
  1758. goto out;
  1759. r = PAGE_SIZE; /* struct kvm_run */
  1760. #ifdef CONFIG_X86
  1761. r += PAGE_SIZE; /* pio data page */
  1762. #endif
  1763. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1764. r += PAGE_SIZE; /* coalesced mmio ring page */
  1765. #endif
  1766. break;
  1767. case KVM_TRACE_ENABLE:
  1768. case KVM_TRACE_PAUSE:
  1769. case KVM_TRACE_DISABLE:
  1770. r = -EOPNOTSUPP;
  1771. break;
  1772. default:
  1773. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1774. }
  1775. out:
  1776. return r;
  1777. }
  1778. static struct file_operations kvm_chardev_ops = {
  1779. .unlocked_ioctl = kvm_dev_ioctl,
  1780. .compat_ioctl = kvm_dev_ioctl,
  1781. .llseek = noop_llseek,
  1782. };
  1783. static struct miscdevice kvm_dev = {
  1784. KVM_MINOR,
  1785. "kvm",
  1786. &kvm_chardev_ops,
  1787. };
  1788. static void hardware_enable_nolock(void *junk)
  1789. {
  1790. int cpu = raw_smp_processor_id();
  1791. int r;
  1792. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1793. return;
  1794. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1795. r = kvm_arch_hardware_enable(NULL);
  1796. if (r) {
  1797. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1798. atomic_inc(&hardware_enable_failed);
  1799. printk(KERN_INFO "kvm: enabling virtualization on "
  1800. "CPU%d failed\n", cpu);
  1801. }
  1802. }
  1803. static void hardware_enable(void *junk)
  1804. {
  1805. spin_lock(&kvm_lock);
  1806. hardware_enable_nolock(junk);
  1807. spin_unlock(&kvm_lock);
  1808. }
  1809. static void hardware_disable_nolock(void *junk)
  1810. {
  1811. int cpu = raw_smp_processor_id();
  1812. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1813. return;
  1814. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1815. kvm_arch_hardware_disable(NULL);
  1816. }
  1817. static void hardware_disable(void *junk)
  1818. {
  1819. spin_lock(&kvm_lock);
  1820. hardware_disable_nolock(junk);
  1821. spin_unlock(&kvm_lock);
  1822. }
  1823. static void hardware_disable_all_nolock(void)
  1824. {
  1825. BUG_ON(!kvm_usage_count);
  1826. kvm_usage_count--;
  1827. if (!kvm_usage_count)
  1828. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1829. }
  1830. static void hardware_disable_all(void)
  1831. {
  1832. spin_lock(&kvm_lock);
  1833. hardware_disable_all_nolock();
  1834. spin_unlock(&kvm_lock);
  1835. }
  1836. static int hardware_enable_all(void)
  1837. {
  1838. int r = 0;
  1839. spin_lock(&kvm_lock);
  1840. kvm_usage_count++;
  1841. if (kvm_usage_count == 1) {
  1842. atomic_set(&hardware_enable_failed, 0);
  1843. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1844. if (atomic_read(&hardware_enable_failed)) {
  1845. hardware_disable_all_nolock();
  1846. r = -EBUSY;
  1847. }
  1848. }
  1849. spin_unlock(&kvm_lock);
  1850. return r;
  1851. }
  1852. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1853. void *v)
  1854. {
  1855. int cpu = (long)v;
  1856. if (!kvm_usage_count)
  1857. return NOTIFY_OK;
  1858. val &= ~CPU_TASKS_FROZEN;
  1859. switch (val) {
  1860. case CPU_DYING:
  1861. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1862. cpu);
  1863. hardware_disable(NULL);
  1864. break;
  1865. case CPU_STARTING:
  1866. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1867. cpu);
  1868. hardware_enable(NULL);
  1869. break;
  1870. }
  1871. return NOTIFY_OK;
  1872. }
  1873. asmlinkage void kvm_spurious_fault(void)
  1874. {
  1875. /* Fault while not rebooting. We want the trace. */
  1876. BUG();
  1877. }
  1878. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  1879. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1880. void *v)
  1881. {
  1882. /*
  1883. * Some (well, at least mine) BIOSes hang on reboot if
  1884. * in vmx root mode.
  1885. *
  1886. * And Intel TXT required VMX off for all cpu when system shutdown.
  1887. */
  1888. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1889. kvm_rebooting = true;
  1890. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1891. return NOTIFY_OK;
  1892. }
  1893. static struct notifier_block kvm_reboot_notifier = {
  1894. .notifier_call = kvm_reboot,
  1895. .priority = 0,
  1896. };
  1897. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1898. {
  1899. int i;
  1900. for (i = 0; i < bus->dev_count; i++) {
  1901. struct kvm_io_device *pos = bus->devs[i];
  1902. kvm_iodevice_destructor(pos);
  1903. }
  1904. kfree(bus);
  1905. }
  1906. /* kvm_io_bus_write - called under kvm->slots_lock */
  1907. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1908. int len, const void *val)
  1909. {
  1910. int i;
  1911. struct kvm_io_bus *bus;
  1912. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1913. for (i = 0; i < bus->dev_count; i++)
  1914. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1915. return 0;
  1916. return -EOPNOTSUPP;
  1917. }
  1918. /* kvm_io_bus_read - called under kvm->slots_lock */
  1919. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1920. int len, void *val)
  1921. {
  1922. int i;
  1923. struct kvm_io_bus *bus;
  1924. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1925. for (i = 0; i < bus->dev_count; i++)
  1926. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1927. return 0;
  1928. return -EOPNOTSUPP;
  1929. }
  1930. /* Caller must hold slots_lock. */
  1931. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1932. struct kvm_io_device *dev)
  1933. {
  1934. struct kvm_io_bus *new_bus, *bus;
  1935. bus = kvm->buses[bus_idx];
  1936. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1937. return -ENOSPC;
  1938. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1939. if (!new_bus)
  1940. return -ENOMEM;
  1941. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1942. new_bus->devs[new_bus->dev_count++] = dev;
  1943. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1944. synchronize_srcu_expedited(&kvm->srcu);
  1945. kfree(bus);
  1946. return 0;
  1947. }
  1948. /* Caller must hold slots_lock. */
  1949. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1950. struct kvm_io_device *dev)
  1951. {
  1952. int i, r;
  1953. struct kvm_io_bus *new_bus, *bus;
  1954. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1955. if (!new_bus)
  1956. return -ENOMEM;
  1957. bus = kvm->buses[bus_idx];
  1958. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1959. r = -ENOENT;
  1960. for (i = 0; i < new_bus->dev_count; i++)
  1961. if (new_bus->devs[i] == dev) {
  1962. r = 0;
  1963. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1964. break;
  1965. }
  1966. if (r) {
  1967. kfree(new_bus);
  1968. return r;
  1969. }
  1970. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1971. synchronize_srcu_expedited(&kvm->srcu);
  1972. kfree(bus);
  1973. return r;
  1974. }
  1975. static struct notifier_block kvm_cpu_notifier = {
  1976. .notifier_call = kvm_cpu_hotplug,
  1977. };
  1978. static int vm_stat_get(void *_offset, u64 *val)
  1979. {
  1980. unsigned offset = (long)_offset;
  1981. struct kvm *kvm;
  1982. *val = 0;
  1983. spin_lock(&kvm_lock);
  1984. list_for_each_entry(kvm, &vm_list, vm_list)
  1985. *val += *(u32 *)((void *)kvm + offset);
  1986. spin_unlock(&kvm_lock);
  1987. return 0;
  1988. }
  1989. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1990. static int vcpu_stat_get(void *_offset, u64 *val)
  1991. {
  1992. unsigned offset = (long)_offset;
  1993. struct kvm *kvm;
  1994. struct kvm_vcpu *vcpu;
  1995. int i;
  1996. *val = 0;
  1997. spin_lock(&kvm_lock);
  1998. list_for_each_entry(kvm, &vm_list, vm_list)
  1999. kvm_for_each_vcpu(i, vcpu, kvm)
  2000. *val += *(u32 *)((void *)vcpu + offset);
  2001. spin_unlock(&kvm_lock);
  2002. return 0;
  2003. }
  2004. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2005. static const struct file_operations *stat_fops[] = {
  2006. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2007. [KVM_STAT_VM] = &vm_stat_fops,
  2008. };
  2009. static void kvm_init_debug(void)
  2010. {
  2011. struct kvm_stats_debugfs_item *p;
  2012. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2013. for (p = debugfs_entries; p->name; ++p)
  2014. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2015. (void *)(long)p->offset,
  2016. stat_fops[p->kind]);
  2017. }
  2018. static void kvm_exit_debug(void)
  2019. {
  2020. struct kvm_stats_debugfs_item *p;
  2021. for (p = debugfs_entries; p->name; ++p)
  2022. debugfs_remove(p->dentry);
  2023. debugfs_remove(kvm_debugfs_dir);
  2024. }
  2025. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2026. {
  2027. if (kvm_usage_count)
  2028. hardware_disable_nolock(NULL);
  2029. return 0;
  2030. }
  2031. static int kvm_resume(struct sys_device *dev)
  2032. {
  2033. if (kvm_usage_count) {
  2034. WARN_ON(spin_is_locked(&kvm_lock));
  2035. hardware_enable_nolock(NULL);
  2036. }
  2037. return 0;
  2038. }
  2039. static struct sysdev_class kvm_sysdev_class = {
  2040. .name = "kvm",
  2041. .suspend = kvm_suspend,
  2042. .resume = kvm_resume,
  2043. };
  2044. static struct sys_device kvm_sysdev = {
  2045. .id = 0,
  2046. .cls = &kvm_sysdev_class,
  2047. };
  2048. struct page *bad_page;
  2049. pfn_t bad_pfn;
  2050. static inline
  2051. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2052. {
  2053. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2054. }
  2055. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2056. {
  2057. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2058. kvm_arch_vcpu_load(vcpu, cpu);
  2059. }
  2060. static void kvm_sched_out(struct preempt_notifier *pn,
  2061. struct task_struct *next)
  2062. {
  2063. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2064. kvm_arch_vcpu_put(vcpu);
  2065. }
  2066. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2067. struct module *module)
  2068. {
  2069. int r;
  2070. int cpu;
  2071. r = kvm_arch_init(opaque);
  2072. if (r)
  2073. goto out_fail;
  2074. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2075. if (bad_page == NULL) {
  2076. r = -ENOMEM;
  2077. goto out;
  2078. }
  2079. bad_pfn = page_to_pfn(bad_page);
  2080. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2081. if (hwpoison_page == NULL) {
  2082. r = -ENOMEM;
  2083. goto out_free_0;
  2084. }
  2085. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2086. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2087. if (fault_page == NULL) {
  2088. r = -ENOMEM;
  2089. goto out_free_0;
  2090. }
  2091. fault_pfn = page_to_pfn(fault_page);
  2092. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2093. r = -ENOMEM;
  2094. goto out_free_0;
  2095. }
  2096. r = kvm_arch_hardware_setup();
  2097. if (r < 0)
  2098. goto out_free_0a;
  2099. for_each_online_cpu(cpu) {
  2100. smp_call_function_single(cpu,
  2101. kvm_arch_check_processor_compat,
  2102. &r, 1);
  2103. if (r < 0)
  2104. goto out_free_1;
  2105. }
  2106. r = register_cpu_notifier(&kvm_cpu_notifier);
  2107. if (r)
  2108. goto out_free_2;
  2109. register_reboot_notifier(&kvm_reboot_notifier);
  2110. r = sysdev_class_register(&kvm_sysdev_class);
  2111. if (r)
  2112. goto out_free_3;
  2113. r = sysdev_register(&kvm_sysdev);
  2114. if (r)
  2115. goto out_free_4;
  2116. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2117. if (!vcpu_align)
  2118. vcpu_align = __alignof__(struct kvm_vcpu);
  2119. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2120. 0, NULL);
  2121. if (!kvm_vcpu_cache) {
  2122. r = -ENOMEM;
  2123. goto out_free_5;
  2124. }
  2125. r = kvm_async_pf_init();
  2126. if (r)
  2127. goto out_free;
  2128. kvm_chardev_ops.owner = module;
  2129. kvm_vm_fops.owner = module;
  2130. kvm_vcpu_fops.owner = module;
  2131. r = misc_register(&kvm_dev);
  2132. if (r) {
  2133. printk(KERN_ERR "kvm: misc device register failed\n");
  2134. goto out_unreg;
  2135. }
  2136. kvm_preempt_ops.sched_in = kvm_sched_in;
  2137. kvm_preempt_ops.sched_out = kvm_sched_out;
  2138. kvm_init_debug();
  2139. return 0;
  2140. out_unreg:
  2141. kvm_async_pf_deinit();
  2142. out_free:
  2143. kmem_cache_destroy(kvm_vcpu_cache);
  2144. out_free_5:
  2145. sysdev_unregister(&kvm_sysdev);
  2146. out_free_4:
  2147. sysdev_class_unregister(&kvm_sysdev_class);
  2148. out_free_3:
  2149. unregister_reboot_notifier(&kvm_reboot_notifier);
  2150. unregister_cpu_notifier(&kvm_cpu_notifier);
  2151. out_free_2:
  2152. out_free_1:
  2153. kvm_arch_hardware_unsetup();
  2154. out_free_0a:
  2155. free_cpumask_var(cpus_hardware_enabled);
  2156. out_free_0:
  2157. if (fault_page)
  2158. __free_page(fault_page);
  2159. if (hwpoison_page)
  2160. __free_page(hwpoison_page);
  2161. __free_page(bad_page);
  2162. out:
  2163. kvm_arch_exit();
  2164. out_fail:
  2165. return r;
  2166. }
  2167. EXPORT_SYMBOL_GPL(kvm_init);
  2168. void kvm_exit(void)
  2169. {
  2170. kvm_exit_debug();
  2171. misc_deregister(&kvm_dev);
  2172. kmem_cache_destroy(kvm_vcpu_cache);
  2173. kvm_async_pf_deinit();
  2174. sysdev_unregister(&kvm_sysdev);
  2175. sysdev_class_unregister(&kvm_sysdev_class);
  2176. unregister_reboot_notifier(&kvm_reboot_notifier);
  2177. unregister_cpu_notifier(&kvm_cpu_notifier);
  2178. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2179. kvm_arch_hardware_unsetup();
  2180. kvm_arch_exit();
  2181. free_cpumask_var(cpus_hardware_enabled);
  2182. __free_page(hwpoison_page);
  2183. __free_page(bad_page);
  2184. }
  2185. EXPORT_SYMBOL_GPL(kvm_exit);