af_key.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. struct {
  45. uint8_t msg_version;
  46. uint32_t msg_pid;
  47. int (*dump)(struct pfkey_sock *sk);
  48. void (*done)(struct pfkey_sock *sk);
  49. union {
  50. struct xfrm_policy_walk policy;
  51. struct xfrm_state_walk state;
  52. } u;
  53. } dump;
  54. };
  55. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  56. {
  57. return (struct pfkey_sock *)sk;
  58. }
  59. static int pfkey_can_dump(struct sock *sk)
  60. {
  61. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  62. return 1;
  63. return 0;
  64. }
  65. static int pfkey_do_dump(struct pfkey_sock *pfk)
  66. {
  67. int rc;
  68. rc = pfk->dump.dump(pfk);
  69. if (rc == -ENOBUFS)
  70. return 0;
  71. pfk->dump.done(pfk);
  72. pfk->dump.dump = NULL;
  73. pfk->dump.done = NULL;
  74. return rc;
  75. }
  76. static void pfkey_sock_destruct(struct sock *sk)
  77. {
  78. skb_queue_purge(&sk->sk_receive_queue);
  79. if (!sock_flag(sk, SOCK_DEAD)) {
  80. printk("Attempt to release alive pfkey socket: %p\n", sk);
  81. return;
  82. }
  83. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  84. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  85. atomic_dec(&pfkey_socks_nr);
  86. }
  87. static void pfkey_table_grab(void)
  88. {
  89. write_lock_bh(&pfkey_table_lock);
  90. if (atomic_read(&pfkey_table_users)) {
  91. DECLARE_WAITQUEUE(wait, current);
  92. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  93. for(;;) {
  94. set_current_state(TASK_UNINTERRUPTIBLE);
  95. if (atomic_read(&pfkey_table_users) == 0)
  96. break;
  97. write_unlock_bh(&pfkey_table_lock);
  98. schedule();
  99. write_lock_bh(&pfkey_table_lock);
  100. }
  101. __set_current_state(TASK_RUNNING);
  102. remove_wait_queue(&pfkey_table_wait, &wait);
  103. }
  104. }
  105. static __inline__ void pfkey_table_ungrab(void)
  106. {
  107. write_unlock_bh(&pfkey_table_lock);
  108. wake_up(&pfkey_table_wait);
  109. }
  110. static __inline__ void pfkey_lock_table(void)
  111. {
  112. /* read_lock() synchronizes us to pfkey_table_grab */
  113. read_lock(&pfkey_table_lock);
  114. atomic_inc(&pfkey_table_users);
  115. read_unlock(&pfkey_table_lock);
  116. }
  117. static __inline__ void pfkey_unlock_table(void)
  118. {
  119. if (atomic_dec_and_test(&pfkey_table_users))
  120. wake_up(&pfkey_table_wait);
  121. }
  122. static const struct proto_ops pfkey_ops;
  123. static void pfkey_insert(struct sock *sk)
  124. {
  125. pfkey_table_grab();
  126. sk_add_node(sk, &pfkey_table);
  127. pfkey_table_ungrab();
  128. }
  129. static void pfkey_remove(struct sock *sk)
  130. {
  131. pfkey_table_grab();
  132. sk_del_node_init(sk);
  133. pfkey_table_ungrab();
  134. }
  135. static struct proto key_proto = {
  136. .name = "KEY",
  137. .owner = THIS_MODULE,
  138. .obj_size = sizeof(struct pfkey_sock),
  139. };
  140. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  141. {
  142. struct sock *sk;
  143. int err;
  144. if (net != &init_net)
  145. return -EAFNOSUPPORT;
  146. if (!capable(CAP_NET_ADMIN))
  147. return -EPERM;
  148. if (sock->type != SOCK_RAW)
  149. return -ESOCKTNOSUPPORT;
  150. if (protocol != PF_KEY_V2)
  151. return -EPROTONOSUPPORT;
  152. err = -ENOMEM;
  153. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  154. if (sk == NULL)
  155. goto out;
  156. sock->ops = &pfkey_ops;
  157. sock_init_data(sock, sk);
  158. sk->sk_family = PF_KEY;
  159. sk->sk_destruct = pfkey_sock_destruct;
  160. atomic_inc(&pfkey_socks_nr);
  161. pfkey_insert(sk);
  162. return 0;
  163. out:
  164. return err;
  165. }
  166. static int pfkey_release(struct socket *sock)
  167. {
  168. struct sock *sk = sock->sk;
  169. if (!sk)
  170. return 0;
  171. pfkey_remove(sk);
  172. sock_orphan(sk);
  173. sock->sk = NULL;
  174. skb_queue_purge(&sk->sk_write_queue);
  175. sock_put(sk);
  176. return 0;
  177. }
  178. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  179. gfp_t allocation, struct sock *sk)
  180. {
  181. int err = -ENOBUFS;
  182. sock_hold(sk);
  183. if (*skb2 == NULL) {
  184. if (atomic_read(&skb->users) != 1) {
  185. *skb2 = skb_clone(skb, allocation);
  186. } else {
  187. *skb2 = skb;
  188. atomic_inc(&skb->users);
  189. }
  190. }
  191. if (*skb2 != NULL) {
  192. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  193. skb_orphan(*skb2);
  194. skb_set_owner_r(*skb2, sk);
  195. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  196. sk->sk_data_ready(sk, (*skb2)->len);
  197. *skb2 = NULL;
  198. err = 0;
  199. }
  200. }
  201. sock_put(sk);
  202. return err;
  203. }
  204. /* Send SKB to all pfkey sockets matching selected criteria. */
  205. #define BROADCAST_ALL 0
  206. #define BROADCAST_ONE 1
  207. #define BROADCAST_REGISTERED 2
  208. #define BROADCAST_PROMISC_ONLY 4
  209. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  210. int broadcast_flags, struct sock *one_sk)
  211. {
  212. struct sock *sk;
  213. struct hlist_node *node;
  214. struct sk_buff *skb2 = NULL;
  215. int err = -ESRCH;
  216. /* XXX Do we need something like netlink_overrun? I think
  217. * XXX PF_KEY socket apps will not mind current behavior.
  218. */
  219. if (!skb)
  220. return -ENOMEM;
  221. pfkey_lock_table();
  222. sk_for_each(sk, node, &pfkey_table) {
  223. struct pfkey_sock *pfk = pfkey_sk(sk);
  224. int err2;
  225. /* Yes, it means that if you are meant to receive this
  226. * pfkey message you receive it twice as promiscuous
  227. * socket.
  228. */
  229. if (pfk->promisc)
  230. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  231. /* the exact target will be processed later */
  232. if (sk == one_sk)
  233. continue;
  234. if (broadcast_flags != BROADCAST_ALL) {
  235. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  236. continue;
  237. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  238. !pfk->registered)
  239. continue;
  240. if (broadcast_flags & BROADCAST_ONE)
  241. continue;
  242. }
  243. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  244. /* Error is cleare after succecful sending to at least one
  245. * registered KM */
  246. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  247. err = err2;
  248. }
  249. pfkey_unlock_table();
  250. if (one_sk != NULL)
  251. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  252. if (skb2)
  253. kfree_skb(skb2);
  254. kfree_skb(skb);
  255. return err;
  256. }
  257. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  258. {
  259. *new = *orig;
  260. }
  261. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  262. {
  263. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  264. struct sadb_msg *hdr;
  265. if (!skb)
  266. return -ENOBUFS;
  267. /* Woe be to the platform trying to support PFKEY yet
  268. * having normal errnos outside the 1-255 range, inclusive.
  269. */
  270. err = -err;
  271. if (err == ERESTARTSYS ||
  272. err == ERESTARTNOHAND ||
  273. err == ERESTARTNOINTR)
  274. err = EINTR;
  275. if (err >= 512)
  276. err = EINVAL;
  277. BUG_ON(err <= 0 || err >= 256);
  278. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  279. pfkey_hdr_dup(hdr, orig);
  280. hdr->sadb_msg_errno = (uint8_t) err;
  281. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  282. sizeof(uint64_t));
  283. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  284. return 0;
  285. }
  286. static u8 sadb_ext_min_len[] = {
  287. [SADB_EXT_RESERVED] = (u8) 0,
  288. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  289. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  292. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  295. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  297. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  299. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  300. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  301. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  303. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  304. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  305. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  306. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  307. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  308. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  310. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  311. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  312. };
  313. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  314. static int verify_address_len(void *p)
  315. {
  316. struct sadb_address *sp = p;
  317. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  318. struct sockaddr_in *sin;
  319. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  320. struct sockaddr_in6 *sin6;
  321. #endif
  322. int len;
  323. switch (addr->sa_family) {
  324. case AF_INET:
  325. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  326. if (sp->sadb_address_len != len ||
  327. sp->sadb_address_prefixlen > 32)
  328. return -EINVAL;
  329. break;
  330. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  331. case AF_INET6:
  332. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  333. if (sp->sadb_address_len != len ||
  334. sp->sadb_address_prefixlen > 128)
  335. return -EINVAL;
  336. break;
  337. #endif
  338. default:
  339. /* It is user using kernel to keep track of security
  340. * associations for another protocol, such as
  341. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  342. * lengths.
  343. *
  344. * XXX Actually, association/policy database is not yet
  345. * XXX able to cope with arbitrary sockaddr families.
  346. * XXX When it can, remove this -EINVAL. -DaveM
  347. */
  348. return -EINVAL;
  349. break;
  350. }
  351. return 0;
  352. }
  353. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  354. {
  355. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  356. sec_ctx->sadb_x_ctx_len,
  357. sizeof(uint64_t));
  358. }
  359. static inline int verify_sec_ctx_len(void *p)
  360. {
  361. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  362. int len = sec_ctx->sadb_x_ctx_len;
  363. if (len > PAGE_SIZE)
  364. return -EINVAL;
  365. len = pfkey_sec_ctx_len(sec_ctx);
  366. if (sec_ctx->sadb_x_sec_len != len)
  367. return -EINVAL;
  368. return 0;
  369. }
  370. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. struct xfrm_user_sec_ctx *uctx = NULL;
  373. int ctx_size = sec_ctx->sadb_x_ctx_len;
  374. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  375. if (!uctx)
  376. return NULL;
  377. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  378. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  379. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  380. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  381. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  382. memcpy(uctx + 1, sec_ctx + 1,
  383. uctx->ctx_len);
  384. return uctx;
  385. }
  386. static int present_and_same_family(struct sadb_address *src,
  387. struct sadb_address *dst)
  388. {
  389. struct sockaddr *s_addr, *d_addr;
  390. if (!src || !dst)
  391. return 0;
  392. s_addr = (struct sockaddr *)(src + 1);
  393. d_addr = (struct sockaddr *)(dst + 1);
  394. if (s_addr->sa_family != d_addr->sa_family)
  395. return 0;
  396. if (s_addr->sa_family != AF_INET
  397. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  398. && s_addr->sa_family != AF_INET6
  399. #endif
  400. )
  401. return 0;
  402. return 1;
  403. }
  404. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  405. {
  406. char *p = (char *) hdr;
  407. int len = skb->len;
  408. len -= sizeof(*hdr);
  409. p += sizeof(*hdr);
  410. while (len > 0) {
  411. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  412. uint16_t ext_type;
  413. int ext_len;
  414. ext_len = ehdr->sadb_ext_len;
  415. ext_len *= sizeof(uint64_t);
  416. ext_type = ehdr->sadb_ext_type;
  417. if (ext_len < sizeof(uint64_t) ||
  418. ext_len > len ||
  419. ext_type == SADB_EXT_RESERVED)
  420. return -EINVAL;
  421. if (ext_type <= SADB_EXT_MAX) {
  422. int min = (int) sadb_ext_min_len[ext_type];
  423. if (ext_len < min)
  424. return -EINVAL;
  425. if (ext_hdrs[ext_type-1] != NULL)
  426. return -EINVAL;
  427. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  428. ext_type == SADB_EXT_ADDRESS_DST ||
  429. ext_type == SADB_EXT_ADDRESS_PROXY ||
  430. ext_type == SADB_X_EXT_NAT_T_OA) {
  431. if (verify_address_len(p))
  432. return -EINVAL;
  433. }
  434. if (ext_type == SADB_X_EXT_SEC_CTX) {
  435. if (verify_sec_ctx_len(p))
  436. return -EINVAL;
  437. }
  438. ext_hdrs[ext_type-1] = p;
  439. }
  440. p += ext_len;
  441. len -= ext_len;
  442. }
  443. return 0;
  444. }
  445. static uint16_t
  446. pfkey_satype2proto(uint8_t satype)
  447. {
  448. switch (satype) {
  449. case SADB_SATYPE_UNSPEC:
  450. return IPSEC_PROTO_ANY;
  451. case SADB_SATYPE_AH:
  452. return IPPROTO_AH;
  453. case SADB_SATYPE_ESP:
  454. return IPPROTO_ESP;
  455. case SADB_X_SATYPE_IPCOMP:
  456. return IPPROTO_COMP;
  457. break;
  458. default:
  459. return 0;
  460. }
  461. /* NOTREACHED */
  462. }
  463. static uint8_t
  464. pfkey_proto2satype(uint16_t proto)
  465. {
  466. switch (proto) {
  467. case IPPROTO_AH:
  468. return SADB_SATYPE_AH;
  469. case IPPROTO_ESP:
  470. return SADB_SATYPE_ESP;
  471. case IPPROTO_COMP:
  472. return SADB_X_SATYPE_IPCOMP;
  473. break;
  474. default:
  475. return 0;
  476. }
  477. /* NOTREACHED */
  478. }
  479. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  480. * say specifically 'just raw sockets' as we encode them as 255.
  481. */
  482. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  483. {
  484. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  485. }
  486. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  487. {
  488. return (proto ? proto : IPSEC_PROTO_ANY);
  489. }
  490. static inline int pfkey_sockaddr_len(sa_family_t family)
  491. {
  492. switch (family) {
  493. case AF_INET:
  494. return sizeof(struct sockaddr_in);
  495. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  496. case AF_INET6:
  497. return sizeof(struct sockaddr_in6);
  498. #endif
  499. }
  500. return 0;
  501. }
  502. static
  503. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  504. {
  505. switch (sa->sa_family) {
  506. case AF_INET:
  507. xaddr->a4 =
  508. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  509. return AF_INET;
  510. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  511. case AF_INET6:
  512. memcpy(xaddr->a6,
  513. &((struct sockaddr_in6 *)sa)->sin6_addr,
  514. sizeof(struct in6_addr));
  515. return AF_INET6;
  516. #endif
  517. }
  518. return 0;
  519. }
  520. static
  521. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  522. {
  523. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  524. xaddr);
  525. }
  526. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  527. {
  528. struct sadb_sa *sa;
  529. struct sadb_address *addr;
  530. uint16_t proto;
  531. unsigned short family;
  532. xfrm_address_t *xaddr;
  533. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  534. if (sa == NULL)
  535. return NULL;
  536. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  537. if (proto == 0)
  538. return NULL;
  539. /* sadb_address_len should be checked by caller */
  540. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  541. if (addr == NULL)
  542. return NULL;
  543. family = ((struct sockaddr *)(addr + 1))->sa_family;
  544. switch (family) {
  545. case AF_INET:
  546. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  547. break;
  548. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  549. case AF_INET6:
  550. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  551. break;
  552. #endif
  553. default:
  554. xaddr = NULL;
  555. }
  556. if (!xaddr)
  557. return NULL;
  558. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  559. }
  560. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  561. static int
  562. pfkey_sockaddr_size(sa_family_t family)
  563. {
  564. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  565. }
  566. static inline int pfkey_mode_from_xfrm(int mode)
  567. {
  568. switch(mode) {
  569. case XFRM_MODE_TRANSPORT:
  570. return IPSEC_MODE_TRANSPORT;
  571. case XFRM_MODE_TUNNEL:
  572. return IPSEC_MODE_TUNNEL;
  573. case XFRM_MODE_BEET:
  574. return IPSEC_MODE_BEET;
  575. default:
  576. return -1;
  577. }
  578. }
  579. static inline int pfkey_mode_to_xfrm(int mode)
  580. {
  581. switch(mode) {
  582. case IPSEC_MODE_ANY: /*XXX*/
  583. case IPSEC_MODE_TRANSPORT:
  584. return XFRM_MODE_TRANSPORT;
  585. case IPSEC_MODE_TUNNEL:
  586. return XFRM_MODE_TUNNEL;
  587. case IPSEC_MODE_BEET:
  588. return XFRM_MODE_BEET;
  589. default:
  590. return -1;
  591. }
  592. }
  593. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  594. struct sockaddr *sa,
  595. unsigned short family)
  596. {
  597. switch (family) {
  598. case AF_INET:
  599. {
  600. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  601. sin->sin_family = AF_INET;
  602. sin->sin_port = port;
  603. sin->sin_addr.s_addr = xaddr->a4;
  604. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  605. return 32;
  606. }
  607. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  608. case AF_INET6:
  609. {
  610. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  611. sin6->sin6_family = AF_INET6;
  612. sin6->sin6_port = port;
  613. sin6->sin6_flowinfo = 0;
  614. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  615. sin6->sin6_scope_id = 0;
  616. return 128;
  617. }
  618. #endif
  619. }
  620. return 0;
  621. }
  622. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  623. int add_keys, int hsc)
  624. {
  625. struct sk_buff *skb;
  626. struct sadb_msg *hdr;
  627. struct sadb_sa *sa;
  628. struct sadb_lifetime *lifetime;
  629. struct sadb_address *addr;
  630. struct sadb_key *key;
  631. struct sadb_x_sa2 *sa2;
  632. struct sadb_x_sec_ctx *sec_ctx;
  633. struct xfrm_sec_ctx *xfrm_ctx;
  634. int ctx_size = 0;
  635. int size;
  636. int auth_key_size = 0;
  637. int encrypt_key_size = 0;
  638. int sockaddr_size;
  639. struct xfrm_encap_tmpl *natt = NULL;
  640. int mode;
  641. /* address family check */
  642. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  643. if (!sockaddr_size)
  644. return ERR_PTR(-EINVAL);
  645. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  646. key(AE), (identity(SD),) (sensitivity)> */
  647. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  648. sizeof(struct sadb_lifetime) +
  649. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  650. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  651. sizeof(struct sadb_address)*2 +
  652. sockaddr_size*2 +
  653. sizeof(struct sadb_x_sa2);
  654. if ((xfrm_ctx = x->security)) {
  655. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  656. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  657. }
  658. /* identity & sensitivity */
  659. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  660. size += sizeof(struct sadb_address) + sockaddr_size;
  661. if (add_keys) {
  662. if (x->aalg && x->aalg->alg_key_len) {
  663. auth_key_size =
  664. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  665. size += sizeof(struct sadb_key) + auth_key_size;
  666. }
  667. if (x->ealg && x->ealg->alg_key_len) {
  668. encrypt_key_size =
  669. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  670. size += sizeof(struct sadb_key) + encrypt_key_size;
  671. }
  672. }
  673. if (x->encap)
  674. natt = x->encap;
  675. if (natt && natt->encap_type) {
  676. size += sizeof(struct sadb_x_nat_t_type);
  677. size += sizeof(struct sadb_x_nat_t_port);
  678. size += sizeof(struct sadb_x_nat_t_port);
  679. }
  680. skb = alloc_skb(size + 16, GFP_ATOMIC);
  681. if (skb == NULL)
  682. return ERR_PTR(-ENOBUFS);
  683. /* call should fill header later */
  684. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  685. memset(hdr, 0, size); /* XXX do we need this ? */
  686. hdr->sadb_msg_len = size / sizeof(uint64_t);
  687. /* sa */
  688. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  689. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  690. sa->sadb_sa_exttype = SADB_EXT_SA;
  691. sa->sadb_sa_spi = x->id.spi;
  692. sa->sadb_sa_replay = x->props.replay_window;
  693. switch (x->km.state) {
  694. case XFRM_STATE_VALID:
  695. sa->sadb_sa_state = x->km.dying ?
  696. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  697. break;
  698. case XFRM_STATE_ACQ:
  699. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  700. break;
  701. default:
  702. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  703. break;
  704. }
  705. sa->sadb_sa_auth = 0;
  706. if (x->aalg) {
  707. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  708. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  709. }
  710. sa->sadb_sa_encrypt = 0;
  711. BUG_ON(x->ealg && x->calg);
  712. if (x->ealg) {
  713. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  714. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  715. }
  716. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  717. if (x->calg) {
  718. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  719. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  720. }
  721. sa->sadb_sa_flags = 0;
  722. if (x->props.flags & XFRM_STATE_NOECN)
  723. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  724. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  725. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  726. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  727. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  728. /* hard time */
  729. if (hsc & 2) {
  730. lifetime = (struct sadb_lifetime *) skb_put(skb,
  731. sizeof(struct sadb_lifetime));
  732. lifetime->sadb_lifetime_len =
  733. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  734. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  735. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  736. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  737. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  738. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  739. }
  740. /* soft time */
  741. if (hsc & 1) {
  742. lifetime = (struct sadb_lifetime *) skb_put(skb,
  743. sizeof(struct sadb_lifetime));
  744. lifetime->sadb_lifetime_len =
  745. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  746. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  747. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  748. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  749. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  750. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  751. }
  752. /* current time */
  753. lifetime = (struct sadb_lifetime *) skb_put(skb,
  754. sizeof(struct sadb_lifetime));
  755. lifetime->sadb_lifetime_len =
  756. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  757. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  758. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  759. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  760. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  761. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  762. /* src address */
  763. addr = (struct sadb_address*) skb_put(skb,
  764. sizeof(struct sadb_address)+sockaddr_size);
  765. addr->sadb_address_len =
  766. (sizeof(struct sadb_address)+sockaddr_size)/
  767. sizeof(uint64_t);
  768. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  769. /* "if the ports are non-zero, then the sadb_address_proto field,
  770. normally zero, MUST be filled in with the transport
  771. protocol's number." - RFC2367 */
  772. addr->sadb_address_proto = 0;
  773. addr->sadb_address_reserved = 0;
  774. addr->sadb_address_prefixlen =
  775. pfkey_sockaddr_fill(&x->props.saddr, 0,
  776. (struct sockaddr *) (addr + 1),
  777. x->props.family);
  778. if (!addr->sadb_address_prefixlen)
  779. BUG();
  780. /* dst address */
  781. addr = (struct sadb_address*) skb_put(skb,
  782. sizeof(struct sadb_address)+sockaddr_size);
  783. addr->sadb_address_len =
  784. (sizeof(struct sadb_address)+sockaddr_size)/
  785. sizeof(uint64_t);
  786. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  787. addr->sadb_address_proto = 0;
  788. addr->sadb_address_reserved = 0;
  789. addr->sadb_address_prefixlen =
  790. pfkey_sockaddr_fill(&x->id.daddr, 0,
  791. (struct sockaddr *) (addr + 1),
  792. x->props.family);
  793. if (!addr->sadb_address_prefixlen)
  794. BUG();
  795. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  796. x->props.family)) {
  797. addr = (struct sadb_address*) skb_put(skb,
  798. sizeof(struct sadb_address)+sockaddr_size);
  799. addr->sadb_address_len =
  800. (sizeof(struct sadb_address)+sockaddr_size)/
  801. sizeof(uint64_t);
  802. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  803. addr->sadb_address_proto =
  804. pfkey_proto_from_xfrm(x->sel.proto);
  805. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  806. addr->sadb_address_reserved = 0;
  807. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  808. (struct sockaddr *) (addr + 1),
  809. x->props.family);
  810. }
  811. /* auth key */
  812. if (add_keys && auth_key_size) {
  813. key = (struct sadb_key *) skb_put(skb,
  814. sizeof(struct sadb_key)+auth_key_size);
  815. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  816. sizeof(uint64_t);
  817. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  818. key->sadb_key_bits = x->aalg->alg_key_len;
  819. key->sadb_key_reserved = 0;
  820. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  821. }
  822. /* encrypt key */
  823. if (add_keys && encrypt_key_size) {
  824. key = (struct sadb_key *) skb_put(skb,
  825. sizeof(struct sadb_key)+encrypt_key_size);
  826. key->sadb_key_len = (sizeof(struct sadb_key) +
  827. encrypt_key_size) / sizeof(uint64_t);
  828. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  829. key->sadb_key_bits = x->ealg->alg_key_len;
  830. key->sadb_key_reserved = 0;
  831. memcpy(key + 1, x->ealg->alg_key,
  832. (x->ealg->alg_key_len+7)/8);
  833. }
  834. /* sa */
  835. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  836. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  837. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  838. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  839. kfree_skb(skb);
  840. return ERR_PTR(-EINVAL);
  841. }
  842. sa2->sadb_x_sa2_mode = mode;
  843. sa2->sadb_x_sa2_reserved1 = 0;
  844. sa2->sadb_x_sa2_reserved2 = 0;
  845. sa2->sadb_x_sa2_sequence = 0;
  846. sa2->sadb_x_sa2_reqid = x->props.reqid;
  847. if (natt && natt->encap_type) {
  848. struct sadb_x_nat_t_type *n_type;
  849. struct sadb_x_nat_t_port *n_port;
  850. /* type */
  851. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  852. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  853. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  854. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  855. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  856. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  857. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  858. /* source port */
  859. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  860. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  861. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  862. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  863. n_port->sadb_x_nat_t_port_reserved = 0;
  864. /* dest port */
  865. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  866. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  867. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  868. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  869. n_port->sadb_x_nat_t_port_reserved = 0;
  870. }
  871. /* security context */
  872. if (xfrm_ctx) {
  873. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  874. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  875. sec_ctx->sadb_x_sec_len =
  876. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  877. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  878. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  879. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  880. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  881. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  882. xfrm_ctx->ctx_len);
  883. }
  884. return skb;
  885. }
  886. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  887. {
  888. struct sk_buff *skb;
  889. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  890. return skb;
  891. }
  892. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  893. int hsc)
  894. {
  895. return __pfkey_xfrm_state2msg(x, 0, hsc);
  896. }
  897. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  898. void **ext_hdrs)
  899. {
  900. struct xfrm_state *x;
  901. struct sadb_lifetime *lifetime;
  902. struct sadb_sa *sa;
  903. struct sadb_key *key;
  904. struct sadb_x_sec_ctx *sec_ctx;
  905. uint16_t proto;
  906. int err;
  907. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  908. if (!sa ||
  909. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  910. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  911. return ERR_PTR(-EINVAL);
  912. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  913. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  914. return ERR_PTR(-EINVAL);
  915. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  916. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  917. return ERR_PTR(-EINVAL);
  918. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  919. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  920. return ERR_PTR(-EINVAL);
  921. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  922. if (proto == 0)
  923. return ERR_PTR(-EINVAL);
  924. /* default error is no buffer space */
  925. err = -ENOBUFS;
  926. /* RFC2367:
  927. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  928. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  929. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  930. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  931. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  932. not true.
  933. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  934. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  935. */
  936. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  937. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  938. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  939. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  940. return ERR_PTR(-EINVAL);
  941. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  942. if (key != NULL &&
  943. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  944. ((key->sadb_key_bits+7) / 8 == 0 ||
  945. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  946. return ERR_PTR(-EINVAL);
  947. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  948. if (key != NULL &&
  949. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  950. ((key->sadb_key_bits+7) / 8 == 0 ||
  951. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  952. return ERR_PTR(-EINVAL);
  953. x = xfrm_state_alloc();
  954. if (x == NULL)
  955. return ERR_PTR(-ENOBUFS);
  956. x->id.proto = proto;
  957. x->id.spi = sa->sadb_sa_spi;
  958. x->props.replay_window = sa->sadb_sa_replay;
  959. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  960. x->props.flags |= XFRM_STATE_NOECN;
  961. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  962. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  963. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  964. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  965. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  966. if (lifetime != NULL) {
  967. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  968. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  969. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  970. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  971. }
  972. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  973. if (lifetime != NULL) {
  974. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  975. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  976. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  977. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  978. }
  979. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  980. if (sec_ctx != NULL) {
  981. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  982. if (!uctx)
  983. goto out;
  984. err = security_xfrm_state_alloc(x, uctx);
  985. kfree(uctx);
  986. if (err)
  987. goto out;
  988. }
  989. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  990. if (sa->sadb_sa_auth) {
  991. int keysize = 0;
  992. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  993. if (!a) {
  994. err = -ENOSYS;
  995. goto out;
  996. }
  997. if (key)
  998. keysize = (key->sadb_key_bits + 7) / 8;
  999. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1000. if (!x->aalg)
  1001. goto out;
  1002. strcpy(x->aalg->alg_name, a->name);
  1003. x->aalg->alg_key_len = 0;
  1004. if (key) {
  1005. x->aalg->alg_key_len = key->sadb_key_bits;
  1006. memcpy(x->aalg->alg_key, key+1, keysize);
  1007. }
  1008. x->props.aalgo = sa->sadb_sa_auth;
  1009. /* x->algo.flags = sa->sadb_sa_flags; */
  1010. }
  1011. if (sa->sadb_sa_encrypt) {
  1012. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1013. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1014. if (!a) {
  1015. err = -ENOSYS;
  1016. goto out;
  1017. }
  1018. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1019. if (!x->calg)
  1020. goto out;
  1021. strcpy(x->calg->alg_name, a->name);
  1022. x->props.calgo = sa->sadb_sa_encrypt;
  1023. } else {
  1024. int keysize = 0;
  1025. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1026. if (!a) {
  1027. err = -ENOSYS;
  1028. goto out;
  1029. }
  1030. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1031. if (key)
  1032. keysize = (key->sadb_key_bits + 7) / 8;
  1033. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1034. if (!x->ealg)
  1035. goto out;
  1036. strcpy(x->ealg->alg_name, a->name);
  1037. x->ealg->alg_key_len = 0;
  1038. if (key) {
  1039. x->ealg->alg_key_len = key->sadb_key_bits;
  1040. memcpy(x->ealg->alg_key, key+1, keysize);
  1041. }
  1042. x->props.ealgo = sa->sadb_sa_encrypt;
  1043. }
  1044. }
  1045. /* x->algo.flags = sa->sadb_sa_flags; */
  1046. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1047. &x->props.saddr);
  1048. if (!x->props.family) {
  1049. err = -EAFNOSUPPORT;
  1050. goto out;
  1051. }
  1052. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1053. &x->id.daddr);
  1054. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1055. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1056. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1057. if (mode < 0) {
  1058. err = -EINVAL;
  1059. goto out;
  1060. }
  1061. x->props.mode = mode;
  1062. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1063. }
  1064. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1065. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1066. /* Nobody uses this, but we try. */
  1067. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1068. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1069. }
  1070. if (!x->sel.family)
  1071. x->sel.family = x->props.family;
  1072. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1073. struct sadb_x_nat_t_type* n_type;
  1074. struct xfrm_encap_tmpl *natt;
  1075. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1076. if (!x->encap)
  1077. goto out;
  1078. natt = x->encap;
  1079. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1080. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1081. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1082. struct sadb_x_nat_t_port* n_port =
  1083. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1084. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1085. }
  1086. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1087. struct sadb_x_nat_t_port* n_port =
  1088. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1089. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1090. }
  1091. }
  1092. err = xfrm_init_state(x);
  1093. if (err)
  1094. goto out;
  1095. x->km.seq = hdr->sadb_msg_seq;
  1096. return x;
  1097. out:
  1098. x->km.state = XFRM_STATE_DEAD;
  1099. xfrm_state_put(x);
  1100. return ERR_PTR(err);
  1101. }
  1102. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1103. {
  1104. return -EOPNOTSUPP;
  1105. }
  1106. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1107. {
  1108. struct sk_buff *resp_skb;
  1109. struct sadb_x_sa2 *sa2;
  1110. struct sadb_address *saddr, *daddr;
  1111. struct sadb_msg *out_hdr;
  1112. struct sadb_spirange *range;
  1113. struct xfrm_state *x = NULL;
  1114. int mode;
  1115. int err;
  1116. u32 min_spi, max_spi;
  1117. u32 reqid;
  1118. u8 proto;
  1119. unsigned short family;
  1120. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1121. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1122. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1123. return -EINVAL;
  1124. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1125. if (proto == 0)
  1126. return -EINVAL;
  1127. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1128. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1129. if (mode < 0)
  1130. return -EINVAL;
  1131. reqid = sa2->sadb_x_sa2_reqid;
  1132. } else {
  1133. mode = 0;
  1134. reqid = 0;
  1135. }
  1136. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1137. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1138. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1139. switch (family) {
  1140. case AF_INET:
  1141. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1142. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1143. break;
  1144. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1145. case AF_INET6:
  1146. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1147. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1148. break;
  1149. #endif
  1150. }
  1151. if (hdr->sadb_msg_seq) {
  1152. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1153. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1154. xfrm_state_put(x);
  1155. x = NULL;
  1156. }
  1157. }
  1158. if (!x)
  1159. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1160. if (x == NULL)
  1161. return -ENOENT;
  1162. min_spi = 0x100;
  1163. max_spi = 0x0fffffff;
  1164. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1165. if (range) {
  1166. min_spi = range->sadb_spirange_min;
  1167. max_spi = range->sadb_spirange_max;
  1168. }
  1169. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1170. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1171. if (IS_ERR(resp_skb)) {
  1172. xfrm_state_put(x);
  1173. return PTR_ERR(resp_skb);
  1174. }
  1175. out_hdr = (struct sadb_msg *) resp_skb->data;
  1176. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1177. out_hdr->sadb_msg_type = SADB_GETSPI;
  1178. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1179. out_hdr->sadb_msg_errno = 0;
  1180. out_hdr->sadb_msg_reserved = 0;
  1181. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1182. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1183. xfrm_state_put(x);
  1184. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1185. return 0;
  1186. }
  1187. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1188. {
  1189. struct xfrm_state *x;
  1190. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1191. return -EOPNOTSUPP;
  1192. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1193. return 0;
  1194. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1195. if (x == NULL)
  1196. return 0;
  1197. spin_lock_bh(&x->lock);
  1198. if (x->km.state == XFRM_STATE_ACQ) {
  1199. x->km.state = XFRM_STATE_ERROR;
  1200. wake_up(&km_waitq);
  1201. }
  1202. spin_unlock_bh(&x->lock);
  1203. xfrm_state_put(x);
  1204. return 0;
  1205. }
  1206. static inline int event2poltype(int event)
  1207. {
  1208. switch (event) {
  1209. case XFRM_MSG_DELPOLICY:
  1210. return SADB_X_SPDDELETE;
  1211. case XFRM_MSG_NEWPOLICY:
  1212. return SADB_X_SPDADD;
  1213. case XFRM_MSG_UPDPOLICY:
  1214. return SADB_X_SPDUPDATE;
  1215. case XFRM_MSG_POLEXPIRE:
  1216. // return SADB_X_SPDEXPIRE;
  1217. default:
  1218. printk("pfkey: Unknown policy event %d\n", event);
  1219. break;
  1220. }
  1221. return 0;
  1222. }
  1223. static inline int event2keytype(int event)
  1224. {
  1225. switch (event) {
  1226. case XFRM_MSG_DELSA:
  1227. return SADB_DELETE;
  1228. case XFRM_MSG_NEWSA:
  1229. return SADB_ADD;
  1230. case XFRM_MSG_UPDSA:
  1231. return SADB_UPDATE;
  1232. case XFRM_MSG_EXPIRE:
  1233. return SADB_EXPIRE;
  1234. default:
  1235. printk("pfkey: Unknown SA event %d\n", event);
  1236. break;
  1237. }
  1238. return 0;
  1239. }
  1240. /* ADD/UPD/DEL */
  1241. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1242. {
  1243. struct sk_buff *skb;
  1244. struct sadb_msg *hdr;
  1245. skb = pfkey_xfrm_state2msg(x);
  1246. if (IS_ERR(skb))
  1247. return PTR_ERR(skb);
  1248. hdr = (struct sadb_msg *) skb->data;
  1249. hdr->sadb_msg_version = PF_KEY_V2;
  1250. hdr->sadb_msg_type = event2keytype(c->event);
  1251. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1252. hdr->sadb_msg_errno = 0;
  1253. hdr->sadb_msg_reserved = 0;
  1254. hdr->sadb_msg_seq = c->seq;
  1255. hdr->sadb_msg_pid = c->pid;
  1256. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1257. return 0;
  1258. }
  1259. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1260. {
  1261. struct xfrm_state *x;
  1262. int err;
  1263. struct km_event c;
  1264. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1265. if (IS_ERR(x))
  1266. return PTR_ERR(x);
  1267. xfrm_state_hold(x);
  1268. if (hdr->sadb_msg_type == SADB_ADD)
  1269. err = xfrm_state_add(x);
  1270. else
  1271. err = xfrm_state_update(x);
  1272. xfrm_audit_state_add(x, err ? 0 : 1,
  1273. audit_get_loginuid(current),
  1274. audit_get_sessionid(current), 0);
  1275. if (err < 0) {
  1276. x->km.state = XFRM_STATE_DEAD;
  1277. __xfrm_state_put(x);
  1278. goto out;
  1279. }
  1280. if (hdr->sadb_msg_type == SADB_ADD)
  1281. c.event = XFRM_MSG_NEWSA;
  1282. else
  1283. c.event = XFRM_MSG_UPDSA;
  1284. c.seq = hdr->sadb_msg_seq;
  1285. c.pid = hdr->sadb_msg_pid;
  1286. km_state_notify(x, &c);
  1287. out:
  1288. xfrm_state_put(x);
  1289. return err;
  1290. }
  1291. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1292. {
  1293. struct xfrm_state *x;
  1294. struct km_event c;
  1295. int err;
  1296. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1297. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1298. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1299. return -EINVAL;
  1300. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1301. if (x == NULL)
  1302. return -ESRCH;
  1303. if ((err = security_xfrm_state_delete(x)))
  1304. goto out;
  1305. if (xfrm_state_kern(x)) {
  1306. err = -EPERM;
  1307. goto out;
  1308. }
  1309. err = xfrm_state_delete(x);
  1310. if (err < 0)
  1311. goto out;
  1312. c.seq = hdr->sadb_msg_seq;
  1313. c.pid = hdr->sadb_msg_pid;
  1314. c.event = XFRM_MSG_DELSA;
  1315. km_state_notify(x, &c);
  1316. out:
  1317. xfrm_audit_state_delete(x, err ? 0 : 1,
  1318. audit_get_loginuid(current),
  1319. audit_get_sessionid(current), 0);
  1320. xfrm_state_put(x);
  1321. return err;
  1322. }
  1323. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1324. {
  1325. __u8 proto;
  1326. struct sk_buff *out_skb;
  1327. struct sadb_msg *out_hdr;
  1328. struct xfrm_state *x;
  1329. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1330. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1331. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1332. return -EINVAL;
  1333. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1334. if (x == NULL)
  1335. return -ESRCH;
  1336. out_skb = pfkey_xfrm_state2msg(x);
  1337. proto = x->id.proto;
  1338. xfrm_state_put(x);
  1339. if (IS_ERR(out_skb))
  1340. return PTR_ERR(out_skb);
  1341. out_hdr = (struct sadb_msg *) out_skb->data;
  1342. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1343. out_hdr->sadb_msg_type = SADB_GET;
  1344. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1345. out_hdr->sadb_msg_errno = 0;
  1346. out_hdr->sadb_msg_reserved = 0;
  1347. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1348. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1349. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1350. return 0;
  1351. }
  1352. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1353. gfp_t allocation)
  1354. {
  1355. struct sk_buff *skb;
  1356. struct sadb_msg *hdr;
  1357. int len, auth_len, enc_len, i;
  1358. auth_len = xfrm_count_auth_supported();
  1359. if (auth_len) {
  1360. auth_len *= sizeof(struct sadb_alg);
  1361. auth_len += sizeof(struct sadb_supported);
  1362. }
  1363. enc_len = xfrm_count_enc_supported();
  1364. if (enc_len) {
  1365. enc_len *= sizeof(struct sadb_alg);
  1366. enc_len += sizeof(struct sadb_supported);
  1367. }
  1368. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1369. skb = alloc_skb(len + 16, allocation);
  1370. if (!skb)
  1371. goto out_put_algs;
  1372. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1373. pfkey_hdr_dup(hdr, orig);
  1374. hdr->sadb_msg_errno = 0;
  1375. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1376. if (auth_len) {
  1377. struct sadb_supported *sp;
  1378. struct sadb_alg *ap;
  1379. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1380. ap = (struct sadb_alg *) (sp + 1);
  1381. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1382. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1383. for (i = 0; ; i++) {
  1384. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1385. if (!aalg)
  1386. break;
  1387. if (aalg->available)
  1388. *ap++ = aalg->desc;
  1389. }
  1390. }
  1391. if (enc_len) {
  1392. struct sadb_supported *sp;
  1393. struct sadb_alg *ap;
  1394. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1395. ap = (struct sadb_alg *) (sp + 1);
  1396. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1397. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1398. for (i = 0; ; i++) {
  1399. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1400. if (!ealg)
  1401. break;
  1402. if (ealg->available)
  1403. *ap++ = ealg->desc;
  1404. }
  1405. }
  1406. out_put_algs:
  1407. return skb;
  1408. }
  1409. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1410. {
  1411. struct pfkey_sock *pfk = pfkey_sk(sk);
  1412. struct sk_buff *supp_skb;
  1413. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1414. return -EINVAL;
  1415. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1416. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1417. return -EEXIST;
  1418. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1419. }
  1420. xfrm_probe_algs();
  1421. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1422. if (!supp_skb) {
  1423. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1424. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1425. return -ENOBUFS;
  1426. }
  1427. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1428. return 0;
  1429. }
  1430. static int key_notify_sa_flush(struct km_event *c)
  1431. {
  1432. struct sk_buff *skb;
  1433. struct sadb_msg *hdr;
  1434. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1435. if (!skb)
  1436. return -ENOBUFS;
  1437. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1438. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1439. hdr->sadb_msg_type = SADB_FLUSH;
  1440. hdr->sadb_msg_seq = c->seq;
  1441. hdr->sadb_msg_pid = c->pid;
  1442. hdr->sadb_msg_version = PF_KEY_V2;
  1443. hdr->sadb_msg_errno = (uint8_t) 0;
  1444. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1445. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1446. return 0;
  1447. }
  1448. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1449. {
  1450. unsigned proto;
  1451. struct km_event c;
  1452. struct xfrm_audit audit_info;
  1453. int err;
  1454. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1455. if (proto == 0)
  1456. return -EINVAL;
  1457. audit_info.loginuid = audit_get_loginuid(current);
  1458. audit_info.sessionid = audit_get_sessionid(current);
  1459. audit_info.secid = 0;
  1460. err = xfrm_state_flush(proto, &audit_info);
  1461. if (err)
  1462. return err;
  1463. c.data.proto = proto;
  1464. c.seq = hdr->sadb_msg_seq;
  1465. c.pid = hdr->sadb_msg_pid;
  1466. c.event = XFRM_MSG_FLUSHSA;
  1467. km_state_notify(NULL, &c);
  1468. return 0;
  1469. }
  1470. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1471. {
  1472. struct pfkey_sock *pfk = ptr;
  1473. struct sk_buff *out_skb;
  1474. struct sadb_msg *out_hdr;
  1475. if (!pfkey_can_dump(&pfk->sk))
  1476. return -ENOBUFS;
  1477. out_skb = pfkey_xfrm_state2msg(x);
  1478. if (IS_ERR(out_skb))
  1479. return PTR_ERR(out_skb);
  1480. out_hdr = (struct sadb_msg *) out_skb->data;
  1481. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1482. out_hdr->sadb_msg_type = SADB_DUMP;
  1483. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1484. out_hdr->sadb_msg_errno = 0;
  1485. out_hdr->sadb_msg_reserved = 0;
  1486. out_hdr->sadb_msg_seq = count;
  1487. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1488. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  1489. return 0;
  1490. }
  1491. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1492. {
  1493. return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
  1494. }
  1495. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1496. {
  1497. xfrm_state_walk_done(&pfk->dump.u.state);
  1498. }
  1499. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1500. {
  1501. u8 proto;
  1502. struct pfkey_sock *pfk = pfkey_sk(sk);
  1503. if (pfk->dump.dump != NULL)
  1504. return -EBUSY;
  1505. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1506. if (proto == 0)
  1507. return -EINVAL;
  1508. pfk->dump.msg_version = hdr->sadb_msg_version;
  1509. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1510. pfk->dump.dump = pfkey_dump_sa;
  1511. pfk->dump.done = pfkey_dump_sa_done;
  1512. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1513. return pfkey_do_dump(pfk);
  1514. }
  1515. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1516. {
  1517. struct pfkey_sock *pfk = pfkey_sk(sk);
  1518. int satype = hdr->sadb_msg_satype;
  1519. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1520. /* XXX we mangle packet... */
  1521. hdr->sadb_msg_errno = 0;
  1522. if (satype != 0 && satype != 1)
  1523. return -EINVAL;
  1524. pfk->promisc = satype;
  1525. }
  1526. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1527. return 0;
  1528. }
  1529. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1530. {
  1531. int i;
  1532. u32 reqid = *(u32*)ptr;
  1533. for (i=0; i<xp->xfrm_nr; i++) {
  1534. if (xp->xfrm_vec[i].reqid == reqid)
  1535. return -EEXIST;
  1536. }
  1537. return 0;
  1538. }
  1539. static u32 gen_reqid(void)
  1540. {
  1541. struct xfrm_policy_walk walk;
  1542. u32 start;
  1543. int rc;
  1544. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1545. start = reqid;
  1546. do {
  1547. ++reqid;
  1548. if (reqid == 0)
  1549. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1550. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1551. rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
  1552. xfrm_policy_walk_done(&walk);
  1553. if (rc != -EEXIST)
  1554. return reqid;
  1555. } while (reqid != start);
  1556. return 0;
  1557. }
  1558. static int
  1559. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1560. {
  1561. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1562. int mode;
  1563. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1564. return -ELOOP;
  1565. if (rq->sadb_x_ipsecrequest_mode == 0)
  1566. return -EINVAL;
  1567. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1568. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1569. return -EINVAL;
  1570. t->mode = mode;
  1571. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1572. t->optional = 1;
  1573. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1574. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1575. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1576. t->reqid = 0;
  1577. if (!t->reqid && !(t->reqid = gen_reqid()))
  1578. return -ENOBUFS;
  1579. }
  1580. /* addresses present only in tunnel mode */
  1581. if (t->mode == XFRM_MODE_TUNNEL) {
  1582. u8 *sa = (u8 *) (rq + 1);
  1583. int family, socklen;
  1584. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1585. &t->saddr);
  1586. if (!family)
  1587. return -EINVAL;
  1588. socklen = pfkey_sockaddr_len(family);
  1589. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1590. &t->id.daddr) != family)
  1591. return -EINVAL;
  1592. t->encap_family = family;
  1593. } else
  1594. t->encap_family = xp->family;
  1595. /* No way to set this via kame pfkey */
  1596. t->allalgs = 1;
  1597. xp->xfrm_nr++;
  1598. return 0;
  1599. }
  1600. static int
  1601. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1602. {
  1603. int err;
  1604. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1605. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1606. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1607. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1608. return err;
  1609. len -= rq->sadb_x_ipsecrequest_len;
  1610. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1611. }
  1612. return 0;
  1613. }
  1614. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1615. {
  1616. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1617. if (xfrm_ctx) {
  1618. int len = sizeof(struct sadb_x_sec_ctx);
  1619. len += xfrm_ctx->ctx_len;
  1620. return PFKEY_ALIGN8(len);
  1621. }
  1622. return 0;
  1623. }
  1624. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1625. {
  1626. struct xfrm_tmpl *t;
  1627. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1628. int socklen = 0;
  1629. int i;
  1630. for (i=0; i<xp->xfrm_nr; i++) {
  1631. t = xp->xfrm_vec + i;
  1632. socklen += pfkey_sockaddr_len(t->encap_family);
  1633. }
  1634. return sizeof(struct sadb_msg) +
  1635. (sizeof(struct sadb_lifetime) * 3) +
  1636. (sizeof(struct sadb_address) * 2) +
  1637. (sockaddr_size * 2) +
  1638. sizeof(struct sadb_x_policy) +
  1639. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1640. (socklen * 2) +
  1641. pfkey_xfrm_policy2sec_ctx_size(xp);
  1642. }
  1643. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1644. {
  1645. struct sk_buff *skb;
  1646. int size;
  1647. size = pfkey_xfrm_policy2msg_size(xp);
  1648. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1649. if (skb == NULL)
  1650. return ERR_PTR(-ENOBUFS);
  1651. return skb;
  1652. }
  1653. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1654. {
  1655. struct sadb_msg *hdr;
  1656. struct sadb_address *addr;
  1657. struct sadb_lifetime *lifetime;
  1658. struct sadb_x_policy *pol;
  1659. struct sadb_x_sec_ctx *sec_ctx;
  1660. struct xfrm_sec_ctx *xfrm_ctx;
  1661. int i;
  1662. int size;
  1663. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1664. int socklen = pfkey_sockaddr_len(xp->family);
  1665. size = pfkey_xfrm_policy2msg_size(xp);
  1666. /* call should fill header later */
  1667. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1668. memset(hdr, 0, size); /* XXX do we need this ? */
  1669. /* src address */
  1670. addr = (struct sadb_address*) skb_put(skb,
  1671. sizeof(struct sadb_address)+sockaddr_size);
  1672. addr->sadb_address_len =
  1673. (sizeof(struct sadb_address)+sockaddr_size)/
  1674. sizeof(uint64_t);
  1675. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1676. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1677. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1678. addr->sadb_address_reserved = 0;
  1679. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1680. xp->selector.sport,
  1681. (struct sockaddr *) (addr + 1),
  1682. xp->family))
  1683. BUG();
  1684. /* dst address */
  1685. addr = (struct sadb_address*) skb_put(skb,
  1686. sizeof(struct sadb_address)+sockaddr_size);
  1687. addr->sadb_address_len =
  1688. (sizeof(struct sadb_address)+sockaddr_size)/
  1689. sizeof(uint64_t);
  1690. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1691. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1692. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1693. addr->sadb_address_reserved = 0;
  1694. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1695. (struct sockaddr *) (addr + 1),
  1696. xp->family);
  1697. /* hard time */
  1698. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1699. sizeof(struct sadb_lifetime));
  1700. lifetime->sadb_lifetime_len =
  1701. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1702. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1703. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1704. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1705. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1706. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1707. /* soft time */
  1708. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1709. sizeof(struct sadb_lifetime));
  1710. lifetime->sadb_lifetime_len =
  1711. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1712. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1713. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1714. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1715. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1716. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1717. /* current time */
  1718. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1719. sizeof(struct sadb_lifetime));
  1720. lifetime->sadb_lifetime_len =
  1721. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1722. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1723. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1724. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1725. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1726. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1727. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1728. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1729. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1730. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1731. if (xp->action == XFRM_POLICY_ALLOW) {
  1732. if (xp->xfrm_nr)
  1733. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1734. else
  1735. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1736. }
  1737. pol->sadb_x_policy_dir = dir+1;
  1738. pol->sadb_x_policy_id = xp->index;
  1739. pol->sadb_x_policy_priority = xp->priority;
  1740. for (i=0; i<xp->xfrm_nr; i++) {
  1741. struct sadb_x_ipsecrequest *rq;
  1742. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1743. int req_size;
  1744. int mode;
  1745. req_size = sizeof(struct sadb_x_ipsecrequest);
  1746. if (t->mode == XFRM_MODE_TUNNEL) {
  1747. socklen = pfkey_sockaddr_len(t->encap_family);
  1748. req_size += socklen * 2;
  1749. } else {
  1750. size -= 2*socklen;
  1751. socklen = 0;
  1752. }
  1753. rq = (void*)skb_put(skb, req_size);
  1754. pol->sadb_x_policy_len += req_size/8;
  1755. memset(rq, 0, sizeof(*rq));
  1756. rq->sadb_x_ipsecrequest_len = req_size;
  1757. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1758. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1759. return -EINVAL;
  1760. rq->sadb_x_ipsecrequest_mode = mode;
  1761. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1762. if (t->reqid)
  1763. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1764. if (t->optional)
  1765. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1766. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1767. if (t->mode == XFRM_MODE_TUNNEL) {
  1768. u8 *sa = (void *)(rq + 1);
  1769. pfkey_sockaddr_fill(&t->saddr, 0,
  1770. (struct sockaddr *)sa,
  1771. t->encap_family);
  1772. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1773. (struct sockaddr *) (sa + socklen),
  1774. t->encap_family);
  1775. }
  1776. }
  1777. /* security context */
  1778. if ((xfrm_ctx = xp->security)) {
  1779. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1780. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1781. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1782. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1783. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1784. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1785. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1786. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1787. xfrm_ctx->ctx_len);
  1788. }
  1789. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1790. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1791. return 0;
  1792. }
  1793. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1794. {
  1795. struct sk_buff *out_skb;
  1796. struct sadb_msg *out_hdr;
  1797. int err;
  1798. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1799. if (IS_ERR(out_skb)) {
  1800. err = PTR_ERR(out_skb);
  1801. goto out;
  1802. }
  1803. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1804. if (err < 0)
  1805. return err;
  1806. out_hdr = (struct sadb_msg *) out_skb->data;
  1807. out_hdr->sadb_msg_version = PF_KEY_V2;
  1808. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1809. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1810. else
  1811. out_hdr->sadb_msg_type = event2poltype(c->event);
  1812. out_hdr->sadb_msg_errno = 0;
  1813. out_hdr->sadb_msg_seq = c->seq;
  1814. out_hdr->sadb_msg_pid = c->pid;
  1815. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1816. out:
  1817. return 0;
  1818. }
  1819. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1820. {
  1821. int err = 0;
  1822. struct sadb_lifetime *lifetime;
  1823. struct sadb_address *sa;
  1824. struct sadb_x_policy *pol;
  1825. struct xfrm_policy *xp;
  1826. struct km_event c;
  1827. struct sadb_x_sec_ctx *sec_ctx;
  1828. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1829. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1830. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1831. return -EINVAL;
  1832. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1833. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1834. return -EINVAL;
  1835. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1836. return -EINVAL;
  1837. xp = xfrm_policy_alloc(GFP_KERNEL);
  1838. if (xp == NULL)
  1839. return -ENOBUFS;
  1840. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1841. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1842. xp->priority = pol->sadb_x_policy_priority;
  1843. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1844. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1845. if (!xp->family) {
  1846. err = -EINVAL;
  1847. goto out;
  1848. }
  1849. xp->selector.family = xp->family;
  1850. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1851. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1852. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1853. if (xp->selector.sport)
  1854. xp->selector.sport_mask = htons(0xffff);
  1855. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1856. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1857. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1858. /* Amusing, we set this twice. KAME apps appear to set same value
  1859. * in both addresses.
  1860. */
  1861. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1862. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1863. if (xp->selector.dport)
  1864. xp->selector.dport_mask = htons(0xffff);
  1865. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1866. if (sec_ctx != NULL) {
  1867. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1868. if (!uctx) {
  1869. err = -ENOBUFS;
  1870. goto out;
  1871. }
  1872. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1873. kfree(uctx);
  1874. if (err)
  1875. goto out;
  1876. }
  1877. xp->lft.soft_byte_limit = XFRM_INF;
  1878. xp->lft.hard_byte_limit = XFRM_INF;
  1879. xp->lft.soft_packet_limit = XFRM_INF;
  1880. xp->lft.hard_packet_limit = XFRM_INF;
  1881. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1882. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1883. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1884. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1885. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1886. }
  1887. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1888. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1889. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1890. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1891. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1892. }
  1893. xp->xfrm_nr = 0;
  1894. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1895. (err = parse_ipsecrequests(xp, pol)) < 0)
  1896. goto out;
  1897. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1898. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1899. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1900. audit_get_loginuid(current),
  1901. audit_get_sessionid(current), 0);
  1902. if (err)
  1903. goto out;
  1904. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1905. c.event = XFRM_MSG_UPDPOLICY;
  1906. else
  1907. c.event = XFRM_MSG_NEWPOLICY;
  1908. c.seq = hdr->sadb_msg_seq;
  1909. c.pid = hdr->sadb_msg_pid;
  1910. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1911. xfrm_pol_put(xp);
  1912. return 0;
  1913. out:
  1914. xp->dead = 1;
  1915. xfrm_policy_destroy(xp);
  1916. return err;
  1917. }
  1918. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1919. {
  1920. int err;
  1921. struct sadb_address *sa;
  1922. struct sadb_x_policy *pol;
  1923. struct xfrm_policy *xp;
  1924. struct xfrm_selector sel;
  1925. struct km_event c;
  1926. struct sadb_x_sec_ctx *sec_ctx;
  1927. struct xfrm_sec_ctx *pol_ctx = NULL;
  1928. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1929. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1930. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1931. return -EINVAL;
  1932. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1933. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1934. return -EINVAL;
  1935. memset(&sel, 0, sizeof(sel));
  1936. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1937. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1938. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1939. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1940. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1941. if (sel.sport)
  1942. sel.sport_mask = htons(0xffff);
  1943. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1944. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1945. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1946. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1947. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1948. if (sel.dport)
  1949. sel.dport_mask = htons(0xffff);
  1950. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1951. if (sec_ctx != NULL) {
  1952. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1953. if (!uctx)
  1954. return -ENOMEM;
  1955. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1956. kfree(uctx);
  1957. if (err)
  1958. return err;
  1959. }
  1960. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
  1961. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  1962. 1, &err);
  1963. security_xfrm_policy_free(pol_ctx);
  1964. if (xp == NULL)
  1965. return -ENOENT;
  1966. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  1967. audit_get_loginuid(current),
  1968. audit_get_sessionid(current), 0);
  1969. if (err)
  1970. goto out;
  1971. c.seq = hdr->sadb_msg_seq;
  1972. c.pid = hdr->sadb_msg_pid;
  1973. c.event = XFRM_MSG_DELPOLICY;
  1974. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1975. out:
  1976. xfrm_pol_put(xp);
  1977. return err;
  1978. }
  1979. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1980. {
  1981. int err;
  1982. struct sk_buff *out_skb;
  1983. struct sadb_msg *out_hdr;
  1984. err = 0;
  1985. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1986. if (IS_ERR(out_skb)) {
  1987. err = PTR_ERR(out_skb);
  1988. goto out;
  1989. }
  1990. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1991. if (err < 0)
  1992. goto out;
  1993. out_hdr = (struct sadb_msg *) out_skb->data;
  1994. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1995. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  1996. out_hdr->sadb_msg_satype = 0;
  1997. out_hdr->sadb_msg_errno = 0;
  1998. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1999. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2000. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2001. err = 0;
  2002. out:
  2003. return err;
  2004. }
  2005. #ifdef CONFIG_NET_KEY_MIGRATE
  2006. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2007. {
  2008. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2009. }
  2010. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2011. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2012. u16 *family)
  2013. {
  2014. u8 *sa = (u8 *) (rq + 1);
  2015. int af, socklen;
  2016. if (rq->sadb_x_ipsecrequest_len <
  2017. pfkey_sockaddr_pair_size(((struct sockaddr *)sa)->sa_family))
  2018. return -EINVAL;
  2019. af = pfkey_sockaddr_extract((struct sockaddr *) sa,
  2020. saddr);
  2021. if (!af)
  2022. return -EINVAL;
  2023. socklen = pfkey_sockaddr_len(af);
  2024. if (pfkey_sockaddr_extract((struct sockaddr *) (sa + socklen),
  2025. daddr) != af)
  2026. return -EINVAL;
  2027. *family = af;
  2028. return 0;
  2029. }
  2030. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2031. struct xfrm_migrate *m)
  2032. {
  2033. int err;
  2034. struct sadb_x_ipsecrequest *rq2;
  2035. int mode;
  2036. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2037. len < rq1->sadb_x_ipsecrequest_len)
  2038. return -EINVAL;
  2039. /* old endoints */
  2040. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2041. &m->old_family);
  2042. if (err)
  2043. return err;
  2044. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2045. len -= rq1->sadb_x_ipsecrequest_len;
  2046. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2047. len < rq2->sadb_x_ipsecrequest_len)
  2048. return -EINVAL;
  2049. /* new endpoints */
  2050. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2051. &m->new_family);
  2052. if (err)
  2053. return err;
  2054. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2055. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2056. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2057. return -EINVAL;
  2058. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2059. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2060. return -EINVAL;
  2061. m->mode = mode;
  2062. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2063. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2064. rq2->sadb_x_ipsecrequest_len));
  2065. }
  2066. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2067. struct sadb_msg *hdr, void **ext_hdrs)
  2068. {
  2069. int i, len, ret, err = -EINVAL;
  2070. u8 dir;
  2071. struct sadb_address *sa;
  2072. struct sadb_x_policy *pol;
  2073. struct sadb_x_ipsecrequest *rq;
  2074. struct xfrm_selector sel;
  2075. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2076. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2077. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2078. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2079. err = -EINVAL;
  2080. goto out;
  2081. }
  2082. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2083. if (!pol) {
  2084. err = -EINVAL;
  2085. goto out;
  2086. }
  2087. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2088. err = -EINVAL;
  2089. goto out;
  2090. }
  2091. dir = pol->sadb_x_policy_dir - 1;
  2092. memset(&sel, 0, sizeof(sel));
  2093. /* set source address info of selector */
  2094. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2095. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2096. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2097. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2098. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2099. if (sel.sport)
  2100. sel.sport_mask = htons(0xffff);
  2101. /* set destination address info of selector */
  2102. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2103. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2104. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2105. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2106. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2107. if (sel.dport)
  2108. sel.dport_mask = htons(0xffff);
  2109. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2110. /* extract ipsecrequests */
  2111. i = 0;
  2112. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2113. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2114. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2115. if (ret < 0) {
  2116. err = ret;
  2117. goto out;
  2118. } else {
  2119. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2120. len -= ret;
  2121. i++;
  2122. }
  2123. }
  2124. if (!i || len > 0) {
  2125. err = -EINVAL;
  2126. goto out;
  2127. }
  2128. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2129. out:
  2130. return err;
  2131. }
  2132. #else
  2133. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2134. struct sadb_msg *hdr, void **ext_hdrs)
  2135. {
  2136. return -ENOPROTOOPT;
  2137. }
  2138. #endif
  2139. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2140. {
  2141. unsigned int dir;
  2142. int err = 0, delete;
  2143. struct sadb_x_policy *pol;
  2144. struct xfrm_policy *xp;
  2145. struct km_event c;
  2146. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2147. return -EINVAL;
  2148. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2149. if (dir >= XFRM_POLICY_MAX)
  2150. return -EINVAL;
  2151. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2152. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2153. delete, &err);
  2154. if (xp == NULL)
  2155. return -ENOENT;
  2156. if (delete) {
  2157. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2158. audit_get_loginuid(current),
  2159. audit_get_sessionid(current), 0);
  2160. if (err)
  2161. goto out;
  2162. c.seq = hdr->sadb_msg_seq;
  2163. c.pid = hdr->sadb_msg_pid;
  2164. c.data.byid = 1;
  2165. c.event = XFRM_MSG_DELPOLICY;
  2166. km_policy_notify(xp, dir, &c);
  2167. } else {
  2168. err = key_pol_get_resp(sk, xp, hdr, dir);
  2169. }
  2170. out:
  2171. xfrm_pol_put(xp);
  2172. return err;
  2173. }
  2174. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2175. {
  2176. struct pfkey_sock *pfk = ptr;
  2177. struct sk_buff *out_skb;
  2178. struct sadb_msg *out_hdr;
  2179. int err;
  2180. if (!pfkey_can_dump(&pfk->sk))
  2181. return -ENOBUFS;
  2182. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2183. if (IS_ERR(out_skb))
  2184. return PTR_ERR(out_skb);
  2185. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2186. if (err < 0)
  2187. return err;
  2188. out_hdr = (struct sadb_msg *) out_skb->data;
  2189. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2190. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2191. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2192. out_hdr->sadb_msg_errno = 0;
  2193. out_hdr->sadb_msg_seq = count;
  2194. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2195. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  2196. return 0;
  2197. }
  2198. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2199. {
  2200. return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
  2201. }
  2202. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2203. {
  2204. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2205. }
  2206. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2207. {
  2208. struct pfkey_sock *pfk = pfkey_sk(sk);
  2209. if (pfk->dump.dump != NULL)
  2210. return -EBUSY;
  2211. pfk->dump.msg_version = hdr->sadb_msg_version;
  2212. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2213. pfk->dump.dump = pfkey_dump_sp;
  2214. pfk->dump.done = pfkey_dump_sp_done;
  2215. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2216. return pfkey_do_dump(pfk);
  2217. }
  2218. static int key_notify_policy_flush(struct km_event *c)
  2219. {
  2220. struct sk_buff *skb_out;
  2221. struct sadb_msg *hdr;
  2222. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2223. if (!skb_out)
  2224. return -ENOBUFS;
  2225. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2226. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2227. hdr->sadb_msg_seq = c->seq;
  2228. hdr->sadb_msg_pid = c->pid;
  2229. hdr->sadb_msg_version = PF_KEY_V2;
  2230. hdr->sadb_msg_errno = (uint8_t) 0;
  2231. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2232. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2233. return 0;
  2234. }
  2235. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2236. {
  2237. struct km_event c;
  2238. struct xfrm_audit audit_info;
  2239. int err;
  2240. audit_info.loginuid = audit_get_loginuid(current);
  2241. audit_info.sessionid = audit_get_sessionid(current);
  2242. audit_info.secid = 0;
  2243. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2244. if (err)
  2245. return err;
  2246. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2247. c.event = XFRM_MSG_FLUSHPOLICY;
  2248. c.pid = hdr->sadb_msg_pid;
  2249. c.seq = hdr->sadb_msg_seq;
  2250. km_policy_notify(NULL, 0, &c);
  2251. return 0;
  2252. }
  2253. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2254. struct sadb_msg *hdr, void **ext_hdrs);
  2255. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2256. [SADB_RESERVED] = pfkey_reserved,
  2257. [SADB_GETSPI] = pfkey_getspi,
  2258. [SADB_UPDATE] = pfkey_add,
  2259. [SADB_ADD] = pfkey_add,
  2260. [SADB_DELETE] = pfkey_delete,
  2261. [SADB_GET] = pfkey_get,
  2262. [SADB_ACQUIRE] = pfkey_acquire,
  2263. [SADB_REGISTER] = pfkey_register,
  2264. [SADB_EXPIRE] = NULL,
  2265. [SADB_FLUSH] = pfkey_flush,
  2266. [SADB_DUMP] = pfkey_dump,
  2267. [SADB_X_PROMISC] = pfkey_promisc,
  2268. [SADB_X_PCHANGE] = NULL,
  2269. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2270. [SADB_X_SPDADD] = pfkey_spdadd,
  2271. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2272. [SADB_X_SPDGET] = pfkey_spdget,
  2273. [SADB_X_SPDACQUIRE] = NULL,
  2274. [SADB_X_SPDDUMP] = pfkey_spddump,
  2275. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2276. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2277. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2278. [SADB_X_MIGRATE] = pfkey_migrate,
  2279. };
  2280. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2281. {
  2282. void *ext_hdrs[SADB_EXT_MAX];
  2283. int err;
  2284. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2285. BROADCAST_PROMISC_ONLY, NULL);
  2286. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2287. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2288. if (!err) {
  2289. err = -EOPNOTSUPP;
  2290. if (pfkey_funcs[hdr->sadb_msg_type])
  2291. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2292. }
  2293. return err;
  2294. }
  2295. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2296. {
  2297. struct sadb_msg *hdr = NULL;
  2298. if (skb->len < sizeof(*hdr)) {
  2299. *errp = -EMSGSIZE;
  2300. } else {
  2301. hdr = (struct sadb_msg *) skb->data;
  2302. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2303. hdr->sadb_msg_reserved != 0 ||
  2304. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2305. hdr->sadb_msg_type > SADB_MAX)) {
  2306. hdr = NULL;
  2307. *errp = -EINVAL;
  2308. } else if (hdr->sadb_msg_len != (skb->len /
  2309. sizeof(uint64_t)) ||
  2310. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2311. sizeof(uint64_t))) {
  2312. hdr = NULL;
  2313. *errp = -EMSGSIZE;
  2314. } else {
  2315. *errp = 0;
  2316. }
  2317. }
  2318. return hdr;
  2319. }
  2320. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2321. {
  2322. unsigned int id = d->desc.sadb_alg_id;
  2323. if (id >= sizeof(t->aalgos) * 8)
  2324. return 0;
  2325. return (t->aalgos >> id) & 1;
  2326. }
  2327. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2328. {
  2329. unsigned int id = d->desc.sadb_alg_id;
  2330. if (id >= sizeof(t->ealgos) * 8)
  2331. return 0;
  2332. return (t->ealgos >> id) & 1;
  2333. }
  2334. static int count_ah_combs(struct xfrm_tmpl *t)
  2335. {
  2336. int i, sz = 0;
  2337. for (i = 0; ; i++) {
  2338. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2339. if (!aalg)
  2340. break;
  2341. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2342. sz += sizeof(struct sadb_comb);
  2343. }
  2344. return sz + sizeof(struct sadb_prop);
  2345. }
  2346. static int count_esp_combs(struct xfrm_tmpl *t)
  2347. {
  2348. int i, k, sz = 0;
  2349. for (i = 0; ; i++) {
  2350. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2351. if (!ealg)
  2352. break;
  2353. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2354. continue;
  2355. for (k = 1; ; k++) {
  2356. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2357. if (!aalg)
  2358. break;
  2359. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2360. sz += sizeof(struct sadb_comb);
  2361. }
  2362. }
  2363. return sz + sizeof(struct sadb_prop);
  2364. }
  2365. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2366. {
  2367. struct sadb_prop *p;
  2368. int i;
  2369. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2370. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2371. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2372. p->sadb_prop_replay = 32;
  2373. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2374. for (i = 0; ; i++) {
  2375. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2376. if (!aalg)
  2377. break;
  2378. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2379. struct sadb_comb *c;
  2380. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2381. memset(c, 0, sizeof(*c));
  2382. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2383. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2384. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2385. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2386. c->sadb_comb_hard_addtime = 24*60*60;
  2387. c->sadb_comb_soft_addtime = 20*60*60;
  2388. c->sadb_comb_hard_usetime = 8*60*60;
  2389. c->sadb_comb_soft_usetime = 7*60*60;
  2390. }
  2391. }
  2392. }
  2393. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2394. {
  2395. struct sadb_prop *p;
  2396. int i, k;
  2397. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2398. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2399. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2400. p->sadb_prop_replay = 32;
  2401. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2402. for (i=0; ; i++) {
  2403. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2404. if (!ealg)
  2405. break;
  2406. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2407. continue;
  2408. for (k = 1; ; k++) {
  2409. struct sadb_comb *c;
  2410. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2411. if (!aalg)
  2412. break;
  2413. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2414. continue;
  2415. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2416. memset(c, 0, sizeof(*c));
  2417. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2418. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2419. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2420. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2421. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2422. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2423. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2424. c->sadb_comb_hard_addtime = 24*60*60;
  2425. c->sadb_comb_soft_addtime = 20*60*60;
  2426. c->sadb_comb_hard_usetime = 8*60*60;
  2427. c->sadb_comb_soft_usetime = 7*60*60;
  2428. }
  2429. }
  2430. }
  2431. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2432. {
  2433. return 0;
  2434. }
  2435. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2436. {
  2437. struct sk_buff *out_skb;
  2438. struct sadb_msg *out_hdr;
  2439. int hard;
  2440. int hsc;
  2441. hard = c->data.hard;
  2442. if (hard)
  2443. hsc = 2;
  2444. else
  2445. hsc = 1;
  2446. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2447. if (IS_ERR(out_skb))
  2448. return PTR_ERR(out_skb);
  2449. out_hdr = (struct sadb_msg *) out_skb->data;
  2450. out_hdr->sadb_msg_version = PF_KEY_V2;
  2451. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2452. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2453. out_hdr->sadb_msg_errno = 0;
  2454. out_hdr->sadb_msg_reserved = 0;
  2455. out_hdr->sadb_msg_seq = 0;
  2456. out_hdr->sadb_msg_pid = 0;
  2457. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2458. return 0;
  2459. }
  2460. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2461. {
  2462. if (atomic_read(&pfkey_socks_nr) == 0)
  2463. return 0;
  2464. switch (c->event) {
  2465. case XFRM_MSG_EXPIRE:
  2466. return key_notify_sa_expire(x, c);
  2467. case XFRM_MSG_DELSA:
  2468. case XFRM_MSG_NEWSA:
  2469. case XFRM_MSG_UPDSA:
  2470. return key_notify_sa(x, c);
  2471. case XFRM_MSG_FLUSHSA:
  2472. return key_notify_sa_flush(c);
  2473. case XFRM_MSG_NEWAE: /* not yet supported */
  2474. break;
  2475. default:
  2476. printk("pfkey: Unknown SA event %d\n", c->event);
  2477. break;
  2478. }
  2479. return 0;
  2480. }
  2481. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2482. {
  2483. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2484. return 0;
  2485. switch (c->event) {
  2486. case XFRM_MSG_POLEXPIRE:
  2487. return key_notify_policy_expire(xp, c);
  2488. case XFRM_MSG_DELPOLICY:
  2489. case XFRM_MSG_NEWPOLICY:
  2490. case XFRM_MSG_UPDPOLICY:
  2491. return key_notify_policy(xp, dir, c);
  2492. case XFRM_MSG_FLUSHPOLICY:
  2493. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2494. break;
  2495. return key_notify_policy_flush(c);
  2496. default:
  2497. printk("pfkey: Unknown policy event %d\n", c->event);
  2498. break;
  2499. }
  2500. return 0;
  2501. }
  2502. static u32 get_acqseq(void)
  2503. {
  2504. u32 res;
  2505. static u32 acqseq;
  2506. static DEFINE_SPINLOCK(acqseq_lock);
  2507. spin_lock_bh(&acqseq_lock);
  2508. res = (++acqseq ? : ++acqseq);
  2509. spin_unlock_bh(&acqseq_lock);
  2510. return res;
  2511. }
  2512. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2513. {
  2514. struct sk_buff *skb;
  2515. struct sadb_msg *hdr;
  2516. struct sadb_address *addr;
  2517. struct sadb_x_policy *pol;
  2518. int sockaddr_size;
  2519. int size;
  2520. struct sadb_x_sec_ctx *sec_ctx;
  2521. struct xfrm_sec_ctx *xfrm_ctx;
  2522. int ctx_size = 0;
  2523. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2524. if (!sockaddr_size)
  2525. return -EINVAL;
  2526. size = sizeof(struct sadb_msg) +
  2527. (sizeof(struct sadb_address) * 2) +
  2528. (sockaddr_size * 2) +
  2529. sizeof(struct sadb_x_policy);
  2530. if (x->id.proto == IPPROTO_AH)
  2531. size += count_ah_combs(t);
  2532. else if (x->id.proto == IPPROTO_ESP)
  2533. size += count_esp_combs(t);
  2534. if ((xfrm_ctx = x->security)) {
  2535. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2536. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2537. }
  2538. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2539. if (skb == NULL)
  2540. return -ENOMEM;
  2541. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2542. hdr->sadb_msg_version = PF_KEY_V2;
  2543. hdr->sadb_msg_type = SADB_ACQUIRE;
  2544. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2545. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2546. hdr->sadb_msg_errno = 0;
  2547. hdr->sadb_msg_reserved = 0;
  2548. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2549. hdr->sadb_msg_pid = 0;
  2550. /* src address */
  2551. addr = (struct sadb_address*) skb_put(skb,
  2552. sizeof(struct sadb_address)+sockaddr_size);
  2553. addr->sadb_address_len =
  2554. (sizeof(struct sadb_address)+sockaddr_size)/
  2555. sizeof(uint64_t);
  2556. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2557. addr->sadb_address_proto = 0;
  2558. addr->sadb_address_reserved = 0;
  2559. addr->sadb_address_prefixlen =
  2560. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2561. (struct sockaddr *) (addr + 1),
  2562. x->props.family);
  2563. if (!addr->sadb_address_prefixlen)
  2564. BUG();
  2565. /* dst address */
  2566. addr = (struct sadb_address*) skb_put(skb,
  2567. sizeof(struct sadb_address)+sockaddr_size);
  2568. addr->sadb_address_len =
  2569. (sizeof(struct sadb_address)+sockaddr_size)/
  2570. sizeof(uint64_t);
  2571. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2572. addr->sadb_address_proto = 0;
  2573. addr->sadb_address_reserved = 0;
  2574. addr->sadb_address_prefixlen =
  2575. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2576. (struct sockaddr *) (addr + 1),
  2577. x->props.family);
  2578. if (!addr->sadb_address_prefixlen)
  2579. BUG();
  2580. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2581. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2582. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2583. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2584. pol->sadb_x_policy_dir = dir+1;
  2585. pol->sadb_x_policy_id = xp->index;
  2586. /* Set sadb_comb's. */
  2587. if (x->id.proto == IPPROTO_AH)
  2588. dump_ah_combs(skb, t);
  2589. else if (x->id.proto == IPPROTO_ESP)
  2590. dump_esp_combs(skb, t);
  2591. /* security context */
  2592. if (xfrm_ctx) {
  2593. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2594. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2595. sec_ctx->sadb_x_sec_len =
  2596. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2597. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2598. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2599. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2600. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2601. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2602. xfrm_ctx->ctx_len);
  2603. }
  2604. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2605. }
  2606. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2607. u8 *data, int len, int *dir)
  2608. {
  2609. struct xfrm_policy *xp;
  2610. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2611. struct sadb_x_sec_ctx *sec_ctx;
  2612. switch (sk->sk_family) {
  2613. case AF_INET:
  2614. if (opt != IP_IPSEC_POLICY) {
  2615. *dir = -EOPNOTSUPP;
  2616. return NULL;
  2617. }
  2618. break;
  2619. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2620. case AF_INET6:
  2621. if (opt != IPV6_IPSEC_POLICY) {
  2622. *dir = -EOPNOTSUPP;
  2623. return NULL;
  2624. }
  2625. break;
  2626. #endif
  2627. default:
  2628. *dir = -EINVAL;
  2629. return NULL;
  2630. }
  2631. *dir = -EINVAL;
  2632. if (len < sizeof(struct sadb_x_policy) ||
  2633. pol->sadb_x_policy_len*8 > len ||
  2634. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2635. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2636. return NULL;
  2637. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2638. if (xp == NULL) {
  2639. *dir = -ENOBUFS;
  2640. return NULL;
  2641. }
  2642. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2643. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2644. xp->lft.soft_byte_limit = XFRM_INF;
  2645. xp->lft.hard_byte_limit = XFRM_INF;
  2646. xp->lft.soft_packet_limit = XFRM_INF;
  2647. xp->lft.hard_packet_limit = XFRM_INF;
  2648. xp->family = sk->sk_family;
  2649. xp->xfrm_nr = 0;
  2650. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2651. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2652. goto out;
  2653. /* security context too */
  2654. if (len >= (pol->sadb_x_policy_len*8 +
  2655. sizeof(struct sadb_x_sec_ctx))) {
  2656. char *p = (char *)pol;
  2657. struct xfrm_user_sec_ctx *uctx;
  2658. p += pol->sadb_x_policy_len*8;
  2659. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2660. if (len < pol->sadb_x_policy_len*8 +
  2661. sec_ctx->sadb_x_sec_len) {
  2662. *dir = -EINVAL;
  2663. goto out;
  2664. }
  2665. if ((*dir = verify_sec_ctx_len(p)))
  2666. goto out;
  2667. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2668. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2669. kfree(uctx);
  2670. if (*dir)
  2671. goto out;
  2672. }
  2673. *dir = pol->sadb_x_policy_dir-1;
  2674. return xp;
  2675. out:
  2676. xfrm_policy_destroy(xp);
  2677. return NULL;
  2678. }
  2679. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2680. {
  2681. struct sk_buff *skb;
  2682. struct sadb_msg *hdr;
  2683. struct sadb_sa *sa;
  2684. struct sadb_address *addr;
  2685. struct sadb_x_nat_t_port *n_port;
  2686. int sockaddr_size;
  2687. int size;
  2688. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2689. struct xfrm_encap_tmpl *natt = NULL;
  2690. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2691. if (!sockaddr_size)
  2692. return -EINVAL;
  2693. if (!satype)
  2694. return -EINVAL;
  2695. if (!x->encap)
  2696. return -EINVAL;
  2697. natt = x->encap;
  2698. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2699. *
  2700. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2701. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2702. */
  2703. size = sizeof(struct sadb_msg) +
  2704. sizeof(struct sadb_sa) +
  2705. (sizeof(struct sadb_address) * 2) +
  2706. (sockaddr_size * 2) +
  2707. (sizeof(struct sadb_x_nat_t_port) * 2);
  2708. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2709. if (skb == NULL)
  2710. return -ENOMEM;
  2711. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2712. hdr->sadb_msg_version = PF_KEY_V2;
  2713. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2714. hdr->sadb_msg_satype = satype;
  2715. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2716. hdr->sadb_msg_errno = 0;
  2717. hdr->sadb_msg_reserved = 0;
  2718. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2719. hdr->sadb_msg_pid = 0;
  2720. /* SA */
  2721. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2722. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2723. sa->sadb_sa_exttype = SADB_EXT_SA;
  2724. sa->sadb_sa_spi = x->id.spi;
  2725. sa->sadb_sa_replay = 0;
  2726. sa->sadb_sa_state = 0;
  2727. sa->sadb_sa_auth = 0;
  2728. sa->sadb_sa_encrypt = 0;
  2729. sa->sadb_sa_flags = 0;
  2730. /* ADDRESS_SRC (old addr) */
  2731. addr = (struct sadb_address*)
  2732. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2733. addr->sadb_address_len =
  2734. (sizeof(struct sadb_address)+sockaddr_size)/
  2735. sizeof(uint64_t);
  2736. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2737. addr->sadb_address_proto = 0;
  2738. addr->sadb_address_reserved = 0;
  2739. addr->sadb_address_prefixlen =
  2740. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2741. (struct sockaddr *) (addr + 1),
  2742. x->props.family);
  2743. if (!addr->sadb_address_prefixlen)
  2744. BUG();
  2745. /* NAT_T_SPORT (old port) */
  2746. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2747. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2748. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2749. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2750. n_port->sadb_x_nat_t_port_reserved = 0;
  2751. /* ADDRESS_DST (new addr) */
  2752. addr = (struct sadb_address*)
  2753. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2754. addr->sadb_address_len =
  2755. (sizeof(struct sadb_address)+sockaddr_size)/
  2756. sizeof(uint64_t);
  2757. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2758. addr->sadb_address_proto = 0;
  2759. addr->sadb_address_reserved = 0;
  2760. addr->sadb_address_prefixlen =
  2761. pfkey_sockaddr_fill(ipaddr, 0,
  2762. (struct sockaddr *) (addr + 1),
  2763. x->props.family);
  2764. if (!addr->sadb_address_prefixlen)
  2765. BUG();
  2766. /* NAT_T_DPORT (new port) */
  2767. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2768. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2769. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2770. n_port->sadb_x_nat_t_port_port = sport;
  2771. n_port->sadb_x_nat_t_port_reserved = 0;
  2772. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2773. }
  2774. #ifdef CONFIG_NET_KEY_MIGRATE
  2775. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2776. struct xfrm_selector *sel)
  2777. {
  2778. struct sadb_address *addr;
  2779. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2780. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2781. addr->sadb_address_exttype = type;
  2782. addr->sadb_address_proto = sel->proto;
  2783. addr->sadb_address_reserved = 0;
  2784. switch (type) {
  2785. case SADB_EXT_ADDRESS_SRC:
  2786. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2787. pfkey_sockaddr_fill(&sel->saddr, 0,
  2788. (struct sockaddr *)(addr + 1),
  2789. sel->family);
  2790. break;
  2791. case SADB_EXT_ADDRESS_DST:
  2792. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2793. pfkey_sockaddr_fill(&sel->daddr, 0,
  2794. (struct sockaddr *)(addr + 1),
  2795. sel->family);
  2796. break;
  2797. default:
  2798. return -EINVAL;
  2799. }
  2800. return 0;
  2801. }
  2802. static int set_ipsecrequest(struct sk_buff *skb,
  2803. uint8_t proto, uint8_t mode, int level,
  2804. uint32_t reqid, uint8_t family,
  2805. xfrm_address_t *src, xfrm_address_t *dst)
  2806. {
  2807. struct sadb_x_ipsecrequest *rq;
  2808. u8 *sa;
  2809. int socklen = pfkey_sockaddr_len(family);
  2810. int size_req;
  2811. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2812. pfkey_sockaddr_pair_size(family);
  2813. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2814. memset(rq, 0, size_req);
  2815. rq->sadb_x_ipsecrequest_len = size_req;
  2816. rq->sadb_x_ipsecrequest_proto = proto;
  2817. rq->sadb_x_ipsecrequest_mode = mode;
  2818. rq->sadb_x_ipsecrequest_level = level;
  2819. rq->sadb_x_ipsecrequest_reqid = reqid;
  2820. sa = (u8 *) (rq + 1);
  2821. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2822. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2823. return -EINVAL;
  2824. return 0;
  2825. }
  2826. #endif
  2827. #ifdef CONFIG_NET_KEY_MIGRATE
  2828. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2829. struct xfrm_migrate *m, int num_bundles)
  2830. {
  2831. int i;
  2832. int sasize_sel;
  2833. int size = 0;
  2834. int size_pol = 0;
  2835. struct sk_buff *skb;
  2836. struct sadb_msg *hdr;
  2837. struct sadb_x_policy *pol;
  2838. struct xfrm_migrate *mp;
  2839. if (type != XFRM_POLICY_TYPE_MAIN)
  2840. return 0;
  2841. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2842. return -EINVAL;
  2843. /* selector */
  2844. sasize_sel = pfkey_sockaddr_size(sel->family);
  2845. if (!sasize_sel)
  2846. return -EINVAL;
  2847. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2848. /* policy info */
  2849. size_pol += sizeof(struct sadb_x_policy);
  2850. /* ipsecrequests */
  2851. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2852. /* old locator pair */
  2853. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2854. pfkey_sockaddr_pair_size(mp->old_family);
  2855. /* new locator pair */
  2856. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2857. pfkey_sockaddr_pair_size(mp->new_family);
  2858. }
  2859. size += sizeof(struct sadb_msg) + size_pol;
  2860. /* alloc buffer */
  2861. skb = alloc_skb(size, GFP_ATOMIC);
  2862. if (skb == NULL)
  2863. return -ENOMEM;
  2864. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2865. hdr->sadb_msg_version = PF_KEY_V2;
  2866. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2867. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2868. hdr->sadb_msg_len = size / 8;
  2869. hdr->sadb_msg_errno = 0;
  2870. hdr->sadb_msg_reserved = 0;
  2871. hdr->sadb_msg_seq = 0;
  2872. hdr->sadb_msg_pid = 0;
  2873. /* selector src */
  2874. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2875. /* selector dst */
  2876. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2877. /* policy information */
  2878. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2879. pol->sadb_x_policy_len = size_pol / 8;
  2880. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2881. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2882. pol->sadb_x_policy_dir = dir + 1;
  2883. pol->sadb_x_policy_id = 0;
  2884. pol->sadb_x_policy_priority = 0;
  2885. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2886. /* old ipsecrequest */
  2887. int mode = pfkey_mode_from_xfrm(mp->mode);
  2888. if (mode < 0)
  2889. goto err;
  2890. if (set_ipsecrequest(skb, mp->proto, mode,
  2891. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2892. mp->reqid, mp->old_family,
  2893. &mp->old_saddr, &mp->old_daddr) < 0)
  2894. goto err;
  2895. /* new ipsecrequest */
  2896. if (set_ipsecrequest(skb, mp->proto, mode,
  2897. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2898. mp->reqid, mp->new_family,
  2899. &mp->new_saddr, &mp->new_daddr) < 0)
  2900. goto err;
  2901. }
  2902. /* broadcast migrate message to sockets */
  2903. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2904. return 0;
  2905. err:
  2906. kfree_skb(skb);
  2907. return -EINVAL;
  2908. }
  2909. #else
  2910. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2911. struct xfrm_migrate *m, int num_bundles)
  2912. {
  2913. return -ENOPROTOOPT;
  2914. }
  2915. #endif
  2916. static int pfkey_sendmsg(struct kiocb *kiocb,
  2917. struct socket *sock, struct msghdr *msg, size_t len)
  2918. {
  2919. struct sock *sk = sock->sk;
  2920. struct sk_buff *skb = NULL;
  2921. struct sadb_msg *hdr = NULL;
  2922. int err;
  2923. err = -EOPNOTSUPP;
  2924. if (msg->msg_flags & MSG_OOB)
  2925. goto out;
  2926. err = -EMSGSIZE;
  2927. if ((unsigned)len > sk->sk_sndbuf - 32)
  2928. goto out;
  2929. err = -ENOBUFS;
  2930. skb = alloc_skb(len, GFP_KERNEL);
  2931. if (skb == NULL)
  2932. goto out;
  2933. err = -EFAULT;
  2934. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2935. goto out;
  2936. hdr = pfkey_get_base_msg(skb, &err);
  2937. if (!hdr)
  2938. goto out;
  2939. mutex_lock(&xfrm_cfg_mutex);
  2940. err = pfkey_process(sk, skb, hdr);
  2941. mutex_unlock(&xfrm_cfg_mutex);
  2942. out:
  2943. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2944. err = 0;
  2945. if (skb)
  2946. kfree_skb(skb);
  2947. return err ? : len;
  2948. }
  2949. static int pfkey_recvmsg(struct kiocb *kiocb,
  2950. struct socket *sock, struct msghdr *msg, size_t len,
  2951. int flags)
  2952. {
  2953. struct sock *sk = sock->sk;
  2954. struct pfkey_sock *pfk = pfkey_sk(sk);
  2955. struct sk_buff *skb;
  2956. int copied, err;
  2957. err = -EINVAL;
  2958. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2959. goto out;
  2960. msg->msg_namelen = 0;
  2961. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2962. if (skb == NULL)
  2963. goto out;
  2964. copied = skb->len;
  2965. if (copied > len) {
  2966. msg->msg_flags |= MSG_TRUNC;
  2967. copied = len;
  2968. }
  2969. skb_reset_transport_header(skb);
  2970. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2971. if (err)
  2972. goto out_free;
  2973. sock_recv_timestamp(msg, sk, skb);
  2974. err = (flags & MSG_TRUNC) ? skb->len : copied;
  2975. if (pfk->dump.dump != NULL &&
  2976. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  2977. pfkey_do_dump(pfk);
  2978. out_free:
  2979. skb_free_datagram(sk, skb);
  2980. out:
  2981. return err;
  2982. }
  2983. static const struct proto_ops pfkey_ops = {
  2984. .family = PF_KEY,
  2985. .owner = THIS_MODULE,
  2986. /* Operations that make no sense on pfkey sockets. */
  2987. .bind = sock_no_bind,
  2988. .connect = sock_no_connect,
  2989. .socketpair = sock_no_socketpair,
  2990. .accept = sock_no_accept,
  2991. .getname = sock_no_getname,
  2992. .ioctl = sock_no_ioctl,
  2993. .listen = sock_no_listen,
  2994. .shutdown = sock_no_shutdown,
  2995. .setsockopt = sock_no_setsockopt,
  2996. .getsockopt = sock_no_getsockopt,
  2997. .mmap = sock_no_mmap,
  2998. .sendpage = sock_no_sendpage,
  2999. /* Now the operations that really occur. */
  3000. .release = pfkey_release,
  3001. .poll = datagram_poll,
  3002. .sendmsg = pfkey_sendmsg,
  3003. .recvmsg = pfkey_recvmsg,
  3004. };
  3005. static struct net_proto_family pfkey_family_ops = {
  3006. .family = PF_KEY,
  3007. .create = pfkey_create,
  3008. .owner = THIS_MODULE,
  3009. };
  3010. #ifdef CONFIG_PROC_FS
  3011. static int pfkey_seq_show(struct seq_file *f, void *v)
  3012. {
  3013. struct sock *s;
  3014. s = (struct sock *)v;
  3015. if (v == SEQ_START_TOKEN)
  3016. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3017. else
  3018. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3019. s,
  3020. atomic_read(&s->sk_refcnt),
  3021. atomic_read(&s->sk_rmem_alloc),
  3022. atomic_read(&s->sk_wmem_alloc),
  3023. sock_i_uid(s),
  3024. sock_i_ino(s)
  3025. );
  3026. return 0;
  3027. }
  3028. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3029. {
  3030. struct sock *s;
  3031. struct hlist_node *node;
  3032. loff_t pos = *ppos;
  3033. read_lock(&pfkey_table_lock);
  3034. if (pos == 0)
  3035. return SEQ_START_TOKEN;
  3036. sk_for_each(s, node, &pfkey_table)
  3037. if (pos-- == 1)
  3038. return s;
  3039. return NULL;
  3040. }
  3041. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3042. {
  3043. ++*ppos;
  3044. return (v == SEQ_START_TOKEN) ?
  3045. sk_head(&pfkey_table) :
  3046. sk_next((struct sock *)v);
  3047. }
  3048. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3049. {
  3050. read_unlock(&pfkey_table_lock);
  3051. }
  3052. static struct seq_operations pfkey_seq_ops = {
  3053. .start = pfkey_seq_start,
  3054. .next = pfkey_seq_next,
  3055. .stop = pfkey_seq_stop,
  3056. .show = pfkey_seq_show,
  3057. };
  3058. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3059. {
  3060. return seq_open(file, &pfkey_seq_ops);
  3061. }
  3062. static struct file_operations pfkey_proc_ops = {
  3063. .open = pfkey_seq_open,
  3064. .read = seq_read,
  3065. .llseek = seq_lseek,
  3066. .release = seq_release,
  3067. };
  3068. static int pfkey_init_proc(void)
  3069. {
  3070. struct proc_dir_entry *e;
  3071. e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
  3072. if (e == NULL)
  3073. return -ENOMEM;
  3074. return 0;
  3075. }
  3076. static void pfkey_exit_proc(void)
  3077. {
  3078. proc_net_remove(&init_net, "pfkey");
  3079. }
  3080. #else
  3081. static inline int pfkey_init_proc(void)
  3082. {
  3083. return 0;
  3084. }
  3085. static inline void pfkey_exit_proc(void)
  3086. {
  3087. }
  3088. #endif
  3089. static struct xfrm_mgr pfkeyv2_mgr =
  3090. {
  3091. .id = "pfkeyv2",
  3092. .notify = pfkey_send_notify,
  3093. .acquire = pfkey_send_acquire,
  3094. .compile_policy = pfkey_compile_policy,
  3095. .new_mapping = pfkey_send_new_mapping,
  3096. .notify_policy = pfkey_send_policy_notify,
  3097. .migrate = pfkey_send_migrate,
  3098. };
  3099. static void __exit ipsec_pfkey_exit(void)
  3100. {
  3101. xfrm_unregister_km(&pfkeyv2_mgr);
  3102. pfkey_exit_proc();
  3103. sock_unregister(PF_KEY);
  3104. proto_unregister(&key_proto);
  3105. }
  3106. static int __init ipsec_pfkey_init(void)
  3107. {
  3108. int err = proto_register(&key_proto, 0);
  3109. if (err != 0)
  3110. goto out;
  3111. err = sock_register(&pfkey_family_ops);
  3112. if (err != 0)
  3113. goto out_unregister_key_proto;
  3114. err = pfkey_init_proc();
  3115. if (err != 0)
  3116. goto out_sock_unregister;
  3117. err = xfrm_register_km(&pfkeyv2_mgr);
  3118. if (err != 0)
  3119. goto out_remove_proc_entry;
  3120. out:
  3121. return err;
  3122. out_remove_proc_entry:
  3123. pfkey_exit_proc();
  3124. out_sock_unregister:
  3125. sock_unregister(PF_KEY);
  3126. out_unregister_key_proto:
  3127. proto_unregister(&key_proto);
  3128. goto out;
  3129. }
  3130. module_init(ipsec_pfkey_init);
  3131. module_exit(ipsec_pfkey_exit);
  3132. MODULE_LICENSE("GPL");
  3133. MODULE_ALIAS_NETPROTO(PF_KEY);