slub.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/debugobjects.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/memory.h>
  24. #include <linux/math64.h>
  25. /*
  26. * Lock order:
  27. * 1. slab_lock(page)
  28. * 2. slab->list_lock
  29. *
  30. * The slab_lock protects operations on the object of a particular
  31. * slab and its metadata in the page struct. If the slab lock
  32. * has been taken then no allocations nor frees can be performed
  33. * on the objects in the slab nor can the slab be added or removed
  34. * from the partial or full lists since this would mean modifying
  35. * the page_struct of the slab.
  36. *
  37. * The list_lock protects the partial and full list on each node and
  38. * the partial slab counter. If taken then no new slabs may be added or
  39. * removed from the lists nor make the number of partial slabs be modified.
  40. * (Note that the total number of slabs is an atomic value that may be
  41. * modified without taking the list lock).
  42. *
  43. * The list_lock is a centralized lock and thus we avoid taking it as
  44. * much as possible. As long as SLUB does not have to handle partial
  45. * slabs, operations can continue without any centralized lock. F.e.
  46. * allocating a long series of objects that fill up slabs does not require
  47. * the list lock.
  48. *
  49. * The lock order is sometimes inverted when we are trying to get a slab
  50. * off a list. We take the list_lock and then look for a page on the list
  51. * to use. While we do that objects in the slabs may be freed. We can
  52. * only operate on the slab if we have also taken the slab_lock. So we use
  53. * a slab_trylock() on the slab. If trylock was successful then no frees
  54. * can occur anymore and we can use the slab for allocations etc. If the
  55. * slab_trylock() does not succeed then frees are in progress in the slab and
  56. * we must stay away from it for a while since we may cause a bouncing
  57. * cacheline if we try to acquire the lock. So go onto the next slab.
  58. * If all pages are busy then we may allocate a new slab instead of reusing
  59. * a partial slab. A new slab has noone operating on it and thus there is
  60. * no danger of cacheline contention.
  61. *
  62. * Interrupts are disabled during allocation and deallocation in order to
  63. * make the slab allocator safe to use in the context of an irq. In addition
  64. * interrupts are disabled to ensure that the processor does not change
  65. * while handling per_cpu slabs, due to kernel preemption.
  66. *
  67. * SLUB assigns one slab for allocation to each processor.
  68. * Allocations only occur from these slabs called cpu slabs.
  69. *
  70. * Slabs with free elements are kept on a partial list and during regular
  71. * operations no list for full slabs is used. If an object in a full slab is
  72. * freed then the slab will show up again on the partial lists.
  73. * We track full slabs for debugging purposes though because otherwise we
  74. * cannot scan all objects.
  75. *
  76. * Slabs are freed when they become empty. Teardown and setup is
  77. * minimal so we rely on the page allocators per cpu caches for
  78. * fast frees and allocs.
  79. *
  80. * Overloading of page flags that are otherwise used for LRU management.
  81. *
  82. * PageActive The slab is frozen and exempt from list processing.
  83. * This means that the slab is dedicated to a purpose
  84. * such as satisfying allocations for a specific
  85. * processor. Objects may be freed in the slab while
  86. * it is frozen but slab_free will then skip the usual
  87. * list operations. It is up to the processor holding
  88. * the slab to integrate the slab into the slab lists
  89. * when the slab is no longer needed.
  90. *
  91. * One use of this flag is to mark slabs that are
  92. * used for allocations. Then such a slab becomes a cpu
  93. * slab. The cpu slab may be equipped with an additional
  94. * freelist that allows lockless access to
  95. * free objects in addition to the regular freelist
  96. * that requires the slab lock.
  97. *
  98. * PageError Slab requires special handling due to debug
  99. * options set. This moves slab handling out of
  100. * the fast path and disables lockless freelists.
  101. */
  102. #ifdef CONFIG_SLUB_DEBUG
  103. #define SLABDEBUG 1
  104. #else
  105. #define SLABDEBUG 0
  106. #endif
  107. /*
  108. * Issues still to be resolved:
  109. *
  110. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  111. *
  112. * - Variable sizing of the per node arrays
  113. */
  114. /* Enable to test recovery from slab corruption on boot */
  115. #undef SLUB_RESILIENCY_TEST
  116. /*
  117. * Mininum number of partial slabs. These will be left on the partial
  118. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  119. */
  120. #define MIN_PARTIAL 5
  121. /*
  122. * Maximum number of desirable partial slabs.
  123. * The existence of more partial slabs makes kmem_cache_shrink
  124. * sort the partial list by the number of objects in the.
  125. */
  126. #define MAX_PARTIAL 10
  127. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  128. SLAB_POISON | SLAB_STORE_USER)
  129. /*
  130. * Set of flags that will prevent slab merging
  131. */
  132. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  133. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  134. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  135. SLAB_CACHE_DMA)
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  138. #endif
  139. #ifndef ARCH_SLAB_MINALIGN
  140. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  141. #endif
  142. /* Internal SLUB flags */
  143. #define __OBJECT_POISON 0x80000000 /* Poison object */
  144. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  145. static int kmem_size = sizeof(struct kmem_cache);
  146. #ifdef CONFIG_SMP
  147. static struct notifier_block slab_notifier;
  148. #endif
  149. static enum {
  150. DOWN, /* No slab functionality available */
  151. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  152. UP, /* Everything works but does not show up in sysfs */
  153. SYSFS /* Sysfs up */
  154. } slab_state = DOWN;
  155. /* A list of all slab caches on the system */
  156. static DECLARE_RWSEM(slub_lock);
  157. static LIST_HEAD(slab_caches);
  158. /*
  159. * Tracking user of a slab.
  160. */
  161. struct track {
  162. void *addr; /* Called from address */
  163. int cpu; /* Was running on cpu */
  164. int pid; /* Pid context */
  165. unsigned long when; /* When did the operation occur */
  166. };
  167. enum track_item { TRACK_ALLOC, TRACK_FREE };
  168. #ifdef CONFIG_SLUB_DEBUG
  169. static int sysfs_slab_add(struct kmem_cache *);
  170. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  171. static void sysfs_slab_remove(struct kmem_cache *);
  172. #else
  173. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  174. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  175. { return 0; }
  176. static inline void sysfs_slab_remove(struct kmem_cache *s)
  177. {
  178. kfree(s);
  179. }
  180. #endif
  181. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  182. {
  183. #ifdef CONFIG_SLUB_STATS
  184. c->stat[si]++;
  185. #endif
  186. }
  187. /********************************************************************
  188. * Core slab cache functions
  189. *******************************************************************/
  190. int slab_is_available(void)
  191. {
  192. return slab_state >= UP;
  193. }
  194. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  195. {
  196. #ifdef CONFIG_NUMA
  197. return s->node[node];
  198. #else
  199. return &s->local_node;
  200. #endif
  201. }
  202. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  203. {
  204. #ifdef CONFIG_SMP
  205. return s->cpu_slab[cpu];
  206. #else
  207. return &s->cpu_slab;
  208. #endif
  209. }
  210. /* Verify that a pointer has an address that is valid within a slab page */
  211. static inline int check_valid_pointer(struct kmem_cache *s,
  212. struct page *page, const void *object)
  213. {
  214. void *base;
  215. if (!object)
  216. return 1;
  217. base = page_address(page);
  218. if (object < base || object >= base + page->objects * s->size ||
  219. (object - base) % s->size) {
  220. return 0;
  221. }
  222. return 1;
  223. }
  224. /*
  225. * Slow version of get and set free pointer.
  226. *
  227. * This version requires touching the cache lines of kmem_cache which
  228. * we avoid to do in the fast alloc free paths. There we obtain the offset
  229. * from the page struct.
  230. */
  231. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  232. {
  233. return *(void **)(object + s->offset);
  234. }
  235. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  236. {
  237. *(void **)(object + s->offset) = fp;
  238. }
  239. /* Loop over all objects in a slab */
  240. #define for_each_object(__p, __s, __addr, __objects) \
  241. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  242. __p += (__s)->size)
  243. /* Scan freelist */
  244. #define for_each_free_object(__p, __s, __free) \
  245. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  246. /* Determine object index from a given position */
  247. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  248. {
  249. return (p - addr) / s->size;
  250. }
  251. static inline struct kmem_cache_order_objects oo_make(int order,
  252. unsigned long size)
  253. {
  254. struct kmem_cache_order_objects x = {
  255. (order << 16) + (PAGE_SIZE << order) / size
  256. };
  257. return x;
  258. }
  259. static inline int oo_order(struct kmem_cache_order_objects x)
  260. {
  261. return x.x >> 16;
  262. }
  263. static inline int oo_objects(struct kmem_cache_order_objects x)
  264. {
  265. return x.x & ((1 << 16) - 1);
  266. }
  267. #ifdef CONFIG_SLUB_DEBUG
  268. /*
  269. * Debug settings:
  270. */
  271. #ifdef CONFIG_SLUB_DEBUG_ON
  272. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  273. #else
  274. static int slub_debug;
  275. #endif
  276. static char *slub_debug_slabs;
  277. /*
  278. * Object debugging
  279. */
  280. static void print_section(char *text, u8 *addr, unsigned int length)
  281. {
  282. int i, offset;
  283. int newline = 1;
  284. char ascii[17];
  285. ascii[16] = 0;
  286. for (i = 0; i < length; i++) {
  287. if (newline) {
  288. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  289. newline = 0;
  290. }
  291. printk(KERN_CONT " %02x", addr[i]);
  292. offset = i % 16;
  293. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  294. if (offset == 15) {
  295. printk(KERN_CONT " %s\n", ascii);
  296. newline = 1;
  297. }
  298. }
  299. if (!newline) {
  300. i %= 16;
  301. while (i < 16) {
  302. printk(KERN_CONT " ");
  303. ascii[i] = ' ';
  304. i++;
  305. }
  306. printk(KERN_CONT " %s\n", ascii);
  307. }
  308. }
  309. static struct track *get_track(struct kmem_cache *s, void *object,
  310. enum track_item alloc)
  311. {
  312. struct track *p;
  313. if (s->offset)
  314. p = object + s->offset + sizeof(void *);
  315. else
  316. p = object + s->inuse;
  317. return p + alloc;
  318. }
  319. static void set_track(struct kmem_cache *s, void *object,
  320. enum track_item alloc, void *addr)
  321. {
  322. struct track *p;
  323. if (s->offset)
  324. p = object + s->offset + sizeof(void *);
  325. else
  326. p = object + s->inuse;
  327. p += alloc;
  328. if (addr) {
  329. p->addr = addr;
  330. p->cpu = smp_processor_id();
  331. p->pid = current->pid;
  332. p->when = jiffies;
  333. } else
  334. memset(p, 0, sizeof(struct track));
  335. }
  336. static void init_tracking(struct kmem_cache *s, void *object)
  337. {
  338. if (!(s->flags & SLAB_STORE_USER))
  339. return;
  340. set_track(s, object, TRACK_FREE, NULL);
  341. set_track(s, object, TRACK_ALLOC, NULL);
  342. }
  343. static void print_track(const char *s, struct track *t)
  344. {
  345. if (!t->addr)
  346. return;
  347. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  348. s, t->addr, jiffies - t->when, t->cpu, t->pid);
  349. }
  350. static void print_tracking(struct kmem_cache *s, void *object)
  351. {
  352. if (!(s->flags & SLAB_STORE_USER))
  353. return;
  354. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  355. print_track("Freed", get_track(s, object, TRACK_FREE));
  356. }
  357. static void print_page_info(struct page *page)
  358. {
  359. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  360. page, page->objects, page->inuse, page->freelist, page->flags);
  361. }
  362. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  363. {
  364. va_list args;
  365. char buf[100];
  366. va_start(args, fmt);
  367. vsnprintf(buf, sizeof(buf), fmt, args);
  368. va_end(args);
  369. printk(KERN_ERR "========================================"
  370. "=====================================\n");
  371. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  372. printk(KERN_ERR "----------------------------------------"
  373. "-------------------------------------\n\n");
  374. }
  375. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  376. {
  377. va_list args;
  378. char buf[100];
  379. va_start(args, fmt);
  380. vsnprintf(buf, sizeof(buf), fmt, args);
  381. va_end(args);
  382. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  383. }
  384. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  385. {
  386. unsigned int off; /* Offset of last byte */
  387. u8 *addr = page_address(page);
  388. print_tracking(s, p);
  389. print_page_info(page);
  390. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  391. p, p - addr, get_freepointer(s, p));
  392. if (p > addr + 16)
  393. print_section("Bytes b4", p - 16, 16);
  394. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  395. if (s->flags & SLAB_RED_ZONE)
  396. print_section("Redzone", p + s->objsize,
  397. s->inuse - s->objsize);
  398. if (s->offset)
  399. off = s->offset + sizeof(void *);
  400. else
  401. off = s->inuse;
  402. if (s->flags & SLAB_STORE_USER)
  403. off += 2 * sizeof(struct track);
  404. if (off != s->size)
  405. /* Beginning of the filler is the free pointer */
  406. print_section("Padding", p + off, s->size - off);
  407. dump_stack();
  408. }
  409. static void object_err(struct kmem_cache *s, struct page *page,
  410. u8 *object, char *reason)
  411. {
  412. slab_bug(s, "%s", reason);
  413. print_trailer(s, page, object);
  414. }
  415. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  416. {
  417. va_list args;
  418. char buf[100];
  419. va_start(args, fmt);
  420. vsnprintf(buf, sizeof(buf), fmt, args);
  421. va_end(args);
  422. slab_bug(s, "%s", buf);
  423. print_page_info(page);
  424. dump_stack();
  425. }
  426. static void init_object(struct kmem_cache *s, void *object, int active)
  427. {
  428. u8 *p = object;
  429. if (s->flags & __OBJECT_POISON) {
  430. memset(p, POISON_FREE, s->objsize - 1);
  431. p[s->objsize - 1] = POISON_END;
  432. }
  433. if (s->flags & SLAB_RED_ZONE)
  434. memset(p + s->objsize,
  435. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  436. s->inuse - s->objsize);
  437. }
  438. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  439. {
  440. while (bytes) {
  441. if (*start != (u8)value)
  442. return start;
  443. start++;
  444. bytes--;
  445. }
  446. return NULL;
  447. }
  448. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  449. void *from, void *to)
  450. {
  451. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  452. memset(from, data, to - from);
  453. }
  454. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  455. u8 *object, char *what,
  456. u8 *start, unsigned int value, unsigned int bytes)
  457. {
  458. u8 *fault;
  459. u8 *end;
  460. fault = check_bytes(start, value, bytes);
  461. if (!fault)
  462. return 1;
  463. end = start + bytes;
  464. while (end > fault && end[-1] == value)
  465. end--;
  466. slab_bug(s, "%s overwritten", what);
  467. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  468. fault, end - 1, fault[0], value);
  469. print_trailer(s, page, object);
  470. restore_bytes(s, what, value, fault, end);
  471. return 0;
  472. }
  473. /*
  474. * Object layout:
  475. *
  476. * object address
  477. * Bytes of the object to be managed.
  478. * If the freepointer may overlay the object then the free
  479. * pointer is the first word of the object.
  480. *
  481. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  482. * 0xa5 (POISON_END)
  483. *
  484. * object + s->objsize
  485. * Padding to reach word boundary. This is also used for Redzoning.
  486. * Padding is extended by another word if Redzoning is enabled and
  487. * objsize == inuse.
  488. *
  489. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  490. * 0xcc (RED_ACTIVE) for objects in use.
  491. *
  492. * object + s->inuse
  493. * Meta data starts here.
  494. *
  495. * A. Free pointer (if we cannot overwrite object on free)
  496. * B. Tracking data for SLAB_STORE_USER
  497. * C. Padding to reach required alignment boundary or at mininum
  498. * one word if debugging is on to be able to detect writes
  499. * before the word boundary.
  500. *
  501. * Padding is done using 0x5a (POISON_INUSE)
  502. *
  503. * object + s->size
  504. * Nothing is used beyond s->size.
  505. *
  506. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  507. * ignored. And therefore no slab options that rely on these boundaries
  508. * may be used with merged slabcaches.
  509. */
  510. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  511. {
  512. unsigned long off = s->inuse; /* The end of info */
  513. if (s->offset)
  514. /* Freepointer is placed after the object. */
  515. off += sizeof(void *);
  516. if (s->flags & SLAB_STORE_USER)
  517. /* We also have user information there */
  518. off += 2 * sizeof(struct track);
  519. if (s->size == off)
  520. return 1;
  521. return check_bytes_and_report(s, page, p, "Object padding",
  522. p + off, POISON_INUSE, s->size - off);
  523. }
  524. /* Check the pad bytes at the end of a slab page */
  525. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  526. {
  527. u8 *start;
  528. u8 *fault;
  529. u8 *end;
  530. int length;
  531. int remainder;
  532. if (!(s->flags & SLAB_POISON))
  533. return 1;
  534. start = page_address(page);
  535. length = (PAGE_SIZE << compound_order(page));
  536. end = start + length;
  537. remainder = length % s->size;
  538. if (!remainder)
  539. return 1;
  540. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  541. if (!fault)
  542. return 1;
  543. while (end > fault && end[-1] == POISON_INUSE)
  544. end--;
  545. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  546. print_section("Padding", end - remainder, remainder);
  547. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  548. return 0;
  549. }
  550. static int check_object(struct kmem_cache *s, struct page *page,
  551. void *object, int active)
  552. {
  553. u8 *p = object;
  554. u8 *endobject = object + s->objsize;
  555. if (s->flags & SLAB_RED_ZONE) {
  556. unsigned int red =
  557. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  558. if (!check_bytes_and_report(s, page, object, "Redzone",
  559. endobject, red, s->inuse - s->objsize))
  560. return 0;
  561. } else {
  562. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  563. check_bytes_and_report(s, page, p, "Alignment padding",
  564. endobject, POISON_INUSE, s->inuse - s->objsize);
  565. }
  566. }
  567. if (s->flags & SLAB_POISON) {
  568. if (!active && (s->flags & __OBJECT_POISON) &&
  569. (!check_bytes_and_report(s, page, p, "Poison", p,
  570. POISON_FREE, s->objsize - 1) ||
  571. !check_bytes_and_report(s, page, p, "Poison",
  572. p + s->objsize - 1, POISON_END, 1)))
  573. return 0;
  574. /*
  575. * check_pad_bytes cleans up on its own.
  576. */
  577. check_pad_bytes(s, page, p);
  578. }
  579. if (!s->offset && active)
  580. /*
  581. * Object and freepointer overlap. Cannot check
  582. * freepointer while object is allocated.
  583. */
  584. return 1;
  585. /* Check free pointer validity */
  586. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  587. object_err(s, page, p, "Freepointer corrupt");
  588. /*
  589. * No choice but to zap it and thus loose the remainder
  590. * of the free objects in this slab. May cause
  591. * another error because the object count is now wrong.
  592. */
  593. set_freepointer(s, p, NULL);
  594. return 0;
  595. }
  596. return 1;
  597. }
  598. static int check_slab(struct kmem_cache *s, struct page *page)
  599. {
  600. int maxobj;
  601. VM_BUG_ON(!irqs_disabled());
  602. if (!PageSlab(page)) {
  603. slab_err(s, page, "Not a valid slab page");
  604. return 0;
  605. }
  606. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  607. if (page->objects > maxobj) {
  608. slab_err(s, page, "objects %u > max %u",
  609. s->name, page->objects, maxobj);
  610. return 0;
  611. }
  612. if (page->inuse > page->objects) {
  613. slab_err(s, page, "inuse %u > max %u",
  614. s->name, page->inuse, page->objects);
  615. return 0;
  616. }
  617. /* Slab_pad_check fixes things up after itself */
  618. slab_pad_check(s, page);
  619. return 1;
  620. }
  621. /*
  622. * Determine if a certain object on a page is on the freelist. Must hold the
  623. * slab lock to guarantee that the chains are in a consistent state.
  624. */
  625. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  626. {
  627. int nr = 0;
  628. void *fp = page->freelist;
  629. void *object = NULL;
  630. unsigned long max_objects;
  631. while (fp && nr <= page->objects) {
  632. if (fp == search)
  633. return 1;
  634. if (!check_valid_pointer(s, page, fp)) {
  635. if (object) {
  636. object_err(s, page, object,
  637. "Freechain corrupt");
  638. set_freepointer(s, object, NULL);
  639. break;
  640. } else {
  641. slab_err(s, page, "Freepointer corrupt");
  642. page->freelist = NULL;
  643. page->inuse = page->objects;
  644. slab_fix(s, "Freelist cleared");
  645. return 0;
  646. }
  647. break;
  648. }
  649. object = fp;
  650. fp = get_freepointer(s, object);
  651. nr++;
  652. }
  653. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  654. if (max_objects > 65535)
  655. max_objects = 65535;
  656. if (page->objects != max_objects) {
  657. slab_err(s, page, "Wrong number of objects. Found %d but "
  658. "should be %d", page->objects, max_objects);
  659. page->objects = max_objects;
  660. slab_fix(s, "Number of objects adjusted.");
  661. }
  662. if (page->inuse != page->objects - nr) {
  663. slab_err(s, page, "Wrong object count. Counter is %d but "
  664. "counted were %d", page->inuse, page->objects - nr);
  665. page->inuse = page->objects - nr;
  666. slab_fix(s, "Object count adjusted.");
  667. }
  668. return search == NULL;
  669. }
  670. static void trace(struct kmem_cache *s, struct page *page, void *object,
  671. int alloc)
  672. {
  673. if (s->flags & SLAB_TRACE) {
  674. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  675. s->name,
  676. alloc ? "alloc" : "free",
  677. object, page->inuse,
  678. page->freelist);
  679. if (!alloc)
  680. print_section("Object", (void *)object, s->objsize);
  681. dump_stack();
  682. }
  683. }
  684. /*
  685. * Tracking of fully allocated slabs for debugging purposes.
  686. */
  687. static void add_full(struct kmem_cache_node *n, struct page *page)
  688. {
  689. spin_lock(&n->list_lock);
  690. list_add(&page->lru, &n->full);
  691. spin_unlock(&n->list_lock);
  692. }
  693. static void remove_full(struct kmem_cache *s, struct page *page)
  694. {
  695. struct kmem_cache_node *n;
  696. if (!(s->flags & SLAB_STORE_USER))
  697. return;
  698. n = get_node(s, page_to_nid(page));
  699. spin_lock(&n->list_lock);
  700. list_del(&page->lru);
  701. spin_unlock(&n->list_lock);
  702. }
  703. /* Tracking of the number of slabs for debugging purposes */
  704. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  705. {
  706. struct kmem_cache_node *n = get_node(s, node);
  707. return atomic_long_read(&n->nr_slabs);
  708. }
  709. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  710. {
  711. struct kmem_cache_node *n = get_node(s, node);
  712. /*
  713. * May be called early in order to allocate a slab for the
  714. * kmem_cache_node structure. Solve the chicken-egg
  715. * dilemma by deferring the increment of the count during
  716. * bootstrap (see early_kmem_cache_node_alloc).
  717. */
  718. if (!NUMA_BUILD || n) {
  719. atomic_long_inc(&n->nr_slabs);
  720. atomic_long_add(objects, &n->total_objects);
  721. }
  722. }
  723. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  724. {
  725. struct kmem_cache_node *n = get_node(s, node);
  726. atomic_long_dec(&n->nr_slabs);
  727. atomic_long_sub(objects, &n->total_objects);
  728. }
  729. /* Object debug checks for alloc/free paths */
  730. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  731. void *object)
  732. {
  733. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  734. return;
  735. init_object(s, object, 0);
  736. init_tracking(s, object);
  737. }
  738. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  739. void *object, void *addr)
  740. {
  741. if (!check_slab(s, page))
  742. goto bad;
  743. if (!on_freelist(s, page, object)) {
  744. object_err(s, page, object, "Object already allocated");
  745. goto bad;
  746. }
  747. if (!check_valid_pointer(s, page, object)) {
  748. object_err(s, page, object, "Freelist Pointer check fails");
  749. goto bad;
  750. }
  751. if (!check_object(s, page, object, 0))
  752. goto bad;
  753. /* Success perform special debug activities for allocs */
  754. if (s->flags & SLAB_STORE_USER)
  755. set_track(s, object, TRACK_ALLOC, addr);
  756. trace(s, page, object, 1);
  757. init_object(s, object, 1);
  758. return 1;
  759. bad:
  760. if (PageSlab(page)) {
  761. /*
  762. * If this is a slab page then lets do the best we can
  763. * to avoid issues in the future. Marking all objects
  764. * as used avoids touching the remaining objects.
  765. */
  766. slab_fix(s, "Marking all objects used");
  767. page->inuse = page->objects;
  768. page->freelist = NULL;
  769. }
  770. return 0;
  771. }
  772. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  773. void *object, void *addr)
  774. {
  775. if (!check_slab(s, page))
  776. goto fail;
  777. if (!check_valid_pointer(s, page, object)) {
  778. slab_err(s, page, "Invalid object pointer 0x%p", object);
  779. goto fail;
  780. }
  781. if (on_freelist(s, page, object)) {
  782. object_err(s, page, object, "Object already free");
  783. goto fail;
  784. }
  785. if (!check_object(s, page, object, 1))
  786. return 0;
  787. if (unlikely(s != page->slab)) {
  788. if (!PageSlab(page)) {
  789. slab_err(s, page, "Attempt to free object(0x%p) "
  790. "outside of slab", object);
  791. } else if (!page->slab) {
  792. printk(KERN_ERR
  793. "SLUB <none>: no slab for object 0x%p.\n",
  794. object);
  795. dump_stack();
  796. } else
  797. object_err(s, page, object,
  798. "page slab pointer corrupt.");
  799. goto fail;
  800. }
  801. /* Special debug activities for freeing objects */
  802. if (!PageSlubFrozen(page) && !page->freelist)
  803. remove_full(s, page);
  804. if (s->flags & SLAB_STORE_USER)
  805. set_track(s, object, TRACK_FREE, addr);
  806. trace(s, page, object, 0);
  807. init_object(s, object, 0);
  808. return 1;
  809. fail:
  810. slab_fix(s, "Object at 0x%p not freed", object);
  811. return 0;
  812. }
  813. static int __init setup_slub_debug(char *str)
  814. {
  815. slub_debug = DEBUG_DEFAULT_FLAGS;
  816. if (*str++ != '=' || !*str)
  817. /*
  818. * No options specified. Switch on full debugging.
  819. */
  820. goto out;
  821. if (*str == ',')
  822. /*
  823. * No options but restriction on slabs. This means full
  824. * debugging for slabs matching a pattern.
  825. */
  826. goto check_slabs;
  827. slub_debug = 0;
  828. if (*str == '-')
  829. /*
  830. * Switch off all debugging measures.
  831. */
  832. goto out;
  833. /*
  834. * Determine which debug features should be switched on
  835. */
  836. for (; *str && *str != ','; str++) {
  837. switch (tolower(*str)) {
  838. case 'f':
  839. slub_debug |= SLAB_DEBUG_FREE;
  840. break;
  841. case 'z':
  842. slub_debug |= SLAB_RED_ZONE;
  843. break;
  844. case 'p':
  845. slub_debug |= SLAB_POISON;
  846. break;
  847. case 'u':
  848. slub_debug |= SLAB_STORE_USER;
  849. break;
  850. case 't':
  851. slub_debug |= SLAB_TRACE;
  852. break;
  853. default:
  854. printk(KERN_ERR "slub_debug option '%c' "
  855. "unknown. skipped\n", *str);
  856. }
  857. }
  858. check_slabs:
  859. if (*str == ',')
  860. slub_debug_slabs = str + 1;
  861. out:
  862. return 1;
  863. }
  864. __setup("slub_debug", setup_slub_debug);
  865. static unsigned long kmem_cache_flags(unsigned long objsize,
  866. unsigned long flags, const char *name,
  867. void (*ctor)(struct kmem_cache *, void *))
  868. {
  869. /*
  870. * Enable debugging if selected on the kernel commandline.
  871. */
  872. if (slub_debug && (!slub_debug_slabs ||
  873. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  874. flags |= slub_debug;
  875. return flags;
  876. }
  877. #else
  878. static inline void setup_object_debug(struct kmem_cache *s,
  879. struct page *page, void *object) {}
  880. static inline int alloc_debug_processing(struct kmem_cache *s,
  881. struct page *page, void *object, void *addr) { return 0; }
  882. static inline int free_debug_processing(struct kmem_cache *s,
  883. struct page *page, void *object, void *addr) { return 0; }
  884. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  885. { return 1; }
  886. static inline int check_object(struct kmem_cache *s, struct page *page,
  887. void *object, int active) { return 1; }
  888. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  889. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  890. unsigned long flags, const char *name,
  891. void (*ctor)(struct kmem_cache *, void *))
  892. {
  893. return flags;
  894. }
  895. #define slub_debug 0
  896. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  897. { return 0; }
  898. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  899. int objects) {}
  900. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  901. int objects) {}
  902. #endif
  903. /*
  904. * Slab allocation and freeing
  905. */
  906. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  907. struct kmem_cache_order_objects oo)
  908. {
  909. int order = oo_order(oo);
  910. if (node == -1)
  911. return alloc_pages(flags, order);
  912. else
  913. return alloc_pages_node(node, flags, order);
  914. }
  915. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  916. {
  917. struct page *page;
  918. struct kmem_cache_order_objects oo = s->oo;
  919. flags |= s->allocflags;
  920. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  921. oo);
  922. if (unlikely(!page)) {
  923. oo = s->min;
  924. /*
  925. * Allocation may have failed due to fragmentation.
  926. * Try a lower order alloc if possible
  927. */
  928. page = alloc_slab_page(flags, node, oo);
  929. if (!page)
  930. return NULL;
  931. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  932. }
  933. page->objects = oo_objects(oo);
  934. mod_zone_page_state(page_zone(page),
  935. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  936. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  937. 1 << oo_order(oo));
  938. return page;
  939. }
  940. static void setup_object(struct kmem_cache *s, struct page *page,
  941. void *object)
  942. {
  943. setup_object_debug(s, page, object);
  944. if (unlikely(s->ctor))
  945. s->ctor(s, object);
  946. }
  947. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  948. {
  949. struct page *page;
  950. void *start;
  951. void *last;
  952. void *p;
  953. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  954. page = allocate_slab(s,
  955. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  956. if (!page)
  957. goto out;
  958. inc_slabs_node(s, page_to_nid(page), page->objects);
  959. page->slab = s;
  960. page->flags |= 1 << PG_slab;
  961. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  962. SLAB_STORE_USER | SLAB_TRACE))
  963. __SetPageSlubDebug(page);
  964. start = page_address(page);
  965. if (unlikely(s->flags & SLAB_POISON))
  966. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  967. last = start;
  968. for_each_object(p, s, start, page->objects) {
  969. setup_object(s, page, last);
  970. set_freepointer(s, last, p);
  971. last = p;
  972. }
  973. setup_object(s, page, last);
  974. set_freepointer(s, last, NULL);
  975. page->freelist = start;
  976. page->inuse = 0;
  977. out:
  978. return page;
  979. }
  980. static void __free_slab(struct kmem_cache *s, struct page *page)
  981. {
  982. int order = compound_order(page);
  983. int pages = 1 << order;
  984. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  985. void *p;
  986. slab_pad_check(s, page);
  987. for_each_object(p, s, page_address(page),
  988. page->objects)
  989. check_object(s, page, p, 0);
  990. __ClearPageSlubDebug(page);
  991. }
  992. mod_zone_page_state(page_zone(page),
  993. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  994. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  995. -pages);
  996. __ClearPageSlab(page);
  997. reset_page_mapcount(page);
  998. __free_pages(page, order);
  999. }
  1000. static void rcu_free_slab(struct rcu_head *h)
  1001. {
  1002. struct page *page;
  1003. page = container_of((struct list_head *)h, struct page, lru);
  1004. __free_slab(page->slab, page);
  1005. }
  1006. static void free_slab(struct kmem_cache *s, struct page *page)
  1007. {
  1008. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1009. /*
  1010. * RCU free overloads the RCU head over the LRU
  1011. */
  1012. struct rcu_head *head = (void *)&page->lru;
  1013. call_rcu(head, rcu_free_slab);
  1014. } else
  1015. __free_slab(s, page);
  1016. }
  1017. static void discard_slab(struct kmem_cache *s, struct page *page)
  1018. {
  1019. dec_slabs_node(s, page_to_nid(page), page->objects);
  1020. free_slab(s, page);
  1021. }
  1022. /*
  1023. * Per slab locking using the pagelock
  1024. */
  1025. static __always_inline void slab_lock(struct page *page)
  1026. {
  1027. bit_spin_lock(PG_locked, &page->flags);
  1028. }
  1029. static __always_inline void slab_unlock(struct page *page)
  1030. {
  1031. __bit_spin_unlock(PG_locked, &page->flags);
  1032. }
  1033. static __always_inline int slab_trylock(struct page *page)
  1034. {
  1035. int rc = 1;
  1036. rc = bit_spin_trylock(PG_locked, &page->flags);
  1037. return rc;
  1038. }
  1039. /*
  1040. * Management of partially allocated slabs
  1041. */
  1042. static void add_partial(struct kmem_cache_node *n,
  1043. struct page *page, int tail)
  1044. {
  1045. spin_lock(&n->list_lock);
  1046. n->nr_partial++;
  1047. if (tail)
  1048. list_add_tail(&page->lru, &n->partial);
  1049. else
  1050. list_add(&page->lru, &n->partial);
  1051. spin_unlock(&n->list_lock);
  1052. }
  1053. static void remove_partial(struct kmem_cache *s, struct page *page)
  1054. {
  1055. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1056. spin_lock(&n->list_lock);
  1057. list_del(&page->lru);
  1058. n->nr_partial--;
  1059. spin_unlock(&n->list_lock);
  1060. }
  1061. /*
  1062. * Lock slab and remove from the partial list.
  1063. *
  1064. * Must hold list_lock.
  1065. */
  1066. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1067. struct page *page)
  1068. {
  1069. if (slab_trylock(page)) {
  1070. list_del(&page->lru);
  1071. n->nr_partial--;
  1072. __SetPageSlubFrozen(page);
  1073. return 1;
  1074. }
  1075. return 0;
  1076. }
  1077. /*
  1078. * Try to allocate a partial slab from a specific node.
  1079. */
  1080. static struct page *get_partial_node(struct kmem_cache_node *n)
  1081. {
  1082. struct page *page;
  1083. /*
  1084. * Racy check. If we mistakenly see no partial slabs then we
  1085. * just allocate an empty slab. If we mistakenly try to get a
  1086. * partial slab and there is none available then get_partials()
  1087. * will return NULL.
  1088. */
  1089. if (!n || !n->nr_partial)
  1090. return NULL;
  1091. spin_lock(&n->list_lock);
  1092. list_for_each_entry(page, &n->partial, lru)
  1093. if (lock_and_freeze_slab(n, page))
  1094. goto out;
  1095. page = NULL;
  1096. out:
  1097. spin_unlock(&n->list_lock);
  1098. return page;
  1099. }
  1100. /*
  1101. * Get a page from somewhere. Search in increasing NUMA distances.
  1102. */
  1103. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1104. {
  1105. #ifdef CONFIG_NUMA
  1106. struct zonelist *zonelist;
  1107. struct zoneref *z;
  1108. struct zone *zone;
  1109. enum zone_type high_zoneidx = gfp_zone(flags);
  1110. struct page *page;
  1111. /*
  1112. * The defrag ratio allows a configuration of the tradeoffs between
  1113. * inter node defragmentation and node local allocations. A lower
  1114. * defrag_ratio increases the tendency to do local allocations
  1115. * instead of attempting to obtain partial slabs from other nodes.
  1116. *
  1117. * If the defrag_ratio is set to 0 then kmalloc() always
  1118. * returns node local objects. If the ratio is higher then kmalloc()
  1119. * may return off node objects because partial slabs are obtained
  1120. * from other nodes and filled up.
  1121. *
  1122. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1123. * defrag_ratio = 1000) then every (well almost) allocation will
  1124. * first attempt to defrag slab caches on other nodes. This means
  1125. * scanning over all nodes to look for partial slabs which may be
  1126. * expensive if we do it every time we are trying to find a slab
  1127. * with available objects.
  1128. */
  1129. if (!s->remote_node_defrag_ratio ||
  1130. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1131. return NULL;
  1132. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1133. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1134. struct kmem_cache_node *n;
  1135. n = get_node(s, zone_to_nid(zone));
  1136. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1137. n->nr_partial > MIN_PARTIAL) {
  1138. page = get_partial_node(n);
  1139. if (page)
  1140. return page;
  1141. }
  1142. }
  1143. #endif
  1144. return NULL;
  1145. }
  1146. /*
  1147. * Get a partial page, lock it and return it.
  1148. */
  1149. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1150. {
  1151. struct page *page;
  1152. int searchnode = (node == -1) ? numa_node_id() : node;
  1153. page = get_partial_node(get_node(s, searchnode));
  1154. if (page || (flags & __GFP_THISNODE))
  1155. return page;
  1156. return get_any_partial(s, flags);
  1157. }
  1158. /*
  1159. * Move a page back to the lists.
  1160. *
  1161. * Must be called with the slab lock held.
  1162. *
  1163. * On exit the slab lock will have been dropped.
  1164. */
  1165. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1166. {
  1167. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1168. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1169. __ClearPageSlubFrozen(page);
  1170. if (page->inuse) {
  1171. if (page->freelist) {
  1172. add_partial(n, page, tail);
  1173. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1174. } else {
  1175. stat(c, DEACTIVATE_FULL);
  1176. if (SLABDEBUG && PageSlubDebug(page) &&
  1177. (s->flags & SLAB_STORE_USER))
  1178. add_full(n, page);
  1179. }
  1180. slab_unlock(page);
  1181. } else {
  1182. stat(c, DEACTIVATE_EMPTY);
  1183. if (n->nr_partial < MIN_PARTIAL) {
  1184. /*
  1185. * Adding an empty slab to the partial slabs in order
  1186. * to avoid page allocator overhead. This slab needs
  1187. * to come after the other slabs with objects in
  1188. * so that the others get filled first. That way the
  1189. * size of the partial list stays small.
  1190. *
  1191. * kmem_cache_shrink can reclaim any empty slabs from
  1192. * the partial list.
  1193. */
  1194. add_partial(n, page, 1);
  1195. slab_unlock(page);
  1196. } else {
  1197. slab_unlock(page);
  1198. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1199. discard_slab(s, page);
  1200. }
  1201. }
  1202. }
  1203. /*
  1204. * Remove the cpu slab
  1205. */
  1206. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1207. {
  1208. struct page *page = c->page;
  1209. int tail = 1;
  1210. if (page->freelist)
  1211. stat(c, DEACTIVATE_REMOTE_FREES);
  1212. /*
  1213. * Merge cpu freelist into slab freelist. Typically we get here
  1214. * because both freelists are empty. So this is unlikely
  1215. * to occur.
  1216. */
  1217. while (unlikely(c->freelist)) {
  1218. void **object;
  1219. tail = 0; /* Hot objects. Put the slab first */
  1220. /* Retrieve object from cpu_freelist */
  1221. object = c->freelist;
  1222. c->freelist = c->freelist[c->offset];
  1223. /* And put onto the regular freelist */
  1224. object[c->offset] = page->freelist;
  1225. page->freelist = object;
  1226. page->inuse--;
  1227. }
  1228. c->page = NULL;
  1229. unfreeze_slab(s, page, tail);
  1230. }
  1231. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1232. {
  1233. stat(c, CPUSLAB_FLUSH);
  1234. slab_lock(c->page);
  1235. deactivate_slab(s, c);
  1236. }
  1237. /*
  1238. * Flush cpu slab.
  1239. *
  1240. * Called from IPI handler with interrupts disabled.
  1241. */
  1242. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1243. {
  1244. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1245. if (likely(c && c->page))
  1246. flush_slab(s, c);
  1247. }
  1248. static void flush_cpu_slab(void *d)
  1249. {
  1250. struct kmem_cache *s = d;
  1251. __flush_cpu_slab(s, smp_processor_id());
  1252. }
  1253. static void flush_all(struct kmem_cache *s)
  1254. {
  1255. on_each_cpu(flush_cpu_slab, s, 1);
  1256. }
  1257. /*
  1258. * Check if the objects in a per cpu structure fit numa
  1259. * locality expectations.
  1260. */
  1261. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1262. {
  1263. #ifdef CONFIG_NUMA
  1264. if (node != -1 && c->node != node)
  1265. return 0;
  1266. #endif
  1267. return 1;
  1268. }
  1269. /*
  1270. * Slow path. The lockless freelist is empty or we need to perform
  1271. * debugging duties.
  1272. *
  1273. * Interrupts are disabled.
  1274. *
  1275. * Processing is still very fast if new objects have been freed to the
  1276. * regular freelist. In that case we simply take over the regular freelist
  1277. * as the lockless freelist and zap the regular freelist.
  1278. *
  1279. * If that is not working then we fall back to the partial lists. We take the
  1280. * first element of the freelist as the object to allocate now and move the
  1281. * rest of the freelist to the lockless freelist.
  1282. *
  1283. * And if we were unable to get a new slab from the partial slab lists then
  1284. * we need to allocate a new slab. This is the slowest path since it involves
  1285. * a call to the page allocator and the setup of a new slab.
  1286. */
  1287. static void *__slab_alloc(struct kmem_cache *s,
  1288. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1289. {
  1290. void **object;
  1291. struct page *new;
  1292. /* We handle __GFP_ZERO in the caller */
  1293. gfpflags &= ~__GFP_ZERO;
  1294. if (!c->page)
  1295. goto new_slab;
  1296. slab_lock(c->page);
  1297. if (unlikely(!node_match(c, node)))
  1298. goto another_slab;
  1299. stat(c, ALLOC_REFILL);
  1300. load_freelist:
  1301. object = c->page->freelist;
  1302. if (unlikely(!object))
  1303. goto another_slab;
  1304. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1305. goto debug;
  1306. c->freelist = object[c->offset];
  1307. c->page->inuse = c->page->objects;
  1308. c->page->freelist = NULL;
  1309. c->node = page_to_nid(c->page);
  1310. unlock_out:
  1311. slab_unlock(c->page);
  1312. stat(c, ALLOC_SLOWPATH);
  1313. return object;
  1314. another_slab:
  1315. deactivate_slab(s, c);
  1316. new_slab:
  1317. new = get_partial(s, gfpflags, node);
  1318. if (new) {
  1319. c->page = new;
  1320. stat(c, ALLOC_FROM_PARTIAL);
  1321. goto load_freelist;
  1322. }
  1323. if (gfpflags & __GFP_WAIT)
  1324. local_irq_enable();
  1325. new = new_slab(s, gfpflags, node);
  1326. if (gfpflags & __GFP_WAIT)
  1327. local_irq_disable();
  1328. if (new) {
  1329. c = get_cpu_slab(s, smp_processor_id());
  1330. stat(c, ALLOC_SLAB);
  1331. if (c->page)
  1332. flush_slab(s, c);
  1333. slab_lock(new);
  1334. __SetPageSlubFrozen(new);
  1335. c->page = new;
  1336. goto load_freelist;
  1337. }
  1338. return NULL;
  1339. debug:
  1340. if (!alloc_debug_processing(s, c->page, object, addr))
  1341. goto another_slab;
  1342. c->page->inuse++;
  1343. c->page->freelist = object[c->offset];
  1344. c->node = -1;
  1345. goto unlock_out;
  1346. }
  1347. /*
  1348. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1349. * have the fastpath folded into their functions. So no function call
  1350. * overhead for requests that can be satisfied on the fastpath.
  1351. *
  1352. * The fastpath works by first checking if the lockless freelist can be used.
  1353. * If not then __slab_alloc is called for slow processing.
  1354. *
  1355. * Otherwise we can simply pick the next object from the lockless free list.
  1356. */
  1357. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1358. gfp_t gfpflags, int node, void *addr)
  1359. {
  1360. void **object;
  1361. struct kmem_cache_cpu *c;
  1362. unsigned long flags;
  1363. unsigned int objsize;
  1364. local_irq_save(flags);
  1365. c = get_cpu_slab(s, smp_processor_id());
  1366. objsize = c->objsize;
  1367. if (unlikely(!c->freelist || !node_match(c, node)))
  1368. object = __slab_alloc(s, gfpflags, node, addr, c);
  1369. else {
  1370. object = c->freelist;
  1371. c->freelist = object[c->offset];
  1372. stat(c, ALLOC_FASTPATH);
  1373. }
  1374. local_irq_restore(flags);
  1375. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1376. memset(object, 0, objsize);
  1377. return object;
  1378. }
  1379. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1380. {
  1381. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1382. }
  1383. EXPORT_SYMBOL(kmem_cache_alloc);
  1384. #ifdef CONFIG_NUMA
  1385. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1386. {
  1387. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1388. }
  1389. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1390. #endif
  1391. /*
  1392. * Slow patch handling. This may still be called frequently since objects
  1393. * have a longer lifetime than the cpu slabs in most processing loads.
  1394. *
  1395. * So we still attempt to reduce cache line usage. Just take the slab
  1396. * lock and free the item. If there is no additional partial page
  1397. * handling required then we can return immediately.
  1398. */
  1399. static void __slab_free(struct kmem_cache *s, struct page *page,
  1400. void *x, void *addr, unsigned int offset)
  1401. {
  1402. void *prior;
  1403. void **object = (void *)x;
  1404. struct kmem_cache_cpu *c;
  1405. c = get_cpu_slab(s, raw_smp_processor_id());
  1406. stat(c, FREE_SLOWPATH);
  1407. slab_lock(page);
  1408. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1409. goto debug;
  1410. checks_ok:
  1411. prior = object[offset] = page->freelist;
  1412. page->freelist = object;
  1413. page->inuse--;
  1414. if (unlikely(PageSlubFrozen(page))) {
  1415. stat(c, FREE_FROZEN);
  1416. goto out_unlock;
  1417. }
  1418. if (unlikely(!page->inuse))
  1419. goto slab_empty;
  1420. /*
  1421. * Objects left in the slab. If it was not on the partial list before
  1422. * then add it.
  1423. */
  1424. if (unlikely(!prior)) {
  1425. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1426. stat(c, FREE_ADD_PARTIAL);
  1427. }
  1428. out_unlock:
  1429. slab_unlock(page);
  1430. return;
  1431. slab_empty:
  1432. if (prior) {
  1433. /*
  1434. * Slab still on the partial list.
  1435. */
  1436. remove_partial(s, page);
  1437. stat(c, FREE_REMOVE_PARTIAL);
  1438. }
  1439. slab_unlock(page);
  1440. stat(c, FREE_SLAB);
  1441. discard_slab(s, page);
  1442. return;
  1443. debug:
  1444. if (!free_debug_processing(s, page, x, addr))
  1445. goto out_unlock;
  1446. goto checks_ok;
  1447. }
  1448. /*
  1449. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1450. * can perform fastpath freeing without additional function calls.
  1451. *
  1452. * The fastpath is only possible if we are freeing to the current cpu slab
  1453. * of this processor. This typically the case if we have just allocated
  1454. * the item before.
  1455. *
  1456. * If fastpath is not possible then fall back to __slab_free where we deal
  1457. * with all sorts of special processing.
  1458. */
  1459. static __always_inline void slab_free(struct kmem_cache *s,
  1460. struct page *page, void *x, void *addr)
  1461. {
  1462. void **object = (void *)x;
  1463. struct kmem_cache_cpu *c;
  1464. unsigned long flags;
  1465. local_irq_save(flags);
  1466. c = get_cpu_slab(s, smp_processor_id());
  1467. debug_check_no_locks_freed(object, c->objsize);
  1468. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1469. debug_check_no_obj_freed(object, s->objsize);
  1470. if (likely(page == c->page && c->node >= 0)) {
  1471. object[c->offset] = c->freelist;
  1472. c->freelist = object;
  1473. stat(c, FREE_FASTPATH);
  1474. } else
  1475. __slab_free(s, page, x, addr, c->offset);
  1476. local_irq_restore(flags);
  1477. }
  1478. void kmem_cache_free(struct kmem_cache *s, void *x)
  1479. {
  1480. struct page *page;
  1481. page = virt_to_head_page(x);
  1482. slab_free(s, page, x, __builtin_return_address(0));
  1483. }
  1484. EXPORT_SYMBOL(kmem_cache_free);
  1485. /* Figure out on which slab object the object resides */
  1486. static struct page *get_object_page(const void *x)
  1487. {
  1488. struct page *page = virt_to_head_page(x);
  1489. if (!PageSlab(page))
  1490. return NULL;
  1491. return page;
  1492. }
  1493. /*
  1494. * Object placement in a slab is made very easy because we always start at
  1495. * offset 0. If we tune the size of the object to the alignment then we can
  1496. * get the required alignment by putting one properly sized object after
  1497. * another.
  1498. *
  1499. * Notice that the allocation order determines the sizes of the per cpu
  1500. * caches. Each processor has always one slab available for allocations.
  1501. * Increasing the allocation order reduces the number of times that slabs
  1502. * must be moved on and off the partial lists and is therefore a factor in
  1503. * locking overhead.
  1504. */
  1505. /*
  1506. * Mininum / Maximum order of slab pages. This influences locking overhead
  1507. * and slab fragmentation. A higher order reduces the number of partial slabs
  1508. * and increases the number of allocations possible without having to
  1509. * take the list_lock.
  1510. */
  1511. static int slub_min_order;
  1512. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1513. static int slub_min_objects;
  1514. /*
  1515. * Merge control. If this is set then no merging of slab caches will occur.
  1516. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1517. */
  1518. static int slub_nomerge;
  1519. /*
  1520. * Calculate the order of allocation given an slab object size.
  1521. *
  1522. * The order of allocation has significant impact on performance and other
  1523. * system components. Generally order 0 allocations should be preferred since
  1524. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1525. * be problematic to put into order 0 slabs because there may be too much
  1526. * unused space left. We go to a higher order if more than 1/16th of the slab
  1527. * would be wasted.
  1528. *
  1529. * In order to reach satisfactory performance we must ensure that a minimum
  1530. * number of objects is in one slab. Otherwise we may generate too much
  1531. * activity on the partial lists which requires taking the list_lock. This is
  1532. * less a concern for large slabs though which are rarely used.
  1533. *
  1534. * slub_max_order specifies the order where we begin to stop considering the
  1535. * number of objects in a slab as critical. If we reach slub_max_order then
  1536. * we try to keep the page order as low as possible. So we accept more waste
  1537. * of space in favor of a small page order.
  1538. *
  1539. * Higher order allocations also allow the placement of more objects in a
  1540. * slab and thereby reduce object handling overhead. If the user has
  1541. * requested a higher mininum order then we start with that one instead of
  1542. * the smallest order which will fit the object.
  1543. */
  1544. static inline int slab_order(int size, int min_objects,
  1545. int max_order, int fract_leftover)
  1546. {
  1547. int order;
  1548. int rem;
  1549. int min_order = slub_min_order;
  1550. if ((PAGE_SIZE << min_order) / size > 65535)
  1551. return get_order(size * 65535) - 1;
  1552. for (order = max(min_order,
  1553. fls(min_objects * size - 1) - PAGE_SHIFT);
  1554. order <= max_order; order++) {
  1555. unsigned long slab_size = PAGE_SIZE << order;
  1556. if (slab_size < min_objects * size)
  1557. continue;
  1558. rem = slab_size % size;
  1559. if (rem <= slab_size / fract_leftover)
  1560. break;
  1561. }
  1562. return order;
  1563. }
  1564. static inline int calculate_order(int size)
  1565. {
  1566. int order;
  1567. int min_objects;
  1568. int fraction;
  1569. /*
  1570. * Attempt to find best configuration for a slab. This
  1571. * works by first attempting to generate a layout with
  1572. * the best configuration and backing off gradually.
  1573. *
  1574. * First we reduce the acceptable waste in a slab. Then
  1575. * we reduce the minimum objects required in a slab.
  1576. */
  1577. min_objects = slub_min_objects;
  1578. if (!min_objects)
  1579. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1580. while (min_objects > 1) {
  1581. fraction = 16;
  1582. while (fraction >= 4) {
  1583. order = slab_order(size, min_objects,
  1584. slub_max_order, fraction);
  1585. if (order <= slub_max_order)
  1586. return order;
  1587. fraction /= 2;
  1588. }
  1589. min_objects /= 2;
  1590. }
  1591. /*
  1592. * We were unable to place multiple objects in a slab. Now
  1593. * lets see if we can place a single object there.
  1594. */
  1595. order = slab_order(size, 1, slub_max_order, 1);
  1596. if (order <= slub_max_order)
  1597. return order;
  1598. /*
  1599. * Doh this slab cannot be placed using slub_max_order.
  1600. */
  1601. order = slab_order(size, 1, MAX_ORDER, 1);
  1602. if (order <= MAX_ORDER)
  1603. return order;
  1604. return -ENOSYS;
  1605. }
  1606. /*
  1607. * Figure out what the alignment of the objects will be.
  1608. */
  1609. static unsigned long calculate_alignment(unsigned long flags,
  1610. unsigned long align, unsigned long size)
  1611. {
  1612. /*
  1613. * If the user wants hardware cache aligned objects then follow that
  1614. * suggestion if the object is sufficiently large.
  1615. *
  1616. * The hardware cache alignment cannot override the specified
  1617. * alignment though. If that is greater then use it.
  1618. */
  1619. if (flags & SLAB_HWCACHE_ALIGN) {
  1620. unsigned long ralign = cache_line_size();
  1621. while (size <= ralign / 2)
  1622. ralign /= 2;
  1623. align = max(align, ralign);
  1624. }
  1625. if (align < ARCH_SLAB_MINALIGN)
  1626. align = ARCH_SLAB_MINALIGN;
  1627. return ALIGN(align, sizeof(void *));
  1628. }
  1629. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1630. struct kmem_cache_cpu *c)
  1631. {
  1632. c->page = NULL;
  1633. c->freelist = NULL;
  1634. c->node = 0;
  1635. c->offset = s->offset / sizeof(void *);
  1636. c->objsize = s->objsize;
  1637. #ifdef CONFIG_SLUB_STATS
  1638. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1639. #endif
  1640. }
  1641. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1642. {
  1643. n->nr_partial = 0;
  1644. spin_lock_init(&n->list_lock);
  1645. INIT_LIST_HEAD(&n->partial);
  1646. #ifdef CONFIG_SLUB_DEBUG
  1647. atomic_long_set(&n->nr_slabs, 0);
  1648. INIT_LIST_HEAD(&n->full);
  1649. #endif
  1650. }
  1651. #ifdef CONFIG_SMP
  1652. /*
  1653. * Per cpu array for per cpu structures.
  1654. *
  1655. * The per cpu array places all kmem_cache_cpu structures from one processor
  1656. * close together meaning that it becomes possible that multiple per cpu
  1657. * structures are contained in one cacheline. This may be particularly
  1658. * beneficial for the kmalloc caches.
  1659. *
  1660. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1661. * likely able to get per cpu structures for all caches from the array defined
  1662. * here. We must be able to cover all kmalloc caches during bootstrap.
  1663. *
  1664. * If the per cpu array is exhausted then fall back to kmalloc
  1665. * of individual cachelines. No sharing is possible then.
  1666. */
  1667. #define NR_KMEM_CACHE_CPU 100
  1668. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1669. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1670. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1671. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1672. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1673. int cpu, gfp_t flags)
  1674. {
  1675. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1676. if (c)
  1677. per_cpu(kmem_cache_cpu_free, cpu) =
  1678. (void *)c->freelist;
  1679. else {
  1680. /* Table overflow: So allocate ourselves */
  1681. c = kmalloc_node(
  1682. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1683. flags, cpu_to_node(cpu));
  1684. if (!c)
  1685. return NULL;
  1686. }
  1687. init_kmem_cache_cpu(s, c);
  1688. return c;
  1689. }
  1690. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1691. {
  1692. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1693. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1694. kfree(c);
  1695. return;
  1696. }
  1697. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1698. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1699. }
  1700. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1701. {
  1702. int cpu;
  1703. for_each_online_cpu(cpu) {
  1704. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1705. if (c) {
  1706. s->cpu_slab[cpu] = NULL;
  1707. free_kmem_cache_cpu(c, cpu);
  1708. }
  1709. }
  1710. }
  1711. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1712. {
  1713. int cpu;
  1714. for_each_online_cpu(cpu) {
  1715. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1716. if (c)
  1717. continue;
  1718. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1719. if (!c) {
  1720. free_kmem_cache_cpus(s);
  1721. return 0;
  1722. }
  1723. s->cpu_slab[cpu] = c;
  1724. }
  1725. return 1;
  1726. }
  1727. /*
  1728. * Initialize the per cpu array.
  1729. */
  1730. static void init_alloc_cpu_cpu(int cpu)
  1731. {
  1732. int i;
  1733. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1734. return;
  1735. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1736. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1737. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1738. }
  1739. static void __init init_alloc_cpu(void)
  1740. {
  1741. int cpu;
  1742. for_each_online_cpu(cpu)
  1743. init_alloc_cpu_cpu(cpu);
  1744. }
  1745. #else
  1746. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1747. static inline void init_alloc_cpu(void) {}
  1748. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1749. {
  1750. init_kmem_cache_cpu(s, &s->cpu_slab);
  1751. return 1;
  1752. }
  1753. #endif
  1754. #ifdef CONFIG_NUMA
  1755. /*
  1756. * No kmalloc_node yet so do it by hand. We know that this is the first
  1757. * slab on the node for this slabcache. There are no concurrent accesses
  1758. * possible.
  1759. *
  1760. * Note that this function only works on the kmalloc_node_cache
  1761. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1762. * memory on a fresh node that has no slab structures yet.
  1763. */
  1764. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1765. int node)
  1766. {
  1767. struct page *page;
  1768. struct kmem_cache_node *n;
  1769. unsigned long flags;
  1770. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1771. page = new_slab(kmalloc_caches, gfpflags, node);
  1772. BUG_ON(!page);
  1773. if (page_to_nid(page) != node) {
  1774. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1775. "node %d\n", node);
  1776. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1777. "in order to be able to continue\n");
  1778. }
  1779. n = page->freelist;
  1780. BUG_ON(!n);
  1781. page->freelist = get_freepointer(kmalloc_caches, n);
  1782. page->inuse++;
  1783. kmalloc_caches->node[node] = n;
  1784. #ifdef CONFIG_SLUB_DEBUG
  1785. init_object(kmalloc_caches, n, 1);
  1786. init_tracking(kmalloc_caches, n);
  1787. #endif
  1788. init_kmem_cache_node(n);
  1789. inc_slabs_node(kmalloc_caches, node, page->objects);
  1790. /*
  1791. * lockdep requires consistent irq usage for each lock
  1792. * so even though there cannot be a race this early in
  1793. * the boot sequence, we still disable irqs.
  1794. */
  1795. local_irq_save(flags);
  1796. add_partial(n, page, 0);
  1797. local_irq_restore(flags);
  1798. return n;
  1799. }
  1800. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1801. {
  1802. int node;
  1803. for_each_node_state(node, N_NORMAL_MEMORY) {
  1804. struct kmem_cache_node *n = s->node[node];
  1805. if (n && n != &s->local_node)
  1806. kmem_cache_free(kmalloc_caches, n);
  1807. s->node[node] = NULL;
  1808. }
  1809. }
  1810. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1811. {
  1812. int node;
  1813. int local_node;
  1814. if (slab_state >= UP)
  1815. local_node = page_to_nid(virt_to_page(s));
  1816. else
  1817. local_node = 0;
  1818. for_each_node_state(node, N_NORMAL_MEMORY) {
  1819. struct kmem_cache_node *n;
  1820. if (local_node == node)
  1821. n = &s->local_node;
  1822. else {
  1823. if (slab_state == DOWN) {
  1824. n = early_kmem_cache_node_alloc(gfpflags,
  1825. node);
  1826. continue;
  1827. }
  1828. n = kmem_cache_alloc_node(kmalloc_caches,
  1829. gfpflags, node);
  1830. if (!n) {
  1831. free_kmem_cache_nodes(s);
  1832. return 0;
  1833. }
  1834. }
  1835. s->node[node] = n;
  1836. init_kmem_cache_node(n);
  1837. }
  1838. return 1;
  1839. }
  1840. #else
  1841. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1842. {
  1843. }
  1844. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1845. {
  1846. init_kmem_cache_node(&s->local_node);
  1847. return 1;
  1848. }
  1849. #endif
  1850. /*
  1851. * calculate_sizes() determines the order and the distribution of data within
  1852. * a slab object.
  1853. */
  1854. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1855. {
  1856. unsigned long flags = s->flags;
  1857. unsigned long size = s->objsize;
  1858. unsigned long align = s->align;
  1859. int order;
  1860. /*
  1861. * Round up object size to the next word boundary. We can only
  1862. * place the free pointer at word boundaries and this determines
  1863. * the possible location of the free pointer.
  1864. */
  1865. size = ALIGN(size, sizeof(void *));
  1866. #ifdef CONFIG_SLUB_DEBUG
  1867. /*
  1868. * Determine if we can poison the object itself. If the user of
  1869. * the slab may touch the object after free or before allocation
  1870. * then we should never poison the object itself.
  1871. */
  1872. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1873. !s->ctor)
  1874. s->flags |= __OBJECT_POISON;
  1875. else
  1876. s->flags &= ~__OBJECT_POISON;
  1877. /*
  1878. * If we are Redzoning then check if there is some space between the
  1879. * end of the object and the free pointer. If not then add an
  1880. * additional word to have some bytes to store Redzone information.
  1881. */
  1882. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1883. size += sizeof(void *);
  1884. #endif
  1885. /*
  1886. * With that we have determined the number of bytes in actual use
  1887. * by the object. This is the potential offset to the free pointer.
  1888. */
  1889. s->inuse = size;
  1890. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1891. s->ctor)) {
  1892. /*
  1893. * Relocate free pointer after the object if it is not
  1894. * permitted to overwrite the first word of the object on
  1895. * kmem_cache_free.
  1896. *
  1897. * This is the case if we do RCU, have a constructor or
  1898. * destructor or are poisoning the objects.
  1899. */
  1900. s->offset = size;
  1901. size += sizeof(void *);
  1902. }
  1903. #ifdef CONFIG_SLUB_DEBUG
  1904. if (flags & SLAB_STORE_USER)
  1905. /*
  1906. * Need to store information about allocs and frees after
  1907. * the object.
  1908. */
  1909. size += 2 * sizeof(struct track);
  1910. if (flags & SLAB_RED_ZONE)
  1911. /*
  1912. * Add some empty padding so that we can catch
  1913. * overwrites from earlier objects rather than let
  1914. * tracking information or the free pointer be
  1915. * corrupted if an user writes before the start
  1916. * of the object.
  1917. */
  1918. size += sizeof(void *);
  1919. #endif
  1920. /*
  1921. * Determine the alignment based on various parameters that the
  1922. * user specified and the dynamic determination of cache line size
  1923. * on bootup.
  1924. */
  1925. align = calculate_alignment(flags, align, s->objsize);
  1926. /*
  1927. * SLUB stores one object immediately after another beginning from
  1928. * offset 0. In order to align the objects we have to simply size
  1929. * each object to conform to the alignment.
  1930. */
  1931. size = ALIGN(size, align);
  1932. s->size = size;
  1933. if (forced_order >= 0)
  1934. order = forced_order;
  1935. else
  1936. order = calculate_order(size);
  1937. if (order < 0)
  1938. return 0;
  1939. s->allocflags = 0;
  1940. if (order)
  1941. s->allocflags |= __GFP_COMP;
  1942. if (s->flags & SLAB_CACHE_DMA)
  1943. s->allocflags |= SLUB_DMA;
  1944. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1945. s->allocflags |= __GFP_RECLAIMABLE;
  1946. /*
  1947. * Determine the number of objects per slab
  1948. */
  1949. s->oo = oo_make(order, size);
  1950. s->min = oo_make(get_order(size), size);
  1951. if (oo_objects(s->oo) > oo_objects(s->max))
  1952. s->max = s->oo;
  1953. return !!oo_objects(s->oo);
  1954. }
  1955. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1956. const char *name, size_t size,
  1957. size_t align, unsigned long flags,
  1958. void (*ctor)(struct kmem_cache *, void *))
  1959. {
  1960. memset(s, 0, kmem_size);
  1961. s->name = name;
  1962. s->ctor = ctor;
  1963. s->objsize = size;
  1964. s->align = align;
  1965. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1966. if (!calculate_sizes(s, -1))
  1967. goto error;
  1968. s->refcount = 1;
  1969. #ifdef CONFIG_NUMA
  1970. s->remote_node_defrag_ratio = 100;
  1971. #endif
  1972. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1973. goto error;
  1974. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1975. return 1;
  1976. free_kmem_cache_nodes(s);
  1977. error:
  1978. if (flags & SLAB_PANIC)
  1979. panic("Cannot create slab %s size=%lu realsize=%u "
  1980. "order=%u offset=%u flags=%lx\n",
  1981. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  1982. s->offset, flags);
  1983. return 0;
  1984. }
  1985. /*
  1986. * Check if a given pointer is valid
  1987. */
  1988. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1989. {
  1990. struct page *page;
  1991. page = get_object_page(object);
  1992. if (!page || s != page->slab)
  1993. /* No slab or wrong slab */
  1994. return 0;
  1995. if (!check_valid_pointer(s, page, object))
  1996. return 0;
  1997. /*
  1998. * We could also check if the object is on the slabs freelist.
  1999. * But this would be too expensive and it seems that the main
  2000. * purpose of kmem_ptr_valid() is to check if the object belongs
  2001. * to a certain slab.
  2002. */
  2003. return 1;
  2004. }
  2005. EXPORT_SYMBOL(kmem_ptr_validate);
  2006. /*
  2007. * Determine the size of a slab object
  2008. */
  2009. unsigned int kmem_cache_size(struct kmem_cache *s)
  2010. {
  2011. return s->objsize;
  2012. }
  2013. EXPORT_SYMBOL(kmem_cache_size);
  2014. const char *kmem_cache_name(struct kmem_cache *s)
  2015. {
  2016. return s->name;
  2017. }
  2018. EXPORT_SYMBOL(kmem_cache_name);
  2019. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2020. const char *text)
  2021. {
  2022. #ifdef CONFIG_SLUB_DEBUG
  2023. void *addr = page_address(page);
  2024. void *p;
  2025. DECLARE_BITMAP(map, page->objects);
  2026. bitmap_zero(map, page->objects);
  2027. slab_err(s, page, "%s", text);
  2028. slab_lock(page);
  2029. for_each_free_object(p, s, page->freelist)
  2030. set_bit(slab_index(p, s, addr), map);
  2031. for_each_object(p, s, addr, page->objects) {
  2032. if (!test_bit(slab_index(p, s, addr), map)) {
  2033. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2034. p, p - addr);
  2035. print_tracking(s, p);
  2036. }
  2037. }
  2038. slab_unlock(page);
  2039. #endif
  2040. }
  2041. /*
  2042. * Attempt to free all partial slabs on a node.
  2043. */
  2044. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2045. {
  2046. unsigned long flags;
  2047. struct page *page, *h;
  2048. spin_lock_irqsave(&n->list_lock, flags);
  2049. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2050. if (!page->inuse) {
  2051. list_del(&page->lru);
  2052. discard_slab(s, page);
  2053. n->nr_partial--;
  2054. } else {
  2055. list_slab_objects(s, page,
  2056. "Objects remaining on kmem_cache_close()");
  2057. }
  2058. }
  2059. spin_unlock_irqrestore(&n->list_lock, flags);
  2060. }
  2061. /*
  2062. * Release all resources used by a slab cache.
  2063. */
  2064. static inline int kmem_cache_close(struct kmem_cache *s)
  2065. {
  2066. int node;
  2067. flush_all(s);
  2068. /* Attempt to free all objects */
  2069. free_kmem_cache_cpus(s);
  2070. for_each_node_state(node, N_NORMAL_MEMORY) {
  2071. struct kmem_cache_node *n = get_node(s, node);
  2072. free_partial(s, n);
  2073. if (n->nr_partial || slabs_node(s, node))
  2074. return 1;
  2075. }
  2076. free_kmem_cache_nodes(s);
  2077. return 0;
  2078. }
  2079. /*
  2080. * Close a cache and release the kmem_cache structure
  2081. * (must be used for caches created using kmem_cache_create)
  2082. */
  2083. void kmem_cache_destroy(struct kmem_cache *s)
  2084. {
  2085. down_write(&slub_lock);
  2086. s->refcount--;
  2087. if (!s->refcount) {
  2088. list_del(&s->list);
  2089. up_write(&slub_lock);
  2090. if (kmem_cache_close(s)) {
  2091. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2092. "still has objects.\n", s->name, __func__);
  2093. dump_stack();
  2094. }
  2095. sysfs_slab_remove(s);
  2096. } else
  2097. up_write(&slub_lock);
  2098. }
  2099. EXPORT_SYMBOL(kmem_cache_destroy);
  2100. /********************************************************************
  2101. * Kmalloc subsystem
  2102. *******************************************************************/
  2103. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2104. EXPORT_SYMBOL(kmalloc_caches);
  2105. static int __init setup_slub_min_order(char *str)
  2106. {
  2107. get_option(&str, &slub_min_order);
  2108. return 1;
  2109. }
  2110. __setup("slub_min_order=", setup_slub_min_order);
  2111. static int __init setup_slub_max_order(char *str)
  2112. {
  2113. get_option(&str, &slub_max_order);
  2114. return 1;
  2115. }
  2116. __setup("slub_max_order=", setup_slub_max_order);
  2117. static int __init setup_slub_min_objects(char *str)
  2118. {
  2119. get_option(&str, &slub_min_objects);
  2120. return 1;
  2121. }
  2122. __setup("slub_min_objects=", setup_slub_min_objects);
  2123. static int __init setup_slub_nomerge(char *str)
  2124. {
  2125. slub_nomerge = 1;
  2126. return 1;
  2127. }
  2128. __setup("slub_nomerge", setup_slub_nomerge);
  2129. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2130. const char *name, int size, gfp_t gfp_flags)
  2131. {
  2132. unsigned int flags = 0;
  2133. if (gfp_flags & SLUB_DMA)
  2134. flags = SLAB_CACHE_DMA;
  2135. down_write(&slub_lock);
  2136. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2137. flags, NULL))
  2138. goto panic;
  2139. list_add(&s->list, &slab_caches);
  2140. up_write(&slub_lock);
  2141. if (sysfs_slab_add(s))
  2142. goto panic;
  2143. return s;
  2144. panic:
  2145. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2146. }
  2147. #ifdef CONFIG_ZONE_DMA
  2148. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2149. static void sysfs_add_func(struct work_struct *w)
  2150. {
  2151. struct kmem_cache *s;
  2152. down_write(&slub_lock);
  2153. list_for_each_entry(s, &slab_caches, list) {
  2154. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2155. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2156. sysfs_slab_add(s);
  2157. }
  2158. }
  2159. up_write(&slub_lock);
  2160. }
  2161. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2162. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2163. {
  2164. struct kmem_cache *s;
  2165. char *text;
  2166. size_t realsize;
  2167. s = kmalloc_caches_dma[index];
  2168. if (s)
  2169. return s;
  2170. /* Dynamically create dma cache */
  2171. if (flags & __GFP_WAIT)
  2172. down_write(&slub_lock);
  2173. else {
  2174. if (!down_write_trylock(&slub_lock))
  2175. goto out;
  2176. }
  2177. if (kmalloc_caches_dma[index])
  2178. goto unlock_out;
  2179. realsize = kmalloc_caches[index].objsize;
  2180. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2181. (unsigned int)realsize);
  2182. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2183. if (!s || !text || !kmem_cache_open(s, flags, text,
  2184. realsize, ARCH_KMALLOC_MINALIGN,
  2185. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2186. kfree(s);
  2187. kfree(text);
  2188. goto unlock_out;
  2189. }
  2190. list_add(&s->list, &slab_caches);
  2191. kmalloc_caches_dma[index] = s;
  2192. schedule_work(&sysfs_add_work);
  2193. unlock_out:
  2194. up_write(&slub_lock);
  2195. out:
  2196. return kmalloc_caches_dma[index];
  2197. }
  2198. #endif
  2199. /*
  2200. * Conversion table for small slabs sizes / 8 to the index in the
  2201. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2202. * of two cache sizes there. The size of larger slabs can be determined using
  2203. * fls.
  2204. */
  2205. static s8 size_index[24] = {
  2206. 3, /* 8 */
  2207. 4, /* 16 */
  2208. 5, /* 24 */
  2209. 5, /* 32 */
  2210. 6, /* 40 */
  2211. 6, /* 48 */
  2212. 6, /* 56 */
  2213. 6, /* 64 */
  2214. 1, /* 72 */
  2215. 1, /* 80 */
  2216. 1, /* 88 */
  2217. 1, /* 96 */
  2218. 7, /* 104 */
  2219. 7, /* 112 */
  2220. 7, /* 120 */
  2221. 7, /* 128 */
  2222. 2, /* 136 */
  2223. 2, /* 144 */
  2224. 2, /* 152 */
  2225. 2, /* 160 */
  2226. 2, /* 168 */
  2227. 2, /* 176 */
  2228. 2, /* 184 */
  2229. 2 /* 192 */
  2230. };
  2231. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2232. {
  2233. int index;
  2234. if (size <= 192) {
  2235. if (!size)
  2236. return ZERO_SIZE_PTR;
  2237. index = size_index[(size - 1) / 8];
  2238. } else
  2239. index = fls(size - 1);
  2240. #ifdef CONFIG_ZONE_DMA
  2241. if (unlikely((flags & SLUB_DMA)))
  2242. return dma_kmalloc_cache(index, flags);
  2243. #endif
  2244. return &kmalloc_caches[index];
  2245. }
  2246. void *__kmalloc(size_t size, gfp_t flags)
  2247. {
  2248. struct kmem_cache *s;
  2249. if (unlikely(size > PAGE_SIZE))
  2250. return kmalloc_large(size, flags);
  2251. s = get_slab(size, flags);
  2252. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2253. return s;
  2254. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2255. }
  2256. EXPORT_SYMBOL(__kmalloc);
  2257. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2258. {
  2259. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2260. get_order(size));
  2261. if (page)
  2262. return page_address(page);
  2263. else
  2264. return NULL;
  2265. }
  2266. #ifdef CONFIG_NUMA
  2267. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2268. {
  2269. struct kmem_cache *s;
  2270. if (unlikely(size > PAGE_SIZE))
  2271. return kmalloc_large_node(size, flags, node);
  2272. s = get_slab(size, flags);
  2273. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2274. return s;
  2275. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2276. }
  2277. EXPORT_SYMBOL(__kmalloc_node);
  2278. #endif
  2279. size_t ksize(const void *object)
  2280. {
  2281. struct page *page;
  2282. struct kmem_cache *s;
  2283. if (unlikely(object == ZERO_SIZE_PTR))
  2284. return 0;
  2285. page = virt_to_head_page(object);
  2286. if (unlikely(!PageSlab(page))) {
  2287. WARN_ON(!PageCompound(page));
  2288. return PAGE_SIZE << compound_order(page);
  2289. }
  2290. s = page->slab;
  2291. #ifdef CONFIG_SLUB_DEBUG
  2292. /*
  2293. * Debugging requires use of the padding between object
  2294. * and whatever may come after it.
  2295. */
  2296. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2297. return s->objsize;
  2298. #endif
  2299. /*
  2300. * If we have the need to store the freelist pointer
  2301. * back there or track user information then we can
  2302. * only use the space before that information.
  2303. */
  2304. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2305. return s->inuse;
  2306. /*
  2307. * Else we can use all the padding etc for the allocation
  2308. */
  2309. return s->size;
  2310. }
  2311. EXPORT_SYMBOL(ksize);
  2312. void kfree(const void *x)
  2313. {
  2314. struct page *page;
  2315. void *object = (void *)x;
  2316. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2317. return;
  2318. page = virt_to_head_page(x);
  2319. if (unlikely(!PageSlab(page))) {
  2320. BUG_ON(!PageCompound(page));
  2321. put_page(page);
  2322. return;
  2323. }
  2324. slab_free(page->slab, page, object, __builtin_return_address(0));
  2325. }
  2326. EXPORT_SYMBOL(kfree);
  2327. /*
  2328. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2329. * the remaining slabs by the number of items in use. The slabs with the
  2330. * most items in use come first. New allocations will then fill those up
  2331. * and thus they can be removed from the partial lists.
  2332. *
  2333. * The slabs with the least items are placed last. This results in them
  2334. * being allocated from last increasing the chance that the last objects
  2335. * are freed in them.
  2336. */
  2337. int kmem_cache_shrink(struct kmem_cache *s)
  2338. {
  2339. int node;
  2340. int i;
  2341. struct kmem_cache_node *n;
  2342. struct page *page;
  2343. struct page *t;
  2344. int objects = oo_objects(s->max);
  2345. struct list_head *slabs_by_inuse =
  2346. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2347. unsigned long flags;
  2348. if (!slabs_by_inuse)
  2349. return -ENOMEM;
  2350. flush_all(s);
  2351. for_each_node_state(node, N_NORMAL_MEMORY) {
  2352. n = get_node(s, node);
  2353. if (!n->nr_partial)
  2354. continue;
  2355. for (i = 0; i < objects; i++)
  2356. INIT_LIST_HEAD(slabs_by_inuse + i);
  2357. spin_lock_irqsave(&n->list_lock, flags);
  2358. /*
  2359. * Build lists indexed by the items in use in each slab.
  2360. *
  2361. * Note that concurrent frees may occur while we hold the
  2362. * list_lock. page->inuse here is the upper limit.
  2363. */
  2364. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2365. if (!page->inuse && slab_trylock(page)) {
  2366. /*
  2367. * Must hold slab lock here because slab_free
  2368. * may have freed the last object and be
  2369. * waiting to release the slab.
  2370. */
  2371. list_del(&page->lru);
  2372. n->nr_partial--;
  2373. slab_unlock(page);
  2374. discard_slab(s, page);
  2375. } else {
  2376. list_move(&page->lru,
  2377. slabs_by_inuse + page->inuse);
  2378. }
  2379. }
  2380. /*
  2381. * Rebuild the partial list with the slabs filled up most
  2382. * first and the least used slabs at the end.
  2383. */
  2384. for (i = objects - 1; i >= 0; i--)
  2385. list_splice(slabs_by_inuse + i, n->partial.prev);
  2386. spin_unlock_irqrestore(&n->list_lock, flags);
  2387. }
  2388. kfree(slabs_by_inuse);
  2389. return 0;
  2390. }
  2391. EXPORT_SYMBOL(kmem_cache_shrink);
  2392. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2393. static int slab_mem_going_offline_callback(void *arg)
  2394. {
  2395. struct kmem_cache *s;
  2396. down_read(&slub_lock);
  2397. list_for_each_entry(s, &slab_caches, list)
  2398. kmem_cache_shrink(s);
  2399. up_read(&slub_lock);
  2400. return 0;
  2401. }
  2402. static void slab_mem_offline_callback(void *arg)
  2403. {
  2404. struct kmem_cache_node *n;
  2405. struct kmem_cache *s;
  2406. struct memory_notify *marg = arg;
  2407. int offline_node;
  2408. offline_node = marg->status_change_nid;
  2409. /*
  2410. * If the node still has available memory. we need kmem_cache_node
  2411. * for it yet.
  2412. */
  2413. if (offline_node < 0)
  2414. return;
  2415. down_read(&slub_lock);
  2416. list_for_each_entry(s, &slab_caches, list) {
  2417. n = get_node(s, offline_node);
  2418. if (n) {
  2419. /*
  2420. * if n->nr_slabs > 0, slabs still exist on the node
  2421. * that is going down. We were unable to free them,
  2422. * and offline_pages() function shoudn't call this
  2423. * callback. So, we must fail.
  2424. */
  2425. BUG_ON(slabs_node(s, offline_node));
  2426. s->node[offline_node] = NULL;
  2427. kmem_cache_free(kmalloc_caches, n);
  2428. }
  2429. }
  2430. up_read(&slub_lock);
  2431. }
  2432. static int slab_mem_going_online_callback(void *arg)
  2433. {
  2434. struct kmem_cache_node *n;
  2435. struct kmem_cache *s;
  2436. struct memory_notify *marg = arg;
  2437. int nid = marg->status_change_nid;
  2438. int ret = 0;
  2439. /*
  2440. * If the node's memory is already available, then kmem_cache_node is
  2441. * already created. Nothing to do.
  2442. */
  2443. if (nid < 0)
  2444. return 0;
  2445. /*
  2446. * We are bringing a node online. No memory is available yet. We must
  2447. * allocate a kmem_cache_node structure in order to bring the node
  2448. * online.
  2449. */
  2450. down_read(&slub_lock);
  2451. list_for_each_entry(s, &slab_caches, list) {
  2452. /*
  2453. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2454. * since memory is not yet available from the node that
  2455. * is brought up.
  2456. */
  2457. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2458. if (!n) {
  2459. ret = -ENOMEM;
  2460. goto out;
  2461. }
  2462. init_kmem_cache_node(n);
  2463. s->node[nid] = n;
  2464. }
  2465. out:
  2466. up_read(&slub_lock);
  2467. return ret;
  2468. }
  2469. static int slab_memory_callback(struct notifier_block *self,
  2470. unsigned long action, void *arg)
  2471. {
  2472. int ret = 0;
  2473. switch (action) {
  2474. case MEM_GOING_ONLINE:
  2475. ret = slab_mem_going_online_callback(arg);
  2476. break;
  2477. case MEM_GOING_OFFLINE:
  2478. ret = slab_mem_going_offline_callback(arg);
  2479. break;
  2480. case MEM_OFFLINE:
  2481. case MEM_CANCEL_ONLINE:
  2482. slab_mem_offline_callback(arg);
  2483. break;
  2484. case MEM_ONLINE:
  2485. case MEM_CANCEL_OFFLINE:
  2486. break;
  2487. }
  2488. ret = notifier_from_errno(ret);
  2489. return ret;
  2490. }
  2491. #endif /* CONFIG_MEMORY_HOTPLUG */
  2492. /********************************************************************
  2493. * Basic setup of slabs
  2494. *******************************************************************/
  2495. void __init kmem_cache_init(void)
  2496. {
  2497. int i;
  2498. int caches = 0;
  2499. init_alloc_cpu();
  2500. #ifdef CONFIG_NUMA
  2501. /*
  2502. * Must first have the slab cache available for the allocations of the
  2503. * struct kmem_cache_node's. There is special bootstrap code in
  2504. * kmem_cache_open for slab_state == DOWN.
  2505. */
  2506. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2507. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2508. kmalloc_caches[0].refcount = -1;
  2509. caches++;
  2510. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2511. #endif
  2512. /* Able to allocate the per node structures */
  2513. slab_state = PARTIAL;
  2514. /* Caches that are not of the two-to-the-power-of size */
  2515. if (KMALLOC_MIN_SIZE <= 64) {
  2516. create_kmalloc_cache(&kmalloc_caches[1],
  2517. "kmalloc-96", 96, GFP_KERNEL);
  2518. caches++;
  2519. create_kmalloc_cache(&kmalloc_caches[2],
  2520. "kmalloc-192", 192, GFP_KERNEL);
  2521. caches++;
  2522. }
  2523. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2524. create_kmalloc_cache(&kmalloc_caches[i],
  2525. "kmalloc", 1 << i, GFP_KERNEL);
  2526. caches++;
  2527. }
  2528. /*
  2529. * Patch up the size_index table if we have strange large alignment
  2530. * requirements for the kmalloc array. This is only the case for
  2531. * MIPS it seems. The standard arches will not generate any code here.
  2532. *
  2533. * Largest permitted alignment is 256 bytes due to the way we
  2534. * handle the index determination for the smaller caches.
  2535. *
  2536. * Make sure that nothing crazy happens if someone starts tinkering
  2537. * around with ARCH_KMALLOC_MINALIGN
  2538. */
  2539. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2540. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2541. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2542. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2543. if (KMALLOC_MIN_SIZE == 128) {
  2544. /*
  2545. * The 192 byte sized cache is not used if the alignment
  2546. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2547. * instead.
  2548. */
  2549. for (i = 128 + 8; i <= 192; i += 8)
  2550. size_index[(i - 1) / 8] = 8;
  2551. }
  2552. slab_state = UP;
  2553. /* Provide the correct kmalloc names now that the caches are up */
  2554. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2555. kmalloc_caches[i]. name =
  2556. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2557. #ifdef CONFIG_SMP
  2558. register_cpu_notifier(&slab_notifier);
  2559. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2560. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2561. #else
  2562. kmem_size = sizeof(struct kmem_cache);
  2563. #endif
  2564. printk(KERN_INFO
  2565. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2566. " CPUs=%d, Nodes=%d\n",
  2567. caches, cache_line_size(),
  2568. slub_min_order, slub_max_order, slub_min_objects,
  2569. nr_cpu_ids, nr_node_ids);
  2570. }
  2571. /*
  2572. * Find a mergeable slab cache
  2573. */
  2574. static int slab_unmergeable(struct kmem_cache *s)
  2575. {
  2576. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2577. return 1;
  2578. if (s->ctor)
  2579. return 1;
  2580. /*
  2581. * We may have set a slab to be unmergeable during bootstrap.
  2582. */
  2583. if (s->refcount < 0)
  2584. return 1;
  2585. return 0;
  2586. }
  2587. static struct kmem_cache *find_mergeable(size_t size,
  2588. size_t align, unsigned long flags, const char *name,
  2589. void (*ctor)(struct kmem_cache *, void *))
  2590. {
  2591. struct kmem_cache *s;
  2592. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2593. return NULL;
  2594. if (ctor)
  2595. return NULL;
  2596. size = ALIGN(size, sizeof(void *));
  2597. align = calculate_alignment(flags, align, size);
  2598. size = ALIGN(size, align);
  2599. flags = kmem_cache_flags(size, flags, name, NULL);
  2600. list_for_each_entry(s, &slab_caches, list) {
  2601. if (slab_unmergeable(s))
  2602. continue;
  2603. if (size > s->size)
  2604. continue;
  2605. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2606. continue;
  2607. /*
  2608. * Check if alignment is compatible.
  2609. * Courtesy of Adrian Drzewiecki
  2610. */
  2611. if ((s->size & ~(align - 1)) != s->size)
  2612. continue;
  2613. if (s->size - size >= sizeof(void *))
  2614. continue;
  2615. return s;
  2616. }
  2617. return NULL;
  2618. }
  2619. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2620. size_t align, unsigned long flags,
  2621. void (*ctor)(struct kmem_cache *, void *))
  2622. {
  2623. struct kmem_cache *s;
  2624. down_write(&slub_lock);
  2625. s = find_mergeable(size, align, flags, name, ctor);
  2626. if (s) {
  2627. int cpu;
  2628. s->refcount++;
  2629. /*
  2630. * Adjust the object sizes so that we clear
  2631. * the complete object on kzalloc.
  2632. */
  2633. s->objsize = max(s->objsize, (int)size);
  2634. /*
  2635. * And then we need to update the object size in the
  2636. * per cpu structures
  2637. */
  2638. for_each_online_cpu(cpu)
  2639. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2640. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2641. up_write(&slub_lock);
  2642. if (sysfs_slab_alias(s, name))
  2643. goto err;
  2644. return s;
  2645. }
  2646. s = kmalloc(kmem_size, GFP_KERNEL);
  2647. if (s) {
  2648. if (kmem_cache_open(s, GFP_KERNEL, name,
  2649. size, align, flags, ctor)) {
  2650. list_add(&s->list, &slab_caches);
  2651. up_write(&slub_lock);
  2652. if (sysfs_slab_add(s))
  2653. goto err;
  2654. return s;
  2655. }
  2656. kfree(s);
  2657. }
  2658. up_write(&slub_lock);
  2659. err:
  2660. if (flags & SLAB_PANIC)
  2661. panic("Cannot create slabcache %s\n", name);
  2662. else
  2663. s = NULL;
  2664. return s;
  2665. }
  2666. EXPORT_SYMBOL(kmem_cache_create);
  2667. #ifdef CONFIG_SMP
  2668. /*
  2669. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2670. * necessary.
  2671. */
  2672. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2673. unsigned long action, void *hcpu)
  2674. {
  2675. long cpu = (long)hcpu;
  2676. struct kmem_cache *s;
  2677. unsigned long flags;
  2678. switch (action) {
  2679. case CPU_UP_PREPARE:
  2680. case CPU_UP_PREPARE_FROZEN:
  2681. init_alloc_cpu_cpu(cpu);
  2682. down_read(&slub_lock);
  2683. list_for_each_entry(s, &slab_caches, list)
  2684. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2685. GFP_KERNEL);
  2686. up_read(&slub_lock);
  2687. break;
  2688. case CPU_UP_CANCELED:
  2689. case CPU_UP_CANCELED_FROZEN:
  2690. case CPU_DEAD:
  2691. case CPU_DEAD_FROZEN:
  2692. down_read(&slub_lock);
  2693. list_for_each_entry(s, &slab_caches, list) {
  2694. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2695. local_irq_save(flags);
  2696. __flush_cpu_slab(s, cpu);
  2697. local_irq_restore(flags);
  2698. free_kmem_cache_cpu(c, cpu);
  2699. s->cpu_slab[cpu] = NULL;
  2700. }
  2701. up_read(&slub_lock);
  2702. break;
  2703. default:
  2704. break;
  2705. }
  2706. return NOTIFY_OK;
  2707. }
  2708. static struct notifier_block __cpuinitdata slab_notifier = {
  2709. .notifier_call = slab_cpuup_callback
  2710. };
  2711. #endif
  2712. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2713. {
  2714. struct kmem_cache *s;
  2715. if (unlikely(size > PAGE_SIZE))
  2716. return kmalloc_large(size, gfpflags);
  2717. s = get_slab(size, gfpflags);
  2718. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2719. return s;
  2720. return slab_alloc(s, gfpflags, -1, caller);
  2721. }
  2722. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2723. int node, void *caller)
  2724. {
  2725. struct kmem_cache *s;
  2726. if (unlikely(size > PAGE_SIZE))
  2727. return kmalloc_large_node(size, gfpflags, node);
  2728. s = get_slab(size, gfpflags);
  2729. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2730. return s;
  2731. return slab_alloc(s, gfpflags, node, caller);
  2732. }
  2733. #ifdef CONFIG_SLUB_DEBUG
  2734. static unsigned long count_partial(struct kmem_cache_node *n,
  2735. int (*get_count)(struct page *))
  2736. {
  2737. unsigned long flags;
  2738. unsigned long x = 0;
  2739. struct page *page;
  2740. spin_lock_irqsave(&n->list_lock, flags);
  2741. list_for_each_entry(page, &n->partial, lru)
  2742. x += get_count(page);
  2743. spin_unlock_irqrestore(&n->list_lock, flags);
  2744. return x;
  2745. }
  2746. static int count_inuse(struct page *page)
  2747. {
  2748. return page->inuse;
  2749. }
  2750. static int count_total(struct page *page)
  2751. {
  2752. return page->objects;
  2753. }
  2754. static int count_free(struct page *page)
  2755. {
  2756. return page->objects - page->inuse;
  2757. }
  2758. static int validate_slab(struct kmem_cache *s, struct page *page,
  2759. unsigned long *map)
  2760. {
  2761. void *p;
  2762. void *addr = page_address(page);
  2763. if (!check_slab(s, page) ||
  2764. !on_freelist(s, page, NULL))
  2765. return 0;
  2766. /* Now we know that a valid freelist exists */
  2767. bitmap_zero(map, page->objects);
  2768. for_each_free_object(p, s, page->freelist) {
  2769. set_bit(slab_index(p, s, addr), map);
  2770. if (!check_object(s, page, p, 0))
  2771. return 0;
  2772. }
  2773. for_each_object(p, s, addr, page->objects)
  2774. if (!test_bit(slab_index(p, s, addr), map))
  2775. if (!check_object(s, page, p, 1))
  2776. return 0;
  2777. return 1;
  2778. }
  2779. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2780. unsigned long *map)
  2781. {
  2782. if (slab_trylock(page)) {
  2783. validate_slab(s, page, map);
  2784. slab_unlock(page);
  2785. } else
  2786. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2787. s->name, page);
  2788. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2789. if (!PageSlubDebug(page))
  2790. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2791. "on slab 0x%p\n", s->name, page);
  2792. } else {
  2793. if (PageSlubDebug(page))
  2794. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2795. "slab 0x%p\n", s->name, page);
  2796. }
  2797. }
  2798. static int validate_slab_node(struct kmem_cache *s,
  2799. struct kmem_cache_node *n, unsigned long *map)
  2800. {
  2801. unsigned long count = 0;
  2802. struct page *page;
  2803. unsigned long flags;
  2804. spin_lock_irqsave(&n->list_lock, flags);
  2805. list_for_each_entry(page, &n->partial, lru) {
  2806. validate_slab_slab(s, page, map);
  2807. count++;
  2808. }
  2809. if (count != n->nr_partial)
  2810. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2811. "counter=%ld\n", s->name, count, n->nr_partial);
  2812. if (!(s->flags & SLAB_STORE_USER))
  2813. goto out;
  2814. list_for_each_entry(page, &n->full, lru) {
  2815. validate_slab_slab(s, page, map);
  2816. count++;
  2817. }
  2818. if (count != atomic_long_read(&n->nr_slabs))
  2819. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2820. "counter=%ld\n", s->name, count,
  2821. atomic_long_read(&n->nr_slabs));
  2822. out:
  2823. spin_unlock_irqrestore(&n->list_lock, flags);
  2824. return count;
  2825. }
  2826. static long validate_slab_cache(struct kmem_cache *s)
  2827. {
  2828. int node;
  2829. unsigned long count = 0;
  2830. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2831. sizeof(unsigned long), GFP_KERNEL);
  2832. if (!map)
  2833. return -ENOMEM;
  2834. flush_all(s);
  2835. for_each_node_state(node, N_NORMAL_MEMORY) {
  2836. struct kmem_cache_node *n = get_node(s, node);
  2837. count += validate_slab_node(s, n, map);
  2838. }
  2839. kfree(map);
  2840. return count;
  2841. }
  2842. #ifdef SLUB_RESILIENCY_TEST
  2843. static void resiliency_test(void)
  2844. {
  2845. u8 *p;
  2846. printk(KERN_ERR "SLUB resiliency testing\n");
  2847. printk(KERN_ERR "-----------------------\n");
  2848. printk(KERN_ERR "A. Corruption after allocation\n");
  2849. p = kzalloc(16, GFP_KERNEL);
  2850. p[16] = 0x12;
  2851. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2852. " 0x12->0x%p\n\n", p + 16);
  2853. validate_slab_cache(kmalloc_caches + 4);
  2854. /* Hmmm... The next two are dangerous */
  2855. p = kzalloc(32, GFP_KERNEL);
  2856. p[32 + sizeof(void *)] = 0x34;
  2857. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2858. " 0x34 -> -0x%p\n", p);
  2859. printk(KERN_ERR
  2860. "If allocated object is overwritten then not detectable\n\n");
  2861. validate_slab_cache(kmalloc_caches + 5);
  2862. p = kzalloc(64, GFP_KERNEL);
  2863. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2864. *p = 0x56;
  2865. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2866. p);
  2867. printk(KERN_ERR
  2868. "If allocated object is overwritten then not detectable\n\n");
  2869. validate_slab_cache(kmalloc_caches + 6);
  2870. printk(KERN_ERR "\nB. Corruption after free\n");
  2871. p = kzalloc(128, GFP_KERNEL);
  2872. kfree(p);
  2873. *p = 0x78;
  2874. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2875. validate_slab_cache(kmalloc_caches + 7);
  2876. p = kzalloc(256, GFP_KERNEL);
  2877. kfree(p);
  2878. p[50] = 0x9a;
  2879. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2880. p);
  2881. validate_slab_cache(kmalloc_caches + 8);
  2882. p = kzalloc(512, GFP_KERNEL);
  2883. kfree(p);
  2884. p[512] = 0xab;
  2885. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2886. validate_slab_cache(kmalloc_caches + 9);
  2887. }
  2888. #else
  2889. static void resiliency_test(void) {};
  2890. #endif
  2891. /*
  2892. * Generate lists of code addresses where slabcache objects are allocated
  2893. * and freed.
  2894. */
  2895. struct location {
  2896. unsigned long count;
  2897. void *addr;
  2898. long long sum_time;
  2899. long min_time;
  2900. long max_time;
  2901. long min_pid;
  2902. long max_pid;
  2903. cpumask_t cpus;
  2904. nodemask_t nodes;
  2905. };
  2906. struct loc_track {
  2907. unsigned long max;
  2908. unsigned long count;
  2909. struct location *loc;
  2910. };
  2911. static void free_loc_track(struct loc_track *t)
  2912. {
  2913. if (t->max)
  2914. free_pages((unsigned long)t->loc,
  2915. get_order(sizeof(struct location) * t->max));
  2916. }
  2917. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2918. {
  2919. struct location *l;
  2920. int order;
  2921. order = get_order(sizeof(struct location) * max);
  2922. l = (void *)__get_free_pages(flags, order);
  2923. if (!l)
  2924. return 0;
  2925. if (t->count) {
  2926. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2927. free_loc_track(t);
  2928. }
  2929. t->max = max;
  2930. t->loc = l;
  2931. return 1;
  2932. }
  2933. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2934. const struct track *track)
  2935. {
  2936. long start, end, pos;
  2937. struct location *l;
  2938. void *caddr;
  2939. unsigned long age = jiffies - track->when;
  2940. start = -1;
  2941. end = t->count;
  2942. for ( ; ; ) {
  2943. pos = start + (end - start + 1) / 2;
  2944. /*
  2945. * There is nothing at "end". If we end up there
  2946. * we need to add something to before end.
  2947. */
  2948. if (pos == end)
  2949. break;
  2950. caddr = t->loc[pos].addr;
  2951. if (track->addr == caddr) {
  2952. l = &t->loc[pos];
  2953. l->count++;
  2954. if (track->when) {
  2955. l->sum_time += age;
  2956. if (age < l->min_time)
  2957. l->min_time = age;
  2958. if (age > l->max_time)
  2959. l->max_time = age;
  2960. if (track->pid < l->min_pid)
  2961. l->min_pid = track->pid;
  2962. if (track->pid > l->max_pid)
  2963. l->max_pid = track->pid;
  2964. cpu_set(track->cpu, l->cpus);
  2965. }
  2966. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2967. return 1;
  2968. }
  2969. if (track->addr < caddr)
  2970. end = pos;
  2971. else
  2972. start = pos;
  2973. }
  2974. /*
  2975. * Not found. Insert new tracking element.
  2976. */
  2977. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2978. return 0;
  2979. l = t->loc + pos;
  2980. if (pos < t->count)
  2981. memmove(l + 1, l,
  2982. (t->count - pos) * sizeof(struct location));
  2983. t->count++;
  2984. l->count = 1;
  2985. l->addr = track->addr;
  2986. l->sum_time = age;
  2987. l->min_time = age;
  2988. l->max_time = age;
  2989. l->min_pid = track->pid;
  2990. l->max_pid = track->pid;
  2991. cpus_clear(l->cpus);
  2992. cpu_set(track->cpu, l->cpus);
  2993. nodes_clear(l->nodes);
  2994. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2995. return 1;
  2996. }
  2997. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2998. struct page *page, enum track_item alloc)
  2999. {
  3000. void *addr = page_address(page);
  3001. DECLARE_BITMAP(map, page->objects);
  3002. void *p;
  3003. bitmap_zero(map, page->objects);
  3004. for_each_free_object(p, s, page->freelist)
  3005. set_bit(slab_index(p, s, addr), map);
  3006. for_each_object(p, s, addr, page->objects)
  3007. if (!test_bit(slab_index(p, s, addr), map))
  3008. add_location(t, s, get_track(s, p, alloc));
  3009. }
  3010. static int list_locations(struct kmem_cache *s, char *buf,
  3011. enum track_item alloc)
  3012. {
  3013. int len = 0;
  3014. unsigned long i;
  3015. struct loc_track t = { 0, 0, NULL };
  3016. int node;
  3017. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3018. GFP_TEMPORARY))
  3019. return sprintf(buf, "Out of memory\n");
  3020. /* Push back cpu slabs */
  3021. flush_all(s);
  3022. for_each_node_state(node, N_NORMAL_MEMORY) {
  3023. struct kmem_cache_node *n = get_node(s, node);
  3024. unsigned long flags;
  3025. struct page *page;
  3026. if (!atomic_long_read(&n->nr_slabs))
  3027. continue;
  3028. spin_lock_irqsave(&n->list_lock, flags);
  3029. list_for_each_entry(page, &n->partial, lru)
  3030. process_slab(&t, s, page, alloc);
  3031. list_for_each_entry(page, &n->full, lru)
  3032. process_slab(&t, s, page, alloc);
  3033. spin_unlock_irqrestore(&n->list_lock, flags);
  3034. }
  3035. for (i = 0; i < t.count; i++) {
  3036. struct location *l = &t.loc[i];
  3037. if (len > PAGE_SIZE - 100)
  3038. break;
  3039. len += sprintf(buf + len, "%7ld ", l->count);
  3040. if (l->addr)
  3041. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3042. else
  3043. len += sprintf(buf + len, "<not-available>");
  3044. if (l->sum_time != l->min_time) {
  3045. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3046. l->min_time,
  3047. (long)div_u64(l->sum_time, l->count),
  3048. l->max_time);
  3049. } else
  3050. len += sprintf(buf + len, " age=%ld",
  3051. l->min_time);
  3052. if (l->min_pid != l->max_pid)
  3053. len += sprintf(buf + len, " pid=%ld-%ld",
  3054. l->min_pid, l->max_pid);
  3055. else
  3056. len += sprintf(buf + len, " pid=%ld",
  3057. l->min_pid);
  3058. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  3059. len < PAGE_SIZE - 60) {
  3060. len += sprintf(buf + len, " cpus=");
  3061. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3062. l->cpus);
  3063. }
  3064. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3065. len < PAGE_SIZE - 60) {
  3066. len += sprintf(buf + len, " nodes=");
  3067. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3068. l->nodes);
  3069. }
  3070. len += sprintf(buf + len, "\n");
  3071. }
  3072. free_loc_track(&t);
  3073. if (!t.count)
  3074. len += sprintf(buf, "No data\n");
  3075. return len;
  3076. }
  3077. enum slab_stat_type {
  3078. SL_ALL, /* All slabs */
  3079. SL_PARTIAL, /* Only partially allocated slabs */
  3080. SL_CPU, /* Only slabs used for cpu caches */
  3081. SL_OBJECTS, /* Determine allocated objects not slabs */
  3082. SL_TOTAL /* Determine object capacity not slabs */
  3083. };
  3084. #define SO_ALL (1 << SL_ALL)
  3085. #define SO_PARTIAL (1 << SL_PARTIAL)
  3086. #define SO_CPU (1 << SL_CPU)
  3087. #define SO_OBJECTS (1 << SL_OBJECTS)
  3088. #define SO_TOTAL (1 << SL_TOTAL)
  3089. static ssize_t show_slab_objects(struct kmem_cache *s,
  3090. char *buf, unsigned long flags)
  3091. {
  3092. unsigned long total = 0;
  3093. int node;
  3094. int x;
  3095. unsigned long *nodes;
  3096. unsigned long *per_cpu;
  3097. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3098. if (!nodes)
  3099. return -ENOMEM;
  3100. per_cpu = nodes + nr_node_ids;
  3101. if (flags & SO_CPU) {
  3102. int cpu;
  3103. for_each_possible_cpu(cpu) {
  3104. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3105. if (!c || c->node < 0)
  3106. continue;
  3107. if (c->page) {
  3108. if (flags & SO_TOTAL)
  3109. x = c->page->objects;
  3110. else if (flags & SO_OBJECTS)
  3111. x = c->page->inuse;
  3112. else
  3113. x = 1;
  3114. total += x;
  3115. nodes[c->node] += x;
  3116. }
  3117. per_cpu[c->node]++;
  3118. }
  3119. }
  3120. if (flags & SO_ALL) {
  3121. for_each_node_state(node, N_NORMAL_MEMORY) {
  3122. struct kmem_cache_node *n = get_node(s, node);
  3123. if (flags & SO_TOTAL)
  3124. x = atomic_long_read(&n->total_objects);
  3125. else if (flags & SO_OBJECTS)
  3126. x = atomic_long_read(&n->total_objects) -
  3127. count_partial(n, count_free);
  3128. else
  3129. x = atomic_long_read(&n->nr_slabs);
  3130. total += x;
  3131. nodes[node] += x;
  3132. }
  3133. } else if (flags & SO_PARTIAL) {
  3134. for_each_node_state(node, N_NORMAL_MEMORY) {
  3135. struct kmem_cache_node *n = get_node(s, node);
  3136. if (flags & SO_TOTAL)
  3137. x = count_partial(n, count_total);
  3138. else if (flags & SO_OBJECTS)
  3139. x = count_partial(n, count_inuse);
  3140. else
  3141. x = n->nr_partial;
  3142. total += x;
  3143. nodes[node] += x;
  3144. }
  3145. }
  3146. x = sprintf(buf, "%lu", total);
  3147. #ifdef CONFIG_NUMA
  3148. for_each_node_state(node, N_NORMAL_MEMORY)
  3149. if (nodes[node])
  3150. x += sprintf(buf + x, " N%d=%lu",
  3151. node, nodes[node]);
  3152. #endif
  3153. kfree(nodes);
  3154. return x + sprintf(buf + x, "\n");
  3155. }
  3156. static int any_slab_objects(struct kmem_cache *s)
  3157. {
  3158. int node;
  3159. for_each_online_node(node) {
  3160. struct kmem_cache_node *n = get_node(s, node);
  3161. if (!n)
  3162. continue;
  3163. if (atomic_long_read(&n->total_objects))
  3164. return 1;
  3165. }
  3166. return 0;
  3167. }
  3168. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3169. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3170. struct slab_attribute {
  3171. struct attribute attr;
  3172. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3173. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3174. };
  3175. #define SLAB_ATTR_RO(_name) \
  3176. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3177. #define SLAB_ATTR(_name) \
  3178. static struct slab_attribute _name##_attr = \
  3179. __ATTR(_name, 0644, _name##_show, _name##_store)
  3180. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3181. {
  3182. return sprintf(buf, "%d\n", s->size);
  3183. }
  3184. SLAB_ATTR_RO(slab_size);
  3185. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3186. {
  3187. return sprintf(buf, "%d\n", s->align);
  3188. }
  3189. SLAB_ATTR_RO(align);
  3190. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3191. {
  3192. return sprintf(buf, "%d\n", s->objsize);
  3193. }
  3194. SLAB_ATTR_RO(object_size);
  3195. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3196. {
  3197. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3198. }
  3199. SLAB_ATTR_RO(objs_per_slab);
  3200. static ssize_t order_store(struct kmem_cache *s,
  3201. const char *buf, size_t length)
  3202. {
  3203. unsigned long order;
  3204. int err;
  3205. err = strict_strtoul(buf, 10, &order);
  3206. if (err)
  3207. return err;
  3208. if (order > slub_max_order || order < slub_min_order)
  3209. return -EINVAL;
  3210. calculate_sizes(s, order);
  3211. return length;
  3212. }
  3213. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3214. {
  3215. return sprintf(buf, "%d\n", oo_order(s->oo));
  3216. }
  3217. SLAB_ATTR(order);
  3218. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3219. {
  3220. if (s->ctor) {
  3221. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3222. return n + sprintf(buf + n, "\n");
  3223. }
  3224. return 0;
  3225. }
  3226. SLAB_ATTR_RO(ctor);
  3227. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3228. {
  3229. return sprintf(buf, "%d\n", s->refcount - 1);
  3230. }
  3231. SLAB_ATTR_RO(aliases);
  3232. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3233. {
  3234. return show_slab_objects(s, buf, SO_ALL);
  3235. }
  3236. SLAB_ATTR_RO(slabs);
  3237. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3238. {
  3239. return show_slab_objects(s, buf, SO_PARTIAL);
  3240. }
  3241. SLAB_ATTR_RO(partial);
  3242. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3243. {
  3244. return show_slab_objects(s, buf, SO_CPU);
  3245. }
  3246. SLAB_ATTR_RO(cpu_slabs);
  3247. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3248. {
  3249. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3250. }
  3251. SLAB_ATTR_RO(objects);
  3252. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3253. {
  3254. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3255. }
  3256. SLAB_ATTR_RO(objects_partial);
  3257. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3258. {
  3259. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3260. }
  3261. SLAB_ATTR_RO(total_objects);
  3262. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3263. {
  3264. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3265. }
  3266. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3267. const char *buf, size_t length)
  3268. {
  3269. s->flags &= ~SLAB_DEBUG_FREE;
  3270. if (buf[0] == '1')
  3271. s->flags |= SLAB_DEBUG_FREE;
  3272. return length;
  3273. }
  3274. SLAB_ATTR(sanity_checks);
  3275. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3276. {
  3277. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3278. }
  3279. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3280. size_t length)
  3281. {
  3282. s->flags &= ~SLAB_TRACE;
  3283. if (buf[0] == '1')
  3284. s->flags |= SLAB_TRACE;
  3285. return length;
  3286. }
  3287. SLAB_ATTR(trace);
  3288. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3289. {
  3290. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3291. }
  3292. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3293. const char *buf, size_t length)
  3294. {
  3295. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3296. if (buf[0] == '1')
  3297. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3298. return length;
  3299. }
  3300. SLAB_ATTR(reclaim_account);
  3301. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3302. {
  3303. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3304. }
  3305. SLAB_ATTR_RO(hwcache_align);
  3306. #ifdef CONFIG_ZONE_DMA
  3307. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3308. {
  3309. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3310. }
  3311. SLAB_ATTR_RO(cache_dma);
  3312. #endif
  3313. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3314. {
  3315. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3316. }
  3317. SLAB_ATTR_RO(destroy_by_rcu);
  3318. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3319. {
  3320. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3321. }
  3322. static ssize_t red_zone_store(struct kmem_cache *s,
  3323. const char *buf, size_t length)
  3324. {
  3325. if (any_slab_objects(s))
  3326. return -EBUSY;
  3327. s->flags &= ~SLAB_RED_ZONE;
  3328. if (buf[0] == '1')
  3329. s->flags |= SLAB_RED_ZONE;
  3330. calculate_sizes(s, -1);
  3331. return length;
  3332. }
  3333. SLAB_ATTR(red_zone);
  3334. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3335. {
  3336. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3337. }
  3338. static ssize_t poison_store(struct kmem_cache *s,
  3339. const char *buf, size_t length)
  3340. {
  3341. if (any_slab_objects(s))
  3342. return -EBUSY;
  3343. s->flags &= ~SLAB_POISON;
  3344. if (buf[0] == '1')
  3345. s->flags |= SLAB_POISON;
  3346. calculate_sizes(s, -1);
  3347. return length;
  3348. }
  3349. SLAB_ATTR(poison);
  3350. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3351. {
  3352. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3353. }
  3354. static ssize_t store_user_store(struct kmem_cache *s,
  3355. const char *buf, size_t length)
  3356. {
  3357. if (any_slab_objects(s))
  3358. return -EBUSY;
  3359. s->flags &= ~SLAB_STORE_USER;
  3360. if (buf[0] == '1')
  3361. s->flags |= SLAB_STORE_USER;
  3362. calculate_sizes(s, -1);
  3363. return length;
  3364. }
  3365. SLAB_ATTR(store_user);
  3366. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3367. {
  3368. return 0;
  3369. }
  3370. static ssize_t validate_store(struct kmem_cache *s,
  3371. const char *buf, size_t length)
  3372. {
  3373. int ret = -EINVAL;
  3374. if (buf[0] == '1') {
  3375. ret = validate_slab_cache(s);
  3376. if (ret >= 0)
  3377. ret = length;
  3378. }
  3379. return ret;
  3380. }
  3381. SLAB_ATTR(validate);
  3382. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3383. {
  3384. return 0;
  3385. }
  3386. static ssize_t shrink_store(struct kmem_cache *s,
  3387. const char *buf, size_t length)
  3388. {
  3389. if (buf[0] == '1') {
  3390. int rc = kmem_cache_shrink(s);
  3391. if (rc)
  3392. return rc;
  3393. } else
  3394. return -EINVAL;
  3395. return length;
  3396. }
  3397. SLAB_ATTR(shrink);
  3398. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3399. {
  3400. if (!(s->flags & SLAB_STORE_USER))
  3401. return -ENOSYS;
  3402. return list_locations(s, buf, TRACK_ALLOC);
  3403. }
  3404. SLAB_ATTR_RO(alloc_calls);
  3405. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3406. {
  3407. if (!(s->flags & SLAB_STORE_USER))
  3408. return -ENOSYS;
  3409. return list_locations(s, buf, TRACK_FREE);
  3410. }
  3411. SLAB_ATTR_RO(free_calls);
  3412. #ifdef CONFIG_NUMA
  3413. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3414. {
  3415. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3416. }
  3417. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3418. const char *buf, size_t length)
  3419. {
  3420. unsigned long ratio;
  3421. int err;
  3422. err = strict_strtoul(buf, 10, &ratio);
  3423. if (err)
  3424. return err;
  3425. if (ratio < 100)
  3426. s->remote_node_defrag_ratio = ratio * 10;
  3427. return length;
  3428. }
  3429. SLAB_ATTR(remote_node_defrag_ratio);
  3430. #endif
  3431. #ifdef CONFIG_SLUB_STATS
  3432. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3433. {
  3434. unsigned long sum = 0;
  3435. int cpu;
  3436. int len;
  3437. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3438. if (!data)
  3439. return -ENOMEM;
  3440. for_each_online_cpu(cpu) {
  3441. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3442. data[cpu] = x;
  3443. sum += x;
  3444. }
  3445. len = sprintf(buf, "%lu", sum);
  3446. #ifdef CONFIG_SMP
  3447. for_each_online_cpu(cpu) {
  3448. if (data[cpu] && len < PAGE_SIZE - 20)
  3449. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3450. }
  3451. #endif
  3452. kfree(data);
  3453. return len + sprintf(buf + len, "\n");
  3454. }
  3455. #define STAT_ATTR(si, text) \
  3456. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3457. { \
  3458. return show_stat(s, buf, si); \
  3459. } \
  3460. SLAB_ATTR_RO(text); \
  3461. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3462. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3463. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3464. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3465. STAT_ATTR(FREE_FROZEN, free_frozen);
  3466. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3467. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3468. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3469. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3470. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3471. STAT_ATTR(FREE_SLAB, free_slab);
  3472. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3473. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3474. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3475. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3476. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3477. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3478. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3479. #endif
  3480. static struct attribute *slab_attrs[] = {
  3481. &slab_size_attr.attr,
  3482. &object_size_attr.attr,
  3483. &objs_per_slab_attr.attr,
  3484. &order_attr.attr,
  3485. &objects_attr.attr,
  3486. &objects_partial_attr.attr,
  3487. &total_objects_attr.attr,
  3488. &slabs_attr.attr,
  3489. &partial_attr.attr,
  3490. &cpu_slabs_attr.attr,
  3491. &ctor_attr.attr,
  3492. &aliases_attr.attr,
  3493. &align_attr.attr,
  3494. &sanity_checks_attr.attr,
  3495. &trace_attr.attr,
  3496. &hwcache_align_attr.attr,
  3497. &reclaim_account_attr.attr,
  3498. &destroy_by_rcu_attr.attr,
  3499. &red_zone_attr.attr,
  3500. &poison_attr.attr,
  3501. &store_user_attr.attr,
  3502. &validate_attr.attr,
  3503. &shrink_attr.attr,
  3504. &alloc_calls_attr.attr,
  3505. &free_calls_attr.attr,
  3506. #ifdef CONFIG_ZONE_DMA
  3507. &cache_dma_attr.attr,
  3508. #endif
  3509. #ifdef CONFIG_NUMA
  3510. &remote_node_defrag_ratio_attr.attr,
  3511. #endif
  3512. #ifdef CONFIG_SLUB_STATS
  3513. &alloc_fastpath_attr.attr,
  3514. &alloc_slowpath_attr.attr,
  3515. &free_fastpath_attr.attr,
  3516. &free_slowpath_attr.attr,
  3517. &free_frozen_attr.attr,
  3518. &free_add_partial_attr.attr,
  3519. &free_remove_partial_attr.attr,
  3520. &alloc_from_partial_attr.attr,
  3521. &alloc_slab_attr.attr,
  3522. &alloc_refill_attr.attr,
  3523. &free_slab_attr.attr,
  3524. &cpuslab_flush_attr.attr,
  3525. &deactivate_full_attr.attr,
  3526. &deactivate_empty_attr.attr,
  3527. &deactivate_to_head_attr.attr,
  3528. &deactivate_to_tail_attr.attr,
  3529. &deactivate_remote_frees_attr.attr,
  3530. &order_fallback_attr.attr,
  3531. #endif
  3532. NULL
  3533. };
  3534. static struct attribute_group slab_attr_group = {
  3535. .attrs = slab_attrs,
  3536. };
  3537. static ssize_t slab_attr_show(struct kobject *kobj,
  3538. struct attribute *attr,
  3539. char *buf)
  3540. {
  3541. struct slab_attribute *attribute;
  3542. struct kmem_cache *s;
  3543. int err;
  3544. attribute = to_slab_attr(attr);
  3545. s = to_slab(kobj);
  3546. if (!attribute->show)
  3547. return -EIO;
  3548. err = attribute->show(s, buf);
  3549. return err;
  3550. }
  3551. static ssize_t slab_attr_store(struct kobject *kobj,
  3552. struct attribute *attr,
  3553. const char *buf, size_t len)
  3554. {
  3555. struct slab_attribute *attribute;
  3556. struct kmem_cache *s;
  3557. int err;
  3558. attribute = to_slab_attr(attr);
  3559. s = to_slab(kobj);
  3560. if (!attribute->store)
  3561. return -EIO;
  3562. err = attribute->store(s, buf, len);
  3563. return err;
  3564. }
  3565. static void kmem_cache_release(struct kobject *kobj)
  3566. {
  3567. struct kmem_cache *s = to_slab(kobj);
  3568. kfree(s);
  3569. }
  3570. static struct sysfs_ops slab_sysfs_ops = {
  3571. .show = slab_attr_show,
  3572. .store = slab_attr_store,
  3573. };
  3574. static struct kobj_type slab_ktype = {
  3575. .sysfs_ops = &slab_sysfs_ops,
  3576. .release = kmem_cache_release
  3577. };
  3578. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3579. {
  3580. struct kobj_type *ktype = get_ktype(kobj);
  3581. if (ktype == &slab_ktype)
  3582. return 1;
  3583. return 0;
  3584. }
  3585. static struct kset_uevent_ops slab_uevent_ops = {
  3586. .filter = uevent_filter,
  3587. };
  3588. static struct kset *slab_kset;
  3589. #define ID_STR_LENGTH 64
  3590. /* Create a unique string id for a slab cache:
  3591. *
  3592. * Format :[flags-]size
  3593. */
  3594. static char *create_unique_id(struct kmem_cache *s)
  3595. {
  3596. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3597. char *p = name;
  3598. BUG_ON(!name);
  3599. *p++ = ':';
  3600. /*
  3601. * First flags affecting slabcache operations. We will only
  3602. * get here for aliasable slabs so we do not need to support
  3603. * too many flags. The flags here must cover all flags that
  3604. * are matched during merging to guarantee that the id is
  3605. * unique.
  3606. */
  3607. if (s->flags & SLAB_CACHE_DMA)
  3608. *p++ = 'd';
  3609. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3610. *p++ = 'a';
  3611. if (s->flags & SLAB_DEBUG_FREE)
  3612. *p++ = 'F';
  3613. if (p != name + 1)
  3614. *p++ = '-';
  3615. p += sprintf(p, "%07d", s->size);
  3616. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3617. return name;
  3618. }
  3619. static int sysfs_slab_add(struct kmem_cache *s)
  3620. {
  3621. int err;
  3622. const char *name;
  3623. int unmergeable;
  3624. if (slab_state < SYSFS)
  3625. /* Defer until later */
  3626. return 0;
  3627. unmergeable = slab_unmergeable(s);
  3628. if (unmergeable) {
  3629. /*
  3630. * Slabcache can never be merged so we can use the name proper.
  3631. * This is typically the case for debug situations. In that
  3632. * case we can catch duplicate names easily.
  3633. */
  3634. sysfs_remove_link(&slab_kset->kobj, s->name);
  3635. name = s->name;
  3636. } else {
  3637. /*
  3638. * Create a unique name for the slab as a target
  3639. * for the symlinks.
  3640. */
  3641. name = create_unique_id(s);
  3642. }
  3643. s->kobj.kset = slab_kset;
  3644. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3645. if (err) {
  3646. kobject_put(&s->kobj);
  3647. return err;
  3648. }
  3649. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3650. if (err)
  3651. return err;
  3652. kobject_uevent(&s->kobj, KOBJ_ADD);
  3653. if (!unmergeable) {
  3654. /* Setup first alias */
  3655. sysfs_slab_alias(s, s->name);
  3656. kfree(name);
  3657. }
  3658. return 0;
  3659. }
  3660. static void sysfs_slab_remove(struct kmem_cache *s)
  3661. {
  3662. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3663. kobject_del(&s->kobj);
  3664. kobject_put(&s->kobj);
  3665. }
  3666. /*
  3667. * Need to buffer aliases during bootup until sysfs becomes
  3668. * available lest we loose that information.
  3669. */
  3670. struct saved_alias {
  3671. struct kmem_cache *s;
  3672. const char *name;
  3673. struct saved_alias *next;
  3674. };
  3675. static struct saved_alias *alias_list;
  3676. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3677. {
  3678. struct saved_alias *al;
  3679. if (slab_state == SYSFS) {
  3680. /*
  3681. * If we have a leftover link then remove it.
  3682. */
  3683. sysfs_remove_link(&slab_kset->kobj, name);
  3684. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3685. }
  3686. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3687. if (!al)
  3688. return -ENOMEM;
  3689. al->s = s;
  3690. al->name = name;
  3691. al->next = alias_list;
  3692. alias_list = al;
  3693. return 0;
  3694. }
  3695. static int __init slab_sysfs_init(void)
  3696. {
  3697. struct kmem_cache *s;
  3698. int err;
  3699. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3700. if (!slab_kset) {
  3701. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3702. return -ENOSYS;
  3703. }
  3704. slab_state = SYSFS;
  3705. list_for_each_entry(s, &slab_caches, list) {
  3706. err = sysfs_slab_add(s);
  3707. if (err)
  3708. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3709. " to sysfs\n", s->name);
  3710. }
  3711. while (alias_list) {
  3712. struct saved_alias *al = alias_list;
  3713. alias_list = alias_list->next;
  3714. err = sysfs_slab_alias(al->s, al->name);
  3715. if (err)
  3716. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3717. " %s to sysfs\n", s->name);
  3718. kfree(al);
  3719. }
  3720. resiliency_test();
  3721. return 0;
  3722. }
  3723. __initcall(slab_sysfs_init);
  3724. #endif
  3725. /*
  3726. * The /proc/slabinfo ABI
  3727. */
  3728. #ifdef CONFIG_SLABINFO
  3729. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3730. size_t count, loff_t *ppos)
  3731. {
  3732. return -EINVAL;
  3733. }
  3734. static void print_slabinfo_header(struct seq_file *m)
  3735. {
  3736. seq_puts(m, "slabinfo - version: 2.1\n");
  3737. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3738. "<objperslab> <pagesperslab>");
  3739. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3740. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3741. seq_putc(m, '\n');
  3742. }
  3743. static void *s_start(struct seq_file *m, loff_t *pos)
  3744. {
  3745. loff_t n = *pos;
  3746. down_read(&slub_lock);
  3747. if (!n)
  3748. print_slabinfo_header(m);
  3749. return seq_list_start(&slab_caches, *pos);
  3750. }
  3751. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3752. {
  3753. return seq_list_next(p, &slab_caches, pos);
  3754. }
  3755. static void s_stop(struct seq_file *m, void *p)
  3756. {
  3757. up_read(&slub_lock);
  3758. }
  3759. static int s_show(struct seq_file *m, void *p)
  3760. {
  3761. unsigned long nr_partials = 0;
  3762. unsigned long nr_slabs = 0;
  3763. unsigned long nr_inuse = 0;
  3764. unsigned long nr_objs = 0;
  3765. unsigned long nr_free = 0;
  3766. struct kmem_cache *s;
  3767. int node;
  3768. s = list_entry(p, struct kmem_cache, list);
  3769. for_each_online_node(node) {
  3770. struct kmem_cache_node *n = get_node(s, node);
  3771. if (!n)
  3772. continue;
  3773. nr_partials += n->nr_partial;
  3774. nr_slabs += atomic_long_read(&n->nr_slabs);
  3775. nr_objs += atomic_long_read(&n->total_objects);
  3776. nr_free += count_partial(n, count_free);
  3777. }
  3778. nr_inuse = nr_objs - nr_free;
  3779. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3780. nr_objs, s->size, oo_objects(s->oo),
  3781. (1 << oo_order(s->oo)));
  3782. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3783. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3784. 0UL);
  3785. seq_putc(m, '\n');
  3786. return 0;
  3787. }
  3788. const struct seq_operations slabinfo_op = {
  3789. .start = s_start,
  3790. .next = s_next,
  3791. .stop = s_stop,
  3792. .show = s_show,
  3793. };
  3794. #endif /* CONFIG_SLABINFO */