rt2x00queue.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2x00lib
  19. Abstract: rt2x00 queue specific routines.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/dma-mapping.h>
  24. #include "rt2x00.h"
  25. #include "rt2x00lib.h"
  26. struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
  27. struct queue_entry *entry)
  28. {
  29. unsigned int frame_size;
  30. unsigned int reserved_size;
  31. struct sk_buff *skb;
  32. struct skb_frame_desc *skbdesc;
  33. /*
  34. * The frame size includes descriptor size, because the
  35. * hardware directly receive the frame into the skbuffer.
  36. */
  37. frame_size = entry->queue->data_size + entry->queue->desc_size;
  38. /*
  39. * The payload should be aligned to a 4-byte boundary,
  40. * this means we need at least 3 bytes for moving the frame
  41. * into the correct offset.
  42. */
  43. reserved_size = 4;
  44. /*
  45. * Allocate skbuffer.
  46. */
  47. skb = dev_alloc_skb(frame_size + reserved_size);
  48. if (!skb)
  49. return NULL;
  50. skb_reserve(skb, reserved_size);
  51. skb_put(skb, frame_size);
  52. /*
  53. * Populate skbdesc.
  54. */
  55. skbdesc = get_skb_frame_desc(skb);
  56. memset(skbdesc, 0, sizeof(*skbdesc));
  57. skbdesc->entry = entry;
  58. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  59. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  60. skb->data,
  61. skb->len,
  62. DMA_FROM_DEVICE);
  63. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  64. }
  65. return skb;
  66. }
  67. void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  68. {
  69. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  70. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
  71. DMA_TO_DEVICE);
  72. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  73. }
  74. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  75. void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  76. {
  77. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  78. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  79. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  80. DMA_FROM_DEVICE);
  81. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  82. }
  83. if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  84. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  85. DMA_TO_DEVICE);
  86. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  87. }
  88. }
  89. void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  90. {
  91. if (!skb)
  92. return;
  93. rt2x00queue_unmap_skb(rt2x00dev, skb);
  94. dev_kfree_skb_any(skb);
  95. }
  96. static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
  97. struct txentry_desc *txdesc)
  98. {
  99. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  100. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  101. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  102. struct ieee80211_rate *rate =
  103. ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  104. const struct rt2x00_rate *hwrate;
  105. unsigned int data_length;
  106. unsigned int duration;
  107. unsigned int residual;
  108. memset(txdesc, 0, sizeof(*txdesc));
  109. /*
  110. * Initialize information from queue
  111. */
  112. txdesc->queue = entry->queue->qid;
  113. txdesc->cw_min = entry->queue->cw_min;
  114. txdesc->cw_max = entry->queue->cw_max;
  115. txdesc->aifs = entry->queue->aifs;
  116. /* Data length should be extended with 4 bytes for CRC */
  117. data_length = entry->skb->len + 4;
  118. /*
  119. * Check whether this frame is to be acked.
  120. */
  121. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  122. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  123. /*
  124. * Check if this is a RTS/CTS frame
  125. */
  126. if (ieee80211_is_rts(hdr->frame_control) ||
  127. ieee80211_is_cts(hdr->frame_control)) {
  128. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  129. if (ieee80211_is_rts(hdr->frame_control))
  130. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  131. else
  132. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  133. if (tx_info->control.rts_cts_rate_idx >= 0)
  134. rate =
  135. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  136. }
  137. /*
  138. * Determine retry information.
  139. */
  140. txdesc->retry_limit = tx_info->control.retry_limit;
  141. if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
  142. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  143. /*
  144. * Check if more fragments are pending
  145. */
  146. if (ieee80211_has_morefrags(hdr->frame_control)) {
  147. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  148. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  149. }
  150. /*
  151. * Beacons and probe responses require the tsf timestamp
  152. * to be inserted into the frame.
  153. */
  154. if (ieee80211_is_beacon(hdr->frame_control) ||
  155. ieee80211_is_probe_resp(hdr->frame_control))
  156. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  157. /*
  158. * Determine with what IFS priority this frame should be send.
  159. * Set ifs to IFS_SIFS when the this is not the first fragment,
  160. * or this fragment came after RTS/CTS.
  161. */
  162. if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
  163. txdesc->ifs = IFS_SIFS;
  164. } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
  165. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  166. txdesc->ifs = IFS_BACKOFF;
  167. } else {
  168. txdesc->ifs = IFS_SIFS;
  169. }
  170. /*
  171. * PLCP setup
  172. * Length calculation depends on OFDM/CCK rate.
  173. */
  174. hwrate = rt2x00_get_rate(rate->hw_value);
  175. txdesc->signal = hwrate->plcp;
  176. txdesc->service = 0x04;
  177. if (hwrate->flags & DEV_RATE_OFDM) {
  178. __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
  179. txdesc->length_high = (data_length >> 6) & 0x3f;
  180. txdesc->length_low = data_length & 0x3f;
  181. } else {
  182. /*
  183. * Convert length to microseconds.
  184. */
  185. residual = get_duration_res(data_length, hwrate->bitrate);
  186. duration = get_duration(data_length, hwrate->bitrate);
  187. if (residual != 0) {
  188. duration++;
  189. /*
  190. * Check if we need to set the Length Extension
  191. */
  192. if (hwrate->bitrate == 110 && residual <= 30)
  193. txdesc->service |= 0x80;
  194. }
  195. txdesc->length_high = (duration >> 8) & 0xff;
  196. txdesc->length_low = duration & 0xff;
  197. /*
  198. * When preamble is enabled we should set the
  199. * preamble bit for the signal.
  200. */
  201. if (rt2x00_get_rate_preamble(rate->hw_value))
  202. txdesc->signal |= 0x08;
  203. }
  204. }
  205. static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  206. struct txentry_desc *txdesc)
  207. {
  208. struct data_queue *queue = entry->queue;
  209. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  210. rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
  211. /*
  212. * All processing on the frame has been completed, this means
  213. * it is now ready to be dumped to userspace through debugfs.
  214. */
  215. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
  216. /*
  217. * Check if we need to kick the queue, there are however a few rules
  218. * 1) Don't kick beacon queue
  219. * 2) Don't kick unless this is the last in frame in a burst.
  220. * When the burst flag is set, this frame is always followed
  221. * by another frame which in some way are related to eachother.
  222. * This is true for fragments, RTS or CTS-to-self frames.
  223. * 3) Rule 2 can be broken when the available entries
  224. * in the queue are less then a certain threshold.
  225. */
  226. if (entry->queue->qid == QID_BEACON)
  227. return;
  228. if (rt2x00queue_threshold(queue) ||
  229. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  230. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
  231. }
  232. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
  233. {
  234. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  235. struct txentry_desc txdesc;
  236. struct skb_frame_desc *skbdesc;
  237. if (unlikely(rt2x00queue_full(queue)))
  238. return -EINVAL;
  239. if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
  240. ERROR(queue->rt2x00dev,
  241. "Arrived at non-free entry in the non-full queue %d.\n"
  242. "Please file bug report to %s.\n",
  243. queue->qid, DRV_PROJECT);
  244. return -EINVAL;
  245. }
  246. /*
  247. * Copy all TX descriptor information into txdesc,
  248. * after that we are free to use the skb->cb array
  249. * for our information.
  250. */
  251. entry->skb = skb;
  252. rt2x00queue_create_tx_descriptor(entry, &txdesc);
  253. /*
  254. * skb->cb array is now ours and we are free to use it.
  255. */
  256. skbdesc = get_skb_frame_desc(entry->skb);
  257. memset(skbdesc, 0, sizeof(*skbdesc));
  258. skbdesc->entry = entry;
  259. if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
  260. __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  261. return -EIO;
  262. }
  263. if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
  264. rt2x00queue_map_txskb(queue->rt2x00dev, skb);
  265. __set_bit(ENTRY_DATA_PENDING, &entry->flags);
  266. rt2x00queue_index_inc(queue, Q_INDEX);
  267. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  268. return 0;
  269. }
  270. int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
  271. struct ieee80211_vif *vif)
  272. {
  273. struct rt2x00_intf *intf = vif_to_intf(vif);
  274. struct skb_frame_desc *skbdesc;
  275. struct txentry_desc txdesc;
  276. __le32 desc[16];
  277. if (unlikely(!intf->beacon))
  278. return -ENOBUFS;
  279. intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
  280. if (!intf->beacon->skb)
  281. return -ENOMEM;
  282. /*
  283. * Copy all TX descriptor information into txdesc,
  284. * after that we are free to use the skb->cb array
  285. * for our information.
  286. */
  287. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  288. /*
  289. * For the descriptor we use a local array from where the
  290. * driver can move it to the correct location required for
  291. * the hardware.
  292. */
  293. memset(desc, 0, sizeof(desc));
  294. /*
  295. * Fill in skb descriptor
  296. */
  297. skbdesc = get_skb_frame_desc(intf->beacon->skb);
  298. memset(skbdesc, 0, sizeof(*skbdesc));
  299. skbdesc->desc = desc;
  300. skbdesc->desc_len = intf->beacon->queue->desc_size;
  301. skbdesc->entry = intf->beacon;
  302. /*
  303. * Write TX descriptor into reserved room in front of the beacon.
  304. */
  305. rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
  306. /*
  307. * Send beacon to hardware.
  308. * Also enable beacon generation, which might have been disabled
  309. * by the driver during the config_beacon() callback function.
  310. */
  311. rt2x00dev->ops->lib->write_beacon(intf->beacon);
  312. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
  313. return 0;
  314. }
  315. struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
  316. const enum data_queue_qid queue)
  317. {
  318. int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  319. if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
  320. return &rt2x00dev->tx[queue];
  321. if (!rt2x00dev->bcn)
  322. return NULL;
  323. if (queue == QID_BEACON)
  324. return &rt2x00dev->bcn[0];
  325. else if (queue == QID_ATIM && atim)
  326. return &rt2x00dev->bcn[1];
  327. return NULL;
  328. }
  329. EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
  330. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  331. enum queue_index index)
  332. {
  333. struct queue_entry *entry;
  334. unsigned long irqflags;
  335. if (unlikely(index >= Q_INDEX_MAX)) {
  336. ERROR(queue->rt2x00dev,
  337. "Entry requested from invalid index type (%d)\n", index);
  338. return NULL;
  339. }
  340. spin_lock_irqsave(&queue->lock, irqflags);
  341. entry = &queue->entries[queue->index[index]];
  342. spin_unlock_irqrestore(&queue->lock, irqflags);
  343. return entry;
  344. }
  345. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  346. void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
  347. {
  348. unsigned long irqflags;
  349. if (unlikely(index >= Q_INDEX_MAX)) {
  350. ERROR(queue->rt2x00dev,
  351. "Index change on invalid index type (%d)\n", index);
  352. return;
  353. }
  354. spin_lock_irqsave(&queue->lock, irqflags);
  355. queue->index[index]++;
  356. if (queue->index[index] >= queue->limit)
  357. queue->index[index] = 0;
  358. if (index == Q_INDEX) {
  359. queue->length++;
  360. } else if (index == Q_INDEX_DONE) {
  361. queue->length--;
  362. queue->count ++;
  363. }
  364. spin_unlock_irqrestore(&queue->lock, irqflags);
  365. }
  366. static void rt2x00queue_reset(struct data_queue *queue)
  367. {
  368. unsigned long irqflags;
  369. spin_lock_irqsave(&queue->lock, irqflags);
  370. queue->count = 0;
  371. queue->length = 0;
  372. memset(queue->index, 0, sizeof(queue->index));
  373. spin_unlock_irqrestore(&queue->lock, irqflags);
  374. }
  375. void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
  376. {
  377. struct data_queue *queue = rt2x00dev->rx;
  378. unsigned int i;
  379. rt2x00queue_reset(queue);
  380. if (!rt2x00dev->ops->lib->init_rxentry)
  381. return;
  382. for (i = 0; i < queue->limit; i++)
  383. rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
  384. &queue->entries[i]);
  385. }
  386. void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
  387. {
  388. struct data_queue *queue;
  389. unsigned int i;
  390. txall_queue_for_each(rt2x00dev, queue) {
  391. rt2x00queue_reset(queue);
  392. if (!rt2x00dev->ops->lib->init_txentry)
  393. continue;
  394. for (i = 0; i < queue->limit; i++)
  395. rt2x00dev->ops->lib->init_txentry(rt2x00dev,
  396. &queue->entries[i]);
  397. }
  398. }
  399. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  400. const struct data_queue_desc *qdesc)
  401. {
  402. struct queue_entry *entries;
  403. unsigned int entry_size;
  404. unsigned int i;
  405. rt2x00queue_reset(queue);
  406. queue->limit = qdesc->entry_num;
  407. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  408. queue->data_size = qdesc->data_size;
  409. queue->desc_size = qdesc->desc_size;
  410. /*
  411. * Allocate all queue entries.
  412. */
  413. entry_size = sizeof(*entries) + qdesc->priv_size;
  414. entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
  415. if (!entries)
  416. return -ENOMEM;
  417. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  418. ( ((char *)(__base)) + ((__limit) * (__esize)) + \
  419. ((__index) * (__psize)) )
  420. for (i = 0; i < queue->limit; i++) {
  421. entries[i].flags = 0;
  422. entries[i].queue = queue;
  423. entries[i].skb = NULL;
  424. entries[i].entry_idx = i;
  425. entries[i].priv_data =
  426. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  427. sizeof(*entries), qdesc->priv_size);
  428. }
  429. #undef QUEUE_ENTRY_PRIV_OFFSET
  430. queue->entries = entries;
  431. return 0;
  432. }
  433. static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
  434. struct data_queue *queue)
  435. {
  436. unsigned int i;
  437. if (!queue->entries)
  438. return;
  439. for (i = 0; i < queue->limit; i++) {
  440. if (queue->entries[i].skb)
  441. rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
  442. }
  443. }
  444. static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
  445. struct data_queue *queue)
  446. {
  447. unsigned int i;
  448. struct sk_buff *skb;
  449. for (i = 0; i < queue->limit; i++) {
  450. skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
  451. if (!skb)
  452. return -ENOMEM;
  453. queue->entries[i].skb = skb;
  454. }
  455. return 0;
  456. }
  457. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  458. {
  459. struct data_queue *queue;
  460. int status;
  461. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  462. if (status)
  463. goto exit;
  464. tx_queue_for_each(rt2x00dev, queue) {
  465. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  466. if (status)
  467. goto exit;
  468. }
  469. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  470. if (status)
  471. goto exit;
  472. if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
  473. status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
  474. rt2x00dev->ops->atim);
  475. if (status)
  476. goto exit;
  477. }
  478. status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
  479. if (status)
  480. goto exit;
  481. return 0;
  482. exit:
  483. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  484. rt2x00queue_uninitialize(rt2x00dev);
  485. return status;
  486. }
  487. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  488. {
  489. struct data_queue *queue;
  490. rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
  491. queue_for_each(rt2x00dev, queue) {
  492. kfree(queue->entries);
  493. queue->entries = NULL;
  494. }
  495. }
  496. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  497. struct data_queue *queue, enum data_queue_qid qid)
  498. {
  499. spin_lock_init(&queue->lock);
  500. queue->rt2x00dev = rt2x00dev;
  501. queue->qid = qid;
  502. queue->aifs = 2;
  503. queue->cw_min = 5;
  504. queue->cw_max = 10;
  505. }
  506. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  507. {
  508. struct data_queue *queue;
  509. enum data_queue_qid qid;
  510. unsigned int req_atim =
  511. !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  512. /*
  513. * We need the following queues:
  514. * RX: 1
  515. * TX: ops->tx_queues
  516. * Beacon: 1
  517. * Atim: 1 (if required)
  518. */
  519. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  520. queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
  521. if (!queue) {
  522. ERROR(rt2x00dev, "Queue allocation failed.\n");
  523. return -ENOMEM;
  524. }
  525. /*
  526. * Initialize pointers
  527. */
  528. rt2x00dev->rx = queue;
  529. rt2x00dev->tx = &queue[1];
  530. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  531. /*
  532. * Initialize queue parameters.
  533. * RX: qid = QID_RX
  534. * TX: qid = QID_AC_BE + index
  535. * TX: cw_min: 2^5 = 32.
  536. * TX: cw_max: 2^10 = 1024.
  537. * BCN: qid = QID_BEACON
  538. * ATIM: qid = QID_ATIM
  539. */
  540. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  541. qid = QID_AC_BE;
  542. tx_queue_for_each(rt2x00dev, queue)
  543. rt2x00queue_init(rt2x00dev, queue, qid++);
  544. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
  545. if (req_atim)
  546. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
  547. return 0;
  548. }
  549. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  550. {
  551. kfree(rt2x00dev->rx);
  552. rt2x00dev->rx = NULL;
  553. rt2x00dev->tx = NULL;
  554. rt2x00dev->bcn = NULL;
  555. }