sh_eth.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006,2007 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/version.h>
  23. #include <linux/init.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/delay.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/mdio-bitbang.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/phy.h>
  31. #include <linux/cache.h>
  32. #include <linux/io.h>
  33. #include "sh_eth.h"
  34. /*
  35. * Program the hardware MAC address from dev->dev_addr.
  36. */
  37. static void update_mac_address(struct net_device *ndev)
  38. {
  39. u32 ioaddr = ndev->base_addr;
  40. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  41. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  42. ioaddr + MAHR);
  43. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  44. ioaddr + MALR);
  45. }
  46. /*
  47. * Get MAC address from SuperH MAC address register
  48. *
  49. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  50. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  51. * When you want use this device, you must set MAC address in bootloader.
  52. *
  53. */
  54. static void read_mac_address(struct net_device *ndev)
  55. {
  56. u32 ioaddr = ndev->base_addr;
  57. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  58. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  59. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  60. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  61. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  62. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  63. }
  64. struct bb_info {
  65. struct mdiobb_ctrl ctrl;
  66. u32 addr;
  67. u32 mmd_msk;/* MMD */
  68. u32 mdo_msk;
  69. u32 mdi_msk;
  70. u32 mdc_msk;
  71. };
  72. /* PHY bit set */
  73. static void bb_set(u32 addr, u32 msk)
  74. {
  75. ctrl_outl(ctrl_inl(addr) | msk, addr);
  76. }
  77. /* PHY bit clear */
  78. static void bb_clr(u32 addr, u32 msk)
  79. {
  80. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  81. }
  82. /* PHY bit read */
  83. static int bb_read(u32 addr, u32 msk)
  84. {
  85. return (ctrl_inl(addr) & msk) != 0;
  86. }
  87. /* Data I/O pin control */
  88. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  89. {
  90. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  91. if (bit)
  92. bb_set(bitbang->addr, bitbang->mmd_msk);
  93. else
  94. bb_clr(bitbang->addr, bitbang->mmd_msk);
  95. }
  96. /* Set bit data*/
  97. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  98. {
  99. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  100. if (bit)
  101. bb_set(bitbang->addr, bitbang->mdo_msk);
  102. else
  103. bb_clr(bitbang->addr, bitbang->mdo_msk);
  104. }
  105. /* Get bit data*/
  106. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  107. {
  108. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  109. return bb_read(bitbang->addr, bitbang->mdi_msk);
  110. }
  111. /* MDC pin control */
  112. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  113. {
  114. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  115. if (bit)
  116. bb_set(bitbang->addr, bitbang->mdc_msk);
  117. else
  118. bb_clr(bitbang->addr, bitbang->mdc_msk);
  119. }
  120. /* mdio bus control struct */
  121. static struct mdiobb_ops bb_ops = {
  122. .owner = THIS_MODULE,
  123. .set_mdc = sh_mdc_ctrl,
  124. .set_mdio_dir = sh_mmd_ctrl,
  125. .set_mdio_data = sh_set_mdio,
  126. .get_mdio_data = sh_get_mdio,
  127. };
  128. static void sh_eth_reset(struct net_device *ndev)
  129. {
  130. u32 ioaddr = ndev->base_addr;
  131. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  132. mdelay(3);
  133. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  134. }
  135. /* free skb and descriptor buffer */
  136. static void sh_eth_ring_free(struct net_device *ndev)
  137. {
  138. struct sh_eth_private *mdp = netdev_priv(ndev);
  139. int i;
  140. /* Free Rx skb ringbuffer */
  141. if (mdp->rx_skbuff) {
  142. for (i = 0; i < RX_RING_SIZE; i++) {
  143. if (mdp->rx_skbuff[i])
  144. dev_kfree_skb(mdp->rx_skbuff[i]);
  145. }
  146. }
  147. kfree(mdp->rx_skbuff);
  148. /* Free Tx skb ringbuffer */
  149. if (mdp->tx_skbuff) {
  150. for (i = 0; i < TX_RING_SIZE; i++) {
  151. if (mdp->tx_skbuff[i])
  152. dev_kfree_skb(mdp->tx_skbuff[i]);
  153. }
  154. }
  155. kfree(mdp->tx_skbuff);
  156. }
  157. /* format skb and descriptor buffer */
  158. static void sh_eth_ring_format(struct net_device *ndev)
  159. {
  160. struct sh_eth_private *mdp = netdev_priv(ndev);
  161. int i;
  162. struct sk_buff *skb;
  163. struct sh_eth_rxdesc *rxdesc = NULL;
  164. struct sh_eth_txdesc *txdesc = NULL;
  165. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  166. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  167. mdp->cur_rx = mdp->cur_tx = 0;
  168. mdp->dirty_rx = mdp->dirty_tx = 0;
  169. memset(mdp->rx_ring, 0, rx_ringsize);
  170. /* build Rx ring buffer */
  171. for (i = 0; i < RX_RING_SIZE; i++) {
  172. /* skb */
  173. mdp->rx_skbuff[i] = NULL;
  174. skb = dev_alloc_skb(mdp->rx_buf_sz);
  175. mdp->rx_skbuff[i] = skb;
  176. if (skb == NULL)
  177. break;
  178. skb->dev = ndev; /* Mark as being used by this device. */
  179. skb_reserve(skb, RX_OFFSET);
  180. /* RX descriptor */
  181. rxdesc = &mdp->rx_ring[i];
  182. rxdesc->addr = (u32)skb->data & ~0x3UL;
  183. rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
  184. /* The size of the buffer is 16 byte boundary. */
  185. rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;
  186. }
  187. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  188. /* Mark the last entry as wrapping the ring. */
  189. rxdesc->status |= cpu_to_le32(RC_RDEL);
  190. memset(mdp->tx_ring, 0, tx_ringsize);
  191. /* build Tx ring buffer */
  192. for (i = 0; i < TX_RING_SIZE; i++) {
  193. mdp->tx_skbuff[i] = NULL;
  194. txdesc = &mdp->tx_ring[i];
  195. txdesc->status = cpu_to_le32(TD_TFP);
  196. txdesc->buffer_length = 0;
  197. }
  198. txdesc->status |= cpu_to_le32(TD_TDLE);
  199. }
  200. /* Get skb and descriptor buffer */
  201. static int sh_eth_ring_init(struct net_device *ndev)
  202. {
  203. struct sh_eth_private *mdp = netdev_priv(ndev);
  204. int rx_ringsize, tx_ringsize, ret = 0;
  205. /*
  206. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  207. * card needs room to do 8 byte alignment, +2 so we can reserve
  208. * the first 2 bytes, and +16 gets room for the status word from the
  209. * card.
  210. */
  211. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  212. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  213. /* Allocate RX and TX skb rings */
  214. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  215. GFP_KERNEL);
  216. if (!mdp->rx_skbuff) {
  217. printk(KERN_ERR "%s: Cannot allocate Rx skb\n", ndev->name);
  218. ret = -ENOMEM;
  219. return ret;
  220. }
  221. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  222. GFP_KERNEL);
  223. if (!mdp->tx_skbuff) {
  224. printk(KERN_ERR "%s: Cannot allocate Tx skb\n", ndev->name);
  225. ret = -ENOMEM;
  226. goto skb_ring_free;
  227. }
  228. /* Allocate all Rx descriptors. */
  229. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  230. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  231. GFP_KERNEL);
  232. if (!mdp->rx_ring) {
  233. printk(KERN_ERR "%s: Cannot allocate Rx Ring (size %d bytes)\n",
  234. ndev->name, rx_ringsize);
  235. ret = -ENOMEM;
  236. goto desc_ring_free;
  237. }
  238. mdp->dirty_rx = 0;
  239. /* Allocate all Tx descriptors. */
  240. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  241. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  242. GFP_KERNEL);
  243. if (!mdp->tx_ring) {
  244. printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
  245. ndev->name, tx_ringsize);
  246. ret = -ENOMEM;
  247. goto desc_ring_free;
  248. }
  249. return ret;
  250. desc_ring_free:
  251. /* free DMA buffer */
  252. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  253. skb_ring_free:
  254. /* Free Rx and Tx skb ring buffer */
  255. sh_eth_ring_free(ndev);
  256. return ret;
  257. }
  258. static int sh_eth_dev_init(struct net_device *ndev)
  259. {
  260. int ret = 0;
  261. struct sh_eth_private *mdp = netdev_priv(ndev);
  262. u32 ioaddr = ndev->base_addr;
  263. u_int32_t rx_int_var, tx_int_var;
  264. u32 val;
  265. /* Soft Reset */
  266. sh_eth_reset(ndev);
  267. ctrl_outl(RPADIR_PADS1, ioaddr + RPADIR); /* SH7712-DMA-RX-PAD2 */
  268. /* all sh_eth int mask */
  269. ctrl_outl(0, ioaddr + EESIPR);
  270. /* FIFO size set */
  271. ctrl_outl(0, ioaddr + EDMR); /* Endian change */
  272. ctrl_outl((FIFO_SIZE_T | FIFO_SIZE_R), ioaddr + FDR);
  273. ctrl_outl(0, ioaddr + TFTR);
  274. ctrl_outl(0, ioaddr + RMCR);
  275. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  276. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  277. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  278. ctrl_outl((FIFO_F_D_RFF | FIFO_F_D_RFD), ioaddr + FCFTR);
  279. ctrl_outl(0, ioaddr + TRIMD);
  280. /* Descriptor format */
  281. sh_eth_ring_format(ndev);
  282. ctrl_outl((u32)mdp->rx_ring, ioaddr + RDLAR);
  283. ctrl_outl((u32)mdp->tx_ring, ioaddr + TDLAR);
  284. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  285. ctrl_outl((DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff), ioaddr + EESIPR);
  286. /* PAUSE Prohibition */
  287. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  288. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  289. ctrl_outl(val, ioaddr + ECMR);
  290. ctrl_outl(ECSR_BRCRX | ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD |
  291. ECSIPR_MPDIP, ioaddr + ECSR);
  292. ctrl_outl(ECSIPR_BRCRXIP | ECSIPR_PSRTOIP | ECSIPR_LCHNGIP |
  293. ECSIPR_ICDIP | ECSIPR_MPDIP, ioaddr + ECSIPR);
  294. /* Set MAC address */
  295. update_mac_address(ndev);
  296. /* mask reset */
  297. #if defined(CONFIG_CPU_SUBTYPE_SH7710)
  298. ctrl_outl(APR_AP, ioaddr + APR);
  299. ctrl_outl(MPR_MP, ioaddr + MPR);
  300. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  301. ctrl_outl(BCFR_UNLIMITED, ioaddr + BCFR);
  302. #endif
  303. /* Setting the Rx mode will start the Rx process. */
  304. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  305. netif_start_queue(ndev);
  306. return ret;
  307. }
  308. /* free Tx skb function */
  309. static int sh_eth_txfree(struct net_device *ndev)
  310. {
  311. struct sh_eth_private *mdp = netdev_priv(ndev);
  312. struct sh_eth_txdesc *txdesc;
  313. int freeNum = 0;
  314. int entry = 0;
  315. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  316. entry = mdp->dirty_tx % TX_RING_SIZE;
  317. txdesc = &mdp->tx_ring[entry];
  318. if (txdesc->status & cpu_to_le32(TD_TACT))
  319. break;
  320. /* Free the original skb. */
  321. if (mdp->tx_skbuff[entry]) {
  322. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  323. mdp->tx_skbuff[entry] = NULL;
  324. freeNum++;
  325. }
  326. txdesc->status = cpu_to_le32(TD_TFP);
  327. if (entry >= TX_RING_SIZE - 1)
  328. txdesc->status |= cpu_to_le32(TD_TDLE);
  329. mdp->stats.tx_packets++;
  330. mdp->stats.tx_bytes += txdesc->buffer_length;
  331. }
  332. return freeNum;
  333. }
  334. /* Packet receive function */
  335. static int sh_eth_rx(struct net_device *ndev)
  336. {
  337. struct sh_eth_private *mdp = netdev_priv(ndev);
  338. struct sh_eth_rxdesc *rxdesc;
  339. int entry = mdp->cur_rx % RX_RING_SIZE;
  340. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  341. struct sk_buff *skb;
  342. u16 pkt_len = 0;
  343. u32 desc_status;
  344. rxdesc = &mdp->rx_ring[entry];
  345. while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
  346. desc_status = le32_to_cpu(rxdesc->status);
  347. pkt_len = rxdesc->frame_length;
  348. if (--boguscnt < 0)
  349. break;
  350. if (!(desc_status & RDFEND))
  351. mdp->stats.rx_length_errors++;
  352. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  353. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  354. mdp->stats.rx_errors++;
  355. if (desc_status & RD_RFS1)
  356. mdp->stats.rx_crc_errors++;
  357. if (desc_status & RD_RFS2)
  358. mdp->stats.rx_frame_errors++;
  359. if (desc_status & RD_RFS3)
  360. mdp->stats.rx_length_errors++;
  361. if (desc_status & RD_RFS4)
  362. mdp->stats.rx_length_errors++;
  363. if (desc_status & RD_RFS6)
  364. mdp->stats.rx_missed_errors++;
  365. if (desc_status & RD_RFS10)
  366. mdp->stats.rx_over_errors++;
  367. } else {
  368. swaps((char *)(rxdesc->addr & ~0x3), pkt_len + 2);
  369. skb = mdp->rx_skbuff[entry];
  370. mdp->rx_skbuff[entry] = NULL;
  371. skb_put(skb, pkt_len);
  372. skb->protocol = eth_type_trans(skb, ndev);
  373. netif_rx(skb);
  374. ndev->last_rx = jiffies;
  375. mdp->stats.rx_packets++;
  376. mdp->stats.rx_bytes += pkt_len;
  377. }
  378. rxdesc->status |= cpu_to_le32(RD_RACT);
  379. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  380. }
  381. /* Refill the Rx ring buffers. */
  382. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  383. entry = mdp->dirty_rx % RX_RING_SIZE;
  384. rxdesc = &mdp->rx_ring[entry];
  385. if (mdp->rx_skbuff[entry] == NULL) {
  386. skb = dev_alloc_skb(mdp->rx_buf_sz);
  387. mdp->rx_skbuff[entry] = skb;
  388. if (skb == NULL)
  389. break; /* Better luck next round. */
  390. skb->dev = ndev;
  391. skb_reserve(skb, RX_OFFSET);
  392. rxdesc->addr = (u32)skb->data & ~0x3UL;
  393. }
  394. /* The size of the buffer is 16 byte boundary. */
  395. rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;
  396. if (entry >= RX_RING_SIZE - 1)
  397. rxdesc->status |=
  398. cpu_to_le32(RD_RACT | RD_RFP | RC_RDEL);
  399. else
  400. rxdesc->status |=
  401. cpu_to_le32(RD_RACT | RD_RFP);
  402. }
  403. /* Restart Rx engine if stopped. */
  404. /* If we don't need to check status, don't. -KDU */
  405. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  406. return 0;
  407. }
  408. /* error control function */
  409. static void sh_eth_error(struct net_device *ndev, int intr_status)
  410. {
  411. struct sh_eth_private *mdp = netdev_priv(ndev);
  412. u32 ioaddr = ndev->base_addr;
  413. u32 felic_stat;
  414. if (intr_status & EESR_ECI) {
  415. felic_stat = ctrl_inl(ioaddr + ECSR);
  416. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  417. if (felic_stat & ECSR_ICD)
  418. mdp->stats.tx_carrier_errors++;
  419. if (felic_stat & ECSR_LCHNG) {
  420. /* Link Changed */
  421. u32 link_stat = (ctrl_inl(ioaddr + PSR));
  422. if (!(link_stat & PHY_ST_LINK)) {
  423. /* Link Down : disable tx and rx */
  424. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  425. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  426. } else {
  427. /* Link Up */
  428. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  429. ~DMAC_M_ECI, ioaddr + EESIPR);
  430. /*clear int */
  431. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  432. ioaddr + ECSR);
  433. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  434. DMAC_M_ECI, ioaddr + EESIPR);
  435. /* enable tx and rx */
  436. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  437. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  438. }
  439. }
  440. }
  441. if (intr_status & EESR_TWB) {
  442. /* Write buck end. unused write back interrupt */
  443. if (intr_status & EESR_TABT) /* Transmit Abort int */
  444. mdp->stats.tx_aborted_errors++;
  445. }
  446. if (intr_status & EESR_RABT) {
  447. /* Receive Abort int */
  448. if (intr_status & EESR_RFRMER) {
  449. /* Receive Frame Overflow int */
  450. mdp->stats.rx_frame_errors++;
  451. printk(KERN_ERR "Receive Frame Overflow\n");
  452. }
  453. }
  454. if (intr_status & EESR_ADE) {
  455. if (intr_status & EESR_TDE) {
  456. if (intr_status & EESR_TFE)
  457. mdp->stats.tx_fifo_errors++;
  458. }
  459. }
  460. if (intr_status & EESR_RDE) {
  461. /* Receive Descriptor Empty int */
  462. mdp->stats.rx_over_errors++;
  463. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  464. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  465. printk(KERN_ERR "Receive Descriptor Empty\n");
  466. }
  467. if (intr_status & EESR_RFE) {
  468. /* Receive FIFO Overflow int */
  469. mdp->stats.rx_fifo_errors++;
  470. printk(KERN_ERR "Receive FIFO Overflow\n");
  471. }
  472. if (intr_status &
  473. (EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE)) {
  474. /* Tx error */
  475. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  476. /* dmesg */
  477. printk(KERN_ERR "%s:TX error. status=%8.8x cur_tx=%8.8x ",
  478. ndev->name, intr_status, mdp->cur_tx);
  479. printk(KERN_ERR "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  480. mdp->dirty_tx, (u32) ndev->state, edtrr);
  481. /* dirty buffer free */
  482. sh_eth_txfree(ndev);
  483. /* SH7712 BUG */
  484. if (edtrr ^ EDTRR_TRNS) {
  485. /* tx dma start */
  486. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  487. }
  488. /* wakeup */
  489. netif_wake_queue(ndev);
  490. }
  491. }
  492. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  493. {
  494. struct net_device *ndev = netdev;
  495. struct sh_eth_private *mdp = netdev_priv(ndev);
  496. u32 ioaddr, boguscnt = RX_RING_SIZE;
  497. u32 intr_status = 0;
  498. ioaddr = ndev->base_addr;
  499. spin_lock(&mdp->lock);
  500. intr_status = ctrl_inl(ioaddr + EESR);
  501. /* Clear interrupt */
  502. ctrl_outl(intr_status, ioaddr + EESR);
  503. if (intr_status & (EESR_FRC | EESR_RINT8 |
  504. EESR_RINT5 | EESR_RINT4 | EESR_RINT3 | EESR_RINT2 |
  505. EESR_RINT1))
  506. sh_eth_rx(ndev);
  507. if (intr_status & (EESR_FTC |
  508. EESR_TINT4 | EESR_TINT3 | EESR_TINT2 | EESR_TINT1)) {
  509. sh_eth_txfree(ndev);
  510. netif_wake_queue(ndev);
  511. }
  512. if (intr_status & EESR_ERR_CHECK)
  513. sh_eth_error(ndev, intr_status);
  514. if (--boguscnt < 0) {
  515. printk(KERN_WARNING
  516. "%s: Too much work at interrupt, status=0x%4.4x.\n",
  517. ndev->name, intr_status);
  518. }
  519. spin_unlock(&mdp->lock);
  520. return IRQ_HANDLED;
  521. }
  522. static void sh_eth_timer(unsigned long data)
  523. {
  524. struct net_device *ndev = (struct net_device *)data;
  525. struct sh_eth_private *mdp = netdev_priv(ndev);
  526. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  527. }
  528. /* PHY state control function */
  529. static void sh_eth_adjust_link(struct net_device *ndev)
  530. {
  531. struct sh_eth_private *mdp = netdev_priv(ndev);
  532. struct phy_device *phydev = mdp->phydev;
  533. u32 ioaddr = ndev->base_addr;
  534. int new_state = 0;
  535. if (phydev->link != PHY_DOWN) {
  536. if (phydev->duplex != mdp->duplex) {
  537. new_state = 1;
  538. mdp->duplex = phydev->duplex;
  539. }
  540. if (phydev->speed != mdp->speed) {
  541. new_state = 1;
  542. mdp->speed = phydev->speed;
  543. }
  544. if (mdp->link == PHY_DOWN) {
  545. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  546. | ECMR_DM, ioaddr + ECMR);
  547. new_state = 1;
  548. mdp->link = phydev->link;
  549. }
  550. } else if (mdp->link) {
  551. new_state = 1;
  552. mdp->link = PHY_DOWN;
  553. mdp->speed = 0;
  554. mdp->duplex = -1;
  555. }
  556. if (new_state)
  557. phy_print_status(phydev);
  558. }
  559. /* PHY init function */
  560. static int sh_eth_phy_init(struct net_device *ndev)
  561. {
  562. struct sh_eth_private *mdp = netdev_priv(ndev);
  563. char phy_id[BUS_ID_SIZE];
  564. struct phy_device *phydev = NULL;
  565. snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT,
  566. mdp->mii_bus->id , mdp->phy_id);
  567. mdp->link = PHY_DOWN;
  568. mdp->speed = 0;
  569. mdp->duplex = -1;
  570. /* Try connect to PHY */
  571. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  572. 0, PHY_INTERFACE_MODE_MII);
  573. if (IS_ERR(phydev)) {
  574. dev_err(&ndev->dev, "phy_connect failed\n");
  575. return PTR_ERR(phydev);
  576. }
  577. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  578. phydev->addr, phydev->drv->name);
  579. mdp->phydev = phydev;
  580. return 0;
  581. }
  582. /* PHY control start function */
  583. static int sh_eth_phy_start(struct net_device *ndev)
  584. {
  585. struct sh_eth_private *mdp = netdev_priv(ndev);
  586. int ret;
  587. ret = sh_eth_phy_init(ndev);
  588. if (ret)
  589. return ret;
  590. /* reset phy - this also wakes it from PDOWN */
  591. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  592. phy_start(mdp->phydev);
  593. return 0;
  594. }
  595. /* network device open function */
  596. static int sh_eth_open(struct net_device *ndev)
  597. {
  598. int ret = 0;
  599. struct sh_eth_private *mdp = netdev_priv(ndev);
  600. ret = request_irq(ndev->irq, &sh_eth_interrupt, 0, ndev->name, ndev);
  601. if (ret) {
  602. printk(KERN_ERR "Can not assign IRQ number to %s\n", CARDNAME);
  603. return ret;
  604. }
  605. /* Descriptor set */
  606. ret = sh_eth_ring_init(ndev);
  607. if (ret)
  608. goto out_free_irq;
  609. /* device init */
  610. ret = sh_eth_dev_init(ndev);
  611. if (ret)
  612. goto out_free_irq;
  613. /* PHY control start*/
  614. ret = sh_eth_phy_start(ndev);
  615. if (ret)
  616. goto out_free_irq;
  617. /* Set the timer to check for link beat. */
  618. init_timer(&mdp->timer);
  619. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  620. setup_timer(&mdp->timer, sh_eth_timer, ndev);
  621. return ret;
  622. out_free_irq:
  623. free_irq(ndev->irq, ndev);
  624. return ret;
  625. }
  626. /* Timeout function */
  627. static void sh_eth_tx_timeout(struct net_device *ndev)
  628. {
  629. struct sh_eth_private *mdp = netdev_priv(ndev);
  630. u32 ioaddr = ndev->base_addr;
  631. struct sh_eth_rxdesc *rxdesc;
  632. int i;
  633. netif_stop_queue(ndev);
  634. /* worning message out. */
  635. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  636. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  637. /* tx_errors count up */
  638. mdp->stats.tx_errors++;
  639. /* timer off */
  640. del_timer_sync(&mdp->timer);
  641. /* Free all the skbuffs in the Rx queue. */
  642. for (i = 0; i < RX_RING_SIZE; i++) {
  643. rxdesc = &mdp->rx_ring[i];
  644. rxdesc->status = 0;
  645. rxdesc->addr = 0xBADF00D0;
  646. if (mdp->rx_skbuff[i])
  647. dev_kfree_skb(mdp->rx_skbuff[i]);
  648. mdp->rx_skbuff[i] = NULL;
  649. }
  650. for (i = 0; i < TX_RING_SIZE; i++) {
  651. if (mdp->tx_skbuff[i])
  652. dev_kfree_skb(mdp->tx_skbuff[i]);
  653. mdp->tx_skbuff[i] = NULL;
  654. }
  655. /* device init */
  656. sh_eth_dev_init(ndev);
  657. /* timer on */
  658. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  659. add_timer(&mdp->timer);
  660. }
  661. /* Packet transmit function */
  662. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  663. {
  664. struct sh_eth_private *mdp = netdev_priv(ndev);
  665. struct sh_eth_txdesc *txdesc;
  666. u32 entry;
  667. int flags;
  668. spin_lock_irqsave(&mdp->lock, flags);
  669. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  670. if (!sh_eth_txfree(ndev)) {
  671. netif_stop_queue(ndev);
  672. spin_unlock_irqrestore(&mdp->lock, flags);
  673. return 1;
  674. }
  675. }
  676. spin_unlock_irqrestore(&mdp->lock, flags);
  677. entry = mdp->cur_tx % TX_RING_SIZE;
  678. mdp->tx_skbuff[entry] = skb;
  679. txdesc = &mdp->tx_ring[entry];
  680. txdesc->addr = (u32)(skb->data);
  681. /* soft swap. */
  682. swaps((char *)(txdesc->addr & ~0x3), skb->len + 2);
  683. /* write back */
  684. __flush_purge_region(skb->data, skb->len);
  685. if (skb->len < ETHERSMALL)
  686. txdesc->buffer_length = ETHERSMALL;
  687. else
  688. txdesc->buffer_length = skb->len;
  689. if (entry >= TX_RING_SIZE - 1)
  690. txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
  691. else
  692. txdesc->status |= cpu_to_le32(TD_TACT);
  693. mdp->cur_tx++;
  694. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  695. ndev->trans_start = jiffies;
  696. return 0;
  697. }
  698. /* device close function */
  699. static int sh_eth_close(struct net_device *ndev)
  700. {
  701. struct sh_eth_private *mdp = netdev_priv(ndev);
  702. u32 ioaddr = ndev->base_addr;
  703. int ringsize;
  704. netif_stop_queue(ndev);
  705. /* Disable interrupts by clearing the interrupt mask. */
  706. ctrl_outl(0x0000, ioaddr + EESIPR);
  707. /* Stop the chip's Tx and Rx processes. */
  708. ctrl_outl(0, ioaddr + EDTRR);
  709. ctrl_outl(0, ioaddr + EDRRR);
  710. /* PHY Disconnect */
  711. if (mdp->phydev) {
  712. phy_stop(mdp->phydev);
  713. phy_disconnect(mdp->phydev);
  714. }
  715. free_irq(ndev->irq, ndev);
  716. del_timer_sync(&mdp->timer);
  717. /* Free all the skbuffs in the Rx queue. */
  718. sh_eth_ring_free(ndev);
  719. /* free DMA buffer */
  720. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  721. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  722. /* free DMA buffer */
  723. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  724. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  725. return 0;
  726. }
  727. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  728. {
  729. struct sh_eth_private *mdp = netdev_priv(ndev);
  730. u32 ioaddr = ndev->base_addr;
  731. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  732. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  733. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  734. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  735. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  736. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  737. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  738. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  739. return &mdp->stats;
  740. }
  741. /* ioctl to device funciotn*/
  742. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  743. int cmd)
  744. {
  745. struct sh_eth_private *mdp = netdev_priv(ndev);
  746. struct phy_device *phydev = mdp->phydev;
  747. if (!netif_running(ndev))
  748. return -EINVAL;
  749. if (!phydev)
  750. return -ENODEV;
  751. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  752. }
  753. /* Multicast reception directions set */
  754. static void sh_eth_set_multicast_list(struct net_device *ndev)
  755. {
  756. u32 ioaddr = ndev->base_addr;
  757. if (ndev->flags & IFF_PROMISC) {
  758. /* Set promiscuous. */
  759. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  760. ioaddr + ECMR);
  761. } else {
  762. /* Normal, unicast/broadcast-only mode. */
  763. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  764. ioaddr + ECMR);
  765. }
  766. }
  767. /* SuperH's TSU register init function */
  768. static void sh_eth_tsu_init(u32 ioaddr)
  769. {
  770. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  771. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  772. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  773. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  774. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  775. ctrl_outl(0, ioaddr + TSU_PRISL0);
  776. ctrl_outl(0, ioaddr + TSU_PRISL1);
  777. ctrl_outl(0, ioaddr + TSU_FWSL0);
  778. ctrl_outl(0, ioaddr + TSU_FWSL1);
  779. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  780. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  781. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  782. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  783. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  784. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  785. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  786. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  787. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  788. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  789. }
  790. /* MDIO bus release function */
  791. static int sh_mdio_release(struct net_device *ndev)
  792. {
  793. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  794. /* unregister mdio bus */
  795. mdiobus_unregister(bus);
  796. /* remove mdio bus info from net_device */
  797. dev_set_drvdata(&ndev->dev, NULL);
  798. /* free bitbang info */
  799. free_mdio_bitbang(bus);
  800. return 0;
  801. }
  802. /* MDIO bus init function */
  803. static int sh_mdio_init(struct net_device *ndev, int id)
  804. {
  805. int ret, i;
  806. struct bb_info *bitbang;
  807. struct sh_eth_private *mdp = netdev_priv(ndev);
  808. /* create bit control struct for PHY */
  809. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  810. if (!bitbang) {
  811. ret = -ENOMEM;
  812. goto out;
  813. }
  814. /* bitbang init */
  815. bitbang->addr = ndev->base_addr + PIR;
  816. bitbang->mdi_msk = 0x08;
  817. bitbang->mdo_msk = 0x04;
  818. bitbang->mmd_msk = 0x02;/* MMD */
  819. bitbang->mdc_msk = 0x01;
  820. bitbang->ctrl.ops = &bb_ops;
  821. /* MII contorller setting */
  822. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  823. if (!mdp->mii_bus) {
  824. ret = -ENOMEM;
  825. goto out_free_bitbang;
  826. }
  827. /* Hook up MII support for ethtool */
  828. mdp->mii_bus->name = "sh_mii";
  829. mdp->mii_bus->dev = &ndev->dev;
  830. mdp->mii_bus->id[0] = id;
  831. /* PHY IRQ */
  832. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  833. if (!mdp->mii_bus->irq) {
  834. ret = -ENOMEM;
  835. goto out_free_bus;
  836. }
  837. for (i = 0; i < PHY_MAX_ADDR; i++)
  838. mdp->mii_bus->irq[i] = PHY_POLL;
  839. /* regist mdio bus */
  840. ret = mdiobus_register(mdp->mii_bus);
  841. if (ret)
  842. goto out_free_irq;
  843. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  844. return 0;
  845. out_free_irq:
  846. kfree(mdp->mii_bus->irq);
  847. out_free_bus:
  848. kfree(mdp->mii_bus);
  849. out_free_bitbang:
  850. kfree(bitbang);
  851. out:
  852. return ret;
  853. }
  854. static int sh_eth_drv_probe(struct platform_device *pdev)
  855. {
  856. int ret, i, devno = 0;
  857. struct resource *res;
  858. struct net_device *ndev = NULL;
  859. struct sh_eth_private *mdp;
  860. /* get base addr */
  861. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  862. if (unlikely(res == NULL)) {
  863. dev_err(&pdev->dev, "invalid resource\n");
  864. ret = -EINVAL;
  865. goto out;
  866. }
  867. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  868. if (!ndev) {
  869. printk(KERN_ERR "%s: could not allocate device.\n", CARDNAME);
  870. ret = -ENOMEM;
  871. goto out;
  872. }
  873. /* The sh Ether-specific entries in the device structure. */
  874. ndev->base_addr = res->start;
  875. devno = pdev->id;
  876. if (devno < 0)
  877. devno = 0;
  878. ndev->dma = -1;
  879. ndev->irq = platform_get_irq(pdev, 0);
  880. if (ndev->irq < 0) {
  881. ret = -ENODEV;
  882. goto out_release;
  883. }
  884. SET_NETDEV_DEV(ndev, &pdev->dev);
  885. /* Fill in the fields of the device structure with ethernet values. */
  886. ether_setup(ndev);
  887. mdp = netdev_priv(ndev);
  888. spin_lock_init(&mdp->lock);
  889. /* get PHY ID */
  890. mdp->phy_id = (int)pdev->dev.platform_data;
  891. /* set function */
  892. ndev->open = sh_eth_open;
  893. ndev->hard_start_xmit = sh_eth_start_xmit;
  894. ndev->stop = sh_eth_close;
  895. ndev->get_stats = sh_eth_get_stats;
  896. ndev->set_multicast_list = sh_eth_set_multicast_list;
  897. ndev->do_ioctl = sh_eth_do_ioctl;
  898. ndev->tx_timeout = sh_eth_tx_timeout;
  899. ndev->watchdog_timeo = TX_TIMEOUT;
  900. mdp->post_rx = POST_RX >> (devno << 1);
  901. mdp->post_fw = POST_FW >> (devno << 1);
  902. /* read and set MAC address */
  903. read_mac_address(ndev);
  904. /* First device only init */
  905. if (!devno) {
  906. /* reset device */
  907. ctrl_outl(ARSTR_ARSTR, ndev->base_addr + ARSTR);
  908. mdelay(1);
  909. /* TSU init (Init only)*/
  910. sh_eth_tsu_init(SH_TSU_ADDR);
  911. }
  912. /* network device register */
  913. ret = register_netdev(ndev);
  914. if (ret)
  915. goto out_release;
  916. /* mdio bus init */
  917. ret = sh_mdio_init(ndev, pdev->id);
  918. if (ret)
  919. goto out_unregister;
  920. /* pritnt device infomation */
  921. printk(KERN_INFO "%s: %s at 0x%x, ",
  922. ndev->name, CARDNAME, (u32) ndev->base_addr);
  923. for (i = 0; i < 5; i++)
  924. printk(KERN_INFO "%2.2x:", ndev->dev_addr[i]);
  925. printk(KERN_INFO "%2.2x, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  926. platform_set_drvdata(pdev, ndev);
  927. return ret;
  928. out_unregister:
  929. unregister_netdev(ndev);
  930. out_release:
  931. /* net_dev free */
  932. if (ndev)
  933. free_netdev(ndev);
  934. out:
  935. return ret;
  936. }
  937. static int sh_eth_drv_remove(struct platform_device *pdev)
  938. {
  939. struct net_device *ndev = platform_get_drvdata(pdev);
  940. sh_mdio_release(ndev);
  941. unregister_netdev(ndev);
  942. flush_scheduled_work();
  943. free_netdev(ndev);
  944. platform_set_drvdata(pdev, NULL);
  945. return 0;
  946. }
  947. static struct platform_driver sh_eth_driver = {
  948. .probe = sh_eth_drv_probe,
  949. .remove = sh_eth_drv_remove,
  950. .driver = {
  951. .name = CARDNAME,
  952. },
  953. };
  954. static int __init sh_eth_init(void)
  955. {
  956. return platform_driver_register(&sh_eth_driver);
  957. }
  958. static void __exit sh_eth_cleanup(void)
  959. {
  960. platform_driver_unregister(&sh_eth_driver);
  961. }
  962. module_init(sh_eth_init);
  963. module_exit(sh_eth_cleanup);
  964. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  965. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  966. MODULE_LICENSE("GPL v2");