init_64.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/dma.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/e820.h>
  39. #include <asm/apic.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/proto.h>
  43. #include <asm/smp.h>
  44. #include <asm/sections.h>
  45. #include <asm/kdebug.h>
  46. #include <asm/numa.h>
  47. #include <asm/cacheflush.h>
  48. /*
  49. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  50. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  51. * apertures, ACPI and other tables without having to play with fixmaps.
  52. */
  53. unsigned long max_low_pfn_mapped;
  54. unsigned long max_pfn_mapped;
  55. static unsigned long dma_reserve __initdata;
  56. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  57. int direct_gbpages __meminitdata
  58. #ifdef CONFIG_DIRECT_GBPAGES
  59. = 1
  60. #endif
  61. ;
  62. static int __init parse_direct_gbpages_off(char *arg)
  63. {
  64. direct_gbpages = 0;
  65. return 0;
  66. }
  67. early_param("nogbpages", parse_direct_gbpages_off);
  68. static int __init parse_direct_gbpages_on(char *arg)
  69. {
  70. direct_gbpages = 1;
  71. return 0;
  72. }
  73. early_param("gbpages", parse_direct_gbpages_on);
  74. /*
  75. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  76. * physical space so we can cache the place of the first one and move
  77. * around without checking the pgd every time.
  78. */
  79. void show_mem(void)
  80. {
  81. long i, total = 0, reserved = 0;
  82. long shared = 0, cached = 0;
  83. struct page *page;
  84. pg_data_t *pgdat;
  85. printk(KERN_INFO "Mem-info:\n");
  86. show_free_areas();
  87. for_each_online_pgdat(pgdat) {
  88. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  89. /*
  90. * This loop can take a while with 256 GB and
  91. * 4k pages so defer the NMI watchdog:
  92. */
  93. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  94. touch_nmi_watchdog();
  95. if (!pfn_valid(pgdat->node_start_pfn + i))
  96. continue;
  97. page = pfn_to_page(pgdat->node_start_pfn + i);
  98. total++;
  99. if (PageReserved(page))
  100. reserved++;
  101. else if (PageSwapCache(page))
  102. cached++;
  103. else if (page_count(page))
  104. shared += page_count(page) - 1;
  105. }
  106. }
  107. printk(KERN_INFO "%lu pages of RAM\n", total);
  108. printk(KERN_INFO "%lu reserved pages\n", reserved);
  109. printk(KERN_INFO "%lu pages shared\n", shared);
  110. printk(KERN_INFO "%lu pages swap cached\n", cached);
  111. }
  112. int after_bootmem;
  113. static __init void *spp_getpage(void)
  114. {
  115. void *ptr;
  116. if (after_bootmem)
  117. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  118. else
  119. ptr = alloc_bootmem_pages(PAGE_SIZE);
  120. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  121. panic("set_pte_phys: cannot allocate page data %s\n",
  122. after_bootmem ? "after bootmem" : "");
  123. }
  124. pr_debug("spp_getpage %p\n", ptr);
  125. return ptr;
  126. }
  127. void
  128. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  129. {
  130. pud_t *pud;
  131. pmd_t *pmd;
  132. pte_t *pte;
  133. pud = pud_page + pud_index(vaddr);
  134. if (pud_none(*pud)) {
  135. pmd = (pmd_t *) spp_getpage();
  136. pud_populate(&init_mm, pud, pmd);
  137. if (pmd != pmd_offset(pud, 0)) {
  138. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  139. pmd, pmd_offset(pud, 0));
  140. return;
  141. }
  142. }
  143. pmd = pmd_offset(pud, vaddr);
  144. if (pmd_none(*pmd)) {
  145. pte = (pte_t *) spp_getpage();
  146. pmd_populate_kernel(&init_mm, pmd, pte);
  147. if (pte != pte_offset_kernel(pmd, 0)) {
  148. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  149. return;
  150. }
  151. }
  152. pte = pte_offset_kernel(pmd, vaddr);
  153. if (!pte_none(*pte) && pte_val(new_pte) &&
  154. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  155. pte_ERROR(*pte);
  156. set_pte(pte, new_pte);
  157. /*
  158. * It's enough to flush this one mapping.
  159. * (PGE mappings get flushed as well)
  160. */
  161. __flush_tlb_one(vaddr);
  162. }
  163. void
  164. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  165. {
  166. pgd_t *pgd;
  167. pud_t *pud_page;
  168. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  169. pgd = pgd_offset_k(vaddr);
  170. if (pgd_none(*pgd)) {
  171. printk(KERN_ERR
  172. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  173. return;
  174. }
  175. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  176. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  177. }
  178. /*
  179. * Create large page table mappings for a range of physical addresses.
  180. */
  181. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  182. pgprot_t prot)
  183. {
  184. pgd_t *pgd;
  185. pud_t *pud;
  186. pmd_t *pmd;
  187. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  188. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  189. pgd = pgd_offset_k((unsigned long)__va(phys));
  190. if (pgd_none(*pgd)) {
  191. pud = (pud_t *) spp_getpage();
  192. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  193. _PAGE_USER));
  194. }
  195. pud = pud_offset(pgd, (unsigned long)__va(phys));
  196. if (pud_none(*pud)) {
  197. pmd = (pmd_t *) spp_getpage();
  198. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  199. _PAGE_USER));
  200. }
  201. pmd = pmd_offset(pud, phys);
  202. BUG_ON(!pmd_none(*pmd));
  203. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  204. }
  205. }
  206. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  207. {
  208. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  209. }
  210. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  211. {
  212. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  213. }
  214. /*
  215. * The head.S code sets up the kernel high mapping:
  216. *
  217. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  218. *
  219. * phys_addr holds the negative offset to the kernel, which is added
  220. * to the compile time generated pmds. This results in invalid pmds up
  221. * to the point where we hit the physaddr 0 mapping.
  222. *
  223. * We limit the mappings to the region from _text to _end. _end is
  224. * rounded up to the 2MB boundary. This catches the invalid pmds as
  225. * well, as they are located before _text:
  226. */
  227. void __init cleanup_highmap(void)
  228. {
  229. unsigned long vaddr = __START_KERNEL_map;
  230. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  231. pmd_t *pmd = level2_kernel_pgt;
  232. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  233. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  234. if (pmd_none(*pmd))
  235. continue;
  236. if (vaddr < (unsigned long) _text || vaddr > end)
  237. set_pmd(pmd, __pmd(0));
  238. }
  239. }
  240. static unsigned long __initdata table_start;
  241. static unsigned long __meminitdata table_end;
  242. static unsigned long __meminitdata table_top;
  243. static __meminit void *alloc_low_page(unsigned long *phys)
  244. {
  245. unsigned long pfn = table_end++;
  246. void *adr;
  247. if (after_bootmem) {
  248. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  249. *phys = __pa(adr);
  250. return adr;
  251. }
  252. if (pfn >= table_top)
  253. panic("alloc_low_page: ran out of memory");
  254. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  255. memset(adr, 0, PAGE_SIZE);
  256. *phys = pfn * PAGE_SIZE;
  257. return adr;
  258. }
  259. static __meminit void unmap_low_page(void *adr)
  260. {
  261. if (after_bootmem)
  262. return;
  263. early_iounmap(adr, PAGE_SIZE);
  264. }
  265. static unsigned long __meminit
  266. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
  267. {
  268. unsigned pages = 0;
  269. unsigned long last_map_addr = end;
  270. int i;
  271. pte_t *pte = pte_page + pte_index(addr);
  272. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  273. if (addr >= end) {
  274. if (!after_bootmem) {
  275. for(; i < PTRS_PER_PTE; i++, pte++)
  276. set_pte(pte, __pte(0));
  277. }
  278. break;
  279. }
  280. if (pte_val(*pte))
  281. continue;
  282. if (0)
  283. printk(" pte=%p addr=%lx pte=%016lx\n",
  284. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  285. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
  286. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  287. pages++;
  288. }
  289. update_page_count(PG_LEVEL_4K, pages);
  290. return last_map_addr;
  291. }
  292. static unsigned long __meminit
  293. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
  294. {
  295. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  296. return phys_pte_init(pte, address, end);
  297. }
  298. static unsigned long __meminit
  299. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  300. unsigned long page_size_mask)
  301. {
  302. unsigned long pages = 0;
  303. unsigned long last_map_addr = end;
  304. int i = pmd_index(address);
  305. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  306. unsigned long pte_phys;
  307. pmd_t *pmd = pmd_page + pmd_index(address);
  308. pte_t *pte;
  309. if (address >= end) {
  310. if (!after_bootmem) {
  311. for (; i < PTRS_PER_PMD; i++, pmd++)
  312. set_pmd(pmd, __pmd(0));
  313. }
  314. break;
  315. }
  316. if (pmd_val(*pmd)) {
  317. if (!pmd_large(*pmd))
  318. last_map_addr = phys_pte_update(pmd, address,
  319. end);
  320. continue;
  321. }
  322. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  323. pages++;
  324. set_pte((pte_t *)pmd,
  325. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  326. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  327. continue;
  328. }
  329. pte = alloc_low_page(&pte_phys);
  330. last_map_addr = phys_pte_init(pte, address, end);
  331. unmap_low_page(pte);
  332. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  333. }
  334. update_page_count(PG_LEVEL_2M, pages);
  335. return last_map_addr;
  336. }
  337. static unsigned long __meminit
  338. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  339. unsigned long page_size_mask)
  340. {
  341. pmd_t *pmd = pmd_offset(pud, 0);
  342. unsigned long last_map_addr;
  343. spin_lock(&init_mm.page_table_lock);
  344. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
  345. spin_unlock(&init_mm.page_table_lock);
  346. __flush_tlb_all();
  347. return last_map_addr;
  348. }
  349. static unsigned long __meminit
  350. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  351. unsigned long page_size_mask)
  352. {
  353. unsigned long pages = 0;
  354. unsigned long last_map_addr = end;
  355. int i = pud_index(addr);
  356. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  357. unsigned long pmd_phys;
  358. pud_t *pud = pud_page + pud_index(addr);
  359. pmd_t *pmd;
  360. if (addr >= end)
  361. break;
  362. if (!after_bootmem &&
  363. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  364. set_pud(pud, __pud(0));
  365. continue;
  366. }
  367. if (pud_val(*pud)) {
  368. if (!pud_large(*pud))
  369. last_map_addr = phys_pmd_update(pud, addr, end,
  370. page_size_mask);
  371. continue;
  372. }
  373. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  374. pages++;
  375. set_pte((pte_t *)pud,
  376. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  377. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  378. continue;
  379. }
  380. pmd = alloc_low_page(&pmd_phys);
  381. spin_lock(&init_mm.page_table_lock);
  382. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
  383. unmap_low_page(pmd);
  384. pud_populate(&init_mm, pud, __va(pmd_phys));
  385. spin_unlock(&init_mm.page_table_lock);
  386. }
  387. __flush_tlb_all();
  388. update_page_count(PG_LEVEL_1G, pages);
  389. return last_map_addr;
  390. }
  391. static unsigned long __meminit
  392. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  393. unsigned long page_size_mask)
  394. {
  395. pud_t *pud;
  396. pud = (pud_t *)pgd_page_vaddr(*pgd);
  397. return phys_pud_init(pud, addr, end, page_size_mask);
  398. }
  399. static void __init find_early_table_space(unsigned long end)
  400. {
  401. unsigned long puds, pmds, ptes, tables, start;
  402. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  403. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  404. if (direct_gbpages) {
  405. unsigned long extra;
  406. extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
  407. pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  408. } else
  409. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  410. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  411. if (cpu_has_pse) {
  412. unsigned long extra;
  413. extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
  414. ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  415. } else
  416. ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  417. tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
  418. /*
  419. * RED-PEN putting page tables only on node 0 could
  420. * cause a hotspot and fill up ZONE_DMA. The page tables
  421. * need roughly 0.5KB per GB.
  422. */
  423. start = 0x8000;
  424. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  425. if (table_start == -1UL)
  426. panic("Cannot find space for the kernel page tables");
  427. table_start >>= PAGE_SHIFT;
  428. table_end = table_start;
  429. table_top = table_start + (tables >> PAGE_SHIFT);
  430. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  431. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  432. }
  433. static void __init init_gbpages(void)
  434. {
  435. if (direct_gbpages && cpu_has_gbpages)
  436. printk(KERN_INFO "Using GB pages for direct mapping\n");
  437. else
  438. direct_gbpages = 0;
  439. }
  440. static unsigned long __init kernel_physical_mapping_init(unsigned long start,
  441. unsigned long end,
  442. unsigned long page_size_mask)
  443. {
  444. unsigned long next, last_map_addr = end;
  445. start = (unsigned long)__va(start);
  446. end = (unsigned long)__va(end);
  447. for (; start < end; start = next) {
  448. pgd_t *pgd = pgd_offset_k(start);
  449. unsigned long pud_phys;
  450. pud_t *pud;
  451. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  452. if (next > end)
  453. next = end;
  454. if (pgd_val(*pgd)) {
  455. last_map_addr = phys_pud_update(pgd, __pa(start),
  456. __pa(end), page_size_mask);
  457. continue;
  458. }
  459. if (after_bootmem)
  460. pud = pud_offset(pgd, start & PGDIR_MASK);
  461. else
  462. pud = alloc_low_page(&pud_phys);
  463. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  464. page_size_mask);
  465. unmap_low_page(pud);
  466. pgd_populate(&init_mm, pgd_offset_k(start),
  467. __va(pud_phys));
  468. }
  469. return last_map_addr;
  470. }
  471. struct map_range {
  472. unsigned long start;
  473. unsigned long end;
  474. unsigned page_size_mask;
  475. };
  476. #define NR_RANGE_MR 5
  477. static int save_mr(struct map_range *mr, int nr_range,
  478. unsigned long start_pfn, unsigned long end_pfn,
  479. unsigned long page_size_mask)
  480. {
  481. if (start_pfn < end_pfn) {
  482. if (nr_range >= NR_RANGE_MR)
  483. panic("run out of range for init_memory_mapping\n");
  484. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  485. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  486. mr[nr_range].page_size_mask = page_size_mask;
  487. nr_range++;
  488. }
  489. return nr_range;
  490. }
  491. /*
  492. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  493. * This runs before bootmem is initialized and gets pages directly from
  494. * the physical memory. To access them they are temporarily mapped.
  495. */
  496. unsigned long __init_refok init_memory_mapping(unsigned long start,
  497. unsigned long end)
  498. {
  499. unsigned long last_map_addr = 0;
  500. unsigned long page_size_mask = 0;
  501. unsigned long start_pfn, end_pfn;
  502. struct map_range mr[NR_RANGE_MR];
  503. int nr_range, i;
  504. printk(KERN_INFO "init_memory_mapping\n");
  505. /*
  506. * Find space for the kernel direct mapping tables.
  507. *
  508. * Later we should allocate these tables in the local node of the
  509. * memory mapped. Unfortunately this is done currently before the
  510. * nodes are discovered.
  511. */
  512. if (!after_bootmem)
  513. init_gbpages();
  514. if (direct_gbpages)
  515. page_size_mask |= 1 << PG_LEVEL_1G;
  516. if (cpu_has_pse)
  517. page_size_mask |= 1 << PG_LEVEL_2M;
  518. memset(mr, 0, sizeof(mr));
  519. nr_range = 0;
  520. /* head if not big page alignment ?*/
  521. start_pfn = start >> PAGE_SHIFT;
  522. end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
  523. << (PMD_SHIFT - PAGE_SHIFT);
  524. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  525. /* big page (2M) range*/
  526. start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
  527. << (PMD_SHIFT - PAGE_SHIFT);
  528. end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
  529. << (PUD_SHIFT - PAGE_SHIFT);
  530. if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
  531. end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
  532. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  533. page_size_mask & (1<<PG_LEVEL_2M));
  534. /* big page (1G) range */
  535. start_pfn = end_pfn;
  536. end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  537. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  538. page_size_mask &
  539. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  540. /* tail is not big page (1G) alignment */
  541. start_pfn = end_pfn;
  542. end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  543. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  544. page_size_mask & (1<<PG_LEVEL_2M));
  545. /* tail is not big page (2M) alignment */
  546. start_pfn = end_pfn;
  547. end_pfn = end>>PAGE_SHIFT;
  548. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  549. /* try to merge same page size and continuous */
  550. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  551. unsigned long old_start;
  552. if (mr[i].end != mr[i+1].start ||
  553. mr[i].page_size_mask != mr[i+1].page_size_mask)
  554. continue;
  555. /* move it */
  556. old_start = mr[i].start;
  557. memmove(&mr[i], &mr[i+1],
  558. (nr_range - 1 - i) * sizeof (struct map_range));
  559. mr[i].start = old_start;
  560. nr_range--;
  561. }
  562. for (i = 0; i < nr_range; i++)
  563. printk(KERN_DEBUG " %010lx - %010lx page %s\n",
  564. mr[i].start, mr[i].end,
  565. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  566. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  567. if (!after_bootmem)
  568. find_early_table_space(end);
  569. for (i = 0; i < nr_range; i++)
  570. last_map_addr = kernel_physical_mapping_init(
  571. mr[i].start, mr[i].end,
  572. mr[i].page_size_mask);
  573. if (!after_bootmem)
  574. mmu_cr4_features = read_cr4();
  575. __flush_tlb_all();
  576. if (!after_bootmem && table_end > table_start)
  577. reserve_early(table_start << PAGE_SHIFT,
  578. table_end << PAGE_SHIFT, "PGTABLE");
  579. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  580. last_map_addr, end);
  581. if (!after_bootmem)
  582. early_memtest(start, end);
  583. return last_map_addr >> PAGE_SHIFT;
  584. }
  585. #ifndef CONFIG_NUMA
  586. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  587. {
  588. unsigned long bootmap_size, bootmap;
  589. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  590. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  591. PAGE_SIZE);
  592. if (bootmap == -1L)
  593. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  594. /* don't touch min_low_pfn */
  595. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  596. 0, end_pfn);
  597. e820_register_active_regions(0, start_pfn, end_pfn);
  598. free_bootmem_with_active_regions(0, end_pfn);
  599. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  600. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  601. }
  602. void __init paging_init(void)
  603. {
  604. unsigned long max_zone_pfns[MAX_NR_ZONES];
  605. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  606. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  607. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  608. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  609. memory_present(0, 0, max_pfn);
  610. sparse_init();
  611. free_area_init_nodes(max_zone_pfns);
  612. }
  613. #endif
  614. /*
  615. * Memory hotplug specific functions
  616. */
  617. #ifdef CONFIG_MEMORY_HOTPLUG
  618. /*
  619. * Memory is added always to NORMAL zone. This means you will never get
  620. * additional DMA/DMA32 memory.
  621. */
  622. int arch_add_memory(int nid, u64 start, u64 size)
  623. {
  624. struct pglist_data *pgdat = NODE_DATA(nid);
  625. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  626. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  627. unsigned long nr_pages = size >> PAGE_SHIFT;
  628. int ret;
  629. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  630. if (last_mapped_pfn > max_pfn_mapped)
  631. max_pfn_mapped = last_mapped_pfn;
  632. ret = __add_pages(zone, start_pfn, nr_pages);
  633. WARN_ON(1);
  634. return ret;
  635. }
  636. EXPORT_SYMBOL_GPL(arch_add_memory);
  637. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  638. int memory_add_physaddr_to_nid(u64 start)
  639. {
  640. return 0;
  641. }
  642. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  643. #endif
  644. #endif /* CONFIG_MEMORY_HOTPLUG */
  645. /*
  646. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  647. * is valid. The argument is a physical page number.
  648. *
  649. *
  650. * On x86, access has to be given to the first megabyte of ram because that area
  651. * contains bios code and data regions used by X and dosemu and similar apps.
  652. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  653. * mmio resources as well as potential bios/acpi data regions.
  654. */
  655. int devmem_is_allowed(unsigned long pagenr)
  656. {
  657. if (pagenr <= 256)
  658. return 1;
  659. if (!page_is_ram(pagenr))
  660. return 1;
  661. return 0;
  662. }
  663. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  664. kcore_modules, kcore_vsyscall;
  665. void __init mem_init(void)
  666. {
  667. long codesize, reservedpages, datasize, initsize;
  668. pci_iommu_alloc();
  669. /* clear_bss() already clear the empty_zero_page */
  670. reservedpages = 0;
  671. /* this will put all low memory onto the freelists */
  672. #ifdef CONFIG_NUMA
  673. totalram_pages = numa_free_all_bootmem();
  674. #else
  675. totalram_pages = free_all_bootmem();
  676. #endif
  677. reservedpages = max_pfn - totalram_pages -
  678. absent_pages_in_range(0, max_pfn);
  679. after_bootmem = 1;
  680. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  681. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  682. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  683. /* Register memory areas for /proc/kcore */
  684. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  685. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  686. VMALLOC_END-VMALLOC_START);
  687. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  688. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  689. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  690. VSYSCALL_END - VSYSCALL_START);
  691. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  692. "%ldk reserved, %ldk data, %ldk init)\n",
  693. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  694. max_pfn << (PAGE_SHIFT-10),
  695. codesize >> 10,
  696. reservedpages << (PAGE_SHIFT-10),
  697. datasize >> 10,
  698. initsize >> 10);
  699. cpa_init();
  700. }
  701. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  702. {
  703. unsigned long addr = begin;
  704. if (addr >= end)
  705. return;
  706. /*
  707. * If debugging page accesses then do not free this memory but
  708. * mark them not present - any buggy init-section access will
  709. * create a kernel page fault:
  710. */
  711. #ifdef CONFIG_DEBUG_PAGEALLOC
  712. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  713. begin, PAGE_ALIGN(end));
  714. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  715. #else
  716. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  717. for (; addr < end; addr += PAGE_SIZE) {
  718. ClearPageReserved(virt_to_page(addr));
  719. init_page_count(virt_to_page(addr));
  720. memset((void *)(addr & ~(PAGE_SIZE-1)),
  721. POISON_FREE_INITMEM, PAGE_SIZE);
  722. free_page(addr);
  723. totalram_pages++;
  724. }
  725. #endif
  726. }
  727. void free_initmem(void)
  728. {
  729. free_init_pages("unused kernel memory",
  730. (unsigned long)(&__init_begin),
  731. (unsigned long)(&__init_end));
  732. }
  733. #ifdef CONFIG_DEBUG_RODATA
  734. const int rodata_test_data = 0xC3;
  735. EXPORT_SYMBOL_GPL(rodata_test_data);
  736. void mark_rodata_ro(void)
  737. {
  738. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  739. unsigned long rodata_start =
  740. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  741. #ifdef CONFIG_DYNAMIC_FTRACE
  742. /* Dynamic tracing modifies the kernel text section */
  743. start = rodata_start;
  744. #endif
  745. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  746. (end - start) >> 10);
  747. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  748. /*
  749. * The rodata section (but not the kernel text!) should also be
  750. * not-executable.
  751. */
  752. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  753. rodata_test();
  754. #ifdef CONFIG_CPA_DEBUG
  755. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  756. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  757. printk(KERN_INFO "Testing CPA: again\n");
  758. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  759. #endif
  760. }
  761. #endif
  762. #ifdef CONFIG_BLK_DEV_INITRD
  763. void free_initrd_mem(unsigned long start, unsigned long end)
  764. {
  765. free_init_pages("initrd memory", start, end);
  766. }
  767. #endif
  768. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  769. int flags)
  770. {
  771. #ifdef CONFIG_NUMA
  772. int nid, next_nid;
  773. int ret;
  774. #endif
  775. unsigned long pfn = phys >> PAGE_SHIFT;
  776. if (pfn >= max_pfn) {
  777. /*
  778. * This can happen with kdump kernels when accessing
  779. * firmware tables:
  780. */
  781. if (pfn < max_pfn_mapped)
  782. return -EFAULT;
  783. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  784. phys, len);
  785. return -EFAULT;
  786. }
  787. /* Should check here against the e820 map to avoid double free */
  788. #ifdef CONFIG_NUMA
  789. nid = phys_to_nid(phys);
  790. next_nid = phys_to_nid(phys + len - 1);
  791. if (nid == next_nid)
  792. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  793. else
  794. ret = reserve_bootmem(phys, len, flags);
  795. if (ret != 0)
  796. return ret;
  797. #else
  798. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  799. #endif
  800. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  801. dma_reserve += len / PAGE_SIZE;
  802. set_dma_reserve(dma_reserve);
  803. }
  804. return 0;
  805. }
  806. int kern_addr_valid(unsigned long addr)
  807. {
  808. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  809. pgd_t *pgd;
  810. pud_t *pud;
  811. pmd_t *pmd;
  812. pte_t *pte;
  813. if (above != 0 && above != -1UL)
  814. return 0;
  815. pgd = pgd_offset_k(addr);
  816. if (pgd_none(*pgd))
  817. return 0;
  818. pud = pud_offset(pgd, addr);
  819. if (pud_none(*pud))
  820. return 0;
  821. pmd = pmd_offset(pud, addr);
  822. if (pmd_none(*pmd))
  823. return 0;
  824. if (pmd_large(*pmd))
  825. return pfn_valid(pmd_pfn(*pmd));
  826. pte = pte_offset_kernel(pmd, addr);
  827. if (pte_none(*pte))
  828. return 0;
  829. return pfn_valid(pte_pfn(*pte));
  830. }
  831. /*
  832. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  833. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  834. * not need special handling anymore:
  835. */
  836. static struct vm_area_struct gate_vma = {
  837. .vm_start = VSYSCALL_START,
  838. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  839. .vm_page_prot = PAGE_READONLY_EXEC,
  840. .vm_flags = VM_READ | VM_EXEC
  841. };
  842. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  843. {
  844. #ifdef CONFIG_IA32_EMULATION
  845. if (test_tsk_thread_flag(tsk, TIF_IA32))
  846. return NULL;
  847. #endif
  848. return &gate_vma;
  849. }
  850. int in_gate_area(struct task_struct *task, unsigned long addr)
  851. {
  852. struct vm_area_struct *vma = get_gate_vma(task);
  853. if (!vma)
  854. return 0;
  855. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  856. }
  857. /*
  858. * Use this when you have no reliable task/vma, typically from interrupt
  859. * context. It is less reliable than using the task's vma and may give
  860. * false positives:
  861. */
  862. int in_gate_area_no_task(unsigned long addr)
  863. {
  864. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  865. }
  866. const char *arch_vma_name(struct vm_area_struct *vma)
  867. {
  868. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  869. return "[vdso]";
  870. if (vma == &gate_vma)
  871. return "[vsyscall]";
  872. return NULL;
  873. }
  874. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  875. /*
  876. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  877. */
  878. static long __meminitdata addr_start, addr_end;
  879. static void __meminitdata *p_start, *p_end;
  880. static int __meminitdata node_start;
  881. int __meminit
  882. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  883. {
  884. unsigned long addr = (unsigned long)start_page;
  885. unsigned long end = (unsigned long)(start_page + size);
  886. unsigned long next;
  887. pgd_t *pgd;
  888. pud_t *pud;
  889. pmd_t *pmd;
  890. for (; addr < end; addr = next) {
  891. void *p = NULL;
  892. pgd = vmemmap_pgd_populate(addr, node);
  893. if (!pgd)
  894. return -ENOMEM;
  895. pud = vmemmap_pud_populate(pgd, addr, node);
  896. if (!pud)
  897. return -ENOMEM;
  898. if (!cpu_has_pse) {
  899. next = (addr + PAGE_SIZE) & PAGE_MASK;
  900. pmd = vmemmap_pmd_populate(pud, addr, node);
  901. if (!pmd)
  902. return -ENOMEM;
  903. p = vmemmap_pte_populate(pmd, addr, node);
  904. if (!p)
  905. return -ENOMEM;
  906. addr_end = addr + PAGE_SIZE;
  907. p_end = p + PAGE_SIZE;
  908. } else {
  909. next = pmd_addr_end(addr, end);
  910. pmd = pmd_offset(pud, addr);
  911. if (pmd_none(*pmd)) {
  912. pte_t entry;
  913. p = vmemmap_alloc_block(PMD_SIZE, node);
  914. if (!p)
  915. return -ENOMEM;
  916. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  917. PAGE_KERNEL_LARGE);
  918. set_pmd(pmd, __pmd(pte_val(entry)));
  919. /* check to see if we have contiguous blocks */
  920. if (p_end != p || node_start != node) {
  921. if (p_start)
  922. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  923. addr_start, addr_end-1, p_start, p_end-1, node_start);
  924. addr_start = addr;
  925. node_start = node;
  926. p_start = p;
  927. }
  928. addr_end = addr + PMD_SIZE;
  929. p_end = p + PMD_SIZE;
  930. } else
  931. vmemmap_verify((pte_t *)pmd, node, addr, next);
  932. }
  933. }
  934. return 0;
  935. }
  936. void __meminit vmemmap_populate_print_last(void)
  937. {
  938. if (p_start) {
  939. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  940. addr_start, addr_end-1, p_start, p_end-1, node_start);
  941. p_start = NULL;
  942. p_end = NULL;
  943. node_start = 0;
  944. }
  945. }
  946. #endif