vmx.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. static int bypass_guest_pf = 1;
  33. module_param(bypass_guest_pf, bool, 0);
  34. static int enable_vpid = 1;
  35. module_param(enable_vpid, bool, 0);
  36. static int flexpriority_enabled = 1;
  37. module_param(flexpriority_enabled, bool, 0);
  38. static int enable_ept = 1;
  39. module_param(enable_ept, bool, 0);
  40. struct vmcs {
  41. u32 revision_id;
  42. u32 abort;
  43. char data[0];
  44. };
  45. struct vcpu_vmx {
  46. struct kvm_vcpu vcpu;
  47. struct list_head local_vcpus_link;
  48. int launched;
  49. u8 fail;
  50. u32 idt_vectoring_info;
  51. struct kvm_msr_entry *guest_msrs;
  52. struct kvm_msr_entry *host_msrs;
  53. int nmsrs;
  54. int save_nmsrs;
  55. int msr_offset_efer;
  56. #ifdef CONFIG_X86_64
  57. int msr_offset_kernel_gs_base;
  58. #endif
  59. struct vmcs *vmcs;
  60. struct {
  61. int loaded;
  62. u16 fs_sel, gs_sel, ldt_sel;
  63. int gs_ldt_reload_needed;
  64. int fs_reload_needed;
  65. int guest_efer_loaded;
  66. } host_state;
  67. struct {
  68. struct {
  69. bool pending;
  70. u8 vector;
  71. unsigned rip;
  72. } irq;
  73. } rmode;
  74. int vpid;
  75. };
  76. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  77. {
  78. return container_of(vcpu, struct vcpu_vmx, vcpu);
  79. }
  80. static int init_rmode(struct kvm *kvm);
  81. static u64 construct_eptp(unsigned long root_hpa);
  82. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  83. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  84. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  85. static struct page *vmx_io_bitmap_a;
  86. static struct page *vmx_io_bitmap_b;
  87. static struct page *vmx_msr_bitmap;
  88. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  89. static DEFINE_SPINLOCK(vmx_vpid_lock);
  90. static struct vmcs_config {
  91. int size;
  92. int order;
  93. u32 revision_id;
  94. u32 pin_based_exec_ctrl;
  95. u32 cpu_based_exec_ctrl;
  96. u32 cpu_based_2nd_exec_ctrl;
  97. u32 vmexit_ctrl;
  98. u32 vmentry_ctrl;
  99. } vmcs_config;
  100. struct vmx_capability {
  101. u32 ept;
  102. u32 vpid;
  103. } vmx_capability;
  104. #define VMX_SEGMENT_FIELD(seg) \
  105. [VCPU_SREG_##seg] = { \
  106. .selector = GUEST_##seg##_SELECTOR, \
  107. .base = GUEST_##seg##_BASE, \
  108. .limit = GUEST_##seg##_LIMIT, \
  109. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  110. }
  111. static struct kvm_vmx_segment_field {
  112. unsigned selector;
  113. unsigned base;
  114. unsigned limit;
  115. unsigned ar_bytes;
  116. } kvm_vmx_segment_fields[] = {
  117. VMX_SEGMENT_FIELD(CS),
  118. VMX_SEGMENT_FIELD(DS),
  119. VMX_SEGMENT_FIELD(ES),
  120. VMX_SEGMENT_FIELD(FS),
  121. VMX_SEGMENT_FIELD(GS),
  122. VMX_SEGMENT_FIELD(SS),
  123. VMX_SEGMENT_FIELD(TR),
  124. VMX_SEGMENT_FIELD(LDTR),
  125. };
  126. /*
  127. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  128. * away by decrementing the array size.
  129. */
  130. static const u32 vmx_msr_index[] = {
  131. #ifdef CONFIG_X86_64
  132. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  133. #endif
  134. MSR_EFER, MSR_K6_STAR,
  135. };
  136. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  137. static void load_msrs(struct kvm_msr_entry *e, int n)
  138. {
  139. int i;
  140. for (i = 0; i < n; ++i)
  141. wrmsrl(e[i].index, e[i].data);
  142. }
  143. static void save_msrs(struct kvm_msr_entry *e, int n)
  144. {
  145. int i;
  146. for (i = 0; i < n; ++i)
  147. rdmsrl(e[i].index, e[i].data);
  148. }
  149. static inline int is_page_fault(u32 intr_info)
  150. {
  151. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  152. INTR_INFO_VALID_MASK)) ==
  153. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  154. }
  155. static inline int is_no_device(u32 intr_info)
  156. {
  157. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  158. INTR_INFO_VALID_MASK)) ==
  159. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  160. }
  161. static inline int is_invalid_opcode(u32 intr_info)
  162. {
  163. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  164. INTR_INFO_VALID_MASK)) ==
  165. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  166. }
  167. static inline int is_external_interrupt(u32 intr_info)
  168. {
  169. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  170. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  171. }
  172. static inline int cpu_has_vmx_msr_bitmap(void)
  173. {
  174. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  175. }
  176. static inline int cpu_has_vmx_tpr_shadow(void)
  177. {
  178. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  179. }
  180. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  181. {
  182. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  183. }
  184. static inline int cpu_has_secondary_exec_ctrls(void)
  185. {
  186. return (vmcs_config.cpu_based_exec_ctrl &
  187. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  188. }
  189. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  190. {
  191. return flexpriority_enabled
  192. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  193. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  194. }
  195. static inline int cpu_has_vmx_invept_individual_addr(void)
  196. {
  197. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  198. }
  199. static inline int cpu_has_vmx_invept_context(void)
  200. {
  201. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  202. }
  203. static inline int cpu_has_vmx_invept_global(void)
  204. {
  205. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  206. }
  207. static inline int cpu_has_vmx_ept(void)
  208. {
  209. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  210. SECONDARY_EXEC_ENABLE_EPT);
  211. }
  212. static inline int vm_need_ept(void)
  213. {
  214. return (cpu_has_vmx_ept() && enable_ept);
  215. }
  216. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  217. {
  218. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  219. (irqchip_in_kernel(kvm)));
  220. }
  221. static inline int cpu_has_vmx_vpid(void)
  222. {
  223. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  224. SECONDARY_EXEC_ENABLE_VPID);
  225. }
  226. static inline int cpu_has_virtual_nmis(void)
  227. {
  228. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  229. }
  230. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  231. {
  232. int i;
  233. for (i = 0; i < vmx->nmsrs; ++i)
  234. if (vmx->guest_msrs[i].index == msr)
  235. return i;
  236. return -1;
  237. }
  238. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  239. {
  240. struct {
  241. u64 vpid : 16;
  242. u64 rsvd : 48;
  243. u64 gva;
  244. } operand = { vpid, 0, gva };
  245. asm volatile (__ex(ASM_VMX_INVVPID)
  246. /* CF==1 or ZF==1 --> rc = -1 */
  247. "; ja 1f ; ud2 ; 1:"
  248. : : "a"(&operand), "c"(ext) : "cc", "memory");
  249. }
  250. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  251. {
  252. struct {
  253. u64 eptp, gpa;
  254. } operand = {eptp, gpa};
  255. asm volatile (__ex(ASM_VMX_INVEPT)
  256. /* CF==1 or ZF==1 --> rc = -1 */
  257. "; ja 1f ; ud2 ; 1:\n"
  258. : : "a" (&operand), "c" (ext) : "cc", "memory");
  259. }
  260. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  261. {
  262. int i;
  263. i = __find_msr_index(vmx, msr);
  264. if (i >= 0)
  265. return &vmx->guest_msrs[i];
  266. return NULL;
  267. }
  268. static void vmcs_clear(struct vmcs *vmcs)
  269. {
  270. u64 phys_addr = __pa(vmcs);
  271. u8 error;
  272. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  273. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  274. : "cc", "memory");
  275. if (error)
  276. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  277. vmcs, phys_addr);
  278. }
  279. static void __vcpu_clear(void *arg)
  280. {
  281. struct vcpu_vmx *vmx = arg;
  282. int cpu = raw_smp_processor_id();
  283. if (vmx->vcpu.cpu == cpu)
  284. vmcs_clear(vmx->vmcs);
  285. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  286. per_cpu(current_vmcs, cpu) = NULL;
  287. rdtscll(vmx->vcpu.arch.host_tsc);
  288. list_del(&vmx->local_vcpus_link);
  289. vmx->vcpu.cpu = -1;
  290. vmx->launched = 0;
  291. }
  292. static void vcpu_clear(struct vcpu_vmx *vmx)
  293. {
  294. if (vmx->vcpu.cpu == -1)
  295. return;
  296. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  297. }
  298. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  299. {
  300. if (vmx->vpid == 0)
  301. return;
  302. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  303. }
  304. static inline void ept_sync_global(void)
  305. {
  306. if (cpu_has_vmx_invept_global())
  307. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  308. }
  309. static inline void ept_sync_context(u64 eptp)
  310. {
  311. if (vm_need_ept()) {
  312. if (cpu_has_vmx_invept_context())
  313. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  314. else
  315. ept_sync_global();
  316. }
  317. }
  318. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  319. {
  320. if (vm_need_ept()) {
  321. if (cpu_has_vmx_invept_individual_addr())
  322. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  323. eptp, gpa);
  324. else
  325. ept_sync_context(eptp);
  326. }
  327. }
  328. static unsigned long vmcs_readl(unsigned long field)
  329. {
  330. unsigned long value;
  331. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  332. : "=a"(value) : "d"(field) : "cc");
  333. return value;
  334. }
  335. static u16 vmcs_read16(unsigned long field)
  336. {
  337. return vmcs_readl(field);
  338. }
  339. static u32 vmcs_read32(unsigned long field)
  340. {
  341. return vmcs_readl(field);
  342. }
  343. static u64 vmcs_read64(unsigned long field)
  344. {
  345. #ifdef CONFIG_X86_64
  346. return vmcs_readl(field);
  347. #else
  348. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  349. #endif
  350. }
  351. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  352. {
  353. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  354. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  355. dump_stack();
  356. }
  357. static void vmcs_writel(unsigned long field, unsigned long value)
  358. {
  359. u8 error;
  360. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  361. : "=q"(error) : "a"(value), "d"(field) : "cc");
  362. if (unlikely(error))
  363. vmwrite_error(field, value);
  364. }
  365. static void vmcs_write16(unsigned long field, u16 value)
  366. {
  367. vmcs_writel(field, value);
  368. }
  369. static void vmcs_write32(unsigned long field, u32 value)
  370. {
  371. vmcs_writel(field, value);
  372. }
  373. static void vmcs_write64(unsigned long field, u64 value)
  374. {
  375. vmcs_writel(field, value);
  376. #ifndef CONFIG_X86_64
  377. asm volatile ("");
  378. vmcs_writel(field+1, value >> 32);
  379. #endif
  380. }
  381. static void vmcs_clear_bits(unsigned long field, u32 mask)
  382. {
  383. vmcs_writel(field, vmcs_readl(field) & ~mask);
  384. }
  385. static void vmcs_set_bits(unsigned long field, u32 mask)
  386. {
  387. vmcs_writel(field, vmcs_readl(field) | mask);
  388. }
  389. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  390. {
  391. u32 eb;
  392. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  393. if (!vcpu->fpu_active)
  394. eb |= 1u << NM_VECTOR;
  395. if (vcpu->guest_debug.enabled)
  396. eb |= 1u << 1;
  397. if (vcpu->arch.rmode.active)
  398. eb = ~0;
  399. if (vm_need_ept())
  400. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  401. vmcs_write32(EXCEPTION_BITMAP, eb);
  402. }
  403. static void reload_tss(void)
  404. {
  405. /*
  406. * VT restores TR but not its size. Useless.
  407. */
  408. struct descriptor_table gdt;
  409. struct desc_struct *descs;
  410. kvm_get_gdt(&gdt);
  411. descs = (void *)gdt.base;
  412. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  413. load_TR_desc();
  414. }
  415. static void load_transition_efer(struct vcpu_vmx *vmx)
  416. {
  417. int efer_offset = vmx->msr_offset_efer;
  418. u64 host_efer = vmx->host_msrs[efer_offset].data;
  419. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  420. u64 ignore_bits;
  421. if (efer_offset < 0)
  422. return;
  423. /*
  424. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  425. * outside long mode
  426. */
  427. ignore_bits = EFER_NX | EFER_SCE;
  428. #ifdef CONFIG_X86_64
  429. ignore_bits |= EFER_LMA | EFER_LME;
  430. /* SCE is meaningful only in long mode on Intel */
  431. if (guest_efer & EFER_LMA)
  432. ignore_bits &= ~(u64)EFER_SCE;
  433. #endif
  434. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  435. return;
  436. vmx->host_state.guest_efer_loaded = 1;
  437. guest_efer &= ~ignore_bits;
  438. guest_efer |= host_efer & ignore_bits;
  439. wrmsrl(MSR_EFER, guest_efer);
  440. vmx->vcpu.stat.efer_reload++;
  441. }
  442. static void reload_host_efer(struct vcpu_vmx *vmx)
  443. {
  444. if (vmx->host_state.guest_efer_loaded) {
  445. vmx->host_state.guest_efer_loaded = 0;
  446. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  447. }
  448. }
  449. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  450. {
  451. struct vcpu_vmx *vmx = to_vmx(vcpu);
  452. if (vmx->host_state.loaded)
  453. return;
  454. vmx->host_state.loaded = 1;
  455. /*
  456. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  457. * allow segment selectors with cpl > 0 or ti == 1.
  458. */
  459. vmx->host_state.ldt_sel = kvm_read_ldt();
  460. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  461. vmx->host_state.fs_sel = kvm_read_fs();
  462. if (!(vmx->host_state.fs_sel & 7)) {
  463. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  464. vmx->host_state.fs_reload_needed = 0;
  465. } else {
  466. vmcs_write16(HOST_FS_SELECTOR, 0);
  467. vmx->host_state.fs_reload_needed = 1;
  468. }
  469. vmx->host_state.gs_sel = kvm_read_gs();
  470. if (!(vmx->host_state.gs_sel & 7))
  471. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  472. else {
  473. vmcs_write16(HOST_GS_SELECTOR, 0);
  474. vmx->host_state.gs_ldt_reload_needed = 1;
  475. }
  476. #ifdef CONFIG_X86_64
  477. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  478. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  479. #else
  480. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  481. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  482. #endif
  483. #ifdef CONFIG_X86_64
  484. if (is_long_mode(&vmx->vcpu))
  485. save_msrs(vmx->host_msrs +
  486. vmx->msr_offset_kernel_gs_base, 1);
  487. #endif
  488. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  489. load_transition_efer(vmx);
  490. }
  491. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  492. {
  493. unsigned long flags;
  494. if (!vmx->host_state.loaded)
  495. return;
  496. ++vmx->vcpu.stat.host_state_reload;
  497. vmx->host_state.loaded = 0;
  498. if (vmx->host_state.fs_reload_needed)
  499. kvm_load_fs(vmx->host_state.fs_sel);
  500. if (vmx->host_state.gs_ldt_reload_needed) {
  501. kvm_load_ldt(vmx->host_state.ldt_sel);
  502. /*
  503. * If we have to reload gs, we must take care to
  504. * preserve our gs base.
  505. */
  506. local_irq_save(flags);
  507. kvm_load_gs(vmx->host_state.gs_sel);
  508. #ifdef CONFIG_X86_64
  509. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  510. #endif
  511. local_irq_restore(flags);
  512. }
  513. reload_tss();
  514. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  515. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  516. reload_host_efer(vmx);
  517. }
  518. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  519. {
  520. preempt_disable();
  521. __vmx_load_host_state(vmx);
  522. preempt_enable();
  523. }
  524. /*
  525. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  526. * vcpu mutex is already taken.
  527. */
  528. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  529. {
  530. struct vcpu_vmx *vmx = to_vmx(vcpu);
  531. u64 phys_addr = __pa(vmx->vmcs);
  532. u64 tsc_this, delta, new_offset;
  533. if (vcpu->cpu != cpu) {
  534. vcpu_clear(vmx);
  535. kvm_migrate_timers(vcpu);
  536. vpid_sync_vcpu_all(vmx);
  537. local_irq_disable();
  538. list_add(&vmx->local_vcpus_link,
  539. &per_cpu(vcpus_on_cpu, cpu));
  540. local_irq_enable();
  541. }
  542. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  543. u8 error;
  544. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  545. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  546. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  547. : "cc");
  548. if (error)
  549. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  550. vmx->vmcs, phys_addr);
  551. }
  552. if (vcpu->cpu != cpu) {
  553. struct descriptor_table dt;
  554. unsigned long sysenter_esp;
  555. vcpu->cpu = cpu;
  556. /*
  557. * Linux uses per-cpu TSS and GDT, so set these when switching
  558. * processors.
  559. */
  560. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  561. kvm_get_gdt(&dt);
  562. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  563. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  564. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  565. /*
  566. * Make sure the time stamp counter is monotonous.
  567. */
  568. rdtscll(tsc_this);
  569. if (tsc_this < vcpu->arch.host_tsc) {
  570. delta = vcpu->arch.host_tsc - tsc_this;
  571. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  572. vmcs_write64(TSC_OFFSET, new_offset);
  573. }
  574. }
  575. }
  576. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  577. {
  578. __vmx_load_host_state(to_vmx(vcpu));
  579. }
  580. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  581. {
  582. if (vcpu->fpu_active)
  583. return;
  584. vcpu->fpu_active = 1;
  585. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  586. if (vcpu->arch.cr0 & X86_CR0_TS)
  587. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  588. update_exception_bitmap(vcpu);
  589. }
  590. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  591. {
  592. if (!vcpu->fpu_active)
  593. return;
  594. vcpu->fpu_active = 0;
  595. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  596. update_exception_bitmap(vcpu);
  597. }
  598. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  599. {
  600. return vmcs_readl(GUEST_RFLAGS);
  601. }
  602. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  603. {
  604. if (vcpu->arch.rmode.active)
  605. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  606. vmcs_writel(GUEST_RFLAGS, rflags);
  607. }
  608. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  609. {
  610. unsigned long rip;
  611. u32 interruptibility;
  612. rip = vmcs_readl(GUEST_RIP);
  613. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  614. vmcs_writel(GUEST_RIP, rip);
  615. /*
  616. * We emulated an instruction, so temporary interrupt blocking
  617. * should be removed, if set.
  618. */
  619. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  620. if (interruptibility & 3)
  621. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  622. interruptibility & ~3);
  623. vcpu->arch.interrupt_window_open = 1;
  624. }
  625. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  626. bool has_error_code, u32 error_code)
  627. {
  628. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  629. nr | INTR_TYPE_EXCEPTION
  630. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  631. | INTR_INFO_VALID_MASK);
  632. if (has_error_code)
  633. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  634. }
  635. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  636. {
  637. struct vcpu_vmx *vmx = to_vmx(vcpu);
  638. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  639. }
  640. /*
  641. * Swap MSR entry in host/guest MSR entry array.
  642. */
  643. #ifdef CONFIG_X86_64
  644. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  645. {
  646. struct kvm_msr_entry tmp;
  647. tmp = vmx->guest_msrs[to];
  648. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  649. vmx->guest_msrs[from] = tmp;
  650. tmp = vmx->host_msrs[to];
  651. vmx->host_msrs[to] = vmx->host_msrs[from];
  652. vmx->host_msrs[from] = tmp;
  653. }
  654. #endif
  655. /*
  656. * Set up the vmcs to automatically save and restore system
  657. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  658. * mode, as fiddling with msrs is very expensive.
  659. */
  660. static void setup_msrs(struct vcpu_vmx *vmx)
  661. {
  662. int save_nmsrs;
  663. vmx_load_host_state(vmx);
  664. save_nmsrs = 0;
  665. #ifdef CONFIG_X86_64
  666. if (is_long_mode(&vmx->vcpu)) {
  667. int index;
  668. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  669. if (index >= 0)
  670. move_msr_up(vmx, index, save_nmsrs++);
  671. index = __find_msr_index(vmx, MSR_LSTAR);
  672. if (index >= 0)
  673. move_msr_up(vmx, index, save_nmsrs++);
  674. index = __find_msr_index(vmx, MSR_CSTAR);
  675. if (index >= 0)
  676. move_msr_up(vmx, index, save_nmsrs++);
  677. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  678. if (index >= 0)
  679. move_msr_up(vmx, index, save_nmsrs++);
  680. /*
  681. * MSR_K6_STAR is only needed on long mode guests, and only
  682. * if efer.sce is enabled.
  683. */
  684. index = __find_msr_index(vmx, MSR_K6_STAR);
  685. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  686. move_msr_up(vmx, index, save_nmsrs++);
  687. }
  688. #endif
  689. vmx->save_nmsrs = save_nmsrs;
  690. #ifdef CONFIG_X86_64
  691. vmx->msr_offset_kernel_gs_base =
  692. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  693. #endif
  694. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  695. }
  696. /*
  697. * reads and returns guest's timestamp counter "register"
  698. * guest_tsc = host_tsc + tsc_offset -- 21.3
  699. */
  700. static u64 guest_read_tsc(void)
  701. {
  702. u64 host_tsc, tsc_offset;
  703. rdtscll(host_tsc);
  704. tsc_offset = vmcs_read64(TSC_OFFSET);
  705. return host_tsc + tsc_offset;
  706. }
  707. /*
  708. * writes 'guest_tsc' into guest's timestamp counter "register"
  709. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  710. */
  711. static void guest_write_tsc(u64 guest_tsc)
  712. {
  713. u64 host_tsc;
  714. rdtscll(host_tsc);
  715. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  716. }
  717. /*
  718. * Reads an msr value (of 'msr_index') into 'pdata'.
  719. * Returns 0 on success, non-0 otherwise.
  720. * Assumes vcpu_load() was already called.
  721. */
  722. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  723. {
  724. u64 data;
  725. struct kvm_msr_entry *msr;
  726. if (!pdata) {
  727. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  728. return -EINVAL;
  729. }
  730. switch (msr_index) {
  731. #ifdef CONFIG_X86_64
  732. case MSR_FS_BASE:
  733. data = vmcs_readl(GUEST_FS_BASE);
  734. break;
  735. case MSR_GS_BASE:
  736. data = vmcs_readl(GUEST_GS_BASE);
  737. break;
  738. case MSR_EFER:
  739. return kvm_get_msr_common(vcpu, msr_index, pdata);
  740. #endif
  741. case MSR_IA32_TIME_STAMP_COUNTER:
  742. data = guest_read_tsc();
  743. break;
  744. case MSR_IA32_SYSENTER_CS:
  745. data = vmcs_read32(GUEST_SYSENTER_CS);
  746. break;
  747. case MSR_IA32_SYSENTER_EIP:
  748. data = vmcs_readl(GUEST_SYSENTER_EIP);
  749. break;
  750. case MSR_IA32_SYSENTER_ESP:
  751. data = vmcs_readl(GUEST_SYSENTER_ESP);
  752. break;
  753. default:
  754. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  755. if (msr) {
  756. data = msr->data;
  757. break;
  758. }
  759. return kvm_get_msr_common(vcpu, msr_index, pdata);
  760. }
  761. *pdata = data;
  762. return 0;
  763. }
  764. /*
  765. * Writes msr value into into the appropriate "register".
  766. * Returns 0 on success, non-0 otherwise.
  767. * Assumes vcpu_load() was already called.
  768. */
  769. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  770. {
  771. struct vcpu_vmx *vmx = to_vmx(vcpu);
  772. struct kvm_msr_entry *msr;
  773. int ret = 0;
  774. switch (msr_index) {
  775. #ifdef CONFIG_X86_64
  776. case MSR_EFER:
  777. vmx_load_host_state(vmx);
  778. ret = kvm_set_msr_common(vcpu, msr_index, data);
  779. break;
  780. case MSR_FS_BASE:
  781. vmcs_writel(GUEST_FS_BASE, data);
  782. break;
  783. case MSR_GS_BASE:
  784. vmcs_writel(GUEST_GS_BASE, data);
  785. break;
  786. #endif
  787. case MSR_IA32_SYSENTER_CS:
  788. vmcs_write32(GUEST_SYSENTER_CS, data);
  789. break;
  790. case MSR_IA32_SYSENTER_EIP:
  791. vmcs_writel(GUEST_SYSENTER_EIP, data);
  792. break;
  793. case MSR_IA32_SYSENTER_ESP:
  794. vmcs_writel(GUEST_SYSENTER_ESP, data);
  795. break;
  796. case MSR_IA32_TIME_STAMP_COUNTER:
  797. guest_write_tsc(data);
  798. break;
  799. case MSR_P6_PERFCTR0:
  800. case MSR_P6_PERFCTR1:
  801. case MSR_P6_EVNTSEL0:
  802. case MSR_P6_EVNTSEL1:
  803. /*
  804. * Just discard all writes to the performance counters; this
  805. * should keep both older linux and windows 64-bit guests
  806. * happy
  807. */
  808. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  809. break;
  810. default:
  811. vmx_load_host_state(vmx);
  812. msr = find_msr_entry(vmx, msr_index);
  813. if (msr) {
  814. msr->data = data;
  815. break;
  816. }
  817. ret = kvm_set_msr_common(vcpu, msr_index, data);
  818. }
  819. return ret;
  820. }
  821. /*
  822. * Sync the rsp and rip registers into the vcpu structure. This allows
  823. * registers to be accessed by indexing vcpu->arch.regs.
  824. */
  825. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  826. {
  827. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  828. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  829. }
  830. /*
  831. * Syncs rsp and rip back into the vmcs. Should be called after possible
  832. * modification.
  833. */
  834. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  835. {
  836. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  837. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  838. }
  839. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  840. {
  841. unsigned long dr7 = 0x400;
  842. int old_singlestep;
  843. old_singlestep = vcpu->guest_debug.singlestep;
  844. vcpu->guest_debug.enabled = dbg->enabled;
  845. if (vcpu->guest_debug.enabled) {
  846. int i;
  847. dr7 |= 0x200; /* exact */
  848. for (i = 0; i < 4; ++i) {
  849. if (!dbg->breakpoints[i].enabled)
  850. continue;
  851. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  852. dr7 |= 2 << (i*2); /* global enable */
  853. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  854. }
  855. vcpu->guest_debug.singlestep = dbg->singlestep;
  856. } else
  857. vcpu->guest_debug.singlestep = 0;
  858. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  859. unsigned long flags;
  860. flags = vmcs_readl(GUEST_RFLAGS);
  861. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  862. vmcs_writel(GUEST_RFLAGS, flags);
  863. }
  864. update_exception_bitmap(vcpu);
  865. vmcs_writel(GUEST_DR7, dr7);
  866. return 0;
  867. }
  868. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  869. {
  870. struct vcpu_vmx *vmx = to_vmx(vcpu);
  871. u32 idtv_info_field;
  872. idtv_info_field = vmx->idt_vectoring_info;
  873. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  874. if (is_external_interrupt(idtv_info_field))
  875. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  876. else
  877. printk(KERN_DEBUG "pending exception: not handled yet\n");
  878. }
  879. return -1;
  880. }
  881. static __init int cpu_has_kvm_support(void)
  882. {
  883. unsigned long ecx = cpuid_ecx(1);
  884. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  885. }
  886. static __init int vmx_disabled_by_bios(void)
  887. {
  888. u64 msr;
  889. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  890. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  891. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  892. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  893. /* locked but not enabled */
  894. }
  895. static void hardware_enable(void *garbage)
  896. {
  897. int cpu = raw_smp_processor_id();
  898. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  899. u64 old;
  900. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  901. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  902. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  903. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  904. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  905. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  906. /* enable and lock */
  907. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  908. MSR_IA32_FEATURE_CONTROL_LOCKED |
  909. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  910. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  911. asm volatile (ASM_VMX_VMXON_RAX
  912. : : "a"(&phys_addr), "m"(phys_addr)
  913. : "memory", "cc");
  914. }
  915. static void vmclear_local_vcpus(void)
  916. {
  917. int cpu = raw_smp_processor_id();
  918. struct vcpu_vmx *vmx, *n;
  919. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  920. local_vcpus_link)
  921. __vcpu_clear(vmx);
  922. }
  923. static void hardware_disable(void *garbage)
  924. {
  925. vmclear_local_vcpus();
  926. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  927. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  928. }
  929. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  930. u32 msr, u32 *result)
  931. {
  932. u32 vmx_msr_low, vmx_msr_high;
  933. u32 ctl = ctl_min | ctl_opt;
  934. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  935. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  936. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  937. /* Ensure minimum (required) set of control bits are supported. */
  938. if (ctl_min & ~ctl)
  939. return -EIO;
  940. *result = ctl;
  941. return 0;
  942. }
  943. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  944. {
  945. u32 vmx_msr_low, vmx_msr_high;
  946. u32 min, opt, min2, opt2;
  947. u32 _pin_based_exec_control = 0;
  948. u32 _cpu_based_exec_control = 0;
  949. u32 _cpu_based_2nd_exec_control = 0;
  950. u32 _vmexit_control = 0;
  951. u32 _vmentry_control = 0;
  952. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  953. opt = PIN_BASED_VIRTUAL_NMIS;
  954. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  955. &_pin_based_exec_control) < 0)
  956. return -EIO;
  957. min = CPU_BASED_HLT_EXITING |
  958. #ifdef CONFIG_X86_64
  959. CPU_BASED_CR8_LOAD_EXITING |
  960. CPU_BASED_CR8_STORE_EXITING |
  961. #endif
  962. CPU_BASED_CR3_LOAD_EXITING |
  963. CPU_BASED_CR3_STORE_EXITING |
  964. CPU_BASED_USE_IO_BITMAPS |
  965. CPU_BASED_MOV_DR_EXITING |
  966. CPU_BASED_USE_TSC_OFFSETING;
  967. opt = CPU_BASED_TPR_SHADOW |
  968. CPU_BASED_USE_MSR_BITMAPS |
  969. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  970. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  971. &_cpu_based_exec_control) < 0)
  972. return -EIO;
  973. #ifdef CONFIG_X86_64
  974. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  975. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  976. ~CPU_BASED_CR8_STORE_EXITING;
  977. #endif
  978. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  979. min2 = 0;
  980. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  981. SECONDARY_EXEC_WBINVD_EXITING |
  982. SECONDARY_EXEC_ENABLE_VPID |
  983. SECONDARY_EXEC_ENABLE_EPT;
  984. if (adjust_vmx_controls(min2, opt2,
  985. MSR_IA32_VMX_PROCBASED_CTLS2,
  986. &_cpu_based_2nd_exec_control) < 0)
  987. return -EIO;
  988. }
  989. #ifndef CONFIG_X86_64
  990. if (!(_cpu_based_2nd_exec_control &
  991. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  992. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  993. #endif
  994. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  995. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  996. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  997. CPU_BASED_CR3_STORE_EXITING);
  998. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  999. &_cpu_based_exec_control) < 0)
  1000. return -EIO;
  1001. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1002. vmx_capability.ept, vmx_capability.vpid);
  1003. }
  1004. min = 0;
  1005. #ifdef CONFIG_X86_64
  1006. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1007. #endif
  1008. opt = 0;
  1009. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1010. &_vmexit_control) < 0)
  1011. return -EIO;
  1012. min = opt = 0;
  1013. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1014. &_vmentry_control) < 0)
  1015. return -EIO;
  1016. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1017. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1018. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1019. return -EIO;
  1020. #ifdef CONFIG_X86_64
  1021. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1022. if (vmx_msr_high & (1u<<16))
  1023. return -EIO;
  1024. #endif
  1025. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1026. if (((vmx_msr_high >> 18) & 15) != 6)
  1027. return -EIO;
  1028. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1029. vmcs_conf->order = get_order(vmcs_config.size);
  1030. vmcs_conf->revision_id = vmx_msr_low;
  1031. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1032. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1033. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1034. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1035. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1036. return 0;
  1037. }
  1038. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1039. {
  1040. int node = cpu_to_node(cpu);
  1041. struct page *pages;
  1042. struct vmcs *vmcs;
  1043. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1044. if (!pages)
  1045. return NULL;
  1046. vmcs = page_address(pages);
  1047. memset(vmcs, 0, vmcs_config.size);
  1048. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1049. return vmcs;
  1050. }
  1051. static struct vmcs *alloc_vmcs(void)
  1052. {
  1053. return alloc_vmcs_cpu(raw_smp_processor_id());
  1054. }
  1055. static void free_vmcs(struct vmcs *vmcs)
  1056. {
  1057. free_pages((unsigned long)vmcs, vmcs_config.order);
  1058. }
  1059. static void free_kvm_area(void)
  1060. {
  1061. int cpu;
  1062. for_each_online_cpu(cpu)
  1063. free_vmcs(per_cpu(vmxarea, cpu));
  1064. }
  1065. static __init int alloc_kvm_area(void)
  1066. {
  1067. int cpu;
  1068. for_each_online_cpu(cpu) {
  1069. struct vmcs *vmcs;
  1070. vmcs = alloc_vmcs_cpu(cpu);
  1071. if (!vmcs) {
  1072. free_kvm_area();
  1073. return -ENOMEM;
  1074. }
  1075. per_cpu(vmxarea, cpu) = vmcs;
  1076. }
  1077. return 0;
  1078. }
  1079. static __init int hardware_setup(void)
  1080. {
  1081. if (setup_vmcs_config(&vmcs_config) < 0)
  1082. return -EIO;
  1083. if (boot_cpu_has(X86_FEATURE_NX))
  1084. kvm_enable_efer_bits(EFER_NX);
  1085. return alloc_kvm_area();
  1086. }
  1087. static __exit void hardware_unsetup(void)
  1088. {
  1089. free_kvm_area();
  1090. }
  1091. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1092. {
  1093. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1094. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1095. vmcs_write16(sf->selector, save->selector);
  1096. vmcs_writel(sf->base, save->base);
  1097. vmcs_write32(sf->limit, save->limit);
  1098. vmcs_write32(sf->ar_bytes, save->ar);
  1099. } else {
  1100. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1101. << AR_DPL_SHIFT;
  1102. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1103. }
  1104. }
  1105. static void enter_pmode(struct kvm_vcpu *vcpu)
  1106. {
  1107. unsigned long flags;
  1108. vcpu->arch.rmode.active = 0;
  1109. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1110. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1111. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1112. flags = vmcs_readl(GUEST_RFLAGS);
  1113. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1114. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1115. vmcs_writel(GUEST_RFLAGS, flags);
  1116. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1117. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1118. update_exception_bitmap(vcpu);
  1119. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1120. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1121. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1122. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1123. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1124. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1125. vmcs_write16(GUEST_CS_SELECTOR,
  1126. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1127. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1128. }
  1129. static gva_t rmode_tss_base(struct kvm *kvm)
  1130. {
  1131. if (!kvm->arch.tss_addr) {
  1132. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1133. kvm->memslots[0].npages - 3;
  1134. return base_gfn << PAGE_SHIFT;
  1135. }
  1136. return kvm->arch.tss_addr;
  1137. }
  1138. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1139. {
  1140. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1141. save->selector = vmcs_read16(sf->selector);
  1142. save->base = vmcs_readl(sf->base);
  1143. save->limit = vmcs_read32(sf->limit);
  1144. save->ar = vmcs_read32(sf->ar_bytes);
  1145. vmcs_write16(sf->selector, save->base >> 4);
  1146. vmcs_write32(sf->base, save->base & 0xfffff);
  1147. vmcs_write32(sf->limit, 0xffff);
  1148. vmcs_write32(sf->ar_bytes, 0xf3);
  1149. }
  1150. static void enter_rmode(struct kvm_vcpu *vcpu)
  1151. {
  1152. unsigned long flags;
  1153. vcpu->arch.rmode.active = 1;
  1154. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1155. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1156. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1157. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1158. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1159. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1160. flags = vmcs_readl(GUEST_RFLAGS);
  1161. vcpu->arch.rmode.save_iopl
  1162. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1163. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1164. vmcs_writel(GUEST_RFLAGS, flags);
  1165. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1166. update_exception_bitmap(vcpu);
  1167. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1168. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1169. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1170. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1171. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1172. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1173. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1174. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1175. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1176. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1177. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1178. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1179. kvm_mmu_reset_context(vcpu);
  1180. init_rmode(vcpu->kvm);
  1181. }
  1182. #ifdef CONFIG_X86_64
  1183. static void enter_lmode(struct kvm_vcpu *vcpu)
  1184. {
  1185. u32 guest_tr_ar;
  1186. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1187. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1188. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1189. __func__);
  1190. vmcs_write32(GUEST_TR_AR_BYTES,
  1191. (guest_tr_ar & ~AR_TYPE_MASK)
  1192. | AR_TYPE_BUSY_64_TSS);
  1193. }
  1194. vcpu->arch.shadow_efer |= EFER_LMA;
  1195. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1196. vmcs_write32(VM_ENTRY_CONTROLS,
  1197. vmcs_read32(VM_ENTRY_CONTROLS)
  1198. | VM_ENTRY_IA32E_MODE);
  1199. }
  1200. static void exit_lmode(struct kvm_vcpu *vcpu)
  1201. {
  1202. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1203. vmcs_write32(VM_ENTRY_CONTROLS,
  1204. vmcs_read32(VM_ENTRY_CONTROLS)
  1205. & ~VM_ENTRY_IA32E_MODE);
  1206. }
  1207. #endif
  1208. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1209. {
  1210. vpid_sync_vcpu_all(to_vmx(vcpu));
  1211. if (vm_need_ept())
  1212. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1213. }
  1214. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1215. {
  1216. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1217. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1218. }
  1219. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1220. {
  1221. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1222. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1223. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1224. return;
  1225. }
  1226. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1227. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1228. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1229. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1230. }
  1231. }
  1232. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1233. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1234. unsigned long cr0,
  1235. struct kvm_vcpu *vcpu)
  1236. {
  1237. if (!(cr0 & X86_CR0_PG)) {
  1238. /* From paging/starting to nonpaging */
  1239. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1240. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1241. (CPU_BASED_CR3_LOAD_EXITING |
  1242. CPU_BASED_CR3_STORE_EXITING));
  1243. vcpu->arch.cr0 = cr0;
  1244. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1245. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1246. *hw_cr0 &= ~X86_CR0_WP;
  1247. } else if (!is_paging(vcpu)) {
  1248. /* From nonpaging to paging */
  1249. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1250. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1251. ~(CPU_BASED_CR3_LOAD_EXITING |
  1252. CPU_BASED_CR3_STORE_EXITING));
  1253. vcpu->arch.cr0 = cr0;
  1254. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1255. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1256. *hw_cr0 &= ~X86_CR0_WP;
  1257. }
  1258. }
  1259. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1260. struct kvm_vcpu *vcpu)
  1261. {
  1262. if (!is_paging(vcpu)) {
  1263. *hw_cr4 &= ~X86_CR4_PAE;
  1264. *hw_cr4 |= X86_CR4_PSE;
  1265. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1266. *hw_cr4 &= ~X86_CR4_PAE;
  1267. }
  1268. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1269. {
  1270. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1271. KVM_VM_CR0_ALWAYS_ON;
  1272. vmx_fpu_deactivate(vcpu);
  1273. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1274. enter_pmode(vcpu);
  1275. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1276. enter_rmode(vcpu);
  1277. #ifdef CONFIG_X86_64
  1278. if (vcpu->arch.shadow_efer & EFER_LME) {
  1279. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1280. enter_lmode(vcpu);
  1281. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1282. exit_lmode(vcpu);
  1283. }
  1284. #endif
  1285. if (vm_need_ept())
  1286. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1287. vmcs_writel(CR0_READ_SHADOW, cr0);
  1288. vmcs_writel(GUEST_CR0, hw_cr0);
  1289. vcpu->arch.cr0 = cr0;
  1290. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1291. vmx_fpu_activate(vcpu);
  1292. }
  1293. static u64 construct_eptp(unsigned long root_hpa)
  1294. {
  1295. u64 eptp;
  1296. /* TODO write the value reading from MSR */
  1297. eptp = VMX_EPT_DEFAULT_MT |
  1298. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1299. eptp |= (root_hpa & PAGE_MASK);
  1300. return eptp;
  1301. }
  1302. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1303. {
  1304. unsigned long guest_cr3;
  1305. u64 eptp;
  1306. guest_cr3 = cr3;
  1307. if (vm_need_ept()) {
  1308. eptp = construct_eptp(cr3);
  1309. vmcs_write64(EPT_POINTER, eptp);
  1310. ept_sync_context(eptp);
  1311. ept_load_pdptrs(vcpu);
  1312. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1313. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1314. }
  1315. vmx_flush_tlb(vcpu);
  1316. vmcs_writel(GUEST_CR3, guest_cr3);
  1317. if (vcpu->arch.cr0 & X86_CR0_PE)
  1318. vmx_fpu_deactivate(vcpu);
  1319. }
  1320. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1321. {
  1322. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1323. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1324. vcpu->arch.cr4 = cr4;
  1325. if (vm_need_ept())
  1326. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1327. vmcs_writel(CR4_READ_SHADOW, cr4);
  1328. vmcs_writel(GUEST_CR4, hw_cr4);
  1329. }
  1330. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1331. {
  1332. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1333. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1334. vcpu->arch.shadow_efer = efer;
  1335. if (!msr)
  1336. return;
  1337. if (efer & EFER_LMA) {
  1338. vmcs_write32(VM_ENTRY_CONTROLS,
  1339. vmcs_read32(VM_ENTRY_CONTROLS) |
  1340. VM_ENTRY_IA32E_MODE);
  1341. msr->data = efer;
  1342. } else {
  1343. vmcs_write32(VM_ENTRY_CONTROLS,
  1344. vmcs_read32(VM_ENTRY_CONTROLS) &
  1345. ~VM_ENTRY_IA32E_MODE);
  1346. msr->data = efer & ~EFER_LME;
  1347. }
  1348. setup_msrs(vmx);
  1349. }
  1350. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1351. {
  1352. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1353. return vmcs_readl(sf->base);
  1354. }
  1355. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1356. struct kvm_segment *var, int seg)
  1357. {
  1358. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1359. u32 ar;
  1360. var->base = vmcs_readl(sf->base);
  1361. var->limit = vmcs_read32(sf->limit);
  1362. var->selector = vmcs_read16(sf->selector);
  1363. ar = vmcs_read32(sf->ar_bytes);
  1364. if (ar & AR_UNUSABLE_MASK)
  1365. ar = 0;
  1366. var->type = ar & 15;
  1367. var->s = (ar >> 4) & 1;
  1368. var->dpl = (ar >> 5) & 3;
  1369. var->present = (ar >> 7) & 1;
  1370. var->avl = (ar >> 12) & 1;
  1371. var->l = (ar >> 13) & 1;
  1372. var->db = (ar >> 14) & 1;
  1373. var->g = (ar >> 15) & 1;
  1374. var->unusable = (ar >> 16) & 1;
  1375. }
  1376. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1377. {
  1378. struct kvm_segment kvm_seg;
  1379. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1380. return 0;
  1381. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1382. return 3;
  1383. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1384. return kvm_seg.selector & 3;
  1385. }
  1386. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1387. {
  1388. u32 ar;
  1389. if (var->unusable)
  1390. ar = 1 << 16;
  1391. else {
  1392. ar = var->type & 15;
  1393. ar |= (var->s & 1) << 4;
  1394. ar |= (var->dpl & 3) << 5;
  1395. ar |= (var->present & 1) << 7;
  1396. ar |= (var->avl & 1) << 12;
  1397. ar |= (var->l & 1) << 13;
  1398. ar |= (var->db & 1) << 14;
  1399. ar |= (var->g & 1) << 15;
  1400. }
  1401. if (ar == 0) /* a 0 value means unusable */
  1402. ar = AR_UNUSABLE_MASK;
  1403. return ar;
  1404. }
  1405. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1406. struct kvm_segment *var, int seg)
  1407. {
  1408. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1409. u32 ar;
  1410. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1411. vcpu->arch.rmode.tr.selector = var->selector;
  1412. vcpu->arch.rmode.tr.base = var->base;
  1413. vcpu->arch.rmode.tr.limit = var->limit;
  1414. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1415. return;
  1416. }
  1417. vmcs_writel(sf->base, var->base);
  1418. vmcs_write32(sf->limit, var->limit);
  1419. vmcs_write16(sf->selector, var->selector);
  1420. if (vcpu->arch.rmode.active && var->s) {
  1421. /*
  1422. * Hack real-mode segments into vm86 compatibility.
  1423. */
  1424. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1425. vmcs_writel(sf->base, 0xf0000);
  1426. ar = 0xf3;
  1427. } else
  1428. ar = vmx_segment_access_rights(var);
  1429. vmcs_write32(sf->ar_bytes, ar);
  1430. }
  1431. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1432. {
  1433. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1434. *db = (ar >> 14) & 1;
  1435. *l = (ar >> 13) & 1;
  1436. }
  1437. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1438. {
  1439. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1440. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1441. }
  1442. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1443. {
  1444. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1445. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1446. }
  1447. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1448. {
  1449. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1450. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1451. }
  1452. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1453. {
  1454. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1455. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1456. }
  1457. static int init_rmode_tss(struct kvm *kvm)
  1458. {
  1459. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1460. u16 data = 0;
  1461. int ret = 0;
  1462. int r;
  1463. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1464. if (r < 0)
  1465. goto out;
  1466. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1467. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1468. if (r < 0)
  1469. goto out;
  1470. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1471. if (r < 0)
  1472. goto out;
  1473. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1474. if (r < 0)
  1475. goto out;
  1476. data = ~0;
  1477. r = kvm_write_guest_page(kvm, fn, &data,
  1478. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1479. sizeof(u8));
  1480. if (r < 0)
  1481. goto out;
  1482. ret = 1;
  1483. out:
  1484. return ret;
  1485. }
  1486. static int init_rmode_identity_map(struct kvm *kvm)
  1487. {
  1488. int i, r, ret;
  1489. pfn_t identity_map_pfn;
  1490. u32 tmp;
  1491. if (!vm_need_ept())
  1492. return 1;
  1493. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1494. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1495. "haven't been allocated!\n");
  1496. return 0;
  1497. }
  1498. if (likely(kvm->arch.ept_identity_pagetable_done))
  1499. return 1;
  1500. ret = 0;
  1501. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1502. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1503. if (r < 0)
  1504. goto out;
  1505. /* Set up identity-mapping pagetable for EPT in real mode */
  1506. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1507. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1508. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1509. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1510. &tmp, i * sizeof(tmp), sizeof(tmp));
  1511. if (r < 0)
  1512. goto out;
  1513. }
  1514. kvm->arch.ept_identity_pagetable_done = true;
  1515. ret = 1;
  1516. out:
  1517. return ret;
  1518. }
  1519. static void seg_setup(int seg)
  1520. {
  1521. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1522. vmcs_write16(sf->selector, 0);
  1523. vmcs_writel(sf->base, 0);
  1524. vmcs_write32(sf->limit, 0xffff);
  1525. vmcs_write32(sf->ar_bytes, 0x93);
  1526. }
  1527. static int alloc_apic_access_page(struct kvm *kvm)
  1528. {
  1529. struct kvm_userspace_memory_region kvm_userspace_mem;
  1530. int r = 0;
  1531. down_write(&kvm->slots_lock);
  1532. if (kvm->arch.apic_access_page)
  1533. goto out;
  1534. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1535. kvm_userspace_mem.flags = 0;
  1536. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1537. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1538. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1539. if (r)
  1540. goto out;
  1541. down_read(&current->mm->mmap_sem);
  1542. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1543. up_read(&current->mm->mmap_sem);
  1544. out:
  1545. up_write(&kvm->slots_lock);
  1546. return r;
  1547. }
  1548. static int alloc_identity_pagetable(struct kvm *kvm)
  1549. {
  1550. struct kvm_userspace_memory_region kvm_userspace_mem;
  1551. int r = 0;
  1552. down_write(&kvm->slots_lock);
  1553. if (kvm->arch.ept_identity_pagetable)
  1554. goto out;
  1555. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1556. kvm_userspace_mem.flags = 0;
  1557. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1558. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1559. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1560. if (r)
  1561. goto out;
  1562. down_read(&current->mm->mmap_sem);
  1563. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1564. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1565. up_read(&current->mm->mmap_sem);
  1566. out:
  1567. up_write(&kvm->slots_lock);
  1568. return r;
  1569. }
  1570. static void allocate_vpid(struct vcpu_vmx *vmx)
  1571. {
  1572. int vpid;
  1573. vmx->vpid = 0;
  1574. if (!enable_vpid || !cpu_has_vmx_vpid())
  1575. return;
  1576. spin_lock(&vmx_vpid_lock);
  1577. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1578. if (vpid < VMX_NR_VPIDS) {
  1579. vmx->vpid = vpid;
  1580. __set_bit(vpid, vmx_vpid_bitmap);
  1581. }
  1582. spin_unlock(&vmx_vpid_lock);
  1583. }
  1584. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1585. {
  1586. void *va;
  1587. if (!cpu_has_vmx_msr_bitmap())
  1588. return;
  1589. /*
  1590. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1591. * have the write-low and read-high bitmap offsets the wrong way round.
  1592. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1593. */
  1594. va = kmap(msr_bitmap);
  1595. if (msr <= 0x1fff) {
  1596. __clear_bit(msr, va + 0x000); /* read-low */
  1597. __clear_bit(msr, va + 0x800); /* write-low */
  1598. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1599. msr &= 0x1fff;
  1600. __clear_bit(msr, va + 0x400); /* read-high */
  1601. __clear_bit(msr, va + 0xc00); /* write-high */
  1602. }
  1603. kunmap(msr_bitmap);
  1604. }
  1605. /*
  1606. * Sets up the vmcs for emulated real mode.
  1607. */
  1608. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1609. {
  1610. u32 host_sysenter_cs;
  1611. u32 junk;
  1612. unsigned long a;
  1613. struct descriptor_table dt;
  1614. int i;
  1615. unsigned long kvm_vmx_return;
  1616. u32 exec_control;
  1617. /* I/O */
  1618. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1619. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1620. if (cpu_has_vmx_msr_bitmap())
  1621. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1622. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1623. /* Control */
  1624. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1625. vmcs_config.pin_based_exec_ctrl);
  1626. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1627. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1628. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1629. #ifdef CONFIG_X86_64
  1630. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1631. CPU_BASED_CR8_LOAD_EXITING;
  1632. #endif
  1633. }
  1634. if (!vm_need_ept())
  1635. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1636. CPU_BASED_CR3_LOAD_EXITING;
  1637. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1638. if (cpu_has_secondary_exec_ctrls()) {
  1639. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1640. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1641. exec_control &=
  1642. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1643. if (vmx->vpid == 0)
  1644. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1645. if (!vm_need_ept())
  1646. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1647. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1648. }
  1649. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1650. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1651. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1652. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1653. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1654. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1655. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1656. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1657. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1658. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1659. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1660. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1661. #ifdef CONFIG_X86_64
  1662. rdmsrl(MSR_FS_BASE, a);
  1663. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1664. rdmsrl(MSR_GS_BASE, a);
  1665. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1666. #else
  1667. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1668. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1669. #endif
  1670. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1671. kvm_get_idt(&dt);
  1672. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1673. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1674. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1675. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1676. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1677. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1678. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1679. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1680. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1681. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1682. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1683. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1684. for (i = 0; i < NR_VMX_MSR; ++i) {
  1685. u32 index = vmx_msr_index[i];
  1686. u32 data_low, data_high;
  1687. u64 data;
  1688. int j = vmx->nmsrs;
  1689. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1690. continue;
  1691. if (wrmsr_safe(index, data_low, data_high) < 0)
  1692. continue;
  1693. data = data_low | ((u64)data_high << 32);
  1694. vmx->host_msrs[j].index = index;
  1695. vmx->host_msrs[j].reserved = 0;
  1696. vmx->host_msrs[j].data = data;
  1697. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1698. ++vmx->nmsrs;
  1699. }
  1700. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1701. /* 22.2.1, 20.8.1 */
  1702. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1703. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1704. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1705. return 0;
  1706. }
  1707. static int init_rmode(struct kvm *kvm)
  1708. {
  1709. if (!init_rmode_tss(kvm))
  1710. return 0;
  1711. if (!init_rmode_identity_map(kvm))
  1712. return 0;
  1713. return 1;
  1714. }
  1715. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1716. {
  1717. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1718. u64 msr;
  1719. int ret;
  1720. down_read(&vcpu->kvm->slots_lock);
  1721. if (!init_rmode(vmx->vcpu.kvm)) {
  1722. ret = -ENOMEM;
  1723. goto out;
  1724. }
  1725. vmx->vcpu.arch.rmode.active = 0;
  1726. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1727. kvm_set_cr8(&vmx->vcpu, 0);
  1728. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1729. if (vmx->vcpu.vcpu_id == 0)
  1730. msr |= MSR_IA32_APICBASE_BSP;
  1731. kvm_set_apic_base(&vmx->vcpu, msr);
  1732. fx_init(&vmx->vcpu);
  1733. /*
  1734. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1735. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1736. */
  1737. if (vmx->vcpu.vcpu_id == 0) {
  1738. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1739. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1740. } else {
  1741. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1742. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1743. }
  1744. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1745. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1746. seg_setup(VCPU_SREG_DS);
  1747. seg_setup(VCPU_SREG_ES);
  1748. seg_setup(VCPU_SREG_FS);
  1749. seg_setup(VCPU_SREG_GS);
  1750. seg_setup(VCPU_SREG_SS);
  1751. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1752. vmcs_writel(GUEST_TR_BASE, 0);
  1753. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1754. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1755. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1756. vmcs_writel(GUEST_LDTR_BASE, 0);
  1757. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1758. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1759. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1760. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1761. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1762. vmcs_writel(GUEST_RFLAGS, 0x02);
  1763. if (vmx->vcpu.vcpu_id == 0)
  1764. vmcs_writel(GUEST_RIP, 0xfff0);
  1765. else
  1766. vmcs_writel(GUEST_RIP, 0);
  1767. vmcs_writel(GUEST_RSP, 0);
  1768. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1769. vmcs_writel(GUEST_DR7, 0x400);
  1770. vmcs_writel(GUEST_GDTR_BASE, 0);
  1771. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1772. vmcs_writel(GUEST_IDTR_BASE, 0);
  1773. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1774. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1775. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1776. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1777. guest_write_tsc(0);
  1778. /* Special registers */
  1779. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1780. setup_msrs(vmx);
  1781. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1782. if (cpu_has_vmx_tpr_shadow()) {
  1783. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1784. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1785. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1786. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1787. vmcs_write32(TPR_THRESHOLD, 0);
  1788. }
  1789. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1790. vmcs_write64(APIC_ACCESS_ADDR,
  1791. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1792. if (vmx->vpid != 0)
  1793. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1794. vmx->vcpu.arch.cr0 = 0x60000010;
  1795. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1796. vmx_set_cr4(&vmx->vcpu, 0);
  1797. vmx_set_efer(&vmx->vcpu, 0);
  1798. vmx_fpu_activate(&vmx->vcpu);
  1799. update_exception_bitmap(&vmx->vcpu);
  1800. vpid_sync_vcpu_all(vmx);
  1801. ret = 0;
  1802. out:
  1803. up_read(&vcpu->kvm->slots_lock);
  1804. return ret;
  1805. }
  1806. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1807. {
  1808. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1809. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1810. if (vcpu->arch.rmode.active) {
  1811. vmx->rmode.irq.pending = true;
  1812. vmx->rmode.irq.vector = irq;
  1813. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1814. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1815. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1816. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1817. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1818. return;
  1819. }
  1820. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1821. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1822. }
  1823. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  1824. {
  1825. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1826. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  1827. vcpu->arch.nmi_pending = 0;
  1828. }
  1829. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1830. {
  1831. int word_index = __ffs(vcpu->arch.irq_summary);
  1832. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1833. int irq = word_index * BITS_PER_LONG + bit_index;
  1834. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1835. if (!vcpu->arch.irq_pending[word_index])
  1836. clear_bit(word_index, &vcpu->arch.irq_summary);
  1837. vmx_inject_irq(vcpu, irq);
  1838. }
  1839. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1840. struct kvm_run *kvm_run)
  1841. {
  1842. u32 cpu_based_vm_exec_control;
  1843. vcpu->arch.interrupt_window_open =
  1844. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1845. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1846. if (vcpu->arch.interrupt_window_open &&
  1847. vcpu->arch.irq_summary &&
  1848. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1849. /*
  1850. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1851. */
  1852. kvm_do_inject_irq(vcpu);
  1853. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1854. if (!vcpu->arch.interrupt_window_open &&
  1855. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1856. /*
  1857. * Interrupts blocked. Wait for unblock.
  1858. */
  1859. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1860. else
  1861. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1862. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1863. }
  1864. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1865. {
  1866. int ret;
  1867. struct kvm_userspace_memory_region tss_mem = {
  1868. .slot = 8,
  1869. .guest_phys_addr = addr,
  1870. .memory_size = PAGE_SIZE * 3,
  1871. .flags = 0,
  1872. };
  1873. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1874. if (ret)
  1875. return ret;
  1876. kvm->arch.tss_addr = addr;
  1877. return 0;
  1878. }
  1879. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1880. {
  1881. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1882. set_debugreg(dbg->bp[0], 0);
  1883. set_debugreg(dbg->bp[1], 1);
  1884. set_debugreg(dbg->bp[2], 2);
  1885. set_debugreg(dbg->bp[3], 3);
  1886. if (dbg->singlestep) {
  1887. unsigned long flags;
  1888. flags = vmcs_readl(GUEST_RFLAGS);
  1889. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1890. vmcs_writel(GUEST_RFLAGS, flags);
  1891. }
  1892. }
  1893. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1894. int vec, u32 err_code)
  1895. {
  1896. if (!vcpu->arch.rmode.active)
  1897. return 0;
  1898. /*
  1899. * Instruction with address size override prefix opcode 0x67
  1900. * Cause the #SS fault with 0 error code in VM86 mode.
  1901. */
  1902. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1903. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1904. return 1;
  1905. return 0;
  1906. }
  1907. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1908. {
  1909. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1910. u32 intr_info, error_code;
  1911. unsigned long cr2, rip;
  1912. u32 vect_info;
  1913. enum emulation_result er;
  1914. vect_info = vmx->idt_vectoring_info;
  1915. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1916. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1917. !is_page_fault(intr_info))
  1918. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1919. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1920. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1921. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1922. set_bit(irq, vcpu->arch.irq_pending);
  1923. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1924. }
  1925. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1926. return 1; /* already handled by vmx_vcpu_run() */
  1927. if (is_no_device(intr_info)) {
  1928. vmx_fpu_activate(vcpu);
  1929. return 1;
  1930. }
  1931. if (is_invalid_opcode(intr_info)) {
  1932. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1933. if (er != EMULATE_DONE)
  1934. kvm_queue_exception(vcpu, UD_VECTOR);
  1935. return 1;
  1936. }
  1937. error_code = 0;
  1938. rip = vmcs_readl(GUEST_RIP);
  1939. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1940. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1941. if (is_page_fault(intr_info)) {
  1942. /* EPT won't cause page fault directly */
  1943. if (vm_need_ept())
  1944. BUG();
  1945. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1946. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1947. (u32)((u64)cr2 >> 32), handler);
  1948. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1949. }
  1950. if (vcpu->arch.rmode.active &&
  1951. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1952. error_code)) {
  1953. if (vcpu->arch.halt_request) {
  1954. vcpu->arch.halt_request = 0;
  1955. return kvm_emulate_halt(vcpu);
  1956. }
  1957. return 1;
  1958. }
  1959. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1960. (INTR_TYPE_EXCEPTION | 1)) {
  1961. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1962. return 0;
  1963. }
  1964. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1965. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1966. kvm_run->ex.error_code = error_code;
  1967. return 0;
  1968. }
  1969. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1970. struct kvm_run *kvm_run)
  1971. {
  1972. ++vcpu->stat.irq_exits;
  1973. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1974. return 1;
  1975. }
  1976. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1977. {
  1978. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1979. return 0;
  1980. }
  1981. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1982. {
  1983. unsigned long exit_qualification;
  1984. int size, down, in, string, rep;
  1985. unsigned port;
  1986. ++vcpu->stat.io_exits;
  1987. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1988. string = (exit_qualification & 16) != 0;
  1989. if (string) {
  1990. if (emulate_instruction(vcpu,
  1991. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1992. return 0;
  1993. return 1;
  1994. }
  1995. size = (exit_qualification & 7) + 1;
  1996. in = (exit_qualification & 8) != 0;
  1997. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1998. rep = (exit_qualification & 32) != 0;
  1999. port = exit_qualification >> 16;
  2000. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2001. }
  2002. static void
  2003. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2004. {
  2005. /*
  2006. * Patch in the VMCALL instruction:
  2007. */
  2008. hypercall[0] = 0x0f;
  2009. hypercall[1] = 0x01;
  2010. hypercall[2] = 0xc1;
  2011. }
  2012. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2013. {
  2014. unsigned long exit_qualification;
  2015. int cr;
  2016. int reg;
  2017. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2018. cr = exit_qualification & 15;
  2019. reg = (exit_qualification >> 8) & 15;
  2020. switch ((exit_qualification >> 4) & 3) {
  2021. case 0: /* mov to cr */
  2022. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
  2023. (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
  2024. switch (cr) {
  2025. case 0:
  2026. vcpu_load_rsp_rip(vcpu);
  2027. kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
  2028. skip_emulated_instruction(vcpu);
  2029. return 1;
  2030. case 3:
  2031. vcpu_load_rsp_rip(vcpu);
  2032. kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
  2033. skip_emulated_instruction(vcpu);
  2034. return 1;
  2035. case 4:
  2036. vcpu_load_rsp_rip(vcpu);
  2037. kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
  2038. skip_emulated_instruction(vcpu);
  2039. return 1;
  2040. case 8:
  2041. vcpu_load_rsp_rip(vcpu);
  2042. kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
  2043. skip_emulated_instruction(vcpu);
  2044. if (irqchip_in_kernel(vcpu->kvm))
  2045. return 1;
  2046. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2047. return 0;
  2048. };
  2049. break;
  2050. case 2: /* clts */
  2051. vcpu_load_rsp_rip(vcpu);
  2052. vmx_fpu_deactivate(vcpu);
  2053. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2054. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2055. vmx_fpu_activate(vcpu);
  2056. KVMTRACE_0D(CLTS, vcpu, handler);
  2057. skip_emulated_instruction(vcpu);
  2058. return 1;
  2059. case 1: /*mov from cr*/
  2060. switch (cr) {
  2061. case 3:
  2062. vcpu_load_rsp_rip(vcpu);
  2063. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  2064. vcpu_put_rsp_rip(vcpu);
  2065. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2066. (u32)vcpu->arch.regs[reg],
  2067. (u32)((u64)vcpu->arch.regs[reg] >> 32),
  2068. handler);
  2069. skip_emulated_instruction(vcpu);
  2070. return 1;
  2071. case 8:
  2072. vcpu_load_rsp_rip(vcpu);
  2073. vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
  2074. vcpu_put_rsp_rip(vcpu);
  2075. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2076. (u32)vcpu->arch.regs[reg], handler);
  2077. skip_emulated_instruction(vcpu);
  2078. return 1;
  2079. }
  2080. break;
  2081. case 3: /* lmsw */
  2082. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2083. skip_emulated_instruction(vcpu);
  2084. return 1;
  2085. default:
  2086. break;
  2087. }
  2088. kvm_run->exit_reason = 0;
  2089. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2090. (int)(exit_qualification >> 4) & 3, cr);
  2091. return 0;
  2092. }
  2093. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2094. {
  2095. unsigned long exit_qualification;
  2096. unsigned long val;
  2097. int dr, reg;
  2098. /*
  2099. * FIXME: this code assumes the host is debugging the guest.
  2100. * need to deal with guest debugging itself too.
  2101. */
  2102. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2103. dr = exit_qualification & 7;
  2104. reg = (exit_qualification >> 8) & 15;
  2105. vcpu_load_rsp_rip(vcpu);
  2106. if (exit_qualification & 16) {
  2107. /* mov from dr */
  2108. switch (dr) {
  2109. case 6:
  2110. val = 0xffff0ff0;
  2111. break;
  2112. case 7:
  2113. val = 0x400;
  2114. break;
  2115. default:
  2116. val = 0;
  2117. }
  2118. vcpu->arch.regs[reg] = val;
  2119. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2120. } else {
  2121. /* mov to dr */
  2122. }
  2123. vcpu_put_rsp_rip(vcpu);
  2124. skip_emulated_instruction(vcpu);
  2125. return 1;
  2126. }
  2127. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2128. {
  2129. kvm_emulate_cpuid(vcpu);
  2130. return 1;
  2131. }
  2132. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2133. {
  2134. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2135. u64 data;
  2136. if (vmx_get_msr(vcpu, ecx, &data)) {
  2137. kvm_inject_gp(vcpu, 0);
  2138. return 1;
  2139. }
  2140. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2141. handler);
  2142. /* FIXME: handling of bits 32:63 of rax, rdx */
  2143. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2144. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2145. skip_emulated_instruction(vcpu);
  2146. return 1;
  2147. }
  2148. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2149. {
  2150. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2151. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2152. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2153. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2154. handler);
  2155. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2156. kvm_inject_gp(vcpu, 0);
  2157. return 1;
  2158. }
  2159. skip_emulated_instruction(vcpu);
  2160. return 1;
  2161. }
  2162. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2163. struct kvm_run *kvm_run)
  2164. {
  2165. return 1;
  2166. }
  2167. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2168. struct kvm_run *kvm_run)
  2169. {
  2170. u32 cpu_based_vm_exec_control;
  2171. /* clear pending irq */
  2172. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2173. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2174. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2175. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2176. /*
  2177. * If the user space waits to inject interrupts, exit as soon as
  2178. * possible
  2179. */
  2180. if (kvm_run->request_interrupt_window &&
  2181. !vcpu->arch.irq_summary) {
  2182. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2183. ++vcpu->stat.irq_window_exits;
  2184. return 0;
  2185. }
  2186. return 1;
  2187. }
  2188. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2189. {
  2190. skip_emulated_instruction(vcpu);
  2191. return kvm_emulate_halt(vcpu);
  2192. }
  2193. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2194. {
  2195. skip_emulated_instruction(vcpu);
  2196. kvm_emulate_hypercall(vcpu);
  2197. return 1;
  2198. }
  2199. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2200. {
  2201. skip_emulated_instruction(vcpu);
  2202. /* TODO: Add support for VT-d/pass-through device */
  2203. return 1;
  2204. }
  2205. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2206. {
  2207. u64 exit_qualification;
  2208. enum emulation_result er;
  2209. unsigned long offset;
  2210. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2211. offset = exit_qualification & 0xffful;
  2212. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2213. if (er != EMULATE_DONE) {
  2214. printk(KERN_ERR
  2215. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2216. offset);
  2217. return -ENOTSUPP;
  2218. }
  2219. return 1;
  2220. }
  2221. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2222. {
  2223. unsigned long exit_qualification;
  2224. u16 tss_selector;
  2225. int reason;
  2226. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2227. reason = (u32)exit_qualification >> 30;
  2228. tss_selector = exit_qualification;
  2229. return kvm_task_switch(vcpu, tss_selector, reason);
  2230. }
  2231. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2232. {
  2233. u64 exit_qualification;
  2234. enum emulation_result er;
  2235. gpa_t gpa;
  2236. unsigned long hva;
  2237. int gla_validity;
  2238. int r;
  2239. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2240. if (exit_qualification & (1 << 6)) {
  2241. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2242. return -ENOTSUPP;
  2243. }
  2244. gla_validity = (exit_qualification >> 7) & 0x3;
  2245. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2246. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2247. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2248. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2249. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2250. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2251. (long unsigned int)exit_qualification);
  2252. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2253. kvm_run->hw.hardware_exit_reason = 0;
  2254. return -ENOTSUPP;
  2255. }
  2256. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2257. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2258. if (!kvm_is_error_hva(hva)) {
  2259. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2260. if (r < 0) {
  2261. printk(KERN_ERR "EPT: Not enough memory!\n");
  2262. return -ENOMEM;
  2263. }
  2264. return 1;
  2265. } else {
  2266. /* must be MMIO */
  2267. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2268. if (er == EMULATE_FAIL) {
  2269. printk(KERN_ERR
  2270. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2271. er);
  2272. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2273. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2274. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2275. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2276. (long unsigned int)exit_qualification);
  2277. return -ENOTSUPP;
  2278. } else if (er == EMULATE_DO_MMIO)
  2279. return 0;
  2280. }
  2281. return 1;
  2282. }
  2283. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2284. {
  2285. u32 cpu_based_vm_exec_control;
  2286. /* clear pending NMI */
  2287. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2288. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2289. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2290. ++vcpu->stat.nmi_window_exits;
  2291. return 1;
  2292. }
  2293. /*
  2294. * The exit handlers return 1 if the exit was handled fully and guest execution
  2295. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2296. * to be done to userspace and return 0.
  2297. */
  2298. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2299. struct kvm_run *kvm_run) = {
  2300. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2301. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2302. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2303. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2304. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2305. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2306. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2307. [EXIT_REASON_CPUID] = handle_cpuid,
  2308. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2309. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2310. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2311. [EXIT_REASON_HLT] = handle_halt,
  2312. [EXIT_REASON_VMCALL] = handle_vmcall,
  2313. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2314. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2315. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2316. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2317. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2318. };
  2319. static const int kvm_vmx_max_exit_handlers =
  2320. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2321. /*
  2322. * The guest has exited. See if we can fix it or if we need userspace
  2323. * assistance.
  2324. */
  2325. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2326. {
  2327. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2328. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2329. u32 vectoring_info = vmx->idt_vectoring_info;
  2330. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
  2331. (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
  2332. /* Access CR3 don't cause VMExit in paging mode, so we need
  2333. * to sync with guest real CR3. */
  2334. if (vm_need_ept() && is_paging(vcpu)) {
  2335. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2336. ept_load_pdptrs(vcpu);
  2337. }
  2338. if (unlikely(vmx->fail)) {
  2339. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2340. kvm_run->fail_entry.hardware_entry_failure_reason
  2341. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2342. return 0;
  2343. }
  2344. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2345. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2346. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2347. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2348. "exit reason is 0x%x\n", __func__, exit_reason);
  2349. if (exit_reason < kvm_vmx_max_exit_handlers
  2350. && kvm_vmx_exit_handlers[exit_reason])
  2351. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2352. else {
  2353. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2354. kvm_run->hw.hardware_exit_reason = exit_reason;
  2355. }
  2356. return 0;
  2357. }
  2358. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2359. {
  2360. int max_irr, tpr;
  2361. if (!vm_need_tpr_shadow(vcpu->kvm))
  2362. return;
  2363. if (!kvm_lapic_enabled(vcpu) ||
  2364. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2365. vmcs_write32(TPR_THRESHOLD, 0);
  2366. return;
  2367. }
  2368. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2369. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2370. }
  2371. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2372. {
  2373. u32 cpu_based_vm_exec_control;
  2374. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2375. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2376. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2377. }
  2378. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2379. {
  2380. u32 cpu_based_vm_exec_control;
  2381. if (!cpu_has_virtual_nmis())
  2382. return;
  2383. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2384. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2385. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2386. }
  2387. static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
  2388. {
  2389. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2390. return !(guest_intr & (GUEST_INTR_STATE_NMI |
  2391. GUEST_INTR_STATE_MOV_SS |
  2392. GUEST_INTR_STATE_STI));
  2393. }
  2394. static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
  2395. {
  2396. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2397. return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
  2398. GUEST_INTR_STATE_STI)) &&
  2399. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  2400. }
  2401. static void enable_intr_window(struct kvm_vcpu *vcpu)
  2402. {
  2403. if (vcpu->arch.nmi_pending)
  2404. enable_nmi_window(vcpu);
  2405. else if (kvm_cpu_has_interrupt(vcpu))
  2406. enable_irq_window(vcpu);
  2407. }
  2408. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2409. {
  2410. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2411. u32 idtv_info_field, intr_info_field, exit_intr_info_field;
  2412. int vector;
  2413. update_tpr_threshold(vcpu);
  2414. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2415. exit_intr_info_field = vmcs_read32(VM_EXIT_INTR_INFO);
  2416. idtv_info_field = vmx->idt_vectoring_info;
  2417. if (intr_info_field & INTR_INFO_VALID_MASK) {
  2418. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  2419. /* TODO: fault when IDT_Vectoring */
  2420. if (printk_ratelimit())
  2421. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  2422. }
  2423. enable_intr_window(vcpu);
  2424. return;
  2425. }
  2426. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  2427. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2428. == INTR_TYPE_EXT_INTR
  2429. && vcpu->arch.rmode.active) {
  2430. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  2431. vmx_inject_irq(vcpu, vect);
  2432. enable_intr_window(vcpu);
  2433. return;
  2434. }
  2435. KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
  2436. /*
  2437. * SDM 3: 25.7.1.2
  2438. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2439. * faulted.
  2440. */
  2441. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2442. == INTR_TYPE_NMI_INTR && cpu_has_virtual_nmis())
  2443. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  2444. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2445. ~GUEST_INTR_STATE_NMI);
  2446. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field
  2447. & ~INTR_INFO_RESVD_BITS_MASK);
  2448. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2449. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2450. if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
  2451. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2452. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2453. enable_intr_window(vcpu);
  2454. return;
  2455. }
  2456. if (cpu_has_virtual_nmis()) {
  2457. /*
  2458. * SDM 3: 25.7.1.2
  2459. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2460. * a guest IRET fault.
  2461. */
  2462. if ((exit_intr_info_field & INTR_INFO_UNBLOCK_NMI) &&
  2463. (exit_intr_info_field & INTR_INFO_VECTOR_MASK) != 8)
  2464. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  2465. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) |
  2466. GUEST_INTR_STATE_NMI);
  2467. else if (vcpu->arch.nmi_pending) {
  2468. if (vmx_nmi_enabled(vcpu))
  2469. vmx_inject_nmi(vcpu);
  2470. enable_intr_window(vcpu);
  2471. return;
  2472. }
  2473. }
  2474. if (!kvm_cpu_has_interrupt(vcpu))
  2475. return;
  2476. if (vmx_irq_enabled(vcpu)) {
  2477. vector = kvm_cpu_get_interrupt(vcpu);
  2478. vmx_inject_irq(vcpu, vector);
  2479. kvm_timer_intr_post(vcpu, vector);
  2480. } else
  2481. enable_irq_window(vcpu);
  2482. }
  2483. /*
  2484. * Failure to inject an interrupt should give us the information
  2485. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2486. * when fetching the interrupt redirection bitmap in the real-mode
  2487. * tss, this doesn't happen. So we do it ourselves.
  2488. */
  2489. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2490. {
  2491. vmx->rmode.irq.pending = 0;
  2492. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2493. return;
  2494. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2495. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2496. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2497. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2498. return;
  2499. }
  2500. vmx->idt_vectoring_info =
  2501. VECTORING_INFO_VALID_MASK
  2502. | INTR_TYPE_EXT_INTR
  2503. | vmx->rmode.irq.vector;
  2504. }
  2505. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2506. {
  2507. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2508. u32 intr_info;
  2509. /*
  2510. * Loading guest fpu may have cleared host cr0.ts
  2511. */
  2512. vmcs_writel(HOST_CR0, read_cr0());
  2513. asm(
  2514. /* Store host registers */
  2515. #ifdef CONFIG_X86_64
  2516. "push %%rdx; push %%rbp;"
  2517. "push %%rcx \n\t"
  2518. #else
  2519. "push %%edx; push %%ebp;"
  2520. "push %%ecx \n\t"
  2521. #endif
  2522. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2523. /* Check if vmlaunch of vmresume is needed */
  2524. "cmpl $0, %c[launched](%0) \n\t"
  2525. /* Load guest registers. Don't clobber flags. */
  2526. #ifdef CONFIG_X86_64
  2527. "mov %c[cr2](%0), %%rax \n\t"
  2528. "mov %%rax, %%cr2 \n\t"
  2529. "mov %c[rax](%0), %%rax \n\t"
  2530. "mov %c[rbx](%0), %%rbx \n\t"
  2531. "mov %c[rdx](%0), %%rdx \n\t"
  2532. "mov %c[rsi](%0), %%rsi \n\t"
  2533. "mov %c[rdi](%0), %%rdi \n\t"
  2534. "mov %c[rbp](%0), %%rbp \n\t"
  2535. "mov %c[r8](%0), %%r8 \n\t"
  2536. "mov %c[r9](%0), %%r9 \n\t"
  2537. "mov %c[r10](%0), %%r10 \n\t"
  2538. "mov %c[r11](%0), %%r11 \n\t"
  2539. "mov %c[r12](%0), %%r12 \n\t"
  2540. "mov %c[r13](%0), %%r13 \n\t"
  2541. "mov %c[r14](%0), %%r14 \n\t"
  2542. "mov %c[r15](%0), %%r15 \n\t"
  2543. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2544. #else
  2545. "mov %c[cr2](%0), %%eax \n\t"
  2546. "mov %%eax, %%cr2 \n\t"
  2547. "mov %c[rax](%0), %%eax \n\t"
  2548. "mov %c[rbx](%0), %%ebx \n\t"
  2549. "mov %c[rdx](%0), %%edx \n\t"
  2550. "mov %c[rsi](%0), %%esi \n\t"
  2551. "mov %c[rdi](%0), %%edi \n\t"
  2552. "mov %c[rbp](%0), %%ebp \n\t"
  2553. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2554. #endif
  2555. /* Enter guest mode */
  2556. "jne .Llaunched \n\t"
  2557. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2558. "jmp .Lkvm_vmx_return \n\t"
  2559. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2560. ".Lkvm_vmx_return: "
  2561. /* Save guest registers, load host registers, keep flags */
  2562. #ifdef CONFIG_X86_64
  2563. "xchg %0, (%%rsp) \n\t"
  2564. "mov %%rax, %c[rax](%0) \n\t"
  2565. "mov %%rbx, %c[rbx](%0) \n\t"
  2566. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2567. "mov %%rdx, %c[rdx](%0) \n\t"
  2568. "mov %%rsi, %c[rsi](%0) \n\t"
  2569. "mov %%rdi, %c[rdi](%0) \n\t"
  2570. "mov %%rbp, %c[rbp](%0) \n\t"
  2571. "mov %%r8, %c[r8](%0) \n\t"
  2572. "mov %%r9, %c[r9](%0) \n\t"
  2573. "mov %%r10, %c[r10](%0) \n\t"
  2574. "mov %%r11, %c[r11](%0) \n\t"
  2575. "mov %%r12, %c[r12](%0) \n\t"
  2576. "mov %%r13, %c[r13](%0) \n\t"
  2577. "mov %%r14, %c[r14](%0) \n\t"
  2578. "mov %%r15, %c[r15](%0) \n\t"
  2579. "mov %%cr2, %%rax \n\t"
  2580. "mov %%rax, %c[cr2](%0) \n\t"
  2581. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2582. #else
  2583. "xchg %0, (%%esp) \n\t"
  2584. "mov %%eax, %c[rax](%0) \n\t"
  2585. "mov %%ebx, %c[rbx](%0) \n\t"
  2586. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2587. "mov %%edx, %c[rdx](%0) \n\t"
  2588. "mov %%esi, %c[rsi](%0) \n\t"
  2589. "mov %%edi, %c[rdi](%0) \n\t"
  2590. "mov %%ebp, %c[rbp](%0) \n\t"
  2591. "mov %%cr2, %%eax \n\t"
  2592. "mov %%eax, %c[cr2](%0) \n\t"
  2593. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2594. #endif
  2595. "setbe %c[fail](%0) \n\t"
  2596. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2597. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2598. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2599. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2600. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2601. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2602. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2603. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2604. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2605. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2606. #ifdef CONFIG_X86_64
  2607. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2608. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2609. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2610. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2611. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2612. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2613. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2614. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2615. #endif
  2616. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2617. : "cc", "memory"
  2618. #ifdef CONFIG_X86_64
  2619. , "rbx", "rdi", "rsi"
  2620. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2621. #else
  2622. , "ebx", "edi", "rsi"
  2623. #endif
  2624. );
  2625. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2626. if (vmx->rmode.irq.pending)
  2627. fixup_rmode_irq(vmx);
  2628. vcpu->arch.interrupt_window_open =
  2629. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2630. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
  2631. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2632. vmx->launched = 1;
  2633. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2634. /* We need to handle NMIs before interrupts are enabled */
  2635. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
  2636. (intr_info & INTR_INFO_VALID_MASK)) {
  2637. KVMTRACE_0D(NMI, vcpu, handler);
  2638. asm("int $2");
  2639. }
  2640. }
  2641. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2642. {
  2643. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2644. if (vmx->vmcs) {
  2645. vcpu_clear(vmx);
  2646. free_vmcs(vmx->vmcs);
  2647. vmx->vmcs = NULL;
  2648. }
  2649. }
  2650. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2651. {
  2652. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2653. spin_lock(&vmx_vpid_lock);
  2654. if (vmx->vpid != 0)
  2655. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2656. spin_unlock(&vmx_vpid_lock);
  2657. vmx_free_vmcs(vcpu);
  2658. kfree(vmx->host_msrs);
  2659. kfree(vmx->guest_msrs);
  2660. kvm_vcpu_uninit(vcpu);
  2661. kmem_cache_free(kvm_vcpu_cache, vmx);
  2662. }
  2663. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2664. {
  2665. int err;
  2666. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2667. int cpu;
  2668. if (!vmx)
  2669. return ERR_PTR(-ENOMEM);
  2670. allocate_vpid(vmx);
  2671. if (id == 0 && vm_need_ept()) {
  2672. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2673. VMX_EPT_WRITABLE_MASK |
  2674. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2675. kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
  2676. VMX_EPT_FAKE_DIRTY_MASK, 0ull,
  2677. VMX_EPT_EXECUTABLE_MASK);
  2678. kvm_enable_tdp();
  2679. }
  2680. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2681. if (err)
  2682. goto free_vcpu;
  2683. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2684. if (!vmx->guest_msrs) {
  2685. err = -ENOMEM;
  2686. goto uninit_vcpu;
  2687. }
  2688. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2689. if (!vmx->host_msrs)
  2690. goto free_guest_msrs;
  2691. vmx->vmcs = alloc_vmcs();
  2692. if (!vmx->vmcs)
  2693. goto free_msrs;
  2694. vmcs_clear(vmx->vmcs);
  2695. cpu = get_cpu();
  2696. vmx_vcpu_load(&vmx->vcpu, cpu);
  2697. err = vmx_vcpu_setup(vmx);
  2698. vmx_vcpu_put(&vmx->vcpu);
  2699. put_cpu();
  2700. if (err)
  2701. goto free_vmcs;
  2702. if (vm_need_virtualize_apic_accesses(kvm))
  2703. if (alloc_apic_access_page(kvm) != 0)
  2704. goto free_vmcs;
  2705. if (vm_need_ept())
  2706. if (alloc_identity_pagetable(kvm) != 0)
  2707. goto free_vmcs;
  2708. return &vmx->vcpu;
  2709. free_vmcs:
  2710. free_vmcs(vmx->vmcs);
  2711. free_msrs:
  2712. kfree(vmx->host_msrs);
  2713. free_guest_msrs:
  2714. kfree(vmx->guest_msrs);
  2715. uninit_vcpu:
  2716. kvm_vcpu_uninit(&vmx->vcpu);
  2717. free_vcpu:
  2718. kmem_cache_free(kvm_vcpu_cache, vmx);
  2719. return ERR_PTR(err);
  2720. }
  2721. static void __init vmx_check_processor_compat(void *rtn)
  2722. {
  2723. struct vmcs_config vmcs_conf;
  2724. *(int *)rtn = 0;
  2725. if (setup_vmcs_config(&vmcs_conf) < 0)
  2726. *(int *)rtn = -EIO;
  2727. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2728. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2729. smp_processor_id());
  2730. *(int *)rtn = -EIO;
  2731. }
  2732. }
  2733. static int get_ept_level(void)
  2734. {
  2735. return VMX_EPT_DEFAULT_GAW + 1;
  2736. }
  2737. static struct kvm_x86_ops vmx_x86_ops = {
  2738. .cpu_has_kvm_support = cpu_has_kvm_support,
  2739. .disabled_by_bios = vmx_disabled_by_bios,
  2740. .hardware_setup = hardware_setup,
  2741. .hardware_unsetup = hardware_unsetup,
  2742. .check_processor_compatibility = vmx_check_processor_compat,
  2743. .hardware_enable = hardware_enable,
  2744. .hardware_disable = hardware_disable,
  2745. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2746. .vcpu_create = vmx_create_vcpu,
  2747. .vcpu_free = vmx_free_vcpu,
  2748. .vcpu_reset = vmx_vcpu_reset,
  2749. .prepare_guest_switch = vmx_save_host_state,
  2750. .vcpu_load = vmx_vcpu_load,
  2751. .vcpu_put = vmx_vcpu_put,
  2752. .set_guest_debug = set_guest_debug,
  2753. .guest_debug_pre = kvm_guest_debug_pre,
  2754. .get_msr = vmx_get_msr,
  2755. .set_msr = vmx_set_msr,
  2756. .get_segment_base = vmx_get_segment_base,
  2757. .get_segment = vmx_get_segment,
  2758. .set_segment = vmx_set_segment,
  2759. .get_cpl = vmx_get_cpl,
  2760. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2761. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2762. .set_cr0 = vmx_set_cr0,
  2763. .set_cr3 = vmx_set_cr3,
  2764. .set_cr4 = vmx_set_cr4,
  2765. .set_efer = vmx_set_efer,
  2766. .get_idt = vmx_get_idt,
  2767. .set_idt = vmx_set_idt,
  2768. .get_gdt = vmx_get_gdt,
  2769. .set_gdt = vmx_set_gdt,
  2770. .cache_regs = vcpu_load_rsp_rip,
  2771. .decache_regs = vcpu_put_rsp_rip,
  2772. .get_rflags = vmx_get_rflags,
  2773. .set_rflags = vmx_set_rflags,
  2774. .tlb_flush = vmx_flush_tlb,
  2775. .run = vmx_vcpu_run,
  2776. .handle_exit = kvm_handle_exit,
  2777. .skip_emulated_instruction = skip_emulated_instruction,
  2778. .patch_hypercall = vmx_patch_hypercall,
  2779. .get_irq = vmx_get_irq,
  2780. .set_irq = vmx_inject_irq,
  2781. .queue_exception = vmx_queue_exception,
  2782. .exception_injected = vmx_exception_injected,
  2783. .inject_pending_irq = vmx_intr_assist,
  2784. .inject_pending_vectors = do_interrupt_requests,
  2785. .set_tss_addr = vmx_set_tss_addr,
  2786. .get_tdp_level = get_ept_level,
  2787. };
  2788. static int __init vmx_init(void)
  2789. {
  2790. void *va;
  2791. int r;
  2792. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2793. if (!vmx_io_bitmap_a)
  2794. return -ENOMEM;
  2795. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2796. if (!vmx_io_bitmap_b) {
  2797. r = -ENOMEM;
  2798. goto out;
  2799. }
  2800. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2801. if (!vmx_msr_bitmap) {
  2802. r = -ENOMEM;
  2803. goto out1;
  2804. }
  2805. /*
  2806. * Allow direct access to the PC debug port (it is often used for I/O
  2807. * delays, but the vmexits simply slow things down).
  2808. */
  2809. va = kmap(vmx_io_bitmap_a);
  2810. memset(va, 0xff, PAGE_SIZE);
  2811. clear_bit(0x80, va);
  2812. kunmap(vmx_io_bitmap_a);
  2813. va = kmap(vmx_io_bitmap_b);
  2814. memset(va, 0xff, PAGE_SIZE);
  2815. kunmap(vmx_io_bitmap_b);
  2816. va = kmap(vmx_msr_bitmap);
  2817. memset(va, 0xff, PAGE_SIZE);
  2818. kunmap(vmx_msr_bitmap);
  2819. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2820. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2821. if (r)
  2822. goto out2;
  2823. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2824. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2825. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2826. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2827. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2828. if (cpu_has_vmx_ept())
  2829. bypass_guest_pf = 0;
  2830. if (bypass_guest_pf)
  2831. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2832. ept_sync_global();
  2833. return 0;
  2834. out2:
  2835. __free_page(vmx_msr_bitmap);
  2836. out1:
  2837. __free_page(vmx_io_bitmap_b);
  2838. out:
  2839. __free_page(vmx_io_bitmap_a);
  2840. return r;
  2841. }
  2842. static void __exit vmx_exit(void)
  2843. {
  2844. __free_page(vmx_msr_bitmap);
  2845. __free_page(vmx_io_bitmap_b);
  2846. __free_page(vmx_io_bitmap_a);
  2847. kvm_exit();
  2848. }
  2849. module_init(vmx_init)
  2850. module_exit(vmx_exit)