svm.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "kvm_svm.h"
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <asm/desc.h>
  26. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. #define IOPM_ALLOC_ORDER 2
  30. #define MSRPM_ALLOC_ORDER 1
  31. #define DB_VECTOR 1
  32. #define UD_VECTOR 6
  33. #define GP_VECTOR 13
  34. #define DR7_GD_MASK (1 << 13)
  35. #define DR6_BD_MASK (1 << 13)
  36. #define SEG_TYPE_LDT 2
  37. #define SEG_TYPE_BUSY_TSS16 3
  38. #define SVM_FEATURE_NPT (1 << 0)
  39. #define SVM_FEATURE_LBRV (1 << 1)
  40. #define SVM_DEATURE_SVML (1 << 2)
  41. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  42. /* enable NPT for AMD64 and X86 with PAE */
  43. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  44. static bool npt_enabled = true;
  45. #else
  46. static bool npt_enabled = false;
  47. #endif
  48. static int npt = 1;
  49. module_param(npt, int, S_IRUGO);
  50. static void kvm_reput_irq(struct vcpu_svm *svm);
  51. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  52. {
  53. return container_of(vcpu, struct vcpu_svm, vcpu);
  54. }
  55. static unsigned long iopm_base;
  56. struct kvm_ldttss_desc {
  57. u16 limit0;
  58. u16 base0;
  59. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  60. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  61. u32 base3;
  62. u32 zero1;
  63. } __attribute__((packed));
  64. struct svm_cpu_data {
  65. int cpu;
  66. u64 asid_generation;
  67. u32 max_asid;
  68. u32 next_asid;
  69. struct kvm_ldttss_desc *tss_desc;
  70. struct page *save_area;
  71. };
  72. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  73. static uint32_t svm_features;
  74. struct svm_init_data {
  75. int cpu;
  76. int r;
  77. };
  78. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  79. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  80. #define MSRS_RANGE_SIZE 2048
  81. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  82. #define MAX_INST_SIZE 15
  83. static inline u32 svm_has(u32 feat)
  84. {
  85. return svm_features & feat;
  86. }
  87. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  88. {
  89. int word_index = __ffs(vcpu->arch.irq_summary);
  90. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  91. int irq = word_index * BITS_PER_LONG + bit_index;
  92. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  93. if (!vcpu->arch.irq_pending[word_index])
  94. clear_bit(word_index, &vcpu->arch.irq_summary);
  95. return irq;
  96. }
  97. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  98. {
  99. set_bit(irq, vcpu->arch.irq_pending);
  100. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  101. }
  102. static inline void clgi(void)
  103. {
  104. asm volatile (__ex(SVM_CLGI));
  105. }
  106. static inline void stgi(void)
  107. {
  108. asm volatile (__ex(SVM_STGI));
  109. }
  110. static inline void invlpga(unsigned long addr, u32 asid)
  111. {
  112. asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
  113. }
  114. static inline unsigned long kvm_read_cr2(void)
  115. {
  116. unsigned long cr2;
  117. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  118. return cr2;
  119. }
  120. static inline void kvm_write_cr2(unsigned long val)
  121. {
  122. asm volatile ("mov %0, %%cr2" :: "r" (val));
  123. }
  124. static inline unsigned long read_dr6(void)
  125. {
  126. unsigned long dr6;
  127. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  128. return dr6;
  129. }
  130. static inline void write_dr6(unsigned long val)
  131. {
  132. asm volatile ("mov %0, %%dr6" :: "r" (val));
  133. }
  134. static inline unsigned long read_dr7(void)
  135. {
  136. unsigned long dr7;
  137. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  138. return dr7;
  139. }
  140. static inline void write_dr7(unsigned long val)
  141. {
  142. asm volatile ("mov %0, %%dr7" :: "r" (val));
  143. }
  144. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  145. {
  146. to_svm(vcpu)->asid_generation--;
  147. }
  148. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  149. {
  150. force_new_asid(vcpu);
  151. }
  152. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  153. {
  154. if (!npt_enabled && !(efer & EFER_LMA))
  155. efer &= ~EFER_LME;
  156. to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  157. vcpu->arch.shadow_efer = efer;
  158. }
  159. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  160. bool has_error_code, u32 error_code)
  161. {
  162. struct vcpu_svm *svm = to_svm(vcpu);
  163. svm->vmcb->control.event_inj = nr
  164. | SVM_EVTINJ_VALID
  165. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  166. | SVM_EVTINJ_TYPE_EXEPT;
  167. svm->vmcb->control.event_inj_err = error_code;
  168. }
  169. static bool svm_exception_injected(struct kvm_vcpu *vcpu)
  170. {
  171. struct vcpu_svm *svm = to_svm(vcpu);
  172. return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
  173. }
  174. static int is_external_interrupt(u32 info)
  175. {
  176. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  177. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  178. }
  179. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  180. {
  181. struct vcpu_svm *svm = to_svm(vcpu);
  182. if (!svm->next_rip) {
  183. printk(KERN_DEBUG "%s: NOP\n", __func__);
  184. return;
  185. }
  186. if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
  187. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  188. __func__,
  189. svm->vmcb->save.rip,
  190. svm->next_rip);
  191. vcpu->arch.rip = svm->vmcb->save.rip = svm->next_rip;
  192. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  193. vcpu->arch.interrupt_window_open = 1;
  194. }
  195. static int has_svm(void)
  196. {
  197. uint32_t eax, ebx, ecx, edx;
  198. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  199. printk(KERN_INFO "has_svm: not amd\n");
  200. return 0;
  201. }
  202. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  203. if (eax < SVM_CPUID_FUNC) {
  204. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  205. return 0;
  206. }
  207. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  208. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  209. printk(KERN_DEBUG "has_svm: svm not available\n");
  210. return 0;
  211. }
  212. return 1;
  213. }
  214. static void svm_hardware_disable(void *garbage)
  215. {
  216. uint64_t efer;
  217. wrmsrl(MSR_VM_HSAVE_PA, 0);
  218. rdmsrl(MSR_EFER, efer);
  219. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  220. }
  221. static void svm_hardware_enable(void *garbage)
  222. {
  223. struct svm_cpu_data *svm_data;
  224. uint64_t efer;
  225. struct desc_ptr gdt_descr;
  226. struct desc_struct *gdt;
  227. int me = raw_smp_processor_id();
  228. if (!has_svm()) {
  229. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  230. return;
  231. }
  232. svm_data = per_cpu(svm_data, me);
  233. if (!svm_data) {
  234. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  235. me);
  236. return;
  237. }
  238. svm_data->asid_generation = 1;
  239. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  240. svm_data->next_asid = svm_data->max_asid + 1;
  241. asm volatile ("sgdt %0" : "=m"(gdt_descr));
  242. gdt = (struct desc_struct *)gdt_descr.address;
  243. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  244. rdmsrl(MSR_EFER, efer);
  245. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  246. wrmsrl(MSR_VM_HSAVE_PA,
  247. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  248. }
  249. static void svm_cpu_uninit(int cpu)
  250. {
  251. struct svm_cpu_data *svm_data
  252. = per_cpu(svm_data, raw_smp_processor_id());
  253. if (!svm_data)
  254. return;
  255. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  256. __free_page(svm_data->save_area);
  257. kfree(svm_data);
  258. }
  259. static int svm_cpu_init(int cpu)
  260. {
  261. struct svm_cpu_data *svm_data;
  262. int r;
  263. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  264. if (!svm_data)
  265. return -ENOMEM;
  266. svm_data->cpu = cpu;
  267. svm_data->save_area = alloc_page(GFP_KERNEL);
  268. r = -ENOMEM;
  269. if (!svm_data->save_area)
  270. goto err_1;
  271. per_cpu(svm_data, cpu) = svm_data;
  272. return 0;
  273. err_1:
  274. kfree(svm_data);
  275. return r;
  276. }
  277. static void set_msr_interception(u32 *msrpm, unsigned msr,
  278. int read, int write)
  279. {
  280. int i;
  281. for (i = 0; i < NUM_MSR_MAPS; i++) {
  282. if (msr >= msrpm_ranges[i] &&
  283. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  284. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  285. msrpm_ranges[i]) * 2;
  286. u32 *base = msrpm + (msr_offset / 32);
  287. u32 msr_shift = msr_offset % 32;
  288. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  289. *base = (*base & ~(0x3 << msr_shift)) |
  290. (mask << msr_shift);
  291. return;
  292. }
  293. }
  294. BUG();
  295. }
  296. static void svm_vcpu_init_msrpm(u32 *msrpm)
  297. {
  298. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  299. #ifdef CONFIG_X86_64
  300. set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
  301. set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
  302. set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
  303. set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
  304. set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
  305. set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
  306. #endif
  307. set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
  308. set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
  309. set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
  310. set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
  311. }
  312. static void svm_enable_lbrv(struct vcpu_svm *svm)
  313. {
  314. u32 *msrpm = svm->msrpm;
  315. svm->vmcb->control.lbr_ctl = 1;
  316. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  317. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  318. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  319. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  320. }
  321. static void svm_disable_lbrv(struct vcpu_svm *svm)
  322. {
  323. u32 *msrpm = svm->msrpm;
  324. svm->vmcb->control.lbr_ctl = 0;
  325. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  326. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  327. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  328. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  329. }
  330. static __init int svm_hardware_setup(void)
  331. {
  332. int cpu;
  333. struct page *iopm_pages;
  334. void *iopm_va;
  335. int r;
  336. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  337. if (!iopm_pages)
  338. return -ENOMEM;
  339. iopm_va = page_address(iopm_pages);
  340. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  341. clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
  342. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  343. if (boot_cpu_has(X86_FEATURE_NX))
  344. kvm_enable_efer_bits(EFER_NX);
  345. for_each_online_cpu(cpu) {
  346. r = svm_cpu_init(cpu);
  347. if (r)
  348. goto err;
  349. }
  350. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  351. if (!svm_has(SVM_FEATURE_NPT))
  352. npt_enabled = false;
  353. if (npt_enabled && !npt) {
  354. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  355. npt_enabled = false;
  356. }
  357. if (npt_enabled) {
  358. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  359. kvm_enable_tdp();
  360. }
  361. return 0;
  362. err:
  363. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  364. iopm_base = 0;
  365. return r;
  366. }
  367. static __exit void svm_hardware_unsetup(void)
  368. {
  369. int cpu;
  370. for_each_online_cpu(cpu)
  371. svm_cpu_uninit(cpu);
  372. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  373. iopm_base = 0;
  374. }
  375. static void init_seg(struct vmcb_seg *seg)
  376. {
  377. seg->selector = 0;
  378. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  379. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  380. seg->limit = 0xffff;
  381. seg->base = 0;
  382. }
  383. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  384. {
  385. seg->selector = 0;
  386. seg->attrib = SVM_SELECTOR_P_MASK | type;
  387. seg->limit = 0xffff;
  388. seg->base = 0;
  389. }
  390. static void init_vmcb(struct vcpu_svm *svm)
  391. {
  392. struct vmcb_control_area *control = &svm->vmcb->control;
  393. struct vmcb_save_area *save = &svm->vmcb->save;
  394. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  395. INTERCEPT_CR3_MASK |
  396. INTERCEPT_CR4_MASK;
  397. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  398. INTERCEPT_CR3_MASK |
  399. INTERCEPT_CR4_MASK |
  400. INTERCEPT_CR8_MASK;
  401. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  402. INTERCEPT_DR1_MASK |
  403. INTERCEPT_DR2_MASK |
  404. INTERCEPT_DR3_MASK;
  405. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  406. INTERCEPT_DR1_MASK |
  407. INTERCEPT_DR2_MASK |
  408. INTERCEPT_DR3_MASK |
  409. INTERCEPT_DR5_MASK |
  410. INTERCEPT_DR7_MASK;
  411. control->intercept_exceptions = (1 << PF_VECTOR) |
  412. (1 << UD_VECTOR) |
  413. (1 << MC_VECTOR);
  414. control->intercept = (1ULL << INTERCEPT_INTR) |
  415. (1ULL << INTERCEPT_NMI) |
  416. (1ULL << INTERCEPT_SMI) |
  417. (1ULL << INTERCEPT_CPUID) |
  418. (1ULL << INTERCEPT_INVD) |
  419. (1ULL << INTERCEPT_HLT) |
  420. (1ULL << INTERCEPT_INVLPGA) |
  421. (1ULL << INTERCEPT_IOIO_PROT) |
  422. (1ULL << INTERCEPT_MSR_PROT) |
  423. (1ULL << INTERCEPT_TASK_SWITCH) |
  424. (1ULL << INTERCEPT_SHUTDOWN) |
  425. (1ULL << INTERCEPT_VMRUN) |
  426. (1ULL << INTERCEPT_VMMCALL) |
  427. (1ULL << INTERCEPT_VMLOAD) |
  428. (1ULL << INTERCEPT_VMSAVE) |
  429. (1ULL << INTERCEPT_STGI) |
  430. (1ULL << INTERCEPT_CLGI) |
  431. (1ULL << INTERCEPT_SKINIT) |
  432. (1ULL << INTERCEPT_WBINVD) |
  433. (1ULL << INTERCEPT_MONITOR) |
  434. (1ULL << INTERCEPT_MWAIT);
  435. control->iopm_base_pa = iopm_base;
  436. control->msrpm_base_pa = __pa(svm->msrpm);
  437. control->tsc_offset = 0;
  438. control->int_ctl = V_INTR_MASKING_MASK;
  439. init_seg(&save->es);
  440. init_seg(&save->ss);
  441. init_seg(&save->ds);
  442. init_seg(&save->fs);
  443. init_seg(&save->gs);
  444. save->cs.selector = 0xf000;
  445. /* Executable/Readable Code Segment */
  446. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  447. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  448. save->cs.limit = 0xffff;
  449. /*
  450. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  451. * be consistent with it.
  452. *
  453. * Replace when we have real mode working for vmx.
  454. */
  455. save->cs.base = 0xf0000;
  456. save->gdtr.limit = 0xffff;
  457. save->idtr.limit = 0xffff;
  458. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  459. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  460. save->efer = MSR_EFER_SVME_MASK;
  461. save->dr6 = 0xffff0ff0;
  462. save->dr7 = 0x400;
  463. save->rflags = 2;
  464. save->rip = 0x0000fff0;
  465. /*
  466. * cr0 val on cpu init should be 0x60000010, we enable cpu
  467. * cache by default. the orderly way is to enable cache in bios.
  468. */
  469. save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
  470. save->cr4 = X86_CR4_PAE;
  471. /* rdx = ?? */
  472. if (npt_enabled) {
  473. /* Setup VMCB for Nested Paging */
  474. control->nested_ctl = 1;
  475. control->intercept &= ~(1ULL << INTERCEPT_TASK_SWITCH);
  476. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  477. control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
  478. INTERCEPT_CR3_MASK);
  479. control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
  480. INTERCEPT_CR3_MASK);
  481. save->g_pat = 0x0007040600070406ULL;
  482. /* enable caching because the QEMU Bios doesn't enable it */
  483. save->cr0 = X86_CR0_ET;
  484. save->cr3 = 0;
  485. save->cr4 = 0;
  486. }
  487. force_new_asid(&svm->vcpu);
  488. }
  489. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  490. {
  491. struct vcpu_svm *svm = to_svm(vcpu);
  492. init_vmcb(svm);
  493. if (vcpu->vcpu_id != 0) {
  494. svm->vmcb->save.rip = 0;
  495. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  496. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  497. }
  498. return 0;
  499. }
  500. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  501. {
  502. struct vcpu_svm *svm;
  503. struct page *page;
  504. struct page *msrpm_pages;
  505. int err;
  506. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  507. if (!svm) {
  508. err = -ENOMEM;
  509. goto out;
  510. }
  511. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  512. if (err)
  513. goto free_svm;
  514. page = alloc_page(GFP_KERNEL);
  515. if (!page) {
  516. err = -ENOMEM;
  517. goto uninit;
  518. }
  519. err = -ENOMEM;
  520. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  521. if (!msrpm_pages)
  522. goto uninit;
  523. svm->msrpm = page_address(msrpm_pages);
  524. svm_vcpu_init_msrpm(svm->msrpm);
  525. svm->vmcb = page_address(page);
  526. clear_page(svm->vmcb);
  527. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  528. svm->asid_generation = 0;
  529. memset(svm->db_regs, 0, sizeof(svm->db_regs));
  530. init_vmcb(svm);
  531. fx_init(&svm->vcpu);
  532. svm->vcpu.fpu_active = 1;
  533. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  534. if (svm->vcpu.vcpu_id == 0)
  535. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  536. return &svm->vcpu;
  537. uninit:
  538. kvm_vcpu_uninit(&svm->vcpu);
  539. free_svm:
  540. kmem_cache_free(kvm_vcpu_cache, svm);
  541. out:
  542. return ERR_PTR(err);
  543. }
  544. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  545. {
  546. struct vcpu_svm *svm = to_svm(vcpu);
  547. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  548. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  549. kvm_vcpu_uninit(vcpu);
  550. kmem_cache_free(kvm_vcpu_cache, svm);
  551. }
  552. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  553. {
  554. struct vcpu_svm *svm = to_svm(vcpu);
  555. int i;
  556. if (unlikely(cpu != vcpu->cpu)) {
  557. u64 tsc_this, delta;
  558. /*
  559. * Make sure that the guest sees a monotonically
  560. * increasing TSC.
  561. */
  562. rdtscll(tsc_this);
  563. delta = vcpu->arch.host_tsc - tsc_this;
  564. svm->vmcb->control.tsc_offset += delta;
  565. vcpu->cpu = cpu;
  566. kvm_migrate_timers(vcpu);
  567. }
  568. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  569. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  570. }
  571. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  572. {
  573. struct vcpu_svm *svm = to_svm(vcpu);
  574. int i;
  575. ++vcpu->stat.host_state_reload;
  576. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  577. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  578. rdtscll(vcpu->arch.host_tsc);
  579. }
  580. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  581. {
  582. struct vcpu_svm *svm = to_svm(vcpu);
  583. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  584. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  585. vcpu->arch.rip = svm->vmcb->save.rip;
  586. }
  587. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  588. {
  589. struct vcpu_svm *svm = to_svm(vcpu);
  590. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  591. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  592. svm->vmcb->save.rip = vcpu->arch.rip;
  593. }
  594. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  595. {
  596. return to_svm(vcpu)->vmcb->save.rflags;
  597. }
  598. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  599. {
  600. to_svm(vcpu)->vmcb->save.rflags = rflags;
  601. }
  602. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  603. {
  604. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  605. switch (seg) {
  606. case VCPU_SREG_CS: return &save->cs;
  607. case VCPU_SREG_DS: return &save->ds;
  608. case VCPU_SREG_ES: return &save->es;
  609. case VCPU_SREG_FS: return &save->fs;
  610. case VCPU_SREG_GS: return &save->gs;
  611. case VCPU_SREG_SS: return &save->ss;
  612. case VCPU_SREG_TR: return &save->tr;
  613. case VCPU_SREG_LDTR: return &save->ldtr;
  614. }
  615. BUG();
  616. return NULL;
  617. }
  618. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  619. {
  620. struct vmcb_seg *s = svm_seg(vcpu, seg);
  621. return s->base;
  622. }
  623. static void svm_get_segment(struct kvm_vcpu *vcpu,
  624. struct kvm_segment *var, int seg)
  625. {
  626. struct vmcb_seg *s = svm_seg(vcpu, seg);
  627. var->base = s->base;
  628. var->limit = s->limit;
  629. var->selector = s->selector;
  630. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  631. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  632. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  633. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  634. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  635. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  636. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  637. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  638. var->unusable = !var->present;
  639. }
  640. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  641. {
  642. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  643. return save->cpl;
  644. }
  645. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  646. {
  647. struct vcpu_svm *svm = to_svm(vcpu);
  648. dt->limit = svm->vmcb->save.idtr.limit;
  649. dt->base = svm->vmcb->save.idtr.base;
  650. }
  651. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  652. {
  653. struct vcpu_svm *svm = to_svm(vcpu);
  654. svm->vmcb->save.idtr.limit = dt->limit;
  655. svm->vmcb->save.idtr.base = dt->base ;
  656. }
  657. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  658. {
  659. struct vcpu_svm *svm = to_svm(vcpu);
  660. dt->limit = svm->vmcb->save.gdtr.limit;
  661. dt->base = svm->vmcb->save.gdtr.base;
  662. }
  663. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  664. {
  665. struct vcpu_svm *svm = to_svm(vcpu);
  666. svm->vmcb->save.gdtr.limit = dt->limit;
  667. svm->vmcb->save.gdtr.base = dt->base ;
  668. }
  669. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  670. {
  671. }
  672. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  673. {
  674. struct vcpu_svm *svm = to_svm(vcpu);
  675. #ifdef CONFIG_X86_64
  676. if (vcpu->arch.shadow_efer & EFER_LME) {
  677. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  678. vcpu->arch.shadow_efer |= EFER_LMA;
  679. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  680. }
  681. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  682. vcpu->arch.shadow_efer &= ~EFER_LMA;
  683. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  684. }
  685. }
  686. #endif
  687. if (npt_enabled)
  688. goto set;
  689. if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
  690. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  691. vcpu->fpu_active = 1;
  692. }
  693. vcpu->arch.cr0 = cr0;
  694. cr0 |= X86_CR0_PG | X86_CR0_WP;
  695. if (!vcpu->fpu_active) {
  696. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  697. cr0 |= X86_CR0_TS;
  698. }
  699. set:
  700. /*
  701. * re-enable caching here because the QEMU bios
  702. * does not do it - this results in some delay at
  703. * reboot
  704. */
  705. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  706. svm->vmcb->save.cr0 = cr0;
  707. }
  708. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  709. {
  710. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  711. vcpu->arch.cr4 = cr4;
  712. if (!npt_enabled)
  713. cr4 |= X86_CR4_PAE;
  714. cr4 |= host_cr4_mce;
  715. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  716. }
  717. static void svm_set_segment(struct kvm_vcpu *vcpu,
  718. struct kvm_segment *var, int seg)
  719. {
  720. struct vcpu_svm *svm = to_svm(vcpu);
  721. struct vmcb_seg *s = svm_seg(vcpu, seg);
  722. s->base = var->base;
  723. s->limit = var->limit;
  724. s->selector = var->selector;
  725. if (var->unusable)
  726. s->attrib = 0;
  727. else {
  728. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  729. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  730. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  731. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  732. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  733. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  734. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  735. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  736. }
  737. if (seg == VCPU_SREG_CS)
  738. svm->vmcb->save.cpl
  739. = (svm->vmcb->save.cs.attrib
  740. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  741. }
  742. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  743. {
  744. return -EOPNOTSUPP;
  745. }
  746. static int svm_get_irq(struct kvm_vcpu *vcpu)
  747. {
  748. struct vcpu_svm *svm = to_svm(vcpu);
  749. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  750. if (is_external_interrupt(exit_int_info))
  751. return exit_int_info & SVM_EVTINJ_VEC_MASK;
  752. return -1;
  753. }
  754. static void load_host_msrs(struct kvm_vcpu *vcpu)
  755. {
  756. #ifdef CONFIG_X86_64
  757. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  758. #endif
  759. }
  760. static void save_host_msrs(struct kvm_vcpu *vcpu)
  761. {
  762. #ifdef CONFIG_X86_64
  763. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  764. #endif
  765. }
  766. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
  767. {
  768. if (svm_data->next_asid > svm_data->max_asid) {
  769. ++svm_data->asid_generation;
  770. svm_data->next_asid = 1;
  771. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  772. }
  773. svm->vcpu.cpu = svm_data->cpu;
  774. svm->asid_generation = svm_data->asid_generation;
  775. svm->vmcb->control.asid = svm_data->next_asid++;
  776. }
  777. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  778. {
  779. unsigned long val = to_svm(vcpu)->db_regs[dr];
  780. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  781. return val;
  782. }
  783. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  784. int *exception)
  785. {
  786. struct vcpu_svm *svm = to_svm(vcpu);
  787. *exception = 0;
  788. if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
  789. svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  790. svm->vmcb->save.dr6 |= DR6_BD_MASK;
  791. *exception = DB_VECTOR;
  792. return;
  793. }
  794. switch (dr) {
  795. case 0 ... 3:
  796. svm->db_regs[dr] = value;
  797. return;
  798. case 4 ... 5:
  799. if (vcpu->arch.cr4 & X86_CR4_DE) {
  800. *exception = UD_VECTOR;
  801. return;
  802. }
  803. case 7: {
  804. if (value & ~((1ULL << 32) - 1)) {
  805. *exception = GP_VECTOR;
  806. return;
  807. }
  808. svm->vmcb->save.dr7 = value;
  809. return;
  810. }
  811. default:
  812. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  813. __func__, dr);
  814. *exception = UD_VECTOR;
  815. return;
  816. }
  817. }
  818. static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  819. {
  820. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  821. struct kvm *kvm = svm->vcpu.kvm;
  822. u64 fault_address;
  823. u32 error_code;
  824. if (!irqchip_in_kernel(kvm) &&
  825. is_external_interrupt(exit_int_info))
  826. push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  827. fault_address = svm->vmcb->control.exit_info_2;
  828. error_code = svm->vmcb->control.exit_info_1;
  829. if (!npt_enabled)
  830. KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
  831. (u32)fault_address, (u32)(fault_address >> 32),
  832. handler);
  833. else
  834. KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
  835. (u32)fault_address, (u32)(fault_address >> 32),
  836. handler);
  837. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  838. }
  839. static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  840. {
  841. int er;
  842. er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  843. if (er != EMULATE_DONE)
  844. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  845. return 1;
  846. }
  847. static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  848. {
  849. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  850. if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
  851. svm->vmcb->save.cr0 &= ~X86_CR0_TS;
  852. svm->vcpu.fpu_active = 1;
  853. return 1;
  854. }
  855. static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  856. {
  857. /*
  858. * On an #MC intercept the MCE handler is not called automatically in
  859. * the host. So do it by hand here.
  860. */
  861. asm volatile (
  862. "int $0x12\n");
  863. /* not sure if we ever come back to this point */
  864. return 1;
  865. }
  866. static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  867. {
  868. /*
  869. * VMCB is undefined after a SHUTDOWN intercept
  870. * so reinitialize it.
  871. */
  872. clear_page(svm->vmcb);
  873. init_vmcb(svm);
  874. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  875. return 0;
  876. }
  877. static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  878. {
  879. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  880. int size, down, in, string, rep;
  881. unsigned port;
  882. ++svm->vcpu.stat.io_exits;
  883. svm->next_rip = svm->vmcb->control.exit_info_2;
  884. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  885. if (string) {
  886. if (emulate_instruction(&svm->vcpu,
  887. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  888. return 0;
  889. return 1;
  890. }
  891. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  892. port = io_info >> 16;
  893. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  894. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  895. down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  896. return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
  897. }
  898. static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  899. {
  900. KVMTRACE_0D(NMI, &svm->vcpu, handler);
  901. return 1;
  902. }
  903. static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  904. {
  905. ++svm->vcpu.stat.irq_exits;
  906. KVMTRACE_0D(INTR, &svm->vcpu, handler);
  907. return 1;
  908. }
  909. static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  910. {
  911. return 1;
  912. }
  913. static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  914. {
  915. svm->next_rip = svm->vmcb->save.rip + 1;
  916. skip_emulated_instruction(&svm->vcpu);
  917. return kvm_emulate_halt(&svm->vcpu);
  918. }
  919. static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  920. {
  921. svm->next_rip = svm->vmcb->save.rip + 3;
  922. skip_emulated_instruction(&svm->vcpu);
  923. kvm_emulate_hypercall(&svm->vcpu);
  924. return 1;
  925. }
  926. static int invalid_op_interception(struct vcpu_svm *svm,
  927. struct kvm_run *kvm_run)
  928. {
  929. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  930. return 1;
  931. }
  932. static int task_switch_interception(struct vcpu_svm *svm,
  933. struct kvm_run *kvm_run)
  934. {
  935. u16 tss_selector;
  936. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  937. if (svm->vmcb->control.exit_info_2 &
  938. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  939. return kvm_task_switch(&svm->vcpu, tss_selector,
  940. TASK_SWITCH_IRET);
  941. if (svm->vmcb->control.exit_info_2 &
  942. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  943. return kvm_task_switch(&svm->vcpu, tss_selector,
  944. TASK_SWITCH_JMP);
  945. return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
  946. }
  947. static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  948. {
  949. svm->next_rip = svm->vmcb->save.rip + 2;
  950. kvm_emulate_cpuid(&svm->vcpu);
  951. return 1;
  952. }
  953. static int emulate_on_interception(struct vcpu_svm *svm,
  954. struct kvm_run *kvm_run)
  955. {
  956. if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
  957. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  958. return 1;
  959. }
  960. static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  961. {
  962. emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
  963. if (irqchip_in_kernel(svm->vcpu.kvm))
  964. return 1;
  965. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  966. return 0;
  967. }
  968. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  969. {
  970. struct vcpu_svm *svm = to_svm(vcpu);
  971. switch (ecx) {
  972. case MSR_IA32_TIME_STAMP_COUNTER: {
  973. u64 tsc;
  974. rdtscll(tsc);
  975. *data = svm->vmcb->control.tsc_offset + tsc;
  976. break;
  977. }
  978. case MSR_K6_STAR:
  979. *data = svm->vmcb->save.star;
  980. break;
  981. #ifdef CONFIG_X86_64
  982. case MSR_LSTAR:
  983. *data = svm->vmcb->save.lstar;
  984. break;
  985. case MSR_CSTAR:
  986. *data = svm->vmcb->save.cstar;
  987. break;
  988. case MSR_KERNEL_GS_BASE:
  989. *data = svm->vmcb->save.kernel_gs_base;
  990. break;
  991. case MSR_SYSCALL_MASK:
  992. *data = svm->vmcb->save.sfmask;
  993. break;
  994. #endif
  995. case MSR_IA32_SYSENTER_CS:
  996. *data = svm->vmcb->save.sysenter_cs;
  997. break;
  998. case MSR_IA32_SYSENTER_EIP:
  999. *data = svm->vmcb->save.sysenter_eip;
  1000. break;
  1001. case MSR_IA32_SYSENTER_ESP:
  1002. *data = svm->vmcb->save.sysenter_esp;
  1003. break;
  1004. /* Nobody will change the following 5 values in the VMCB so
  1005. we can safely return them on rdmsr. They will always be 0
  1006. until LBRV is implemented. */
  1007. case MSR_IA32_DEBUGCTLMSR:
  1008. *data = svm->vmcb->save.dbgctl;
  1009. break;
  1010. case MSR_IA32_LASTBRANCHFROMIP:
  1011. *data = svm->vmcb->save.br_from;
  1012. break;
  1013. case MSR_IA32_LASTBRANCHTOIP:
  1014. *data = svm->vmcb->save.br_to;
  1015. break;
  1016. case MSR_IA32_LASTINTFROMIP:
  1017. *data = svm->vmcb->save.last_excp_from;
  1018. break;
  1019. case MSR_IA32_LASTINTTOIP:
  1020. *data = svm->vmcb->save.last_excp_to;
  1021. break;
  1022. default:
  1023. return kvm_get_msr_common(vcpu, ecx, data);
  1024. }
  1025. return 0;
  1026. }
  1027. static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1028. {
  1029. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1030. u64 data;
  1031. if (svm_get_msr(&svm->vcpu, ecx, &data))
  1032. kvm_inject_gp(&svm->vcpu, 0);
  1033. else {
  1034. KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
  1035. (u32)(data >> 32), handler);
  1036. svm->vmcb->save.rax = data & 0xffffffff;
  1037. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  1038. svm->next_rip = svm->vmcb->save.rip + 2;
  1039. skip_emulated_instruction(&svm->vcpu);
  1040. }
  1041. return 1;
  1042. }
  1043. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  1044. {
  1045. struct vcpu_svm *svm = to_svm(vcpu);
  1046. switch (ecx) {
  1047. case MSR_IA32_TIME_STAMP_COUNTER: {
  1048. u64 tsc;
  1049. rdtscll(tsc);
  1050. svm->vmcb->control.tsc_offset = data - tsc;
  1051. break;
  1052. }
  1053. case MSR_K6_STAR:
  1054. svm->vmcb->save.star = data;
  1055. break;
  1056. #ifdef CONFIG_X86_64
  1057. case MSR_LSTAR:
  1058. svm->vmcb->save.lstar = data;
  1059. break;
  1060. case MSR_CSTAR:
  1061. svm->vmcb->save.cstar = data;
  1062. break;
  1063. case MSR_KERNEL_GS_BASE:
  1064. svm->vmcb->save.kernel_gs_base = data;
  1065. break;
  1066. case MSR_SYSCALL_MASK:
  1067. svm->vmcb->save.sfmask = data;
  1068. break;
  1069. #endif
  1070. case MSR_IA32_SYSENTER_CS:
  1071. svm->vmcb->save.sysenter_cs = data;
  1072. break;
  1073. case MSR_IA32_SYSENTER_EIP:
  1074. svm->vmcb->save.sysenter_eip = data;
  1075. break;
  1076. case MSR_IA32_SYSENTER_ESP:
  1077. svm->vmcb->save.sysenter_esp = data;
  1078. break;
  1079. case MSR_IA32_DEBUGCTLMSR:
  1080. if (!svm_has(SVM_FEATURE_LBRV)) {
  1081. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  1082. __func__, data);
  1083. break;
  1084. }
  1085. if (data & DEBUGCTL_RESERVED_BITS)
  1086. return 1;
  1087. svm->vmcb->save.dbgctl = data;
  1088. if (data & (1ULL<<0))
  1089. svm_enable_lbrv(svm);
  1090. else
  1091. svm_disable_lbrv(svm);
  1092. break;
  1093. case MSR_K7_EVNTSEL0:
  1094. case MSR_K7_EVNTSEL1:
  1095. case MSR_K7_EVNTSEL2:
  1096. case MSR_K7_EVNTSEL3:
  1097. case MSR_K7_PERFCTR0:
  1098. case MSR_K7_PERFCTR1:
  1099. case MSR_K7_PERFCTR2:
  1100. case MSR_K7_PERFCTR3:
  1101. /*
  1102. * Just discard all writes to the performance counters; this
  1103. * should keep both older linux and windows 64-bit guests
  1104. * happy
  1105. */
  1106. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
  1107. break;
  1108. default:
  1109. return kvm_set_msr_common(vcpu, ecx, data);
  1110. }
  1111. return 0;
  1112. }
  1113. static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1114. {
  1115. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1116. u64 data = (svm->vmcb->save.rax & -1u)
  1117. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1118. KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
  1119. handler);
  1120. svm->next_rip = svm->vmcb->save.rip + 2;
  1121. if (svm_set_msr(&svm->vcpu, ecx, data))
  1122. kvm_inject_gp(&svm->vcpu, 0);
  1123. else
  1124. skip_emulated_instruction(&svm->vcpu);
  1125. return 1;
  1126. }
  1127. static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1128. {
  1129. if (svm->vmcb->control.exit_info_1)
  1130. return wrmsr_interception(svm, kvm_run);
  1131. else
  1132. return rdmsr_interception(svm, kvm_run);
  1133. }
  1134. static int interrupt_window_interception(struct vcpu_svm *svm,
  1135. struct kvm_run *kvm_run)
  1136. {
  1137. KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
  1138. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  1139. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1140. /*
  1141. * If the user space waits to inject interrupts, exit as soon as
  1142. * possible
  1143. */
  1144. if (kvm_run->request_interrupt_window &&
  1145. !svm->vcpu.arch.irq_summary) {
  1146. ++svm->vcpu.stat.irq_window_exits;
  1147. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1148. return 0;
  1149. }
  1150. return 1;
  1151. }
  1152. static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
  1153. struct kvm_run *kvm_run) = {
  1154. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1155. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1156. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1157. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  1158. /* for now: */
  1159. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1160. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1161. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1162. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  1163. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1164. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1165. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1166. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1167. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1168. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1169. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1170. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1171. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1172. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1173. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  1174. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1175. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1176. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  1177. [SVM_EXIT_INTR] = intr_interception,
  1178. [SVM_EXIT_NMI] = nmi_interception,
  1179. [SVM_EXIT_SMI] = nop_on_interception,
  1180. [SVM_EXIT_INIT] = nop_on_interception,
  1181. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1182. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1183. [SVM_EXIT_CPUID] = cpuid_interception,
  1184. [SVM_EXIT_INVD] = emulate_on_interception,
  1185. [SVM_EXIT_HLT] = halt_interception,
  1186. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1187. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1188. [SVM_EXIT_IOIO] = io_interception,
  1189. [SVM_EXIT_MSR] = msr_interception,
  1190. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1191. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1192. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1193. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1194. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1195. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1196. [SVM_EXIT_STGI] = invalid_op_interception,
  1197. [SVM_EXIT_CLGI] = invalid_op_interception,
  1198. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1199. [SVM_EXIT_WBINVD] = emulate_on_interception,
  1200. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1201. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1202. [SVM_EXIT_NPF] = pf_interception,
  1203. };
  1204. static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1205. {
  1206. struct vcpu_svm *svm = to_svm(vcpu);
  1207. u32 exit_code = svm->vmcb->control.exit_code;
  1208. KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
  1209. (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
  1210. if (npt_enabled) {
  1211. int mmu_reload = 0;
  1212. if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
  1213. svm_set_cr0(vcpu, svm->vmcb->save.cr0);
  1214. mmu_reload = 1;
  1215. }
  1216. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  1217. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  1218. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1219. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1220. kvm_inject_gp(vcpu, 0);
  1221. return 1;
  1222. }
  1223. }
  1224. if (mmu_reload) {
  1225. kvm_mmu_reset_context(vcpu);
  1226. kvm_mmu_load(vcpu);
  1227. }
  1228. }
  1229. kvm_reput_irq(svm);
  1230. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1231. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1232. kvm_run->fail_entry.hardware_entry_failure_reason
  1233. = svm->vmcb->control.exit_code;
  1234. return 0;
  1235. }
  1236. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  1237. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  1238. exit_code != SVM_EXIT_NPF)
  1239. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1240. "exit_code 0x%x\n",
  1241. __func__, svm->vmcb->control.exit_int_info,
  1242. exit_code);
  1243. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1244. || !svm_exit_handlers[exit_code]) {
  1245. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1246. kvm_run->hw.hardware_exit_reason = exit_code;
  1247. return 0;
  1248. }
  1249. return svm_exit_handlers[exit_code](svm, kvm_run);
  1250. }
  1251. static void reload_tss(struct kvm_vcpu *vcpu)
  1252. {
  1253. int cpu = raw_smp_processor_id();
  1254. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1255. svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
  1256. load_TR_desc();
  1257. }
  1258. static void pre_svm_run(struct vcpu_svm *svm)
  1259. {
  1260. int cpu = raw_smp_processor_id();
  1261. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1262. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1263. if (svm->vcpu.cpu != cpu ||
  1264. svm->asid_generation != svm_data->asid_generation)
  1265. new_asid(svm, svm_data);
  1266. }
  1267. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  1268. {
  1269. struct vmcb_control_area *control;
  1270. KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
  1271. control = &svm->vmcb->control;
  1272. control->int_vector = irq;
  1273. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1274. control->int_ctl |= V_IRQ_MASK |
  1275. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1276. }
  1277. static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
  1278. {
  1279. struct vcpu_svm *svm = to_svm(vcpu);
  1280. svm_inject_irq(svm, irq);
  1281. }
  1282. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  1283. {
  1284. struct vcpu_svm *svm = to_svm(vcpu);
  1285. struct vmcb *vmcb = svm->vmcb;
  1286. int max_irr, tpr;
  1287. if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
  1288. return;
  1289. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1290. max_irr = kvm_lapic_find_highest_irr(vcpu);
  1291. if (max_irr == -1)
  1292. return;
  1293. tpr = kvm_lapic_get_cr8(vcpu) << 4;
  1294. if (tpr >= (max_irr & 0xf0))
  1295. vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  1296. }
  1297. static void svm_intr_assist(struct kvm_vcpu *vcpu)
  1298. {
  1299. struct vcpu_svm *svm = to_svm(vcpu);
  1300. struct vmcb *vmcb = svm->vmcb;
  1301. int intr_vector = -1;
  1302. if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
  1303. ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
  1304. intr_vector = vmcb->control.exit_int_info &
  1305. SVM_EVTINJ_VEC_MASK;
  1306. vmcb->control.exit_int_info = 0;
  1307. svm_inject_irq(svm, intr_vector);
  1308. goto out;
  1309. }
  1310. if (vmcb->control.int_ctl & V_IRQ_MASK)
  1311. goto out;
  1312. if (!kvm_cpu_has_interrupt(vcpu))
  1313. goto out;
  1314. if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
  1315. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
  1316. (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
  1317. /* unable to deliver irq, set pending irq */
  1318. vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
  1319. svm_inject_irq(svm, 0x0);
  1320. goto out;
  1321. }
  1322. /* Okay, we can deliver the interrupt: grab it and update PIC state. */
  1323. intr_vector = kvm_cpu_get_interrupt(vcpu);
  1324. svm_inject_irq(svm, intr_vector);
  1325. kvm_timer_intr_post(vcpu, intr_vector);
  1326. out:
  1327. update_cr8_intercept(vcpu);
  1328. }
  1329. static void kvm_reput_irq(struct vcpu_svm *svm)
  1330. {
  1331. struct vmcb_control_area *control = &svm->vmcb->control;
  1332. if ((control->int_ctl & V_IRQ_MASK)
  1333. && !irqchip_in_kernel(svm->vcpu.kvm)) {
  1334. control->int_ctl &= ~V_IRQ_MASK;
  1335. push_irq(&svm->vcpu, control->int_vector);
  1336. }
  1337. svm->vcpu.arch.interrupt_window_open =
  1338. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1339. }
  1340. static void svm_do_inject_vector(struct vcpu_svm *svm)
  1341. {
  1342. struct kvm_vcpu *vcpu = &svm->vcpu;
  1343. int word_index = __ffs(vcpu->arch.irq_summary);
  1344. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1345. int irq = word_index * BITS_PER_LONG + bit_index;
  1346. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1347. if (!vcpu->arch.irq_pending[word_index])
  1348. clear_bit(word_index, &vcpu->arch.irq_summary);
  1349. svm_inject_irq(svm, irq);
  1350. }
  1351. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1352. struct kvm_run *kvm_run)
  1353. {
  1354. struct vcpu_svm *svm = to_svm(vcpu);
  1355. struct vmcb_control_area *control = &svm->vmcb->control;
  1356. svm->vcpu.arch.interrupt_window_open =
  1357. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1358. (svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1359. if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
  1360. /*
  1361. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1362. */
  1363. svm_do_inject_vector(svm);
  1364. /*
  1365. * Interrupts blocked. Wait for unblock.
  1366. */
  1367. if (!svm->vcpu.arch.interrupt_window_open &&
  1368. (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
  1369. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1370. else
  1371. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1372. }
  1373. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1374. {
  1375. return 0;
  1376. }
  1377. static void save_db_regs(unsigned long *db_regs)
  1378. {
  1379. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1380. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1381. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1382. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1383. }
  1384. static void load_db_regs(unsigned long *db_regs)
  1385. {
  1386. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1387. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1388. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1389. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1390. }
  1391. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1392. {
  1393. force_new_asid(vcpu);
  1394. }
  1395. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  1396. {
  1397. }
  1398. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  1399. {
  1400. struct vcpu_svm *svm = to_svm(vcpu);
  1401. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  1402. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  1403. kvm_lapic_set_tpr(vcpu, cr8);
  1404. }
  1405. }
  1406. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  1407. {
  1408. struct vcpu_svm *svm = to_svm(vcpu);
  1409. u64 cr8;
  1410. if (!irqchip_in_kernel(vcpu->kvm))
  1411. return;
  1412. cr8 = kvm_get_cr8(vcpu);
  1413. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  1414. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  1415. }
  1416. static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1417. {
  1418. struct vcpu_svm *svm = to_svm(vcpu);
  1419. u16 fs_selector;
  1420. u16 gs_selector;
  1421. u16 ldt_selector;
  1422. pre_svm_run(svm);
  1423. sync_lapic_to_cr8(vcpu);
  1424. save_host_msrs(vcpu);
  1425. fs_selector = kvm_read_fs();
  1426. gs_selector = kvm_read_gs();
  1427. ldt_selector = kvm_read_ldt();
  1428. svm->host_cr2 = kvm_read_cr2();
  1429. svm->host_dr6 = read_dr6();
  1430. svm->host_dr7 = read_dr7();
  1431. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  1432. /* required for live migration with NPT */
  1433. if (npt_enabled)
  1434. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  1435. if (svm->vmcb->save.dr7 & 0xff) {
  1436. write_dr7(0);
  1437. save_db_regs(svm->host_db_regs);
  1438. load_db_regs(svm->db_regs);
  1439. }
  1440. clgi();
  1441. local_irq_enable();
  1442. asm volatile (
  1443. #ifdef CONFIG_X86_64
  1444. "push %%rbp; \n\t"
  1445. #else
  1446. "push %%ebp; \n\t"
  1447. #endif
  1448. #ifdef CONFIG_X86_64
  1449. "mov %c[rbx](%[svm]), %%rbx \n\t"
  1450. "mov %c[rcx](%[svm]), %%rcx \n\t"
  1451. "mov %c[rdx](%[svm]), %%rdx \n\t"
  1452. "mov %c[rsi](%[svm]), %%rsi \n\t"
  1453. "mov %c[rdi](%[svm]), %%rdi \n\t"
  1454. "mov %c[rbp](%[svm]), %%rbp \n\t"
  1455. "mov %c[r8](%[svm]), %%r8 \n\t"
  1456. "mov %c[r9](%[svm]), %%r9 \n\t"
  1457. "mov %c[r10](%[svm]), %%r10 \n\t"
  1458. "mov %c[r11](%[svm]), %%r11 \n\t"
  1459. "mov %c[r12](%[svm]), %%r12 \n\t"
  1460. "mov %c[r13](%[svm]), %%r13 \n\t"
  1461. "mov %c[r14](%[svm]), %%r14 \n\t"
  1462. "mov %c[r15](%[svm]), %%r15 \n\t"
  1463. #else
  1464. "mov %c[rbx](%[svm]), %%ebx \n\t"
  1465. "mov %c[rcx](%[svm]), %%ecx \n\t"
  1466. "mov %c[rdx](%[svm]), %%edx \n\t"
  1467. "mov %c[rsi](%[svm]), %%esi \n\t"
  1468. "mov %c[rdi](%[svm]), %%edi \n\t"
  1469. "mov %c[rbp](%[svm]), %%ebp \n\t"
  1470. #endif
  1471. #ifdef CONFIG_X86_64
  1472. /* Enter guest mode */
  1473. "push %%rax \n\t"
  1474. "mov %c[vmcb](%[svm]), %%rax \n\t"
  1475. __ex(SVM_VMLOAD) "\n\t"
  1476. __ex(SVM_VMRUN) "\n\t"
  1477. __ex(SVM_VMSAVE) "\n\t"
  1478. "pop %%rax \n\t"
  1479. #else
  1480. /* Enter guest mode */
  1481. "push %%eax \n\t"
  1482. "mov %c[vmcb](%[svm]), %%eax \n\t"
  1483. __ex(SVM_VMLOAD) "\n\t"
  1484. __ex(SVM_VMRUN) "\n\t"
  1485. __ex(SVM_VMSAVE) "\n\t"
  1486. "pop %%eax \n\t"
  1487. #endif
  1488. /* Save guest registers, load host registers */
  1489. #ifdef CONFIG_X86_64
  1490. "mov %%rbx, %c[rbx](%[svm]) \n\t"
  1491. "mov %%rcx, %c[rcx](%[svm]) \n\t"
  1492. "mov %%rdx, %c[rdx](%[svm]) \n\t"
  1493. "mov %%rsi, %c[rsi](%[svm]) \n\t"
  1494. "mov %%rdi, %c[rdi](%[svm]) \n\t"
  1495. "mov %%rbp, %c[rbp](%[svm]) \n\t"
  1496. "mov %%r8, %c[r8](%[svm]) \n\t"
  1497. "mov %%r9, %c[r9](%[svm]) \n\t"
  1498. "mov %%r10, %c[r10](%[svm]) \n\t"
  1499. "mov %%r11, %c[r11](%[svm]) \n\t"
  1500. "mov %%r12, %c[r12](%[svm]) \n\t"
  1501. "mov %%r13, %c[r13](%[svm]) \n\t"
  1502. "mov %%r14, %c[r14](%[svm]) \n\t"
  1503. "mov %%r15, %c[r15](%[svm]) \n\t"
  1504. "pop %%rbp; \n\t"
  1505. #else
  1506. "mov %%ebx, %c[rbx](%[svm]) \n\t"
  1507. "mov %%ecx, %c[rcx](%[svm]) \n\t"
  1508. "mov %%edx, %c[rdx](%[svm]) \n\t"
  1509. "mov %%esi, %c[rsi](%[svm]) \n\t"
  1510. "mov %%edi, %c[rdi](%[svm]) \n\t"
  1511. "mov %%ebp, %c[rbp](%[svm]) \n\t"
  1512. "pop %%ebp; \n\t"
  1513. #endif
  1514. :
  1515. : [svm]"a"(svm),
  1516. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1517. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  1518. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  1519. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  1520. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  1521. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  1522. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  1523. #ifdef CONFIG_X86_64
  1524. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  1525. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  1526. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  1527. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  1528. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  1529. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  1530. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  1531. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  1532. #endif
  1533. : "cc", "memory"
  1534. #ifdef CONFIG_X86_64
  1535. , "rbx", "rcx", "rdx", "rsi", "rdi"
  1536. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  1537. #else
  1538. , "ebx", "ecx", "edx" , "esi", "edi"
  1539. #endif
  1540. );
  1541. if ((svm->vmcb->save.dr7 & 0xff))
  1542. load_db_regs(svm->host_db_regs);
  1543. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  1544. write_dr6(svm->host_dr6);
  1545. write_dr7(svm->host_dr7);
  1546. kvm_write_cr2(svm->host_cr2);
  1547. kvm_load_fs(fs_selector);
  1548. kvm_load_gs(gs_selector);
  1549. kvm_load_ldt(ldt_selector);
  1550. load_host_msrs(vcpu);
  1551. reload_tss(vcpu);
  1552. local_irq_disable();
  1553. stgi();
  1554. sync_cr8_to_lapic(vcpu);
  1555. svm->next_rip = 0;
  1556. }
  1557. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1558. {
  1559. struct vcpu_svm *svm = to_svm(vcpu);
  1560. if (npt_enabled) {
  1561. svm->vmcb->control.nested_cr3 = root;
  1562. force_new_asid(vcpu);
  1563. return;
  1564. }
  1565. svm->vmcb->save.cr3 = root;
  1566. force_new_asid(vcpu);
  1567. if (vcpu->fpu_active) {
  1568. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  1569. svm->vmcb->save.cr0 |= X86_CR0_TS;
  1570. vcpu->fpu_active = 0;
  1571. }
  1572. }
  1573. static int is_disabled(void)
  1574. {
  1575. u64 vm_cr;
  1576. rdmsrl(MSR_VM_CR, vm_cr);
  1577. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  1578. return 1;
  1579. return 0;
  1580. }
  1581. static void
  1582. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1583. {
  1584. /*
  1585. * Patch in the VMMCALL instruction:
  1586. */
  1587. hypercall[0] = 0x0f;
  1588. hypercall[1] = 0x01;
  1589. hypercall[2] = 0xd9;
  1590. }
  1591. static void svm_check_processor_compat(void *rtn)
  1592. {
  1593. *(int *)rtn = 0;
  1594. }
  1595. static bool svm_cpu_has_accelerated_tpr(void)
  1596. {
  1597. return false;
  1598. }
  1599. static int get_npt_level(void)
  1600. {
  1601. #ifdef CONFIG_X86_64
  1602. return PT64_ROOT_LEVEL;
  1603. #else
  1604. return PT32E_ROOT_LEVEL;
  1605. #endif
  1606. }
  1607. static struct kvm_x86_ops svm_x86_ops = {
  1608. .cpu_has_kvm_support = has_svm,
  1609. .disabled_by_bios = is_disabled,
  1610. .hardware_setup = svm_hardware_setup,
  1611. .hardware_unsetup = svm_hardware_unsetup,
  1612. .check_processor_compatibility = svm_check_processor_compat,
  1613. .hardware_enable = svm_hardware_enable,
  1614. .hardware_disable = svm_hardware_disable,
  1615. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  1616. .vcpu_create = svm_create_vcpu,
  1617. .vcpu_free = svm_free_vcpu,
  1618. .vcpu_reset = svm_vcpu_reset,
  1619. .prepare_guest_switch = svm_prepare_guest_switch,
  1620. .vcpu_load = svm_vcpu_load,
  1621. .vcpu_put = svm_vcpu_put,
  1622. .set_guest_debug = svm_guest_debug,
  1623. .get_msr = svm_get_msr,
  1624. .set_msr = svm_set_msr,
  1625. .get_segment_base = svm_get_segment_base,
  1626. .get_segment = svm_get_segment,
  1627. .set_segment = svm_set_segment,
  1628. .get_cpl = svm_get_cpl,
  1629. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  1630. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  1631. .set_cr0 = svm_set_cr0,
  1632. .set_cr3 = svm_set_cr3,
  1633. .set_cr4 = svm_set_cr4,
  1634. .set_efer = svm_set_efer,
  1635. .get_idt = svm_get_idt,
  1636. .set_idt = svm_set_idt,
  1637. .get_gdt = svm_get_gdt,
  1638. .set_gdt = svm_set_gdt,
  1639. .get_dr = svm_get_dr,
  1640. .set_dr = svm_set_dr,
  1641. .cache_regs = svm_cache_regs,
  1642. .decache_regs = svm_decache_regs,
  1643. .get_rflags = svm_get_rflags,
  1644. .set_rflags = svm_set_rflags,
  1645. .tlb_flush = svm_flush_tlb,
  1646. .run = svm_vcpu_run,
  1647. .handle_exit = handle_exit,
  1648. .skip_emulated_instruction = skip_emulated_instruction,
  1649. .patch_hypercall = svm_patch_hypercall,
  1650. .get_irq = svm_get_irq,
  1651. .set_irq = svm_set_irq,
  1652. .queue_exception = svm_queue_exception,
  1653. .exception_injected = svm_exception_injected,
  1654. .inject_pending_irq = svm_intr_assist,
  1655. .inject_pending_vectors = do_interrupt_requests,
  1656. .set_tss_addr = svm_set_tss_addr,
  1657. .get_tdp_level = get_npt_level,
  1658. };
  1659. static int __init svm_init(void)
  1660. {
  1661. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  1662. THIS_MODULE);
  1663. }
  1664. static void __exit svm_exit(void)
  1665. {
  1666. kvm_exit();
  1667. }
  1668. module_init(svm_init)
  1669. module_exit(svm_exit)