tsb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. /* arch/sparc64/mm/tsb.c
  2. *
  3. * Copyright (C) 2006 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <asm/system.h>
  7. #include <asm/page.h>
  8. #include <asm/tlbflush.h>
  9. #include <asm/tlb.h>
  10. #include <asm/mmu_context.h>
  11. #include <asm/pgtable.h>
  12. #include <asm/tsb.h>
  13. #include <asm/oplib.h>
  14. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  15. static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  16. {
  17. vaddr >>= hash_shift;
  18. return vaddr & (nentries - 1);
  19. }
  20. static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  21. {
  22. return (tag == (vaddr >> 22));
  23. }
  24. /* TSB flushes need only occur on the processor initiating the address
  25. * space modification, not on each cpu the address space has run on.
  26. * Only the TLB flush needs that treatment.
  27. */
  28. void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  29. {
  30. unsigned long v;
  31. for (v = start; v < end; v += PAGE_SIZE) {
  32. unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  33. KERNEL_TSB_NENTRIES);
  34. struct tsb *ent = &swapper_tsb[hash];
  35. if (tag_compare(ent->tag, v)) {
  36. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  37. membar_storeload_storestore();
  38. }
  39. }
  40. }
  41. static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
  42. {
  43. unsigned long i;
  44. for (i = 0; i < mp->tlb_nr; i++) {
  45. unsigned long v = mp->vaddrs[i];
  46. unsigned long tag, ent, hash;
  47. v &= ~0x1UL;
  48. hash = tsb_hash(v, hash_shift, nentries);
  49. ent = tsb + (hash * sizeof(struct tsb));
  50. tag = (v >> 22UL);
  51. tsb_flush(ent, tag);
  52. }
  53. }
  54. void flush_tsb_user(struct mmu_gather *mp)
  55. {
  56. struct mm_struct *mm = mp->mm;
  57. unsigned long nentries, base, flags;
  58. spin_lock_irqsave(&mm->context.lock, flags);
  59. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  60. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  61. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  62. base = __pa(base);
  63. __flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
  64. #ifdef CONFIG_HUGETLB_PAGE
  65. if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  66. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  67. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  68. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  69. base = __pa(base);
  70. __flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
  71. }
  72. #endif
  73. spin_unlock_irqrestore(&mm->context.lock, flags);
  74. }
  75. #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
  76. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
  77. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
  78. #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
  79. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
  80. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
  81. #else
  82. #error Broken base page size setting...
  83. #endif
  84. #ifdef CONFIG_HUGETLB_PAGE
  85. #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
  86. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
  87. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
  88. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
  89. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
  90. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
  91. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
  92. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
  93. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
  94. #else
  95. #error Broken huge page size setting...
  96. #endif
  97. #endif
  98. static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
  99. {
  100. unsigned long tsb_reg, base, tsb_paddr;
  101. unsigned long page_sz, tte;
  102. mm->context.tsb_block[tsb_idx].tsb_nentries =
  103. tsb_bytes / sizeof(struct tsb);
  104. base = TSBMAP_BASE;
  105. tte = pgprot_val(PAGE_KERNEL_LOCKED);
  106. tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
  107. BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
  108. /* Use the smallest page size that can map the whole TSB
  109. * in one TLB entry.
  110. */
  111. switch (tsb_bytes) {
  112. case 8192 << 0:
  113. tsb_reg = 0x0UL;
  114. #ifdef DCACHE_ALIASING_POSSIBLE
  115. base += (tsb_paddr & 8192);
  116. #endif
  117. page_sz = 8192;
  118. break;
  119. case 8192 << 1:
  120. tsb_reg = 0x1UL;
  121. page_sz = 64 * 1024;
  122. break;
  123. case 8192 << 2:
  124. tsb_reg = 0x2UL;
  125. page_sz = 64 * 1024;
  126. break;
  127. case 8192 << 3:
  128. tsb_reg = 0x3UL;
  129. page_sz = 64 * 1024;
  130. break;
  131. case 8192 << 4:
  132. tsb_reg = 0x4UL;
  133. page_sz = 512 * 1024;
  134. break;
  135. case 8192 << 5:
  136. tsb_reg = 0x5UL;
  137. page_sz = 512 * 1024;
  138. break;
  139. case 8192 << 6:
  140. tsb_reg = 0x6UL;
  141. page_sz = 512 * 1024;
  142. break;
  143. case 8192 << 7:
  144. tsb_reg = 0x7UL;
  145. page_sz = 4 * 1024 * 1024;
  146. break;
  147. default:
  148. printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
  149. current->comm, current->pid, tsb_bytes);
  150. do_exit(SIGSEGV);
  151. };
  152. tte |= pte_sz_bits(page_sz);
  153. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  154. /* Physical mapping, no locked TLB entry for TSB. */
  155. tsb_reg |= tsb_paddr;
  156. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  157. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
  158. mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
  159. } else {
  160. tsb_reg |= base;
  161. tsb_reg |= (tsb_paddr & (page_sz - 1UL));
  162. tte |= (tsb_paddr & ~(page_sz - 1UL));
  163. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  164. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
  165. mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
  166. }
  167. /* Setup the Hypervisor TSB descriptor. */
  168. if (tlb_type == hypervisor) {
  169. struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
  170. switch (tsb_idx) {
  171. case MM_TSB_BASE:
  172. hp->pgsz_idx = HV_PGSZ_IDX_BASE;
  173. break;
  174. #ifdef CONFIG_HUGETLB_PAGE
  175. case MM_TSB_HUGE:
  176. hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
  177. break;
  178. #endif
  179. default:
  180. BUG();
  181. };
  182. hp->assoc = 1;
  183. hp->num_ttes = tsb_bytes / 16;
  184. hp->ctx_idx = 0;
  185. switch (tsb_idx) {
  186. case MM_TSB_BASE:
  187. hp->pgsz_mask = HV_PGSZ_MASK_BASE;
  188. break;
  189. #ifdef CONFIG_HUGETLB_PAGE
  190. case MM_TSB_HUGE:
  191. hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
  192. break;
  193. #endif
  194. default:
  195. BUG();
  196. };
  197. hp->tsb_base = tsb_paddr;
  198. hp->resv = 0;
  199. }
  200. }
  201. static struct kmem_cache *tsb_caches[8] __read_mostly;
  202. static const char *tsb_cache_names[8] = {
  203. "tsb_8KB",
  204. "tsb_16KB",
  205. "tsb_32KB",
  206. "tsb_64KB",
  207. "tsb_128KB",
  208. "tsb_256KB",
  209. "tsb_512KB",
  210. "tsb_1MB",
  211. };
  212. void __init pgtable_cache_init(void)
  213. {
  214. unsigned long i;
  215. for (i = 0; i < 8; i++) {
  216. unsigned long size = 8192 << i;
  217. const char *name = tsb_cache_names[i];
  218. tsb_caches[i] = kmem_cache_create(name,
  219. size, size,
  220. 0, NULL);
  221. if (!tsb_caches[i]) {
  222. prom_printf("Could not create %s cache\n", name);
  223. prom_halt();
  224. }
  225. }
  226. }
  227. /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
  228. * do_sparc64_fault() invokes this routine to try and grow it.
  229. *
  230. * When we reach the maximum TSB size supported, we stick ~0UL into
  231. * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
  232. * will not trigger any longer.
  233. *
  234. * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
  235. * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
  236. * must be 512K aligned. It also must be physically contiguous, so we
  237. * cannot use vmalloc().
  238. *
  239. * The idea here is to grow the TSB when the RSS of the process approaches
  240. * the number of entries that the current TSB can hold at once. Currently,
  241. * we trigger when the RSS hits 3/4 of the TSB capacity.
  242. */
  243. void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
  244. {
  245. unsigned long max_tsb_size = 1 * 1024 * 1024;
  246. unsigned long new_size, old_size, flags;
  247. struct tsb *old_tsb, *new_tsb;
  248. unsigned long new_cache_index, old_cache_index;
  249. unsigned long new_rss_limit;
  250. gfp_t gfp_flags;
  251. if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
  252. max_tsb_size = (PAGE_SIZE << MAX_ORDER);
  253. new_cache_index = 0;
  254. for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
  255. unsigned long n_entries = new_size / sizeof(struct tsb);
  256. n_entries = (n_entries * 3) / 4;
  257. if (n_entries > rss)
  258. break;
  259. new_cache_index++;
  260. }
  261. if (new_size == max_tsb_size)
  262. new_rss_limit = ~0UL;
  263. else
  264. new_rss_limit = ((new_size / sizeof(struct tsb)) * 3) / 4;
  265. retry_tsb_alloc:
  266. gfp_flags = GFP_KERNEL;
  267. if (new_size > (PAGE_SIZE * 2))
  268. gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
  269. new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
  270. gfp_flags, numa_node_id());
  271. if (unlikely(!new_tsb)) {
  272. /* Not being able to fork due to a high-order TSB
  273. * allocation failure is very bad behavior. Just back
  274. * down to a 0-order allocation and force no TSB
  275. * growing for this address space.
  276. */
  277. if (mm->context.tsb_block[tsb_index].tsb == NULL &&
  278. new_cache_index > 0) {
  279. new_cache_index = 0;
  280. new_size = 8192;
  281. new_rss_limit = ~0UL;
  282. goto retry_tsb_alloc;
  283. }
  284. /* If we failed on a TSB grow, we are under serious
  285. * memory pressure so don't try to grow any more.
  286. */
  287. if (mm->context.tsb_block[tsb_index].tsb != NULL)
  288. mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
  289. return;
  290. }
  291. /* Mark all tags as invalid. */
  292. tsb_init(new_tsb, new_size);
  293. /* Ok, we are about to commit the changes. If we are
  294. * growing an existing TSB the locking is very tricky,
  295. * so WATCH OUT!
  296. *
  297. * We have to hold mm->context.lock while committing to the
  298. * new TSB, this synchronizes us with processors in
  299. * flush_tsb_user() and switch_mm() for this address space.
  300. *
  301. * But even with that lock held, processors run asynchronously
  302. * accessing the old TSB via TLB miss handling. This is OK
  303. * because those actions are just propagating state from the
  304. * Linux page tables into the TSB, page table mappings are not
  305. * being changed. If a real fault occurs, the processor will
  306. * synchronize with us when it hits flush_tsb_user(), this is
  307. * also true for the case where vmscan is modifying the page
  308. * tables. The only thing we need to be careful with is to
  309. * skip any locked TSB entries during copy_tsb().
  310. *
  311. * When we finish committing to the new TSB, we have to drop
  312. * the lock and ask all other cpus running this address space
  313. * to run tsb_context_switch() to see the new TSB table.
  314. */
  315. spin_lock_irqsave(&mm->context.lock, flags);
  316. old_tsb = mm->context.tsb_block[tsb_index].tsb;
  317. old_cache_index =
  318. (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
  319. old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
  320. sizeof(struct tsb));
  321. /* Handle multiple threads trying to grow the TSB at the same time.
  322. * One will get in here first, and bump the size and the RSS limit.
  323. * The others will get in here next and hit this check.
  324. */
  325. if (unlikely(old_tsb &&
  326. (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
  327. spin_unlock_irqrestore(&mm->context.lock, flags);
  328. kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
  329. return;
  330. }
  331. mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
  332. if (old_tsb) {
  333. extern void copy_tsb(unsigned long old_tsb_base,
  334. unsigned long old_tsb_size,
  335. unsigned long new_tsb_base,
  336. unsigned long new_tsb_size);
  337. unsigned long old_tsb_base = (unsigned long) old_tsb;
  338. unsigned long new_tsb_base = (unsigned long) new_tsb;
  339. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  340. old_tsb_base = __pa(old_tsb_base);
  341. new_tsb_base = __pa(new_tsb_base);
  342. }
  343. copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
  344. }
  345. mm->context.tsb_block[tsb_index].tsb = new_tsb;
  346. setup_tsb_params(mm, tsb_index, new_size);
  347. spin_unlock_irqrestore(&mm->context.lock, flags);
  348. /* If old_tsb is NULL, we're being invoked for the first time
  349. * from init_new_context().
  350. */
  351. if (old_tsb) {
  352. /* Reload it on the local cpu. */
  353. tsb_context_switch(mm);
  354. /* Now force other processors to do the same. */
  355. smp_tsb_sync(mm);
  356. /* Now it is safe to free the old tsb. */
  357. kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
  358. }
  359. }
  360. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  361. {
  362. #ifdef CONFIG_HUGETLB_PAGE
  363. unsigned long huge_pte_count;
  364. #endif
  365. unsigned int i;
  366. spin_lock_init(&mm->context.lock);
  367. mm->context.sparc64_ctx_val = 0UL;
  368. #ifdef CONFIG_HUGETLB_PAGE
  369. /* We reset it to zero because the fork() page copying
  370. * will re-increment the counters as the parent PTEs are
  371. * copied into the child address space.
  372. */
  373. huge_pte_count = mm->context.huge_pte_count;
  374. mm->context.huge_pte_count = 0;
  375. #endif
  376. /* copy_mm() copies over the parent's mm_struct before calling
  377. * us, so we need to zero out the TSB pointer or else tsb_grow()
  378. * will be confused and think there is an older TSB to free up.
  379. */
  380. for (i = 0; i < MM_NUM_TSBS; i++)
  381. mm->context.tsb_block[i].tsb = NULL;
  382. /* If this is fork, inherit the parent's TSB size. We would
  383. * grow it to that size on the first page fault anyways.
  384. */
  385. tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
  386. #ifdef CONFIG_HUGETLB_PAGE
  387. if (unlikely(huge_pte_count))
  388. tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
  389. #endif
  390. if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
  391. return -ENOMEM;
  392. return 0;
  393. }
  394. static void tsb_destroy_one(struct tsb_config *tp)
  395. {
  396. unsigned long cache_index;
  397. if (!tp->tsb)
  398. return;
  399. cache_index = tp->tsb_reg_val & 0x7UL;
  400. kmem_cache_free(tsb_caches[cache_index], tp->tsb);
  401. tp->tsb = NULL;
  402. tp->tsb_reg_val = 0UL;
  403. }
  404. void destroy_context(struct mm_struct *mm)
  405. {
  406. unsigned long flags, i;
  407. for (i = 0; i < MM_NUM_TSBS; i++)
  408. tsb_destroy_one(&mm->context.tsb_block[i]);
  409. spin_lock_irqsave(&ctx_alloc_lock, flags);
  410. if (CTX_VALID(mm->context)) {
  411. unsigned long nr = CTX_NRBITS(mm->context);
  412. mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
  413. }
  414. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  415. }