discontig.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720
  1. /*
  2. * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
  3. * Copyright (c) 2001 Intel Corp.
  4. * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  5. * Copyright (c) 2002 NEC Corp.
  6. * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  7. * Copyright (c) 2004 Silicon Graphics, Inc
  8. * Russ Anderson <rja@sgi.com>
  9. * Jesse Barnes <jbarnes@sgi.com>
  10. * Jack Steiner <steiner@sgi.com>
  11. */
  12. /*
  13. * Platform initialization for Discontig Memory
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/nmi.h>
  18. #include <linux/swap.h>
  19. #include <linux/bootmem.h>
  20. #include <linux/acpi.h>
  21. #include <linux/efi.h>
  22. #include <linux/nodemask.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/tlb.h>
  25. #include <asm/meminit.h>
  26. #include <asm/numa.h>
  27. #include <asm/sections.h>
  28. /*
  29. * Track per-node information needed to setup the boot memory allocator, the
  30. * per-node areas, and the real VM.
  31. */
  32. struct early_node_data {
  33. struct ia64_node_data *node_data;
  34. unsigned long pernode_addr;
  35. unsigned long pernode_size;
  36. unsigned long num_physpages;
  37. #ifdef CONFIG_ZONE_DMA
  38. unsigned long num_dma_physpages;
  39. #endif
  40. unsigned long min_pfn;
  41. unsigned long max_pfn;
  42. };
  43. static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
  44. static nodemask_t memory_less_mask __initdata;
  45. pg_data_t *pgdat_list[MAX_NUMNODES];
  46. /*
  47. * To prevent cache aliasing effects, align per-node structures so that they
  48. * start at addresses that are strided by node number.
  49. */
  50. #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
  51. #define NODEDATA_ALIGN(addr, node) \
  52. ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
  53. (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
  54. /**
  55. * build_node_maps - callback to setup bootmem structs for each node
  56. * @start: physical start of range
  57. * @len: length of range
  58. * @node: node where this range resides
  59. *
  60. * We allocate a struct bootmem_data for each piece of memory that we wish to
  61. * treat as a virtually contiguous block (i.e. each node). Each such block
  62. * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
  63. * if necessary. Any non-existent pages will simply be part of the virtual
  64. * memmap. We also update min_low_pfn and max_low_pfn here as we receive
  65. * memory ranges from the caller.
  66. */
  67. static int __init build_node_maps(unsigned long start, unsigned long len,
  68. int node)
  69. {
  70. unsigned long spfn, epfn, end = start + len;
  71. struct bootmem_data *bdp = &bootmem_node_data[node];
  72. epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
  73. spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
  74. if (!bdp->node_low_pfn) {
  75. bdp->node_min_pfn = spfn;
  76. bdp->node_low_pfn = epfn;
  77. } else {
  78. bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
  79. bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
  80. }
  81. return 0;
  82. }
  83. /**
  84. * early_nr_cpus_node - return number of cpus on a given node
  85. * @node: node to check
  86. *
  87. * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
  88. * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
  89. * called yet. Note that node 0 will also count all non-existent cpus.
  90. */
  91. static int __meminit early_nr_cpus_node(int node)
  92. {
  93. int cpu, n = 0;
  94. for_each_possible_early_cpu(cpu)
  95. if (node == node_cpuid[cpu].nid)
  96. n++;
  97. return n;
  98. }
  99. /**
  100. * compute_pernodesize - compute size of pernode data
  101. * @node: the node id.
  102. */
  103. static unsigned long __meminit compute_pernodesize(int node)
  104. {
  105. unsigned long pernodesize = 0, cpus;
  106. cpus = early_nr_cpus_node(node);
  107. pernodesize += PERCPU_PAGE_SIZE * cpus;
  108. pernodesize += node * L1_CACHE_BYTES;
  109. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  110. pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  111. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  112. pernodesize = PAGE_ALIGN(pernodesize);
  113. return pernodesize;
  114. }
  115. /**
  116. * per_cpu_node_setup - setup per-cpu areas on each node
  117. * @cpu_data: per-cpu area on this node
  118. * @node: node to setup
  119. *
  120. * Copy the static per-cpu data into the region we just set aside and then
  121. * setup __per_cpu_offset for each CPU on this node. Return a pointer to
  122. * the end of the area.
  123. */
  124. static void *per_cpu_node_setup(void *cpu_data, int node)
  125. {
  126. #ifdef CONFIG_SMP
  127. int cpu;
  128. for_each_possible_early_cpu(cpu) {
  129. if (node == node_cpuid[cpu].nid) {
  130. memcpy(__va(cpu_data), __phys_per_cpu_start,
  131. __per_cpu_end - __per_cpu_start);
  132. __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
  133. __per_cpu_start;
  134. cpu_data += PERCPU_PAGE_SIZE;
  135. }
  136. }
  137. #endif
  138. return cpu_data;
  139. }
  140. /**
  141. * fill_pernode - initialize pernode data.
  142. * @node: the node id.
  143. * @pernode: physical address of pernode data
  144. * @pernodesize: size of the pernode data
  145. */
  146. static void __init fill_pernode(int node, unsigned long pernode,
  147. unsigned long pernodesize)
  148. {
  149. void *cpu_data;
  150. int cpus = early_nr_cpus_node(node);
  151. struct bootmem_data *bdp = &bootmem_node_data[node];
  152. mem_data[node].pernode_addr = pernode;
  153. mem_data[node].pernode_size = pernodesize;
  154. memset(__va(pernode), 0, pernodesize);
  155. cpu_data = (void *)pernode;
  156. pernode += PERCPU_PAGE_SIZE * cpus;
  157. pernode += node * L1_CACHE_BYTES;
  158. pgdat_list[node] = __va(pernode);
  159. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  160. mem_data[node].node_data = __va(pernode);
  161. pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  162. pgdat_list[node]->bdata = bdp;
  163. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  164. cpu_data = per_cpu_node_setup(cpu_data, node);
  165. return;
  166. }
  167. /**
  168. * find_pernode_space - allocate memory for memory map and per-node structures
  169. * @start: physical start of range
  170. * @len: length of range
  171. * @node: node where this range resides
  172. *
  173. * This routine reserves space for the per-cpu data struct, the list of
  174. * pg_data_ts and the per-node data struct. Each node will have something like
  175. * the following in the first chunk of addr. space large enough to hold it.
  176. *
  177. * ________________________
  178. * | |
  179. * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
  180. * | PERCPU_PAGE_SIZE * | start and length big enough
  181. * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
  182. * |------------------------|
  183. * | local pg_data_t * |
  184. * |------------------------|
  185. * | local ia64_node_data |
  186. * |------------------------|
  187. * | ??? |
  188. * |________________________|
  189. *
  190. * Once this space has been set aside, the bootmem maps are initialized. We
  191. * could probably move the allocation of the per-cpu and ia64_node_data space
  192. * outside of this function and use alloc_bootmem_node(), but doing it here
  193. * is straightforward and we get the alignments we want so...
  194. */
  195. static int __init find_pernode_space(unsigned long start, unsigned long len,
  196. int node)
  197. {
  198. unsigned long spfn, epfn;
  199. unsigned long pernodesize = 0, pernode, pages, mapsize;
  200. struct bootmem_data *bdp = &bootmem_node_data[node];
  201. spfn = start >> PAGE_SHIFT;
  202. epfn = (start + len) >> PAGE_SHIFT;
  203. pages = bdp->node_low_pfn - bdp->node_min_pfn;
  204. mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  205. /*
  206. * Make sure this memory falls within this node's usable memory
  207. * since we may have thrown some away in build_maps().
  208. */
  209. if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
  210. return 0;
  211. /* Don't setup this node's local space twice... */
  212. if (mem_data[node].pernode_addr)
  213. return 0;
  214. /*
  215. * Calculate total size needed, incl. what's necessary
  216. * for good alignment and alias prevention.
  217. */
  218. pernodesize = compute_pernodesize(node);
  219. pernode = NODEDATA_ALIGN(start, node);
  220. /* Is this range big enough for what we want to store here? */
  221. if (start + len > (pernode + pernodesize + mapsize))
  222. fill_pernode(node, pernode, pernodesize);
  223. return 0;
  224. }
  225. /**
  226. * free_node_bootmem - free bootmem allocator memory for use
  227. * @start: physical start of range
  228. * @len: length of range
  229. * @node: node where this range resides
  230. *
  231. * Simply calls the bootmem allocator to free the specified ranged from
  232. * the given pg_data_t's bdata struct. After this function has been called
  233. * for all the entries in the EFI memory map, the bootmem allocator will
  234. * be ready to service allocation requests.
  235. */
  236. static int __init free_node_bootmem(unsigned long start, unsigned long len,
  237. int node)
  238. {
  239. free_bootmem_node(pgdat_list[node], start, len);
  240. return 0;
  241. }
  242. /**
  243. * reserve_pernode_space - reserve memory for per-node space
  244. *
  245. * Reserve the space used by the bootmem maps & per-node space in the boot
  246. * allocator so that when we actually create the real mem maps we don't
  247. * use their memory.
  248. */
  249. static void __init reserve_pernode_space(void)
  250. {
  251. unsigned long base, size, pages;
  252. struct bootmem_data *bdp;
  253. int node;
  254. for_each_online_node(node) {
  255. pg_data_t *pdp = pgdat_list[node];
  256. if (node_isset(node, memory_less_mask))
  257. continue;
  258. bdp = pdp->bdata;
  259. /* First the bootmem_map itself */
  260. pages = bdp->node_low_pfn - bdp->node_min_pfn;
  261. size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  262. base = __pa(bdp->node_bootmem_map);
  263. reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
  264. /* Now the per-node space */
  265. size = mem_data[node].pernode_size;
  266. base = __pa(mem_data[node].pernode_addr);
  267. reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
  268. }
  269. }
  270. static void __meminit scatter_node_data(void)
  271. {
  272. pg_data_t **dst;
  273. int node;
  274. /*
  275. * for_each_online_node() can't be used at here.
  276. * node_online_map is not set for hot-added nodes at this time,
  277. * because we are halfway through initialization of the new node's
  278. * structures. If for_each_online_node() is used, a new node's
  279. * pg_data_ptrs will be not initialized. Instead of using it,
  280. * pgdat_list[] is checked.
  281. */
  282. for_each_node(node) {
  283. if (pgdat_list[node]) {
  284. dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
  285. memcpy(dst, pgdat_list, sizeof(pgdat_list));
  286. }
  287. }
  288. }
  289. /**
  290. * initialize_pernode_data - fixup per-cpu & per-node pointers
  291. *
  292. * Each node's per-node area has a copy of the global pg_data_t list, so
  293. * we copy that to each node here, as well as setting the per-cpu pointer
  294. * to the local node data structure. The active_cpus field of the per-node
  295. * structure gets setup by the platform_cpu_init() function later.
  296. */
  297. static void __init initialize_pernode_data(void)
  298. {
  299. int cpu, node;
  300. scatter_node_data();
  301. #ifdef CONFIG_SMP
  302. /* Set the node_data pointer for each per-cpu struct */
  303. for_each_possible_early_cpu(cpu) {
  304. node = node_cpuid[cpu].nid;
  305. per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
  306. }
  307. #else
  308. {
  309. struct cpuinfo_ia64 *cpu0_cpu_info;
  310. cpu = 0;
  311. node = node_cpuid[cpu].nid;
  312. cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
  313. ((char *)&per_cpu__cpu_info - __per_cpu_start));
  314. cpu0_cpu_info->node_data = mem_data[node].node_data;
  315. }
  316. #endif /* CONFIG_SMP */
  317. }
  318. /**
  319. * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
  320. * node but fall back to any other node when __alloc_bootmem_node fails
  321. * for best.
  322. * @nid: node id
  323. * @pernodesize: size of this node's pernode data
  324. */
  325. static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
  326. {
  327. void *ptr = NULL;
  328. u8 best = 0xff;
  329. int bestnode = -1, node, anynode = 0;
  330. for_each_online_node(node) {
  331. if (node_isset(node, memory_less_mask))
  332. continue;
  333. else if (node_distance(nid, node) < best) {
  334. best = node_distance(nid, node);
  335. bestnode = node;
  336. }
  337. anynode = node;
  338. }
  339. if (bestnode == -1)
  340. bestnode = anynode;
  341. ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
  342. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  343. return ptr;
  344. }
  345. /**
  346. * memory_less_nodes - allocate and initialize CPU only nodes pernode
  347. * information.
  348. */
  349. static void __init memory_less_nodes(void)
  350. {
  351. unsigned long pernodesize;
  352. void *pernode;
  353. int node;
  354. for_each_node_mask(node, memory_less_mask) {
  355. pernodesize = compute_pernodesize(node);
  356. pernode = memory_less_node_alloc(node, pernodesize);
  357. fill_pernode(node, __pa(pernode), pernodesize);
  358. }
  359. return;
  360. }
  361. /**
  362. * find_memory - walk the EFI memory map and setup the bootmem allocator
  363. *
  364. * Called early in boot to setup the bootmem allocator, and to
  365. * allocate the per-cpu and per-node structures.
  366. */
  367. void __init find_memory(void)
  368. {
  369. int node;
  370. reserve_memory();
  371. if (num_online_nodes() == 0) {
  372. printk(KERN_ERR "node info missing!\n");
  373. node_set_online(0);
  374. }
  375. nodes_or(memory_less_mask, memory_less_mask, node_online_map);
  376. min_low_pfn = -1;
  377. max_low_pfn = 0;
  378. /* These actually end up getting called by call_pernode_memory() */
  379. efi_memmap_walk(filter_rsvd_memory, build_node_maps);
  380. efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
  381. efi_memmap_walk(find_max_min_low_pfn, NULL);
  382. for_each_online_node(node)
  383. if (bootmem_node_data[node].node_low_pfn) {
  384. node_clear(node, memory_less_mask);
  385. mem_data[node].min_pfn = ~0UL;
  386. }
  387. efi_memmap_walk(filter_memory, register_active_ranges);
  388. /*
  389. * Initialize the boot memory maps in reverse order since that's
  390. * what the bootmem allocator expects
  391. */
  392. for (node = MAX_NUMNODES - 1; node >= 0; node--) {
  393. unsigned long pernode, pernodesize, map;
  394. struct bootmem_data *bdp;
  395. if (!node_online(node))
  396. continue;
  397. else if (node_isset(node, memory_less_mask))
  398. continue;
  399. bdp = &bootmem_node_data[node];
  400. pernode = mem_data[node].pernode_addr;
  401. pernodesize = mem_data[node].pernode_size;
  402. map = pernode + pernodesize;
  403. init_bootmem_node(pgdat_list[node],
  404. map>>PAGE_SHIFT,
  405. bdp->node_min_pfn,
  406. bdp->node_low_pfn);
  407. }
  408. efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
  409. reserve_pernode_space();
  410. memory_less_nodes();
  411. initialize_pernode_data();
  412. max_pfn = max_low_pfn;
  413. find_initrd();
  414. }
  415. #ifdef CONFIG_SMP
  416. /**
  417. * per_cpu_init - setup per-cpu variables
  418. *
  419. * find_pernode_space() does most of this already, we just need to set
  420. * local_per_cpu_offset
  421. */
  422. void __cpuinit *per_cpu_init(void)
  423. {
  424. int cpu;
  425. static int first_time = 1;
  426. if (first_time) {
  427. first_time = 0;
  428. for_each_possible_early_cpu(cpu)
  429. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  430. }
  431. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  432. }
  433. #endif /* CONFIG_SMP */
  434. /**
  435. * show_mem - give short summary of memory stats
  436. *
  437. * Shows a simple page count of reserved and used pages in the system.
  438. * For discontig machines, it does this on a per-pgdat basis.
  439. */
  440. void show_mem(void)
  441. {
  442. int i, total_reserved = 0;
  443. int total_shared = 0, total_cached = 0;
  444. unsigned long total_present = 0;
  445. pg_data_t *pgdat;
  446. printk(KERN_INFO "Mem-info:\n");
  447. show_free_areas();
  448. printk(KERN_INFO "Node memory in pages:\n");
  449. for_each_online_pgdat(pgdat) {
  450. unsigned long present;
  451. unsigned long flags;
  452. int shared = 0, cached = 0, reserved = 0;
  453. pgdat_resize_lock(pgdat, &flags);
  454. present = pgdat->node_present_pages;
  455. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  456. struct page *page;
  457. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  458. touch_nmi_watchdog();
  459. if (pfn_valid(pgdat->node_start_pfn + i))
  460. page = pfn_to_page(pgdat->node_start_pfn + i);
  461. else {
  462. i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  463. i) - 1;
  464. continue;
  465. }
  466. if (PageReserved(page))
  467. reserved++;
  468. else if (PageSwapCache(page))
  469. cached++;
  470. else if (page_count(page))
  471. shared += page_count(page)-1;
  472. }
  473. pgdat_resize_unlock(pgdat, &flags);
  474. total_present += present;
  475. total_reserved += reserved;
  476. total_cached += cached;
  477. total_shared += shared;
  478. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  479. "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  480. present, reserved, shared, cached);
  481. }
  482. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  483. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  484. printk(KERN_INFO "%d pages shared\n", total_shared);
  485. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  486. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  487. quicklist_total_size());
  488. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  489. }
  490. /**
  491. * call_pernode_memory - use SRAT to call callback functions with node info
  492. * @start: physical start of range
  493. * @len: length of range
  494. * @arg: function to call for each range
  495. *
  496. * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
  497. * out to which node a block of memory belongs. Ignore memory that we cannot
  498. * identify, and split blocks that run across multiple nodes.
  499. *
  500. * Take this opportunity to round the start address up and the end address
  501. * down to page boundaries.
  502. */
  503. void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
  504. {
  505. unsigned long rs, re, end = start + len;
  506. void (*func)(unsigned long, unsigned long, int);
  507. int i;
  508. start = PAGE_ALIGN(start);
  509. end &= PAGE_MASK;
  510. if (start >= end)
  511. return;
  512. func = arg;
  513. if (!num_node_memblks) {
  514. /* No SRAT table, so assume one node (node 0) */
  515. if (start < end)
  516. (*func)(start, end - start, 0);
  517. return;
  518. }
  519. for (i = 0; i < num_node_memblks; i++) {
  520. rs = max(start, node_memblk[i].start_paddr);
  521. re = min(end, node_memblk[i].start_paddr +
  522. node_memblk[i].size);
  523. if (rs < re)
  524. (*func)(rs, re - rs, node_memblk[i].nid);
  525. if (re == end)
  526. break;
  527. }
  528. }
  529. /**
  530. * count_node_pages - callback to build per-node memory info structures
  531. * @start: physical start of range
  532. * @len: length of range
  533. * @node: node where this range resides
  534. *
  535. * Each node has it's own number of physical pages, DMAable pages, start, and
  536. * end page frame number. This routine will be called by call_pernode_memory()
  537. * for each piece of usable memory and will setup these values for each node.
  538. * Very similar to build_maps().
  539. */
  540. static __init int count_node_pages(unsigned long start, unsigned long len, int node)
  541. {
  542. unsigned long end = start + len;
  543. mem_data[node].num_physpages += len >> PAGE_SHIFT;
  544. #ifdef CONFIG_ZONE_DMA
  545. if (start <= __pa(MAX_DMA_ADDRESS))
  546. mem_data[node].num_dma_physpages +=
  547. (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
  548. #endif
  549. start = GRANULEROUNDDOWN(start);
  550. start = ORDERROUNDDOWN(start);
  551. end = GRANULEROUNDUP(end);
  552. mem_data[node].max_pfn = max(mem_data[node].max_pfn,
  553. end >> PAGE_SHIFT);
  554. mem_data[node].min_pfn = min(mem_data[node].min_pfn,
  555. start >> PAGE_SHIFT);
  556. return 0;
  557. }
  558. /**
  559. * paging_init - setup page tables
  560. *
  561. * paging_init() sets up the page tables for each node of the system and frees
  562. * the bootmem allocator memory for general use.
  563. */
  564. void __init paging_init(void)
  565. {
  566. unsigned long max_dma;
  567. unsigned long pfn_offset = 0;
  568. unsigned long max_pfn = 0;
  569. int node;
  570. unsigned long max_zone_pfns[MAX_NR_ZONES];
  571. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  572. efi_memmap_walk(filter_rsvd_memory, count_node_pages);
  573. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  574. sparse_init();
  575. #ifdef CONFIG_VIRTUAL_MEM_MAP
  576. vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  577. sizeof(struct page));
  578. vmem_map = (struct page *) vmalloc_end;
  579. efi_memmap_walk(create_mem_map_page_table, NULL);
  580. printk("Virtual mem_map starts at 0x%p\n", vmem_map);
  581. #endif
  582. for_each_online_node(node) {
  583. num_physpages += mem_data[node].num_physpages;
  584. pfn_offset = mem_data[node].min_pfn;
  585. #ifdef CONFIG_VIRTUAL_MEM_MAP
  586. NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
  587. #endif
  588. if (mem_data[node].max_pfn > max_pfn)
  589. max_pfn = mem_data[node].max_pfn;
  590. }
  591. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  592. #ifdef CONFIG_ZONE_DMA
  593. max_zone_pfns[ZONE_DMA] = max_dma;
  594. #endif
  595. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  596. free_area_init_nodes(max_zone_pfns);
  597. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  598. }
  599. #ifdef CONFIG_MEMORY_HOTPLUG
  600. pg_data_t *arch_alloc_nodedata(int nid)
  601. {
  602. unsigned long size = compute_pernodesize(nid);
  603. return kzalloc(size, GFP_KERNEL);
  604. }
  605. void arch_free_nodedata(pg_data_t *pgdat)
  606. {
  607. kfree(pgdat);
  608. }
  609. void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
  610. {
  611. pgdat_list[update_node] = update_pgdat;
  612. scatter_node_data();
  613. }
  614. #endif
  615. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  616. int __meminit vmemmap_populate(struct page *start_page,
  617. unsigned long size, int node)
  618. {
  619. return vmemmap_populate_basepages(start_page, size, node);
  620. }
  621. #endif