book3s_hv_rm_mmu.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /* Translate address of a vmalloc'd thing to a linear map address */
  22. static void *real_vmalloc_addr(void *x)
  23. {
  24. unsigned long addr = (unsigned long) x;
  25. pte_t *p;
  26. p = find_linux_pte(swapper_pg_dir, addr);
  27. if (!p || !pte_present(*p))
  28. return NULL;
  29. /* assume we don't have huge pages in vmalloc space... */
  30. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  31. return __va(addr);
  32. }
  33. /*
  34. * Add this HPTE into the chain for the real page.
  35. * Must be called with the chain locked; it unlocks the chain.
  36. */
  37. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  38. unsigned long *rmap, long pte_index, int realmode)
  39. {
  40. struct revmap_entry *head, *tail;
  41. unsigned long i;
  42. if (*rmap & KVMPPC_RMAP_PRESENT) {
  43. i = *rmap & KVMPPC_RMAP_INDEX;
  44. head = &kvm->arch.revmap[i];
  45. if (realmode)
  46. head = real_vmalloc_addr(head);
  47. tail = &kvm->arch.revmap[head->back];
  48. if (realmode)
  49. tail = real_vmalloc_addr(tail);
  50. rev->forw = i;
  51. rev->back = head->back;
  52. tail->forw = pte_index;
  53. head->back = pte_index;
  54. } else {
  55. rev->forw = rev->back = pte_index;
  56. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
  57. pte_index | KVMPPC_RMAP_PRESENT;
  58. }
  59. unlock_rmap(rmap);
  60. }
  61. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  62. /*
  63. * Note modification of an HPTE; set the HPTE modified bit
  64. * if anyone is interested.
  65. */
  66. static inline void note_hpte_modification(struct kvm *kvm,
  67. struct revmap_entry *rev)
  68. {
  69. if (atomic_read(&kvm->arch.hpte_mod_interest))
  70. rev->guest_rpte |= HPTE_GR_MODIFIED;
  71. }
  72. /* Remove this HPTE from the chain for a real page */
  73. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  74. struct revmap_entry *rev,
  75. unsigned long hpte_v, unsigned long hpte_r)
  76. {
  77. struct revmap_entry *next, *prev;
  78. unsigned long gfn, ptel, head;
  79. struct kvm_memory_slot *memslot;
  80. unsigned long *rmap;
  81. unsigned long rcbits;
  82. rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
  83. ptel = rev->guest_rpte |= rcbits;
  84. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  85. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  86. if (!memslot)
  87. return;
  88. rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
  89. lock_rmap(rmap);
  90. head = *rmap & KVMPPC_RMAP_INDEX;
  91. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  92. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  93. next->back = rev->back;
  94. prev->forw = rev->forw;
  95. if (head == pte_index) {
  96. head = rev->forw;
  97. if (head == pte_index)
  98. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  99. else
  100. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  101. }
  102. *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  103. unlock_rmap(rmap);
  104. }
  105. static pte_t lookup_linux_pte(pgd_t *pgdir, unsigned long hva,
  106. int writing, unsigned long *pte_sizep)
  107. {
  108. pte_t *ptep;
  109. unsigned long ps = *pte_sizep;
  110. unsigned int shift;
  111. ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
  112. if (!ptep)
  113. return __pte(0);
  114. if (shift)
  115. *pte_sizep = 1ul << shift;
  116. else
  117. *pte_sizep = PAGE_SIZE;
  118. if (ps > *pte_sizep)
  119. return __pte(0);
  120. if (!pte_present(*ptep))
  121. return __pte(0);
  122. return kvmppc_read_update_linux_pte(ptep, writing);
  123. }
  124. static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
  125. {
  126. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  127. hpte[0] = hpte_v;
  128. }
  129. long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
  130. long pte_index, unsigned long pteh, unsigned long ptel,
  131. pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
  132. {
  133. unsigned long i, pa, gpa, gfn, psize;
  134. unsigned long slot_fn, hva;
  135. unsigned long *hpte;
  136. struct revmap_entry *rev;
  137. unsigned long g_ptel;
  138. struct kvm_memory_slot *memslot;
  139. unsigned long *physp, pte_size;
  140. unsigned long is_io;
  141. unsigned long *rmap;
  142. pte_t pte;
  143. unsigned int writing;
  144. unsigned long mmu_seq;
  145. unsigned long rcbits;
  146. psize = hpte_page_size(pteh, ptel);
  147. if (!psize)
  148. return H_PARAMETER;
  149. writing = hpte_is_writable(ptel);
  150. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  151. ptel &= ~HPTE_GR_RESERVED;
  152. g_ptel = ptel;
  153. /* used later to detect if we might have been invalidated */
  154. mmu_seq = kvm->mmu_notifier_seq;
  155. smp_rmb();
  156. /* Find the memslot (if any) for this address */
  157. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  158. gfn = gpa >> PAGE_SHIFT;
  159. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  160. pa = 0;
  161. is_io = ~0ul;
  162. rmap = NULL;
  163. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  164. /* PPC970 can't do emulated MMIO */
  165. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  166. return H_PARAMETER;
  167. /* Emulated MMIO - mark this with key=31 */
  168. pteh |= HPTE_V_ABSENT;
  169. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  170. goto do_insert;
  171. }
  172. /* Check if the requested page fits entirely in the memslot. */
  173. if (!slot_is_aligned(memslot, psize))
  174. return H_PARAMETER;
  175. slot_fn = gfn - memslot->base_gfn;
  176. rmap = &memslot->arch.rmap[slot_fn];
  177. if (!kvm->arch.using_mmu_notifiers) {
  178. physp = memslot->arch.slot_phys;
  179. if (!physp)
  180. return H_PARAMETER;
  181. physp += slot_fn;
  182. if (realmode)
  183. physp = real_vmalloc_addr(physp);
  184. pa = *physp;
  185. if (!pa)
  186. return H_TOO_HARD;
  187. is_io = pa & (HPTE_R_I | HPTE_R_W);
  188. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  189. pa &= PAGE_MASK;
  190. } else {
  191. /* Translate to host virtual address */
  192. hva = __gfn_to_hva_memslot(memslot, gfn);
  193. /* Look up the Linux PTE for the backing page */
  194. pte_size = psize;
  195. pte = lookup_linux_pte(pgdir, hva, writing, &pte_size);
  196. if (pte_present(pte)) {
  197. if (writing && !pte_write(pte))
  198. /* make the actual HPTE be read-only */
  199. ptel = hpte_make_readonly(ptel);
  200. is_io = hpte_cache_bits(pte_val(pte));
  201. pa = pte_pfn(pte) << PAGE_SHIFT;
  202. }
  203. }
  204. if (pte_size < psize)
  205. return H_PARAMETER;
  206. if (pa && pte_size > psize)
  207. pa |= gpa & (pte_size - 1);
  208. ptel &= ~(HPTE_R_PP0 - psize);
  209. ptel |= pa;
  210. if (pa)
  211. pteh |= HPTE_V_VALID;
  212. else
  213. pteh |= HPTE_V_ABSENT;
  214. /* Check WIMG */
  215. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  216. if (is_io)
  217. return H_PARAMETER;
  218. /*
  219. * Allow guest to map emulated device memory as
  220. * uncacheable, but actually make it cacheable.
  221. */
  222. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  223. ptel |= HPTE_R_M;
  224. }
  225. /* Find and lock the HPTEG slot to use */
  226. do_insert:
  227. if (pte_index >= kvm->arch.hpt_npte)
  228. return H_PARAMETER;
  229. if (likely((flags & H_EXACT) == 0)) {
  230. pte_index &= ~7UL;
  231. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  232. for (i = 0; i < 8; ++i) {
  233. if ((*hpte & HPTE_V_VALID) == 0 &&
  234. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  235. HPTE_V_ABSENT))
  236. break;
  237. hpte += 2;
  238. }
  239. if (i == 8) {
  240. /*
  241. * Since try_lock_hpte doesn't retry (not even stdcx.
  242. * failures), it could be that there is a free slot
  243. * but we transiently failed to lock it. Try again,
  244. * actually locking each slot and checking it.
  245. */
  246. hpte -= 16;
  247. for (i = 0; i < 8; ++i) {
  248. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  249. cpu_relax();
  250. if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  251. break;
  252. *hpte &= ~HPTE_V_HVLOCK;
  253. hpte += 2;
  254. }
  255. if (i == 8)
  256. return H_PTEG_FULL;
  257. }
  258. pte_index += i;
  259. } else {
  260. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  261. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  262. HPTE_V_ABSENT)) {
  263. /* Lock the slot and check again */
  264. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  265. cpu_relax();
  266. if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  267. *hpte &= ~HPTE_V_HVLOCK;
  268. return H_PTEG_FULL;
  269. }
  270. }
  271. }
  272. /* Save away the guest's idea of the second HPTE dword */
  273. rev = &kvm->arch.revmap[pte_index];
  274. if (realmode)
  275. rev = real_vmalloc_addr(rev);
  276. if (rev) {
  277. rev->guest_rpte = g_ptel;
  278. note_hpte_modification(kvm, rev);
  279. }
  280. /* Link HPTE into reverse-map chain */
  281. if (pteh & HPTE_V_VALID) {
  282. if (realmode)
  283. rmap = real_vmalloc_addr(rmap);
  284. lock_rmap(rmap);
  285. /* Check for pending invalidations under the rmap chain lock */
  286. if (kvm->arch.using_mmu_notifiers &&
  287. mmu_notifier_retry(kvm, mmu_seq)) {
  288. /* inval in progress, write a non-present HPTE */
  289. pteh |= HPTE_V_ABSENT;
  290. pteh &= ~HPTE_V_VALID;
  291. unlock_rmap(rmap);
  292. } else {
  293. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  294. realmode);
  295. /* Only set R/C in real HPTE if already set in *rmap */
  296. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  297. ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  298. }
  299. }
  300. hpte[1] = ptel;
  301. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  302. eieio();
  303. hpte[0] = pteh;
  304. asm volatile("ptesync" : : : "memory");
  305. *pte_idx_ret = pte_index;
  306. return H_SUCCESS;
  307. }
  308. EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
  309. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  310. long pte_index, unsigned long pteh, unsigned long ptel)
  311. {
  312. return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
  313. vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
  314. }
  315. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  316. static inline int try_lock_tlbie(unsigned int *lock)
  317. {
  318. unsigned int tmp, old;
  319. unsigned int token = LOCK_TOKEN;
  320. asm volatile("1:lwarx %1,0,%2\n"
  321. " cmpwi cr0,%1,0\n"
  322. " bne 2f\n"
  323. " stwcx. %3,0,%2\n"
  324. " bne- 1b\n"
  325. " isync\n"
  326. "2:"
  327. : "=&r" (tmp), "=&r" (old)
  328. : "r" (lock), "r" (token)
  329. : "cc", "memory");
  330. return old == 0;
  331. }
  332. long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
  333. unsigned long pte_index, unsigned long avpn,
  334. unsigned long *hpret)
  335. {
  336. unsigned long *hpte;
  337. unsigned long v, r, rb;
  338. struct revmap_entry *rev;
  339. if (pte_index >= kvm->arch.hpt_npte)
  340. return H_PARAMETER;
  341. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  342. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  343. cpu_relax();
  344. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  345. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  346. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  347. hpte[0] &= ~HPTE_V_HVLOCK;
  348. return H_NOT_FOUND;
  349. }
  350. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  351. v = hpte[0] & ~HPTE_V_HVLOCK;
  352. if (v & HPTE_V_VALID) {
  353. hpte[0] &= ~HPTE_V_VALID;
  354. rb = compute_tlbie_rb(v, hpte[1], pte_index);
  355. if (!(flags & H_LOCAL) && atomic_read(&kvm->online_vcpus) > 1) {
  356. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  357. cpu_relax();
  358. asm volatile("ptesync" : : : "memory");
  359. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  360. : : "r" (rb), "r" (kvm->arch.lpid));
  361. asm volatile("ptesync" : : : "memory");
  362. kvm->arch.tlbie_lock = 0;
  363. } else {
  364. asm volatile("ptesync" : : : "memory");
  365. asm volatile("tlbiel %0" : : "r" (rb));
  366. asm volatile("ptesync" : : : "memory");
  367. }
  368. /* Read PTE low word after tlbie to get final R/C values */
  369. remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
  370. }
  371. r = rev->guest_rpte & ~HPTE_GR_RESERVED;
  372. note_hpte_modification(kvm, rev);
  373. unlock_hpte(hpte, 0);
  374. hpret[0] = v;
  375. hpret[1] = r;
  376. return H_SUCCESS;
  377. }
  378. EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
  379. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  380. unsigned long pte_index, unsigned long avpn)
  381. {
  382. return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
  383. &vcpu->arch.gpr[4]);
  384. }
  385. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  386. {
  387. struct kvm *kvm = vcpu->kvm;
  388. unsigned long *args = &vcpu->arch.gpr[4];
  389. unsigned long *hp, *hptes[4], tlbrb[4];
  390. long int i, j, k, n, found, indexes[4];
  391. unsigned long flags, req, pte_index, rcbits;
  392. long int local = 0;
  393. long int ret = H_SUCCESS;
  394. struct revmap_entry *rev, *revs[4];
  395. if (atomic_read(&kvm->online_vcpus) == 1)
  396. local = 1;
  397. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  398. n = 0;
  399. for (; i < 4; ++i) {
  400. j = i * 2;
  401. pte_index = args[j];
  402. flags = pte_index >> 56;
  403. pte_index &= ((1ul << 56) - 1);
  404. req = flags >> 6;
  405. flags &= 3;
  406. if (req == 3) { /* no more requests */
  407. i = 4;
  408. break;
  409. }
  410. if (req != 1 || flags == 3 ||
  411. pte_index >= kvm->arch.hpt_npte) {
  412. /* parameter error */
  413. args[j] = ((0xa0 | flags) << 56) + pte_index;
  414. ret = H_PARAMETER;
  415. break;
  416. }
  417. hp = (unsigned long *)
  418. (kvm->arch.hpt_virt + (pte_index << 4));
  419. /* to avoid deadlock, don't spin except for first */
  420. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  421. if (n)
  422. break;
  423. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  424. cpu_relax();
  425. }
  426. found = 0;
  427. if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  428. switch (flags & 3) {
  429. case 0: /* absolute */
  430. found = 1;
  431. break;
  432. case 1: /* andcond */
  433. if (!(hp[0] & args[j + 1]))
  434. found = 1;
  435. break;
  436. case 2: /* AVPN */
  437. if ((hp[0] & ~0x7fUL) == args[j + 1])
  438. found = 1;
  439. break;
  440. }
  441. }
  442. if (!found) {
  443. hp[0] &= ~HPTE_V_HVLOCK;
  444. args[j] = ((0x90 | flags) << 56) + pte_index;
  445. continue;
  446. }
  447. args[j] = ((0x80 | flags) << 56) + pte_index;
  448. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  449. note_hpte_modification(kvm, rev);
  450. if (!(hp[0] & HPTE_V_VALID)) {
  451. /* insert R and C bits from PTE */
  452. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  453. args[j] |= rcbits << (56 - 5);
  454. hp[0] = 0;
  455. continue;
  456. }
  457. hp[0] &= ~HPTE_V_VALID; /* leave it locked */
  458. tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  459. indexes[n] = j;
  460. hptes[n] = hp;
  461. revs[n] = rev;
  462. ++n;
  463. }
  464. if (!n)
  465. break;
  466. /* Now that we've collected a batch, do the tlbies */
  467. if (!local) {
  468. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  469. cpu_relax();
  470. asm volatile("ptesync" : : : "memory");
  471. for (k = 0; k < n; ++k)
  472. asm volatile(PPC_TLBIE(%1,%0) : :
  473. "r" (tlbrb[k]),
  474. "r" (kvm->arch.lpid));
  475. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  476. kvm->arch.tlbie_lock = 0;
  477. } else {
  478. asm volatile("ptesync" : : : "memory");
  479. for (k = 0; k < n; ++k)
  480. asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
  481. asm volatile("ptesync" : : : "memory");
  482. }
  483. /* Read PTE low words after tlbie to get final R/C values */
  484. for (k = 0; k < n; ++k) {
  485. j = indexes[k];
  486. pte_index = args[j] & ((1ul << 56) - 1);
  487. hp = hptes[k];
  488. rev = revs[k];
  489. remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
  490. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  491. args[j] |= rcbits << (56 - 5);
  492. hp[0] = 0;
  493. }
  494. }
  495. return ret;
  496. }
  497. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  498. unsigned long pte_index, unsigned long avpn,
  499. unsigned long va)
  500. {
  501. struct kvm *kvm = vcpu->kvm;
  502. unsigned long *hpte;
  503. struct revmap_entry *rev;
  504. unsigned long v, r, rb, mask, bits;
  505. if (pte_index >= kvm->arch.hpt_npte)
  506. return H_PARAMETER;
  507. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  508. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  509. cpu_relax();
  510. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  511. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  512. hpte[0] &= ~HPTE_V_HVLOCK;
  513. return H_NOT_FOUND;
  514. }
  515. if (atomic_read(&kvm->online_vcpus) == 1)
  516. flags |= H_LOCAL;
  517. v = hpte[0];
  518. bits = (flags << 55) & HPTE_R_PP0;
  519. bits |= (flags << 48) & HPTE_R_KEY_HI;
  520. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  521. /* Update guest view of 2nd HPTE dword */
  522. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  523. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  524. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  525. if (rev) {
  526. r = (rev->guest_rpte & ~mask) | bits;
  527. rev->guest_rpte = r;
  528. note_hpte_modification(kvm, rev);
  529. }
  530. r = (hpte[1] & ~mask) | bits;
  531. /* Update HPTE */
  532. if (v & HPTE_V_VALID) {
  533. rb = compute_tlbie_rb(v, r, pte_index);
  534. hpte[0] = v & ~HPTE_V_VALID;
  535. if (!(flags & H_LOCAL)) {
  536. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  537. cpu_relax();
  538. asm volatile("ptesync" : : : "memory");
  539. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  540. : : "r" (rb), "r" (kvm->arch.lpid));
  541. asm volatile("ptesync" : : : "memory");
  542. kvm->arch.tlbie_lock = 0;
  543. } else {
  544. asm volatile("ptesync" : : : "memory");
  545. asm volatile("tlbiel %0" : : "r" (rb));
  546. asm volatile("ptesync" : : : "memory");
  547. }
  548. }
  549. hpte[1] = r;
  550. eieio();
  551. hpte[0] = v & ~HPTE_V_HVLOCK;
  552. asm volatile("ptesync" : : : "memory");
  553. return H_SUCCESS;
  554. }
  555. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  556. unsigned long pte_index)
  557. {
  558. struct kvm *kvm = vcpu->kvm;
  559. unsigned long *hpte, v, r;
  560. int i, n = 1;
  561. struct revmap_entry *rev = NULL;
  562. if (pte_index >= kvm->arch.hpt_npte)
  563. return H_PARAMETER;
  564. if (flags & H_READ_4) {
  565. pte_index &= ~3;
  566. n = 4;
  567. }
  568. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  569. for (i = 0; i < n; ++i, ++pte_index) {
  570. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  571. v = hpte[0] & ~HPTE_V_HVLOCK;
  572. r = hpte[1];
  573. if (v & HPTE_V_ABSENT) {
  574. v &= ~HPTE_V_ABSENT;
  575. v |= HPTE_V_VALID;
  576. }
  577. if (v & HPTE_V_VALID) {
  578. r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
  579. r &= ~HPTE_GR_RESERVED;
  580. }
  581. vcpu->arch.gpr[4 + i * 2] = v;
  582. vcpu->arch.gpr[5 + i * 2] = r;
  583. }
  584. return H_SUCCESS;
  585. }
  586. void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
  587. unsigned long pte_index)
  588. {
  589. unsigned long rb;
  590. hptep[0] &= ~HPTE_V_VALID;
  591. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  592. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  593. cpu_relax();
  594. asm volatile("ptesync" : : : "memory");
  595. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  596. : : "r" (rb), "r" (kvm->arch.lpid));
  597. asm volatile("ptesync" : : : "memory");
  598. kvm->arch.tlbie_lock = 0;
  599. }
  600. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  601. void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
  602. unsigned long pte_index)
  603. {
  604. unsigned long rb;
  605. unsigned char rbyte;
  606. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  607. rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
  608. /* modify only the second-last byte, which contains the ref bit */
  609. *((char *)hptep + 14) = rbyte;
  610. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  611. cpu_relax();
  612. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  613. : : "r" (rb), "r" (kvm->arch.lpid));
  614. asm volatile("ptesync" : : : "memory");
  615. kvm->arch.tlbie_lock = 0;
  616. }
  617. EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
  618. static int slb_base_page_shift[4] = {
  619. 24, /* 16M */
  620. 16, /* 64k */
  621. 34, /* 16G */
  622. 20, /* 1M, unsupported */
  623. };
  624. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  625. unsigned long valid)
  626. {
  627. unsigned int i;
  628. unsigned int pshift;
  629. unsigned long somask;
  630. unsigned long vsid, hash;
  631. unsigned long avpn;
  632. unsigned long *hpte;
  633. unsigned long mask, val;
  634. unsigned long v, r;
  635. /* Get page shift, work out hash and AVPN etc. */
  636. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  637. val = 0;
  638. pshift = 12;
  639. if (slb_v & SLB_VSID_L) {
  640. mask |= HPTE_V_LARGE;
  641. val |= HPTE_V_LARGE;
  642. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  643. }
  644. if (slb_v & SLB_VSID_B_1T) {
  645. somask = (1UL << 40) - 1;
  646. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  647. vsid ^= vsid << 25;
  648. } else {
  649. somask = (1UL << 28) - 1;
  650. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  651. }
  652. hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
  653. avpn = slb_v & ~(somask >> 16); /* also includes B */
  654. avpn |= (eaddr & somask) >> 16;
  655. if (pshift >= 24)
  656. avpn &= ~((1UL << (pshift - 16)) - 1);
  657. else
  658. avpn &= ~0x7fUL;
  659. val |= avpn;
  660. for (;;) {
  661. hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
  662. for (i = 0; i < 16; i += 2) {
  663. /* Read the PTE racily */
  664. v = hpte[i] & ~HPTE_V_HVLOCK;
  665. /* Check valid/absent, hash, segment size and AVPN */
  666. if (!(v & valid) || (v & mask) != val)
  667. continue;
  668. /* Lock the PTE and read it under the lock */
  669. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  670. cpu_relax();
  671. v = hpte[i] & ~HPTE_V_HVLOCK;
  672. r = hpte[i+1];
  673. /*
  674. * Check the HPTE again, including large page size
  675. * Since we don't currently allow any MPSS (mixed
  676. * page-size segment) page sizes, it is sufficient
  677. * to check against the actual page size.
  678. */
  679. if ((v & valid) && (v & mask) == val &&
  680. hpte_page_size(v, r) == (1ul << pshift))
  681. /* Return with the HPTE still locked */
  682. return (hash << 3) + (i >> 1);
  683. /* Unlock and move on */
  684. hpte[i] = v;
  685. }
  686. if (val & HPTE_V_SECONDARY)
  687. break;
  688. val |= HPTE_V_SECONDARY;
  689. hash = hash ^ kvm->arch.hpt_mask;
  690. }
  691. return -1;
  692. }
  693. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  694. /*
  695. * Called in real mode to check whether an HPTE not found fault
  696. * is due to accessing a paged-out page or an emulated MMIO page,
  697. * or if a protection fault is due to accessing a page that the
  698. * guest wanted read/write access to but which we made read-only.
  699. * Returns a possibly modified status (DSISR) value if not
  700. * (i.e. pass the interrupt to the guest),
  701. * -1 to pass the fault up to host kernel mode code, -2 to do that
  702. * and also load the instruction word (for MMIO emulation),
  703. * or 0 if we should make the guest retry the access.
  704. */
  705. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  706. unsigned long slb_v, unsigned int status, bool data)
  707. {
  708. struct kvm *kvm = vcpu->kvm;
  709. long int index;
  710. unsigned long v, r, gr;
  711. unsigned long *hpte;
  712. unsigned long valid;
  713. struct revmap_entry *rev;
  714. unsigned long pp, key;
  715. /* For protection fault, expect to find a valid HPTE */
  716. valid = HPTE_V_VALID;
  717. if (status & DSISR_NOHPTE)
  718. valid |= HPTE_V_ABSENT;
  719. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  720. if (index < 0) {
  721. if (status & DSISR_NOHPTE)
  722. return status; /* there really was no HPTE */
  723. return 0; /* for prot fault, HPTE disappeared */
  724. }
  725. hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  726. v = hpte[0] & ~HPTE_V_HVLOCK;
  727. r = hpte[1];
  728. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  729. gr = rev->guest_rpte;
  730. unlock_hpte(hpte, v);
  731. /* For not found, if the HPTE is valid by now, retry the instruction */
  732. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  733. return 0;
  734. /* Check access permissions to the page */
  735. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  736. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  737. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  738. if (!data) {
  739. if (gr & (HPTE_R_N | HPTE_R_G))
  740. return status | SRR1_ISI_N_OR_G;
  741. if (!hpte_read_permission(pp, slb_v & key))
  742. return status | SRR1_ISI_PROT;
  743. } else if (status & DSISR_ISSTORE) {
  744. /* check write permission */
  745. if (!hpte_write_permission(pp, slb_v & key))
  746. return status | DSISR_PROTFAULT;
  747. } else {
  748. if (!hpte_read_permission(pp, slb_v & key))
  749. return status | DSISR_PROTFAULT;
  750. }
  751. /* Check storage key, if applicable */
  752. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  753. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  754. if (status & DSISR_ISSTORE)
  755. perm >>= 1;
  756. if (perm & 1)
  757. return status | DSISR_KEYFAULT;
  758. }
  759. /* Save HPTE info for virtual-mode handler */
  760. vcpu->arch.pgfault_addr = addr;
  761. vcpu->arch.pgfault_index = index;
  762. vcpu->arch.pgfault_hpte[0] = v;
  763. vcpu->arch.pgfault_hpte[1] = r;
  764. /* Check the storage key to see if it is possibly emulated MMIO */
  765. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  766. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  767. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  768. return -2; /* MMIO emulation - load instr word */
  769. return -1; /* send fault up to host kernel mode */
  770. }