eeprom_9287.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  20. static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  21. {
  22. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  23. }
  24. static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  25. {
  26. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  27. }
  28. static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  29. {
  30. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  31. struct ath_common *common = ath9k_hw_common(ah);
  32. u16 *eep_data;
  33. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  34. eep_data = (u16 *)eep;
  35. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  36. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
  37. eep_data)) {
  38. ath_dbg(common, EEPROM,
  39. "Unable to read eeprom region\n");
  40. return false;
  41. }
  42. eep_data++;
  43. }
  44. return true;
  45. }
  46. static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  47. {
  48. u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  49. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  50. AR9287_HTC_EEP_START_LOC,
  51. SIZE_EEPROM_AR9287);
  52. return true;
  53. }
  54. static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  55. {
  56. struct ath_common *common = ath9k_hw_common(ah);
  57. if (!ath9k_hw_use_flash(ah)) {
  58. ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
  59. }
  60. if (common->bus_ops->ath_bus_type == ATH_USB)
  61. return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  62. else
  63. return __ath9k_hw_ar9287_fill_eeprom(ah);
  64. }
  65. #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
  66. static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
  67. struct modal_eep_ar9287_header *modal_hdr)
  68. {
  69. PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
  70. PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
  71. PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
  72. PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
  73. PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
  74. PR_EEP("Switch Settle", modal_hdr->switchSettling);
  75. PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
  76. PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
  77. PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
  78. PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
  79. PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
  80. PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
  81. PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
  82. PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
  83. PR_EEP("CCA Threshold)", modal_hdr->thresh62);
  84. PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
  85. PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
  86. PR_EEP("xpdGain", modal_hdr->xpdGain);
  87. PR_EEP("External PD", modal_hdr->xpd);
  88. PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
  89. PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
  90. PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
  91. PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
  92. PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
  93. PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
  94. PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
  95. PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
  96. PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
  97. PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
  98. PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
  99. PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
  100. PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
  101. PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
  102. PR_EEP("AR92x7 Version", modal_hdr->version);
  103. PR_EEP("DriverBias1", modal_hdr->db1);
  104. PR_EEP("DriverBias2", modal_hdr->db1);
  105. PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
  106. PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
  107. PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
  108. PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
  109. return len;
  110. }
  111. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  112. u8 *buf, u32 len, u32 size)
  113. {
  114. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  115. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  116. if (!dump_base_hdr) {
  117. len += snprintf(buf + len, size - len,
  118. "%20s :\n", "2GHz modal Header");
  119. len += ar9287_dump_modal_eeprom(buf, len, size,
  120. &eep->modalHeader);
  121. goto out;
  122. }
  123. PR_EEP("Major Version", pBase->version >> 12);
  124. PR_EEP("Minor Version", pBase->version & 0xFFF);
  125. PR_EEP("Checksum", pBase->checksum);
  126. PR_EEP("Length", pBase->length);
  127. PR_EEP("RegDomain1", pBase->regDmn[0]);
  128. PR_EEP("RegDomain2", pBase->regDmn[1]);
  129. PR_EEP("TX Mask", pBase->txMask);
  130. PR_EEP("RX Mask", pBase->rxMask);
  131. PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
  132. PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
  133. PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
  134. AR5416_OPFLAGS_N_2G_HT20));
  135. PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
  136. AR5416_OPFLAGS_N_2G_HT40));
  137. PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
  138. AR5416_OPFLAGS_N_5G_HT20));
  139. PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
  140. AR5416_OPFLAGS_N_5G_HT40));
  141. PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
  142. PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
  143. PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
  144. PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
  145. PR_EEP("Power Table Offset", pBase->pwrTableOffset);
  146. PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
  147. len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
  148. pBase->macAddr);
  149. out:
  150. if (len > size)
  151. len = size;
  152. return len;
  153. }
  154. #else
  155. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  156. u8 *buf, u32 len, u32 size)
  157. {
  158. return 0;
  159. }
  160. #endif
  161. static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
  162. {
  163. u32 sum = 0, el, integer;
  164. u16 temp, word, magic, magic2, *eepdata;
  165. int i, addr;
  166. bool need_swap = false;
  167. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  168. struct ath_common *common = ath9k_hw_common(ah);
  169. if (!ath9k_hw_use_flash(ah)) {
  170. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  171. &magic)) {
  172. ath_err(common, "Reading Magic # failed\n");
  173. return false;
  174. }
  175. ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
  176. if (magic != AR5416_EEPROM_MAGIC) {
  177. magic2 = swab16(magic);
  178. if (magic2 == AR5416_EEPROM_MAGIC) {
  179. need_swap = true;
  180. eepdata = (u16 *)(&ah->eeprom);
  181. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  182. temp = swab16(*eepdata);
  183. *eepdata = temp;
  184. eepdata++;
  185. }
  186. } else {
  187. ath_err(common,
  188. "Invalid EEPROM Magic. Endianness mismatch.\n");
  189. return -EINVAL;
  190. }
  191. }
  192. }
  193. ath_dbg(common, EEPROM, "need_swap = %s\n",
  194. need_swap ? "True" : "False");
  195. if (need_swap)
  196. el = swab16(ah->eeprom.map9287.baseEepHeader.length);
  197. else
  198. el = ah->eeprom.map9287.baseEepHeader.length;
  199. if (el > sizeof(struct ar9287_eeprom))
  200. el = sizeof(struct ar9287_eeprom) / sizeof(u16);
  201. else
  202. el = el / sizeof(u16);
  203. eepdata = (u16 *)(&ah->eeprom);
  204. for (i = 0; i < el; i++)
  205. sum ^= *eepdata++;
  206. if (need_swap) {
  207. word = swab16(eep->baseEepHeader.length);
  208. eep->baseEepHeader.length = word;
  209. word = swab16(eep->baseEepHeader.checksum);
  210. eep->baseEepHeader.checksum = word;
  211. word = swab16(eep->baseEepHeader.version);
  212. eep->baseEepHeader.version = word;
  213. word = swab16(eep->baseEepHeader.regDmn[0]);
  214. eep->baseEepHeader.regDmn[0] = word;
  215. word = swab16(eep->baseEepHeader.regDmn[1]);
  216. eep->baseEepHeader.regDmn[1] = word;
  217. word = swab16(eep->baseEepHeader.rfSilent);
  218. eep->baseEepHeader.rfSilent = word;
  219. word = swab16(eep->baseEepHeader.blueToothOptions);
  220. eep->baseEepHeader.blueToothOptions = word;
  221. word = swab16(eep->baseEepHeader.deviceCap);
  222. eep->baseEepHeader.deviceCap = word;
  223. integer = swab32(eep->modalHeader.antCtrlCommon);
  224. eep->modalHeader.antCtrlCommon = integer;
  225. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  226. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  227. eep->modalHeader.antCtrlChain[i] = integer;
  228. }
  229. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  230. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  231. eep->modalHeader.spurChans[i].spurChan = word;
  232. }
  233. }
  234. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
  235. || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  236. ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  237. sum, ah->eep_ops->get_eeprom_ver(ah));
  238. return -EINVAL;
  239. }
  240. return 0;
  241. }
  242. static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
  243. enum eeprom_param param)
  244. {
  245. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  246. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  247. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  248. u16 ver_minor;
  249. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  250. switch (param) {
  251. case EEP_NFTHRESH_2:
  252. return pModal->noiseFloorThreshCh[0];
  253. case EEP_MAC_LSW:
  254. return get_unaligned_be16(pBase->macAddr);
  255. case EEP_MAC_MID:
  256. return get_unaligned_be16(pBase->macAddr + 2);
  257. case EEP_MAC_MSW:
  258. return get_unaligned_be16(pBase->macAddr + 4);
  259. case EEP_REG_0:
  260. return pBase->regDmn[0];
  261. case EEP_OP_CAP:
  262. return pBase->deviceCap;
  263. case EEP_OP_MODE:
  264. return pBase->opCapFlags;
  265. case EEP_RF_SILENT:
  266. return pBase->rfSilent;
  267. case EEP_MINOR_REV:
  268. return ver_minor;
  269. case EEP_TX_MASK:
  270. return pBase->txMask;
  271. case EEP_RX_MASK:
  272. return pBase->rxMask;
  273. case EEP_DEV_TYPE:
  274. return pBase->deviceType;
  275. case EEP_OL_PWRCTRL:
  276. return pBase->openLoopPwrCntl;
  277. case EEP_TEMPSENSE_SLOPE:
  278. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  279. return pBase->tempSensSlope;
  280. else
  281. return 0;
  282. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  283. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  284. return pBase->tempSensSlopePalOn;
  285. else
  286. return 0;
  287. case EEP_ANTENNA_GAIN_2G:
  288. return max_t(u8, pModal->antennaGainCh[0],
  289. pModal->antennaGainCh[1]);
  290. default:
  291. return 0;
  292. }
  293. }
  294. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  295. struct ath9k_channel *chan,
  296. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  297. u8 *pCalChans, u16 availPiers, int8_t *pPwr)
  298. {
  299. u16 idxL = 0, idxR = 0, numPiers;
  300. bool match;
  301. struct chan_centers centers;
  302. ath9k_hw_get_channel_centers(ah, chan, &centers);
  303. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  304. if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
  305. break;
  306. }
  307. match = ath9k_hw_get_lower_upper_index(
  308. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  309. pCalChans, numPiers, &idxL, &idxR);
  310. if (match) {
  311. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  312. } else {
  313. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  314. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  315. }
  316. }
  317. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  318. int32_t txPower, u16 chain)
  319. {
  320. u32 tmpVal;
  321. u32 a;
  322. /* Enable OLPC for chain 0 */
  323. tmpVal = REG_READ(ah, 0xa270);
  324. tmpVal = tmpVal & 0xFCFFFFFF;
  325. tmpVal = tmpVal | (0x3 << 24);
  326. REG_WRITE(ah, 0xa270, tmpVal);
  327. /* Enable OLPC for chain 1 */
  328. tmpVal = REG_READ(ah, 0xb270);
  329. tmpVal = tmpVal & 0xFCFFFFFF;
  330. tmpVal = tmpVal | (0x3 << 24);
  331. REG_WRITE(ah, 0xb270, tmpVal);
  332. /* Write the OLPC ref power for chain 0 */
  333. if (chain == 0) {
  334. tmpVal = REG_READ(ah, 0xa398);
  335. tmpVal = tmpVal & 0xff00ffff;
  336. a = (txPower)&0xff;
  337. tmpVal = tmpVal | (a << 16);
  338. REG_WRITE(ah, 0xa398, tmpVal);
  339. }
  340. /* Write the OLPC ref power for chain 1 */
  341. if (chain == 1) {
  342. tmpVal = REG_READ(ah, 0xb398);
  343. tmpVal = tmpVal & 0xff00ffff;
  344. a = (txPower)&0xff;
  345. tmpVal = tmpVal | (a << 16);
  346. REG_WRITE(ah, 0xb398, tmpVal);
  347. }
  348. }
  349. static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
  350. struct ath9k_channel *chan)
  351. {
  352. struct cal_data_per_freq_ar9287 *pRawDataset;
  353. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  354. u8 *pCalBChans = NULL;
  355. u16 pdGainOverlap_t2;
  356. u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  357. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  358. u16 numPiers = 0, i, j;
  359. u16 numXpdGain, xpdMask;
  360. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
  361. u32 reg32, regOffset, regChainOffset, regval;
  362. int16_t diff = 0;
  363. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  364. xpdMask = pEepData->modalHeader.xpdGain;
  365. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  366. AR9287_EEP_MINOR_VER_2)
  367. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  368. else
  369. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  370. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  371. if (IS_CHAN_2GHZ(chan)) {
  372. pCalBChans = pEepData->calFreqPier2G;
  373. numPiers = AR9287_NUM_2G_CAL_PIERS;
  374. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  375. pRawDatasetOpenLoop =
  376. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
  377. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  378. }
  379. }
  380. numXpdGain = 0;
  381. /* Calculate the value of xpdgains from the xpdGain Mask */
  382. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  383. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  384. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  385. break;
  386. xpdGainValues[numXpdGain] =
  387. (u16)(AR5416_PD_GAINS_IN_MASK-i);
  388. numXpdGain++;
  389. }
  390. }
  391. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  392. (numXpdGain - 1) & 0x3);
  393. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  394. xpdGainValues[0]);
  395. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  396. xpdGainValues[1]);
  397. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  398. xpdGainValues[2]);
  399. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  400. regChainOffset = i * 0x1000;
  401. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  402. pRawDatasetOpenLoop =
  403. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
  404. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  405. int8_t txPower;
  406. ar9287_eeprom_get_tx_gain_index(ah, chan,
  407. pRawDatasetOpenLoop,
  408. pCalBChans, numPiers,
  409. &txPower);
  410. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  411. } else {
  412. pRawDataset =
  413. (struct cal_data_per_freq_ar9287 *)
  414. pEepData->calPierData2G[i];
  415. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  416. pRawDataset,
  417. pCalBChans, numPiers,
  418. pdGainOverlap_t2,
  419. gainBoundaries,
  420. pdadcValues,
  421. numXpdGain);
  422. }
  423. ENABLE_REGWRITE_BUFFER(ah);
  424. if (i == 0) {
  425. if (!ath9k_hw_ar9287_get_eeprom(ah,
  426. EEP_OL_PWRCTRL)) {
  427. regval = SM(pdGainOverlap_t2,
  428. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  429. | SM(gainBoundaries[0],
  430. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  431. | SM(gainBoundaries[1],
  432. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  433. | SM(gainBoundaries[2],
  434. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  435. | SM(gainBoundaries[3],
  436. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
  437. REG_WRITE(ah,
  438. AR_PHY_TPCRG5 + regChainOffset,
  439. regval);
  440. }
  441. }
  442. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  443. pEepData->baseEepHeader.pwrTableOffset) {
  444. diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
  445. (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  446. diff *= 2;
  447. for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
  448. pdadcValues[j] = pdadcValues[j+diff];
  449. for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
  450. j < AR5416_NUM_PDADC_VALUES; j++)
  451. pdadcValues[j] =
  452. pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
  453. }
  454. if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  455. regOffset = AR_PHY_BASE +
  456. (672 << 2) + regChainOffset;
  457. for (j = 0; j < 32; j++) {
  458. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  459. REG_WRITE(ah, regOffset, reg32);
  460. regOffset += 4;
  461. }
  462. }
  463. REGWRITE_BUFFER_FLUSH(ah);
  464. }
  465. }
  466. }
  467. static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
  468. struct ath9k_channel *chan,
  469. int16_t *ratesArray,
  470. u16 cfgCtl,
  471. u16 antenna_reduction,
  472. u16 powerLimit)
  473. {
  474. #define CMP_CTL \
  475. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  476. pEepData->ctlIndex[i])
  477. #define CMP_NO_CTL \
  478. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  479. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  480. u16 twiceMaxEdgePower;
  481. int i;
  482. struct cal_ctl_data_ar9287 *rep;
  483. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  484. targetPowerCck = {0, {0, 0, 0, 0} };
  485. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  486. targetPowerCckExt = {0, {0, 0, 0, 0} };
  487. struct cal_target_power_ht targetPowerHt20,
  488. targetPowerHt40 = {0, {0, 0, 0, 0} };
  489. u16 scaledPower = 0, minCtlPower;
  490. static const u16 ctlModesFor11g[] = {
  491. CTL_11B, CTL_11G, CTL_2GHT20,
  492. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  493. };
  494. u16 numCtlModes = 0;
  495. const u16 *pCtlMode = NULL;
  496. u16 ctlMode, freq;
  497. struct chan_centers centers;
  498. int tx_chainmask;
  499. u16 twiceMinEdgePower;
  500. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  501. tx_chainmask = ah->txchainmask;
  502. ath9k_hw_get_channel_centers(ah, chan, &centers);
  503. scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
  504. antenna_reduction);
  505. /*
  506. * Get TX power from EEPROM.
  507. */
  508. if (IS_CHAN_2GHZ(chan)) {
  509. /* CTL_11B, CTL_11G, CTL_2GHT20 */
  510. numCtlModes =
  511. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  512. pCtlMode = ctlModesFor11g;
  513. ath9k_hw_get_legacy_target_powers(ah, chan,
  514. pEepData->calTargetPowerCck,
  515. AR9287_NUM_2G_CCK_TARGET_POWERS,
  516. &targetPowerCck, 4, false);
  517. ath9k_hw_get_legacy_target_powers(ah, chan,
  518. pEepData->calTargetPower2G,
  519. AR9287_NUM_2G_20_TARGET_POWERS,
  520. &targetPowerOfdm, 4, false);
  521. ath9k_hw_get_target_powers(ah, chan,
  522. pEepData->calTargetPower2GHT20,
  523. AR9287_NUM_2G_20_TARGET_POWERS,
  524. &targetPowerHt20, 8, false);
  525. if (IS_CHAN_HT40(chan)) {
  526. /* All 2G CTLs */
  527. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  528. ath9k_hw_get_target_powers(ah, chan,
  529. pEepData->calTargetPower2GHT40,
  530. AR9287_NUM_2G_40_TARGET_POWERS,
  531. &targetPowerHt40, 8, true);
  532. ath9k_hw_get_legacy_target_powers(ah, chan,
  533. pEepData->calTargetPowerCck,
  534. AR9287_NUM_2G_CCK_TARGET_POWERS,
  535. &targetPowerCckExt, 4, true);
  536. ath9k_hw_get_legacy_target_powers(ah, chan,
  537. pEepData->calTargetPower2G,
  538. AR9287_NUM_2G_20_TARGET_POWERS,
  539. &targetPowerOfdmExt, 4, true);
  540. }
  541. }
  542. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  543. bool isHt40CtlMode =
  544. (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
  545. if (isHt40CtlMode)
  546. freq = centers.synth_center;
  547. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  548. freq = centers.ext_center;
  549. else
  550. freq = centers.ctl_center;
  551. twiceMaxEdgePower = MAX_RATE_POWER;
  552. /* Walk through the CTL indices stored in EEPROM */
  553. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  554. struct cal_ctl_edges *pRdEdgesPower;
  555. /*
  556. * Compare test group from regulatory channel list
  557. * with test mode from pCtlMode list
  558. */
  559. if (CMP_CTL || CMP_NO_CTL) {
  560. rep = &(pEepData->ctlData[i]);
  561. pRdEdgesPower =
  562. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
  563. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  564. pRdEdgesPower,
  565. IS_CHAN_2GHZ(chan),
  566. AR5416_NUM_BAND_EDGES);
  567. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  568. twiceMaxEdgePower = min(twiceMaxEdgePower,
  569. twiceMinEdgePower);
  570. } else {
  571. twiceMaxEdgePower = twiceMinEdgePower;
  572. break;
  573. }
  574. }
  575. }
  576. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  577. /* Apply ctl mode to correct target power set */
  578. switch (pCtlMode[ctlMode]) {
  579. case CTL_11B:
  580. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  581. targetPowerCck.tPow2x[i] =
  582. (u8)min((u16)targetPowerCck.tPow2x[i],
  583. minCtlPower);
  584. }
  585. break;
  586. case CTL_11A:
  587. case CTL_11G:
  588. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  589. targetPowerOfdm.tPow2x[i] =
  590. (u8)min((u16)targetPowerOfdm.tPow2x[i],
  591. minCtlPower);
  592. }
  593. break;
  594. case CTL_5GHT20:
  595. case CTL_2GHT20:
  596. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  597. targetPowerHt20.tPow2x[i] =
  598. (u8)min((u16)targetPowerHt20.tPow2x[i],
  599. minCtlPower);
  600. }
  601. break;
  602. case CTL_11B_EXT:
  603. targetPowerCckExt.tPow2x[0] =
  604. (u8)min((u16)targetPowerCckExt.tPow2x[0],
  605. minCtlPower);
  606. break;
  607. case CTL_11A_EXT:
  608. case CTL_11G_EXT:
  609. targetPowerOfdmExt.tPow2x[0] =
  610. (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
  611. minCtlPower);
  612. break;
  613. case CTL_5GHT40:
  614. case CTL_2GHT40:
  615. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  616. targetPowerHt40.tPow2x[i] =
  617. (u8)min((u16)targetPowerHt40.tPow2x[i],
  618. minCtlPower);
  619. }
  620. break;
  621. default:
  622. break;
  623. }
  624. }
  625. /* Now set the rates array */
  626. ratesArray[rate6mb] =
  627. ratesArray[rate9mb] =
  628. ratesArray[rate12mb] =
  629. ratesArray[rate18mb] =
  630. ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
  631. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  632. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  633. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  634. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  635. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  636. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  637. if (IS_CHAN_2GHZ(chan)) {
  638. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  639. ratesArray[rate2s] =
  640. ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  641. ratesArray[rate5_5s] =
  642. ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  643. ratesArray[rate11s] =
  644. ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  645. }
  646. if (IS_CHAN_HT40(chan)) {
  647. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  648. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  649. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  650. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  651. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  652. if (IS_CHAN_2GHZ(chan))
  653. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  654. }
  655. #undef CMP_CTL
  656. #undef CMP_NO_CTL
  657. }
  658. static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
  659. struct ath9k_channel *chan, u16 cfgCtl,
  660. u8 twiceAntennaReduction,
  661. u8 powerLimit, bool test)
  662. {
  663. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  664. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  665. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  666. int16_t ratesArray[Ar5416RateSize];
  667. u8 ht40PowerIncForPdadc = 2;
  668. int i;
  669. memset(ratesArray, 0, sizeof(ratesArray));
  670. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  671. AR9287_EEP_MINOR_VER_2)
  672. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  673. ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
  674. &ratesArray[0], cfgCtl,
  675. twiceAntennaReduction,
  676. powerLimit);
  677. ath9k_hw_set_ar9287_power_cal_table(ah, chan);
  678. regulatory->max_power_level = 0;
  679. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  680. if (ratesArray[i] > MAX_RATE_POWER)
  681. ratesArray[i] = MAX_RATE_POWER;
  682. if (ratesArray[i] > regulatory->max_power_level)
  683. regulatory->max_power_level = ratesArray[i];
  684. }
  685. if (test)
  686. return;
  687. for (i = 0; i < Ar5416RateSize; i++)
  688. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  689. ENABLE_REGWRITE_BUFFER(ah);
  690. /* OFDM power per rate */
  691. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  692. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  693. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  694. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  695. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  696. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  697. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  698. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  699. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  700. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  701. /* CCK power per rate */
  702. if (IS_CHAN_2GHZ(chan)) {
  703. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  704. ATH9K_POW_SM(ratesArray[rate2s], 24)
  705. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  706. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  707. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  708. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  709. ATH9K_POW_SM(ratesArray[rate11s], 24)
  710. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  711. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  712. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  713. }
  714. /* HT20 power per rate */
  715. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  716. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  717. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  718. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  719. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  720. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  721. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  722. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  723. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  724. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  725. /* HT40 power per rate */
  726. if (IS_CHAN_HT40(chan)) {
  727. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  728. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  729. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  730. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  731. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  732. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  733. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  734. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  735. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  736. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  737. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  738. } else {
  739. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  740. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  741. ht40PowerIncForPdadc, 24)
  742. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  743. ht40PowerIncForPdadc, 16)
  744. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  745. ht40PowerIncForPdadc, 8)
  746. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  747. ht40PowerIncForPdadc, 0));
  748. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  749. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  750. ht40PowerIncForPdadc, 24)
  751. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  752. ht40PowerIncForPdadc, 16)
  753. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  754. ht40PowerIncForPdadc, 8)
  755. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  756. ht40PowerIncForPdadc, 0));
  757. }
  758. /* Dup/Ext power per rate */
  759. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  760. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  761. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  762. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  763. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  764. }
  765. REGWRITE_BUFFER_FLUSH(ah);
  766. }
  767. static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
  768. struct ath9k_channel *chan)
  769. {
  770. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  771. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  772. u32 regChainOffset, regval;
  773. u8 txRxAttenLocal;
  774. int i;
  775. pModal = &eep->modalHeader;
  776. REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  777. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  778. regChainOffset = i * 0x1000;
  779. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  780. pModal->antCtrlChain[i]);
  781. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  782. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  783. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  784. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  785. SM(pModal->iqCalICh[i],
  786. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  787. SM(pModal->iqCalQCh[i],
  788. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  789. txRxAttenLocal = pModal->txRxAttenCh[i];
  790. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  791. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  792. pModal->bswMargin[i]);
  793. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  794. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  795. pModal->bswAtten[i]);
  796. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  797. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  798. txRxAttenLocal);
  799. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  800. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  801. pModal->rxTxMarginCh[i]);
  802. }
  803. if (IS_CHAN_HT40(chan))
  804. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  805. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  806. else
  807. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  808. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  809. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  810. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  811. REG_WRITE(ah, AR_PHY_RF_CTL4,
  812. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  813. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  814. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  815. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  816. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  817. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  818. REG_RMW_FIELD(ah, AR_PHY_CCA,
  819. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  820. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  821. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  822. regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
  823. regval &= ~(AR9287_AN_RF2G3_DB1 |
  824. AR9287_AN_RF2G3_DB2 |
  825. AR9287_AN_RF2G3_OB_CCK |
  826. AR9287_AN_RF2G3_OB_PSK |
  827. AR9287_AN_RF2G3_OB_QAM |
  828. AR9287_AN_RF2G3_OB_PAL_OFF);
  829. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  830. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  831. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  832. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  833. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  834. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  835. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
  836. regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
  837. regval &= ~(AR9287_AN_RF2G3_DB1 |
  838. AR9287_AN_RF2G3_DB2 |
  839. AR9287_AN_RF2G3_OB_CCK |
  840. AR9287_AN_RF2G3_OB_PSK |
  841. AR9287_AN_RF2G3_OB_QAM |
  842. AR9287_AN_RF2G3_OB_PAL_OFF);
  843. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  844. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  845. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  846. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  847. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  848. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  849. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
  850. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  851. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  852. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  853. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  854. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  855. AR9287_AN_TOP2_XPABIAS_LVL,
  856. AR9287_AN_TOP2_XPABIAS_LVL_S,
  857. pModal->xpaBiasLvl);
  858. }
  859. static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
  860. u16 i, bool is2GHz)
  861. {
  862. #define EEP_MAP9287_SPURCHAN \
  863. (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
  864. struct ath_common *common = ath9k_hw_common(ah);
  865. u16 spur_val = AR_NO_SPUR;
  866. ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
  867. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  868. switch (ah->config.spurmode) {
  869. case SPUR_DISABLE:
  870. break;
  871. case SPUR_ENABLE_IOCTL:
  872. spur_val = ah->config.spurchans[i][is2GHz];
  873. ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
  874. spur_val);
  875. break;
  876. case SPUR_ENABLE_EEPROM:
  877. spur_val = EEP_MAP9287_SPURCHAN;
  878. break;
  879. }
  880. return spur_val;
  881. #undef EEP_MAP9287_SPURCHAN
  882. }
  883. const struct eeprom_ops eep_ar9287_ops = {
  884. .check_eeprom = ath9k_hw_ar9287_check_eeprom,
  885. .get_eeprom = ath9k_hw_ar9287_get_eeprom,
  886. .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
  887. .dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
  888. .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
  889. .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
  890. .set_board_values = ath9k_hw_ar9287_set_board_values,
  891. .set_txpower = ath9k_hw_ar9287_set_txpower,
  892. .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
  893. };