sungem.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/fcntl.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/ioport.h>
  21. #include <linux/in.h>
  22. #include <linux/sched.h>
  23. #include <linux/string.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/errno.h>
  27. #include <linux/pci.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/crc32.h>
  35. #include <linux/random.h>
  36. #include <linux/workqueue.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/bitops.h>
  39. #include <linux/mm.h>
  40. #include <linux/gfp.h>
  41. #include <asm/io.h>
  42. #include <asm/byteorder.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/irq.h>
  45. #ifdef CONFIG_SPARC
  46. #include <asm/idprom.h>
  47. #include <asm/prom.h>
  48. #endif
  49. #ifdef CONFIG_PPC_PMAC
  50. #include <asm/pci-bridge.h>
  51. #include <asm/prom.h>
  52. #include <asm/machdep.h>
  53. #include <asm/pmac_feature.h>
  54. #endif
  55. #include <linux/sungem_phy.h>
  56. #include "sungem.h"
  57. /* Stripping FCS is causing problems, disabled for now */
  58. #undef STRIP_FCS
  59. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  60. NETIF_MSG_PROBE | \
  61. NETIF_MSG_LINK)
  62. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  63. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  64. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  65. SUPPORTED_Pause | SUPPORTED_Autoneg)
  66. #define DRV_NAME "sungem"
  67. #define DRV_VERSION "1.0"
  68. #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
  69. static char version[] __devinitdata =
  70. DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  71. MODULE_AUTHOR(DRV_AUTHOR);
  72. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  73. MODULE_LICENSE("GPL");
  74. #define GEM_MODULE_NAME "gem"
  75. static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
  76. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  77. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  78. /* These models only differ from the original GEM in
  79. * that their tx/rx fifos are of a different size and
  80. * they only support 10/100 speeds. -DaveM
  81. *
  82. * Apple's GMAC does support gigabit on machines with
  83. * the BCM54xx PHYs. -BenH
  84. */
  85. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  86. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  87. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  88. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  89. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  90. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  91. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  92. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  93. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  94. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  95. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  96. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  97. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  98. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  99. {0, }
  100. };
  101. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  102. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  103. {
  104. u32 cmd;
  105. int limit = 10000;
  106. cmd = (1 << 30);
  107. cmd |= (2 << 28);
  108. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  109. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  110. cmd |= (MIF_FRAME_TAMSB);
  111. writel(cmd, gp->regs + MIF_FRAME);
  112. while (--limit) {
  113. cmd = readl(gp->regs + MIF_FRAME);
  114. if (cmd & MIF_FRAME_TALSB)
  115. break;
  116. udelay(10);
  117. }
  118. if (!limit)
  119. cmd = 0xffff;
  120. return cmd & MIF_FRAME_DATA;
  121. }
  122. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  123. {
  124. struct gem *gp = netdev_priv(dev);
  125. return __phy_read(gp, mii_id, reg);
  126. }
  127. static inline u16 phy_read(struct gem *gp, int reg)
  128. {
  129. return __phy_read(gp, gp->mii_phy_addr, reg);
  130. }
  131. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  132. {
  133. u32 cmd;
  134. int limit = 10000;
  135. cmd = (1 << 30);
  136. cmd |= (1 << 28);
  137. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  138. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  139. cmd |= (MIF_FRAME_TAMSB);
  140. cmd |= (val & MIF_FRAME_DATA);
  141. writel(cmd, gp->regs + MIF_FRAME);
  142. while (limit--) {
  143. cmd = readl(gp->regs + MIF_FRAME);
  144. if (cmd & MIF_FRAME_TALSB)
  145. break;
  146. udelay(10);
  147. }
  148. }
  149. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  150. {
  151. struct gem *gp = netdev_priv(dev);
  152. __phy_write(gp, mii_id, reg, val & 0xffff);
  153. }
  154. static inline void phy_write(struct gem *gp, int reg, u16 val)
  155. {
  156. __phy_write(gp, gp->mii_phy_addr, reg, val);
  157. }
  158. static inline void gem_enable_ints(struct gem *gp)
  159. {
  160. /* Enable all interrupts but TXDONE */
  161. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  162. }
  163. static inline void gem_disable_ints(struct gem *gp)
  164. {
  165. /* Disable all interrupts, including TXDONE */
  166. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  167. (void)readl(gp->regs + GREG_IMASK); /* write posting */
  168. }
  169. static void gem_get_cell(struct gem *gp)
  170. {
  171. BUG_ON(gp->cell_enabled < 0);
  172. gp->cell_enabled++;
  173. #ifdef CONFIG_PPC_PMAC
  174. if (gp->cell_enabled == 1) {
  175. mb();
  176. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  177. udelay(10);
  178. }
  179. #endif /* CONFIG_PPC_PMAC */
  180. }
  181. /* Turn off the chip's clock */
  182. static void gem_put_cell(struct gem *gp)
  183. {
  184. BUG_ON(gp->cell_enabled <= 0);
  185. gp->cell_enabled--;
  186. #ifdef CONFIG_PPC_PMAC
  187. if (gp->cell_enabled == 0) {
  188. mb();
  189. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  190. udelay(10);
  191. }
  192. #endif /* CONFIG_PPC_PMAC */
  193. }
  194. static inline void gem_netif_stop(struct gem *gp)
  195. {
  196. gp->dev->trans_start = jiffies; /* prevent tx timeout */
  197. napi_disable(&gp->napi);
  198. netif_tx_disable(gp->dev);
  199. }
  200. static inline void gem_netif_start(struct gem *gp)
  201. {
  202. /* NOTE: unconditional netif_wake_queue is only
  203. * appropriate so long as all callers are assured to
  204. * have free tx slots.
  205. */
  206. netif_wake_queue(gp->dev);
  207. napi_enable(&gp->napi);
  208. }
  209. static void gem_schedule_reset(struct gem *gp)
  210. {
  211. gp->reset_task_pending = 1;
  212. schedule_work(&gp->reset_task);
  213. }
  214. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  215. {
  216. if (netif_msg_intr(gp))
  217. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  218. }
  219. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  220. {
  221. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  222. u32 pcs_miistat;
  223. if (netif_msg_intr(gp))
  224. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  225. gp->dev->name, pcs_istat);
  226. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  227. netdev_err(dev, "PCS irq but no link status change???\n");
  228. return 0;
  229. }
  230. /* The link status bit latches on zero, so you must
  231. * read it twice in such a case to see a transition
  232. * to the link being up.
  233. */
  234. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  235. if (!(pcs_miistat & PCS_MIISTAT_LS))
  236. pcs_miistat |=
  237. (readl(gp->regs + PCS_MIISTAT) &
  238. PCS_MIISTAT_LS);
  239. if (pcs_miistat & PCS_MIISTAT_ANC) {
  240. /* The remote-fault indication is only valid
  241. * when autoneg has completed.
  242. */
  243. if (pcs_miistat & PCS_MIISTAT_RF)
  244. netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
  245. else
  246. netdev_info(dev, "PCS AutoNEG complete\n");
  247. }
  248. if (pcs_miistat & PCS_MIISTAT_LS) {
  249. netdev_info(dev, "PCS link is now up\n");
  250. netif_carrier_on(gp->dev);
  251. } else {
  252. netdev_info(dev, "PCS link is now down\n");
  253. netif_carrier_off(gp->dev);
  254. /* If this happens and the link timer is not running,
  255. * reset so we re-negotiate.
  256. */
  257. if (!timer_pending(&gp->link_timer))
  258. return 1;
  259. }
  260. return 0;
  261. }
  262. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  263. {
  264. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  265. if (netif_msg_intr(gp))
  266. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  267. gp->dev->name, txmac_stat);
  268. /* Defer timer expiration is quite normal,
  269. * don't even log the event.
  270. */
  271. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  272. !(txmac_stat & ~MAC_TXSTAT_DTE))
  273. return 0;
  274. if (txmac_stat & MAC_TXSTAT_URUN) {
  275. netdev_err(dev, "TX MAC xmit underrun\n");
  276. dev->stats.tx_fifo_errors++;
  277. }
  278. if (txmac_stat & MAC_TXSTAT_MPE) {
  279. netdev_err(dev, "TX MAC max packet size error\n");
  280. dev->stats.tx_errors++;
  281. }
  282. /* The rest are all cases of one of the 16-bit TX
  283. * counters expiring.
  284. */
  285. if (txmac_stat & MAC_TXSTAT_NCE)
  286. dev->stats.collisions += 0x10000;
  287. if (txmac_stat & MAC_TXSTAT_ECE) {
  288. dev->stats.tx_aborted_errors += 0x10000;
  289. dev->stats.collisions += 0x10000;
  290. }
  291. if (txmac_stat & MAC_TXSTAT_LCE) {
  292. dev->stats.tx_aborted_errors += 0x10000;
  293. dev->stats.collisions += 0x10000;
  294. }
  295. /* We do not keep track of MAC_TXSTAT_FCE and
  296. * MAC_TXSTAT_PCE events.
  297. */
  298. return 0;
  299. }
  300. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  301. * so we do the following.
  302. *
  303. * If any part of the reset goes wrong, we return 1 and that causes the
  304. * whole chip to be reset.
  305. */
  306. static int gem_rxmac_reset(struct gem *gp)
  307. {
  308. struct net_device *dev = gp->dev;
  309. int limit, i;
  310. u64 desc_dma;
  311. u32 val;
  312. /* First, reset & disable MAC RX. */
  313. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  314. for (limit = 0; limit < 5000; limit++) {
  315. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  316. break;
  317. udelay(10);
  318. }
  319. if (limit == 5000) {
  320. netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
  321. return 1;
  322. }
  323. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  324. gp->regs + MAC_RXCFG);
  325. for (limit = 0; limit < 5000; limit++) {
  326. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  327. break;
  328. udelay(10);
  329. }
  330. if (limit == 5000) {
  331. netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
  332. return 1;
  333. }
  334. /* Second, disable RX DMA. */
  335. writel(0, gp->regs + RXDMA_CFG);
  336. for (limit = 0; limit < 5000; limit++) {
  337. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  338. break;
  339. udelay(10);
  340. }
  341. if (limit == 5000) {
  342. netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
  343. return 1;
  344. }
  345. mdelay(5);
  346. /* Execute RX reset command. */
  347. writel(gp->swrst_base | GREG_SWRST_RXRST,
  348. gp->regs + GREG_SWRST);
  349. for (limit = 0; limit < 5000; limit++) {
  350. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  351. break;
  352. udelay(10);
  353. }
  354. if (limit == 5000) {
  355. netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
  356. return 1;
  357. }
  358. /* Refresh the RX ring. */
  359. for (i = 0; i < RX_RING_SIZE; i++) {
  360. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  361. if (gp->rx_skbs[i] == NULL) {
  362. netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
  363. return 1;
  364. }
  365. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  366. }
  367. gp->rx_new = gp->rx_old = 0;
  368. /* Now we must reprogram the rest of RX unit. */
  369. desc_dma = (u64) gp->gblock_dvma;
  370. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  371. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  372. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  373. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  374. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  375. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  376. writel(val, gp->regs + RXDMA_CFG);
  377. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  378. writel(((5 & RXDMA_BLANK_IPKTS) |
  379. ((8 << 12) & RXDMA_BLANK_ITIME)),
  380. gp->regs + RXDMA_BLANK);
  381. else
  382. writel(((5 & RXDMA_BLANK_IPKTS) |
  383. ((4 << 12) & RXDMA_BLANK_ITIME)),
  384. gp->regs + RXDMA_BLANK);
  385. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  386. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  387. writel(val, gp->regs + RXDMA_PTHRESH);
  388. val = readl(gp->regs + RXDMA_CFG);
  389. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  390. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  391. val = readl(gp->regs + MAC_RXCFG);
  392. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  393. return 0;
  394. }
  395. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  396. {
  397. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  398. int ret = 0;
  399. if (netif_msg_intr(gp))
  400. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  401. gp->dev->name, rxmac_stat);
  402. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  403. u32 smac = readl(gp->regs + MAC_SMACHINE);
  404. netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
  405. dev->stats.rx_over_errors++;
  406. dev->stats.rx_fifo_errors++;
  407. ret = gem_rxmac_reset(gp);
  408. }
  409. if (rxmac_stat & MAC_RXSTAT_ACE)
  410. dev->stats.rx_frame_errors += 0x10000;
  411. if (rxmac_stat & MAC_RXSTAT_CCE)
  412. dev->stats.rx_crc_errors += 0x10000;
  413. if (rxmac_stat & MAC_RXSTAT_LCE)
  414. dev->stats.rx_length_errors += 0x10000;
  415. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  416. * events.
  417. */
  418. return ret;
  419. }
  420. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  421. {
  422. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  423. if (netif_msg_intr(gp))
  424. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  425. gp->dev->name, mac_cstat);
  426. /* This interrupt is just for pause frame and pause
  427. * tracking. It is useful for diagnostics and debug
  428. * but probably by default we will mask these events.
  429. */
  430. if (mac_cstat & MAC_CSTAT_PS)
  431. gp->pause_entered++;
  432. if (mac_cstat & MAC_CSTAT_PRCV)
  433. gp->pause_last_time_recvd = (mac_cstat >> 16);
  434. return 0;
  435. }
  436. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  437. {
  438. u32 mif_status = readl(gp->regs + MIF_STATUS);
  439. u32 reg_val, changed_bits;
  440. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  441. changed_bits = (mif_status & MIF_STATUS_STAT);
  442. gem_handle_mif_event(gp, reg_val, changed_bits);
  443. return 0;
  444. }
  445. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  446. {
  447. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  448. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  449. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  450. netdev_err(dev, "PCI error [%04x]", pci_estat);
  451. if (pci_estat & GREG_PCIESTAT_BADACK)
  452. pr_cont(" <No ACK64# during ABS64 cycle>");
  453. if (pci_estat & GREG_PCIESTAT_DTRTO)
  454. pr_cont(" <Delayed transaction timeout>");
  455. if (pci_estat & GREG_PCIESTAT_OTHER)
  456. pr_cont(" <other>");
  457. pr_cont("\n");
  458. } else {
  459. pci_estat |= GREG_PCIESTAT_OTHER;
  460. netdev_err(dev, "PCI error\n");
  461. }
  462. if (pci_estat & GREG_PCIESTAT_OTHER) {
  463. u16 pci_cfg_stat;
  464. /* Interrogate PCI config space for the
  465. * true cause.
  466. */
  467. pci_read_config_word(gp->pdev, PCI_STATUS,
  468. &pci_cfg_stat);
  469. netdev_err(dev, "Read PCI cfg space status [%04x]\n",
  470. pci_cfg_stat);
  471. if (pci_cfg_stat & PCI_STATUS_PARITY)
  472. netdev_err(dev, "PCI parity error detected\n");
  473. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  474. netdev_err(dev, "PCI target abort\n");
  475. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  476. netdev_err(dev, "PCI master acks target abort\n");
  477. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  478. netdev_err(dev, "PCI master abort\n");
  479. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  480. netdev_err(dev, "PCI system error SERR#\n");
  481. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  482. netdev_err(dev, "PCI parity error\n");
  483. /* Write the error bits back to clear them. */
  484. pci_cfg_stat &= (PCI_STATUS_PARITY |
  485. PCI_STATUS_SIG_TARGET_ABORT |
  486. PCI_STATUS_REC_TARGET_ABORT |
  487. PCI_STATUS_REC_MASTER_ABORT |
  488. PCI_STATUS_SIG_SYSTEM_ERROR |
  489. PCI_STATUS_DETECTED_PARITY);
  490. pci_write_config_word(gp->pdev,
  491. PCI_STATUS, pci_cfg_stat);
  492. }
  493. /* For all PCI errors, we should reset the chip. */
  494. return 1;
  495. }
  496. /* All non-normal interrupt conditions get serviced here.
  497. * Returns non-zero if we should just exit the interrupt
  498. * handler right now (ie. if we reset the card which invalidates
  499. * all of the other original irq status bits).
  500. */
  501. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  502. {
  503. if (gem_status & GREG_STAT_RXNOBUF) {
  504. /* Frame arrived, no free RX buffers available. */
  505. if (netif_msg_rx_err(gp))
  506. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  507. gp->dev->name);
  508. dev->stats.rx_dropped++;
  509. }
  510. if (gem_status & GREG_STAT_RXTAGERR) {
  511. /* corrupt RX tag framing */
  512. if (netif_msg_rx_err(gp))
  513. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  514. gp->dev->name);
  515. dev->stats.rx_errors++;
  516. return 1;
  517. }
  518. if (gem_status & GREG_STAT_PCS) {
  519. if (gem_pcs_interrupt(dev, gp, gem_status))
  520. return 1;
  521. }
  522. if (gem_status & GREG_STAT_TXMAC) {
  523. if (gem_txmac_interrupt(dev, gp, gem_status))
  524. return 1;
  525. }
  526. if (gem_status & GREG_STAT_RXMAC) {
  527. if (gem_rxmac_interrupt(dev, gp, gem_status))
  528. return 1;
  529. }
  530. if (gem_status & GREG_STAT_MAC) {
  531. if (gem_mac_interrupt(dev, gp, gem_status))
  532. return 1;
  533. }
  534. if (gem_status & GREG_STAT_MIF) {
  535. if (gem_mif_interrupt(dev, gp, gem_status))
  536. return 1;
  537. }
  538. if (gem_status & GREG_STAT_PCIERR) {
  539. if (gem_pci_interrupt(dev, gp, gem_status))
  540. return 1;
  541. }
  542. return 0;
  543. }
  544. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  545. {
  546. int entry, limit;
  547. entry = gp->tx_old;
  548. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  549. while (entry != limit) {
  550. struct sk_buff *skb;
  551. struct gem_txd *txd;
  552. dma_addr_t dma_addr;
  553. u32 dma_len;
  554. int frag;
  555. if (netif_msg_tx_done(gp))
  556. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  557. gp->dev->name, entry);
  558. skb = gp->tx_skbs[entry];
  559. if (skb_shinfo(skb)->nr_frags) {
  560. int last = entry + skb_shinfo(skb)->nr_frags;
  561. int walk = entry;
  562. int incomplete = 0;
  563. last &= (TX_RING_SIZE - 1);
  564. for (;;) {
  565. walk = NEXT_TX(walk);
  566. if (walk == limit)
  567. incomplete = 1;
  568. if (walk == last)
  569. break;
  570. }
  571. if (incomplete)
  572. break;
  573. }
  574. gp->tx_skbs[entry] = NULL;
  575. dev->stats.tx_bytes += skb->len;
  576. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  577. txd = &gp->init_block->txd[entry];
  578. dma_addr = le64_to_cpu(txd->buffer);
  579. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  580. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  581. entry = NEXT_TX(entry);
  582. }
  583. dev->stats.tx_packets++;
  584. dev_kfree_skb(skb);
  585. }
  586. gp->tx_old = entry;
  587. /* Need to make the tx_old update visible to gem_start_xmit()
  588. * before checking for netif_queue_stopped(). Without the
  589. * memory barrier, there is a small possibility that gem_start_xmit()
  590. * will miss it and cause the queue to be stopped forever.
  591. */
  592. smp_mb();
  593. if (unlikely(netif_queue_stopped(dev) &&
  594. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
  595. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  596. __netif_tx_lock(txq, smp_processor_id());
  597. if (netif_queue_stopped(dev) &&
  598. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  599. netif_wake_queue(dev);
  600. __netif_tx_unlock(txq);
  601. }
  602. }
  603. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  604. {
  605. int cluster_start, curr, count, kick;
  606. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  607. count = 0;
  608. kick = -1;
  609. wmb();
  610. while (curr != limit) {
  611. curr = NEXT_RX(curr);
  612. if (++count == 4) {
  613. struct gem_rxd *rxd =
  614. &gp->init_block->rxd[cluster_start];
  615. for (;;) {
  616. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  617. rxd++;
  618. cluster_start = NEXT_RX(cluster_start);
  619. if (cluster_start == curr)
  620. break;
  621. }
  622. kick = curr;
  623. count = 0;
  624. }
  625. }
  626. if (kick >= 0) {
  627. mb();
  628. writel(kick, gp->regs + RXDMA_KICK);
  629. }
  630. }
  631. #define ALIGNED_RX_SKB_ADDR(addr) \
  632. ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
  633. static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
  634. gfp_t gfp_flags)
  635. {
  636. struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
  637. if (likely(skb)) {
  638. unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
  639. skb_reserve(skb, offset);
  640. skb->dev = dev;
  641. }
  642. return skb;
  643. }
  644. static int gem_rx(struct gem *gp, int work_to_do)
  645. {
  646. struct net_device *dev = gp->dev;
  647. int entry, drops, work_done = 0;
  648. u32 done;
  649. __sum16 csum;
  650. if (netif_msg_rx_status(gp))
  651. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  652. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  653. entry = gp->rx_new;
  654. drops = 0;
  655. done = readl(gp->regs + RXDMA_DONE);
  656. for (;;) {
  657. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  658. struct sk_buff *skb;
  659. u64 status = le64_to_cpu(rxd->status_word);
  660. dma_addr_t dma_addr;
  661. int len;
  662. if ((status & RXDCTRL_OWN) != 0)
  663. break;
  664. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  665. break;
  666. /* When writing back RX descriptor, GEM writes status
  667. * then buffer address, possibly in separate transactions.
  668. * If we don't wait for the chip to write both, we could
  669. * post a new buffer to this descriptor then have GEM spam
  670. * on the buffer address. We sync on the RX completion
  671. * register to prevent this from happening.
  672. */
  673. if (entry == done) {
  674. done = readl(gp->regs + RXDMA_DONE);
  675. if (entry == done)
  676. break;
  677. }
  678. /* We can now account for the work we're about to do */
  679. work_done++;
  680. skb = gp->rx_skbs[entry];
  681. len = (status & RXDCTRL_BUFSZ) >> 16;
  682. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  683. dev->stats.rx_errors++;
  684. if (len < ETH_ZLEN)
  685. dev->stats.rx_length_errors++;
  686. if (len & RXDCTRL_BAD)
  687. dev->stats.rx_crc_errors++;
  688. /* We'll just return it to GEM. */
  689. drop_it:
  690. dev->stats.rx_dropped++;
  691. goto next;
  692. }
  693. dma_addr = le64_to_cpu(rxd->buffer);
  694. if (len > RX_COPY_THRESHOLD) {
  695. struct sk_buff *new_skb;
  696. new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  697. if (new_skb == NULL) {
  698. drops++;
  699. goto drop_it;
  700. }
  701. pci_unmap_page(gp->pdev, dma_addr,
  702. RX_BUF_ALLOC_SIZE(gp),
  703. PCI_DMA_FROMDEVICE);
  704. gp->rx_skbs[entry] = new_skb;
  705. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  706. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  707. virt_to_page(new_skb->data),
  708. offset_in_page(new_skb->data),
  709. RX_BUF_ALLOC_SIZE(gp),
  710. PCI_DMA_FROMDEVICE));
  711. skb_reserve(new_skb, RX_OFFSET);
  712. /* Trim the original skb for the netif. */
  713. skb_trim(skb, len);
  714. } else {
  715. struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
  716. if (copy_skb == NULL) {
  717. drops++;
  718. goto drop_it;
  719. }
  720. skb_reserve(copy_skb, 2);
  721. skb_put(copy_skb, len);
  722. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  723. skb_copy_from_linear_data(skb, copy_skb->data, len);
  724. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  725. /* We'll reuse the original ring buffer. */
  726. skb = copy_skb;
  727. }
  728. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  729. skb->csum = csum_unfold(csum);
  730. skb->ip_summed = CHECKSUM_COMPLETE;
  731. skb->protocol = eth_type_trans(skb, gp->dev);
  732. napi_gro_receive(&gp->napi, skb);
  733. dev->stats.rx_packets++;
  734. dev->stats.rx_bytes += len;
  735. next:
  736. entry = NEXT_RX(entry);
  737. }
  738. gem_post_rxds(gp, entry);
  739. gp->rx_new = entry;
  740. if (drops)
  741. netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
  742. return work_done;
  743. }
  744. static int gem_poll(struct napi_struct *napi, int budget)
  745. {
  746. struct gem *gp = container_of(napi, struct gem, napi);
  747. struct net_device *dev = gp->dev;
  748. int work_done;
  749. work_done = 0;
  750. do {
  751. /* Handle anomalies */
  752. if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
  753. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  754. int reset;
  755. /* We run the abnormal interrupt handling code with
  756. * the Tx lock. It only resets the Rx portion of the
  757. * chip, but we need to guard it against DMA being
  758. * restarted by the link poll timer
  759. */
  760. __netif_tx_lock(txq, smp_processor_id());
  761. reset = gem_abnormal_irq(dev, gp, gp->status);
  762. __netif_tx_unlock(txq);
  763. if (reset) {
  764. gem_schedule_reset(gp);
  765. napi_complete(napi);
  766. return work_done;
  767. }
  768. }
  769. /* Run TX completion thread */
  770. gem_tx(dev, gp, gp->status);
  771. /* Run RX thread. We don't use any locking here,
  772. * code willing to do bad things - like cleaning the
  773. * rx ring - must call napi_disable(), which
  774. * schedule_timeout()'s if polling is already disabled.
  775. */
  776. work_done += gem_rx(gp, budget - work_done);
  777. if (work_done >= budget)
  778. return work_done;
  779. gp->status = readl(gp->regs + GREG_STAT);
  780. } while (gp->status & GREG_STAT_NAPI);
  781. napi_complete(napi);
  782. gem_enable_ints(gp);
  783. return work_done;
  784. }
  785. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  786. {
  787. struct net_device *dev = dev_id;
  788. struct gem *gp = netdev_priv(dev);
  789. if (napi_schedule_prep(&gp->napi)) {
  790. u32 gem_status = readl(gp->regs + GREG_STAT);
  791. if (unlikely(gem_status == 0)) {
  792. napi_enable(&gp->napi);
  793. return IRQ_NONE;
  794. }
  795. if (netif_msg_intr(gp))
  796. printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
  797. gp->dev->name, gem_status);
  798. gp->status = gem_status;
  799. gem_disable_ints(gp);
  800. __napi_schedule(&gp->napi);
  801. }
  802. /* If polling was disabled at the time we received that
  803. * interrupt, we may return IRQ_HANDLED here while we
  804. * should return IRQ_NONE. No big deal...
  805. */
  806. return IRQ_HANDLED;
  807. }
  808. #ifdef CONFIG_NET_POLL_CONTROLLER
  809. static void gem_poll_controller(struct net_device *dev)
  810. {
  811. struct gem *gp = netdev_priv(dev);
  812. disable_irq(gp->pdev->irq);
  813. gem_interrupt(gp->pdev->irq, dev);
  814. enable_irq(gp->pdev->irq);
  815. }
  816. #endif
  817. static void gem_tx_timeout(struct net_device *dev)
  818. {
  819. struct gem *gp = netdev_priv(dev);
  820. netdev_err(dev, "transmit timed out, resetting\n");
  821. netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
  822. readl(gp->regs + TXDMA_CFG),
  823. readl(gp->regs + MAC_TXSTAT),
  824. readl(gp->regs + MAC_TXCFG));
  825. netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
  826. readl(gp->regs + RXDMA_CFG),
  827. readl(gp->regs + MAC_RXSTAT),
  828. readl(gp->regs + MAC_RXCFG));
  829. gem_schedule_reset(gp);
  830. }
  831. static __inline__ int gem_intme(int entry)
  832. {
  833. /* Algorithm: IRQ every 1/2 of descriptors. */
  834. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  835. return 1;
  836. return 0;
  837. }
  838. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  839. struct net_device *dev)
  840. {
  841. struct gem *gp = netdev_priv(dev);
  842. int entry;
  843. u64 ctrl;
  844. ctrl = 0;
  845. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  846. const u64 csum_start_off = skb_checksum_start_offset(skb);
  847. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  848. ctrl = (TXDCTRL_CENAB |
  849. (csum_start_off << 15) |
  850. (csum_stuff_off << 21));
  851. }
  852. if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
  853. /* This is a hard error, log it. */
  854. if (!netif_queue_stopped(dev)) {
  855. netif_stop_queue(dev);
  856. netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
  857. }
  858. return NETDEV_TX_BUSY;
  859. }
  860. entry = gp->tx_new;
  861. gp->tx_skbs[entry] = skb;
  862. if (skb_shinfo(skb)->nr_frags == 0) {
  863. struct gem_txd *txd = &gp->init_block->txd[entry];
  864. dma_addr_t mapping;
  865. u32 len;
  866. len = skb->len;
  867. mapping = pci_map_page(gp->pdev,
  868. virt_to_page(skb->data),
  869. offset_in_page(skb->data),
  870. len, PCI_DMA_TODEVICE);
  871. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  872. if (gem_intme(entry))
  873. ctrl |= TXDCTRL_INTME;
  874. txd->buffer = cpu_to_le64(mapping);
  875. wmb();
  876. txd->control_word = cpu_to_le64(ctrl);
  877. entry = NEXT_TX(entry);
  878. } else {
  879. struct gem_txd *txd;
  880. u32 first_len;
  881. u64 intme;
  882. dma_addr_t first_mapping;
  883. int frag, first_entry = entry;
  884. intme = 0;
  885. if (gem_intme(entry))
  886. intme |= TXDCTRL_INTME;
  887. /* We must give this initial chunk to the device last.
  888. * Otherwise we could race with the device.
  889. */
  890. first_len = skb_headlen(skb);
  891. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  892. offset_in_page(skb->data),
  893. first_len, PCI_DMA_TODEVICE);
  894. entry = NEXT_TX(entry);
  895. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  896. const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  897. u32 len;
  898. dma_addr_t mapping;
  899. u64 this_ctrl;
  900. len = skb_frag_size(this_frag);
  901. mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
  902. 0, len, DMA_TO_DEVICE);
  903. this_ctrl = ctrl;
  904. if (frag == skb_shinfo(skb)->nr_frags - 1)
  905. this_ctrl |= TXDCTRL_EOF;
  906. txd = &gp->init_block->txd[entry];
  907. txd->buffer = cpu_to_le64(mapping);
  908. wmb();
  909. txd->control_word = cpu_to_le64(this_ctrl | len);
  910. if (gem_intme(entry))
  911. intme |= TXDCTRL_INTME;
  912. entry = NEXT_TX(entry);
  913. }
  914. txd = &gp->init_block->txd[first_entry];
  915. txd->buffer = cpu_to_le64(first_mapping);
  916. wmb();
  917. txd->control_word =
  918. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  919. }
  920. gp->tx_new = entry;
  921. if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
  922. netif_stop_queue(dev);
  923. /* netif_stop_queue() must be done before checking
  924. * checking tx index in TX_BUFFS_AVAIL() below, because
  925. * in gem_tx(), we update tx_old before checking for
  926. * netif_queue_stopped().
  927. */
  928. smp_mb();
  929. if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  930. netif_wake_queue(dev);
  931. }
  932. if (netif_msg_tx_queued(gp))
  933. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  934. dev->name, entry, skb->len);
  935. mb();
  936. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  937. return NETDEV_TX_OK;
  938. }
  939. static void gem_pcs_reset(struct gem *gp)
  940. {
  941. int limit;
  942. u32 val;
  943. /* Reset PCS unit. */
  944. val = readl(gp->regs + PCS_MIICTRL);
  945. val |= PCS_MIICTRL_RST;
  946. writel(val, gp->regs + PCS_MIICTRL);
  947. limit = 32;
  948. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  949. udelay(100);
  950. if (limit-- <= 0)
  951. break;
  952. }
  953. if (limit < 0)
  954. netdev_warn(gp->dev, "PCS reset bit would not clear\n");
  955. }
  956. static void gem_pcs_reinit_adv(struct gem *gp)
  957. {
  958. u32 val;
  959. /* Make sure PCS is disabled while changing advertisement
  960. * configuration.
  961. */
  962. val = readl(gp->regs + PCS_CFG);
  963. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  964. writel(val, gp->regs + PCS_CFG);
  965. /* Advertise all capabilities except asymmetric
  966. * pause.
  967. */
  968. val = readl(gp->regs + PCS_MIIADV);
  969. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  970. PCS_MIIADV_SP | PCS_MIIADV_AP);
  971. writel(val, gp->regs + PCS_MIIADV);
  972. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  973. * and re-enable PCS.
  974. */
  975. val = readl(gp->regs + PCS_MIICTRL);
  976. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  977. val &= ~PCS_MIICTRL_WB;
  978. writel(val, gp->regs + PCS_MIICTRL);
  979. val = readl(gp->regs + PCS_CFG);
  980. val |= PCS_CFG_ENABLE;
  981. writel(val, gp->regs + PCS_CFG);
  982. /* Make sure serialink loopback is off. The meaning
  983. * of this bit is logically inverted based upon whether
  984. * you are in Serialink or SERDES mode.
  985. */
  986. val = readl(gp->regs + PCS_SCTRL);
  987. if (gp->phy_type == phy_serialink)
  988. val &= ~PCS_SCTRL_LOOP;
  989. else
  990. val |= PCS_SCTRL_LOOP;
  991. writel(val, gp->regs + PCS_SCTRL);
  992. }
  993. #define STOP_TRIES 32
  994. static void gem_reset(struct gem *gp)
  995. {
  996. int limit;
  997. u32 val;
  998. /* Make sure we won't get any more interrupts */
  999. writel(0xffffffff, gp->regs + GREG_IMASK);
  1000. /* Reset the chip */
  1001. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  1002. gp->regs + GREG_SWRST);
  1003. limit = STOP_TRIES;
  1004. do {
  1005. udelay(20);
  1006. val = readl(gp->regs + GREG_SWRST);
  1007. if (limit-- <= 0)
  1008. break;
  1009. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1010. if (limit < 0)
  1011. netdev_err(gp->dev, "SW reset is ghetto\n");
  1012. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1013. gem_pcs_reinit_adv(gp);
  1014. }
  1015. static void gem_start_dma(struct gem *gp)
  1016. {
  1017. u32 val;
  1018. /* We are ready to rock, turn everything on. */
  1019. val = readl(gp->regs + TXDMA_CFG);
  1020. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1021. val = readl(gp->regs + RXDMA_CFG);
  1022. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1023. val = readl(gp->regs + MAC_TXCFG);
  1024. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1025. val = readl(gp->regs + MAC_RXCFG);
  1026. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1027. (void) readl(gp->regs + MAC_RXCFG);
  1028. udelay(100);
  1029. gem_enable_ints(gp);
  1030. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1031. }
  1032. /* DMA won't be actually stopped before about 4ms tho ...
  1033. */
  1034. static void gem_stop_dma(struct gem *gp)
  1035. {
  1036. u32 val;
  1037. /* We are done rocking, turn everything off. */
  1038. val = readl(gp->regs + TXDMA_CFG);
  1039. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1040. val = readl(gp->regs + RXDMA_CFG);
  1041. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1042. val = readl(gp->regs + MAC_TXCFG);
  1043. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1044. val = readl(gp->regs + MAC_RXCFG);
  1045. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1046. (void) readl(gp->regs + MAC_RXCFG);
  1047. /* Need to wait a bit ... done by the caller */
  1048. }
  1049. // XXX dbl check what that function should do when called on PCS PHY
  1050. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1051. {
  1052. u32 advertise, features;
  1053. int autoneg;
  1054. int speed;
  1055. int duplex;
  1056. if (gp->phy_type != phy_mii_mdio0 &&
  1057. gp->phy_type != phy_mii_mdio1)
  1058. goto non_mii;
  1059. /* Setup advertise */
  1060. if (found_mii_phy(gp))
  1061. features = gp->phy_mii.def->features;
  1062. else
  1063. features = 0;
  1064. advertise = features & ADVERTISE_MASK;
  1065. if (gp->phy_mii.advertising != 0)
  1066. advertise &= gp->phy_mii.advertising;
  1067. autoneg = gp->want_autoneg;
  1068. speed = gp->phy_mii.speed;
  1069. duplex = gp->phy_mii.duplex;
  1070. /* Setup link parameters */
  1071. if (!ep)
  1072. goto start_aneg;
  1073. if (ep->autoneg == AUTONEG_ENABLE) {
  1074. advertise = ep->advertising;
  1075. autoneg = 1;
  1076. } else {
  1077. autoneg = 0;
  1078. speed = ethtool_cmd_speed(ep);
  1079. duplex = ep->duplex;
  1080. }
  1081. start_aneg:
  1082. /* Sanitize settings based on PHY capabilities */
  1083. if ((features & SUPPORTED_Autoneg) == 0)
  1084. autoneg = 0;
  1085. if (speed == SPEED_1000 &&
  1086. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1087. speed = SPEED_100;
  1088. if (speed == SPEED_100 &&
  1089. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1090. speed = SPEED_10;
  1091. if (duplex == DUPLEX_FULL &&
  1092. !(features & (SUPPORTED_1000baseT_Full |
  1093. SUPPORTED_100baseT_Full |
  1094. SUPPORTED_10baseT_Full)))
  1095. duplex = DUPLEX_HALF;
  1096. if (speed == 0)
  1097. speed = SPEED_10;
  1098. /* If we are asleep, we don't try to actually setup the PHY, we
  1099. * just store the settings
  1100. */
  1101. if (!netif_device_present(gp->dev)) {
  1102. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1103. gp->phy_mii.speed = speed;
  1104. gp->phy_mii.duplex = duplex;
  1105. return;
  1106. }
  1107. /* Configure PHY & start aneg */
  1108. gp->want_autoneg = autoneg;
  1109. if (autoneg) {
  1110. if (found_mii_phy(gp))
  1111. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1112. gp->lstate = link_aneg;
  1113. } else {
  1114. if (found_mii_phy(gp))
  1115. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1116. gp->lstate = link_force_ok;
  1117. }
  1118. non_mii:
  1119. gp->timer_ticks = 0;
  1120. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1121. }
  1122. /* A link-up condition has occurred, initialize and enable the
  1123. * rest of the chip.
  1124. */
  1125. static int gem_set_link_modes(struct gem *gp)
  1126. {
  1127. struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
  1128. int full_duplex, speed, pause;
  1129. u32 val;
  1130. full_duplex = 0;
  1131. speed = SPEED_10;
  1132. pause = 0;
  1133. if (found_mii_phy(gp)) {
  1134. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1135. return 1;
  1136. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1137. speed = gp->phy_mii.speed;
  1138. pause = gp->phy_mii.pause;
  1139. } else if (gp->phy_type == phy_serialink ||
  1140. gp->phy_type == phy_serdes) {
  1141. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1142. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1143. full_duplex = 1;
  1144. speed = SPEED_1000;
  1145. }
  1146. netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
  1147. speed, (full_duplex ? "full" : "half"));
  1148. /* We take the tx queue lock to avoid collisions between
  1149. * this code, the tx path and the NAPI-driven error path
  1150. */
  1151. __netif_tx_lock(txq, smp_processor_id());
  1152. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1153. if (full_duplex) {
  1154. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1155. } else {
  1156. /* MAC_TXCFG_NBO must be zero. */
  1157. }
  1158. writel(val, gp->regs + MAC_TXCFG);
  1159. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1160. if (!full_duplex &&
  1161. (gp->phy_type == phy_mii_mdio0 ||
  1162. gp->phy_type == phy_mii_mdio1)) {
  1163. val |= MAC_XIFCFG_DISE;
  1164. } else if (full_duplex) {
  1165. val |= MAC_XIFCFG_FLED;
  1166. }
  1167. if (speed == SPEED_1000)
  1168. val |= (MAC_XIFCFG_GMII);
  1169. writel(val, gp->regs + MAC_XIFCFG);
  1170. /* If gigabit and half-duplex, enable carrier extension
  1171. * mode. Else, disable it.
  1172. */
  1173. if (speed == SPEED_1000 && !full_duplex) {
  1174. val = readl(gp->regs + MAC_TXCFG);
  1175. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1176. val = readl(gp->regs + MAC_RXCFG);
  1177. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1178. } else {
  1179. val = readl(gp->regs + MAC_TXCFG);
  1180. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1181. val = readl(gp->regs + MAC_RXCFG);
  1182. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1183. }
  1184. if (gp->phy_type == phy_serialink ||
  1185. gp->phy_type == phy_serdes) {
  1186. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1187. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1188. pause = 1;
  1189. }
  1190. if (!full_duplex)
  1191. writel(512, gp->regs + MAC_STIME);
  1192. else
  1193. writel(64, gp->regs + MAC_STIME);
  1194. val = readl(gp->regs + MAC_MCCFG);
  1195. if (pause)
  1196. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1197. else
  1198. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1199. writel(val, gp->regs + MAC_MCCFG);
  1200. gem_start_dma(gp);
  1201. __netif_tx_unlock(txq);
  1202. if (netif_msg_link(gp)) {
  1203. if (pause) {
  1204. netdev_info(gp->dev,
  1205. "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
  1206. gp->rx_fifo_sz,
  1207. gp->rx_pause_off,
  1208. gp->rx_pause_on);
  1209. } else {
  1210. netdev_info(gp->dev, "Pause is disabled\n");
  1211. }
  1212. }
  1213. return 0;
  1214. }
  1215. static int gem_mdio_link_not_up(struct gem *gp)
  1216. {
  1217. switch (gp->lstate) {
  1218. case link_force_ret:
  1219. netif_info(gp, link, gp->dev,
  1220. "Autoneg failed again, keeping forced mode\n");
  1221. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1222. gp->last_forced_speed, DUPLEX_HALF);
  1223. gp->timer_ticks = 5;
  1224. gp->lstate = link_force_ok;
  1225. return 0;
  1226. case link_aneg:
  1227. /* We try forced modes after a failed aneg only on PHYs that don't
  1228. * have "magic_aneg" bit set, which means they internally do the
  1229. * while forced-mode thingy. On these, we just restart aneg
  1230. */
  1231. if (gp->phy_mii.def->magic_aneg)
  1232. return 1;
  1233. netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
  1234. /* Try forced modes. */
  1235. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1236. DUPLEX_HALF);
  1237. gp->timer_ticks = 5;
  1238. gp->lstate = link_force_try;
  1239. return 0;
  1240. case link_force_try:
  1241. /* Downgrade from 100 to 10 Mbps if necessary.
  1242. * If already at 10Mbps, warn user about the
  1243. * situation every 10 ticks.
  1244. */
  1245. if (gp->phy_mii.speed == SPEED_100) {
  1246. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1247. DUPLEX_HALF);
  1248. gp->timer_ticks = 5;
  1249. netif_info(gp, link, gp->dev,
  1250. "switching to forced 10bt\n");
  1251. return 0;
  1252. } else
  1253. return 1;
  1254. default:
  1255. return 0;
  1256. }
  1257. }
  1258. static void gem_link_timer(unsigned long data)
  1259. {
  1260. struct gem *gp = (struct gem *) data;
  1261. struct net_device *dev = gp->dev;
  1262. int restart_aneg = 0;
  1263. /* There's no point doing anything if we're going to be reset */
  1264. if (gp->reset_task_pending)
  1265. return;
  1266. if (gp->phy_type == phy_serialink ||
  1267. gp->phy_type == phy_serdes) {
  1268. u32 val = readl(gp->regs + PCS_MIISTAT);
  1269. if (!(val & PCS_MIISTAT_LS))
  1270. val = readl(gp->regs + PCS_MIISTAT);
  1271. if ((val & PCS_MIISTAT_LS) != 0) {
  1272. if (gp->lstate == link_up)
  1273. goto restart;
  1274. gp->lstate = link_up;
  1275. netif_carrier_on(dev);
  1276. (void)gem_set_link_modes(gp);
  1277. }
  1278. goto restart;
  1279. }
  1280. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1281. /* Ok, here we got a link. If we had it due to a forced
  1282. * fallback, and we were configured for autoneg, we do
  1283. * retry a short autoneg pass. If you know your hub is
  1284. * broken, use ethtool ;)
  1285. */
  1286. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1287. gp->lstate = link_force_ret;
  1288. gp->last_forced_speed = gp->phy_mii.speed;
  1289. gp->timer_ticks = 5;
  1290. if (netif_msg_link(gp))
  1291. netdev_info(dev,
  1292. "Got link after fallback, retrying autoneg once...\n");
  1293. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1294. } else if (gp->lstate != link_up) {
  1295. gp->lstate = link_up;
  1296. netif_carrier_on(dev);
  1297. if (gem_set_link_modes(gp))
  1298. restart_aneg = 1;
  1299. }
  1300. } else {
  1301. /* If the link was previously up, we restart the
  1302. * whole process
  1303. */
  1304. if (gp->lstate == link_up) {
  1305. gp->lstate = link_down;
  1306. netif_info(gp, link, dev, "Link down\n");
  1307. netif_carrier_off(dev);
  1308. gem_schedule_reset(gp);
  1309. /* The reset task will restart the timer */
  1310. return;
  1311. } else if (++gp->timer_ticks > 10) {
  1312. if (found_mii_phy(gp))
  1313. restart_aneg = gem_mdio_link_not_up(gp);
  1314. else
  1315. restart_aneg = 1;
  1316. }
  1317. }
  1318. if (restart_aneg) {
  1319. gem_begin_auto_negotiation(gp, NULL);
  1320. return;
  1321. }
  1322. restart:
  1323. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1324. }
  1325. static void gem_clean_rings(struct gem *gp)
  1326. {
  1327. struct gem_init_block *gb = gp->init_block;
  1328. struct sk_buff *skb;
  1329. int i;
  1330. dma_addr_t dma_addr;
  1331. for (i = 0; i < RX_RING_SIZE; i++) {
  1332. struct gem_rxd *rxd;
  1333. rxd = &gb->rxd[i];
  1334. if (gp->rx_skbs[i] != NULL) {
  1335. skb = gp->rx_skbs[i];
  1336. dma_addr = le64_to_cpu(rxd->buffer);
  1337. pci_unmap_page(gp->pdev, dma_addr,
  1338. RX_BUF_ALLOC_SIZE(gp),
  1339. PCI_DMA_FROMDEVICE);
  1340. dev_kfree_skb_any(skb);
  1341. gp->rx_skbs[i] = NULL;
  1342. }
  1343. rxd->status_word = 0;
  1344. wmb();
  1345. rxd->buffer = 0;
  1346. }
  1347. for (i = 0; i < TX_RING_SIZE; i++) {
  1348. if (gp->tx_skbs[i] != NULL) {
  1349. struct gem_txd *txd;
  1350. int frag;
  1351. skb = gp->tx_skbs[i];
  1352. gp->tx_skbs[i] = NULL;
  1353. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1354. int ent = i & (TX_RING_SIZE - 1);
  1355. txd = &gb->txd[ent];
  1356. dma_addr = le64_to_cpu(txd->buffer);
  1357. pci_unmap_page(gp->pdev, dma_addr,
  1358. le64_to_cpu(txd->control_word) &
  1359. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1360. if (frag != skb_shinfo(skb)->nr_frags)
  1361. i++;
  1362. }
  1363. dev_kfree_skb_any(skb);
  1364. }
  1365. }
  1366. }
  1367. static void gem_init_rings(struct gem *gp)
  1368. {
  1369. struct gem_init_block *gb = gp->init_block;
  1370. struct net_device *dev = gp->dev;
  1371. int i;
  1372. dma_addr_t dma_addr;
  1373. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1374. gem_clean_rings(gp);
  1375. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1376. (unsigned)VLAN_ETH_FRAME_LEN);
  1377. for (i = 0; i < RX_RING_SIZE; i++) {
  1378. struct sk_buff *skb;
  1379. struct gem_rxd *rxd = &gb->rxd[i];
  1380. skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
  1381. if (!skb) {
  1382. rxd->buffer = 0;
  1383. rxd->status_word = 0;
  1384. continue;
  1385. }
  1386. gp->rx_skbs[i] = skb;
  1387. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1388. dma_addr = pci_map_page(gp->pdev,
  1389. virt_to_page(skb->data),
  1390. offset_in_page(skb->data),
  1391. RX_BUF_ALLOC_SIZE(gp),
  1392. PCI_DMA_FROMDEVICE);
  1393. rxd->buffer = cpu_to_le64(dma_addr);
  1394. wmb();
  1395. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1396. skb_reserve(skb, RX_OFFSET);
  1397. }
  1398. for (i = 0; i < TX_RING_SIZE; i++) {
  1399. struct gem_txd *txd = &gb->txd[i];
  1400. txd->control_word = 0;
  1401. wmb();
  1402. txd->buffer = 0;
  1403. }
  1404. wmb();
  1405. }
  1406. /* Init PHY interface and start link poll state machine */
  1407. static void gem_init_phy(struct gem *gp)
  1408. {
  1409. u32 mifcfg;
  1410. /* Revert MIF CFG setting done on stop_phy */
  1411. mifcfg = readl(gp->regs + MIF_CFG);
  1412. mifcfg &= ~MIF_CFG_BBMODE;
  1413. writel(mifcfg, gp->regs + MIF_CFG);
  1414. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1415. int i;
  1416. /* Those delay sucks, the HW seem to love them though, I'll
  1417. * serisouly consider breaking some locks here to be able
  1418. * to schedule instead
  1419. */
  1420. for (i = 0; i < 3; i++) {
  1421. #ifdef CONFIG_PPC_PMAC
  1422. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1423. msleep(20);
  1424. #endif
  1425. /* Some PHYs used by apple have problem getting back to us,
  1426. * we do an additional reset here
  1427. */
  1428. phy_write(gp, MII_BMCR, BMCR_RESET);
  1429. msleep(20);
  1430. if (phy_read(gp, MII_BMCR) != 0xffff)
  1431. break;
  1432. if (i == 2)
  1433. netdev_warn(gp->dev, "GMAC PHY not responding !\n");
  1434. }
  1435. }
  1436. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1437. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1438. u32 val;
  1439. /* Init datapath mode register. */
  1440. if (gp->phy_type == phy_mii_mdio0 ||
  1441. gp->phy_type == phy_mii_mdio1) {
  1442. val = PCS_DMODE_MGM;
  1443. } else if (gp->phy_type == phy_serialink) {
  1444. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1445. } else {
  1446. val = PCS_DMODE_ESM;
  1447. }
  1448. writel(val, gp->regs + PCS_DMODE);
  1449. }
  1450. if (gp->phy_type == phy_mii_mdio0 ||
  1451. gp->phy_type == phy_mii_mdio1) {
  1452. /* Reset and detect MII PHY */
  1453. sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1454. /* Init PHY */
  1455. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1456. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1457. } else {
  1458. gem_pcs_reset(gp);
  1459. gem_pcs_reinit_adv(gp);
  1460. }
  1461. /* Default aneg parameters */
  1462. gp->timer_ticks = 0;
  1463. gp->lstate = link_down;
  1464. netif_carrier_off(gp->dev);
  1465. /* Print things out */
  1466. if (gp->phy_type == phy_mii_mdio0 ||
  1467. gp->phy_type == phy_mii_mdio1)
  1468. netdev_info(gp->dev, "Found %s PHY\n",
  1469. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  1470. gem_begin_auto_negotiation(gp, NULL);
  1471. }
  1472. static void gem_init_dma(struct gem *gp)
  1473. {
  1474. u64 desc_dma = (u64) gp->gblock_dvma;
  1475. u32 val;
  1476. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1477. writel(val, gp->regs + TXDMA_CFG);
  1478. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1479. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1480. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1481. writel(0, gp->regs + TXDMA_KICK);
  1482. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1483. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1484. writel(val, gp->regs + RXDMA_CFG);
  1485. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1486. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1487. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1488. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1489. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1490. writel(val, gp->regs + RXDMA_PTHRESH);
  1491. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1492. writel(((5 & RXDMA_BLANK_IPKTS) |
  1493. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1494. gp->regs + RXDMA_BLANK);
  1495. else
  1496. writel(((5 & RXDMA_BLANK_IPKTS) |
  1497. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1498. gp->regs + RXDMA_BLANK);
  1499. }
  1500. static u32 gem_setup_multicast(struct gem *gp)
  1501. {
  1502. u32 rxcfg = 0;
  1503. int i;
  1504. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1505. (netdev_mc_count(gp->dev) > 256)) {
  1506. for (i=0; i<16; i++)
  1507. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1508. rxcfg |= MAC_RXCFG_HFE;
  1509. } else if (gp->dev->flags & IFF_PROMISC) {
  1510. rxcfg |= MAC_RXCFG_PROM;
  1511. } else {
  1512. u16 hash_table[16];
  1513. u32 crc;
  1514. struct netdev_hw_addr *ha;
  1515. int i;
  1516. memset(hash_table, 0, sizeof(hash_table));
  1517. netdev_for_each_mc_addr(ha, gp->dev) {
  1518. crc = ether_crc_le(6, ha->addr);
  1519. crc >>= 24;
  1520. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1521. }
  1522. for (i=0; i<16; i++)
  1523. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1524. rxcfg |= MAC_RXCFG_HFE;
  1525. }
  1526. return rxcfg;
  1527. }
  1528. static void gem_init_mac(struct gem *gp)
  1529. {
  1530. unsigned char *e = &gp->dev->dev_addr[0];
  1531. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1532. writel(0x00, gp->regs + MAC_IPG0);
  1533. writel(0x08, gp->regs + MAC_IPG1);
  1534. writel(0x04, gp->regs + MAC_IPG2);
  1535. writel(0x40, gp->regs + MAC_STIME);
  1536. writel(0x40, gp->regs + MAC_MINFSZ);
  1537. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1538. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1539. writel(0x07, gp->regs + MAC_PASIZE);
  1540. writel(0x04, gp->regs + MAC_JAMSIZE);
  1541. writel(0x10, gp->regs + MAC_ATTLIM);
  1542. writel(0x8808, gp->regs + MAC_MCTYPE);
  1543. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1544. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1545. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1546. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1547. writel(0, gp->regs + MAC_ADDR3);
  1548. writel(0, gp->regs + MAC_ADDR4);
  1549. writel(0, gp->regs + MAC_ADDR5);
  1550. writel(0x0001, gp->regs + MAC_ADDR6);
  1551. writel(0xc200, gp->regs + MAC_ADDR7);
  1552. writel(0x0180, gp->regs + MAC_ADDR8);
  1553. writel(0, gp->regs + MAC_AFILT0);
  1554. writel(0, gp->regs + MAC_AFILT1);
  1555. writel(0, gp->regs + MAC_AFILT2);
  1556. writel(0, gp->regs + MAC_AF21MSK);
  1557. writel(0, gp->regs + MAC_AF0MSK);
  1558. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1559. #ifdef STRIP_FCS
  1560. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1561. #endif
  1562. writel(0, gp->regs + MAC_NCOLL);
  1563. writel(0, gp->regs + MAC_FASUCC);
  1564. writel(0, gp->regs + MAC_ECOLL);
  1565. writel(0, gp->regs + MAC_LCOLL);
  1566. writel(0, gp->regs + MAC_DTIMER);
  1567. writel(0, gp->regs + MAC_PATMPS);
  1568. writel(0, gp->regs + MAC_RFCTR);
  1569. writel(0, gp->regs + MAC_LERR);
  1570. writel(0, gp->regs + MAC_AERR);
  1571. writel(0, gp->regs + MAC_FCSERR);
  1572. writel(0, gp->regs + MAC_RXCVERR);
  1573. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1574. * them once a link is established.
  1575. */
  1576. writel(0, gp->regs + MAC_TXCFG);
  1577. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1578. writel(0, gp->regs + MAC_MCCFG);
  1579. writel(0, gp->regs + MAC_XIFCFG);
  1580. /* Setup MAC interrupts. We want to get all of the interesting
  1581. * counter expiration events, but we do not want to hear about
  1582. * normal rx/tx as the DMA engine tells us that.
  1583. */
  1584. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1585. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1586. /* Don't enable even the PAUSE interrupts for now, we
  1587. * make no use of those events other than to record them.
  1588. */
  1589. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1590. /* Don't enable GEM's WOL in normal operations
  1591. */
  1592. if (gp->has_wol)
  1593. writel(0, gp->regs + WOL_WAKECSR);
  1594. }
  1595. static void gem_init_pause_thresholds(struct gem *gp)
  1596. {
  1597. u32 cfg;
  1598. /* Calculate pause thresholds. Setting the OFF threshold to the
  1599. * full RX fifo size effectively disables PAUSE generation which
  1600. * is what we do for 10/100 only GEMs which have FIFOs too small
  1601. * to make real gains from PAUSE.
  1602. */
  1603. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1604. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1605. } else {
  1606. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1607. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1608. int on = off - max_frame;
  1609. gp->rx_pause_off = off;
  1610. gp->rx_pause_on = on;
  1611. }
  1612. /* Configure the chip "burst" DMA mode & enable some
  1613. * HW bug fixes on Apple version
  1614. */
  1615. cfg = 0;
  1616. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1617. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1618. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1619. cfg |= GREG_CFG_IBURST;
  1620. #endif
  1621. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1622. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1623. writel(cfg, gp->regs + GREG_CFG);
  1624. /* If Infinite Burst didn't stick, then use different
  1625. * thresholds (and Apple bug fixes don't exist)
  1626. */
  1627. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1628. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1629. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1630. writel(cfg, gp->regs + GREG_CFG);
  1631. }
  1632. }
  1633. static int gem_check_invariants(struct gem *gp)
  1634. {
  1635. struct pci_dev *pdev = gp->pdev;
  1636. u32 mif_cfg;
  1637. /* On Apple's sungem, we can't rely on registers as the chip
  1638. * was been powered down by the firmware. The PHY is looked
  1639. * up later on.
  1640. */
  1641. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1642. gp->phy_type = phy_mii_mdio0;
  1643. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1644. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1645. gp->swrst_base = 0;
  1646. mif_cfg = readl(gp->regs + MIF_CFG);
  1647. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1648. mif_cfg |= MIF_CFG_MDI0;
  1649. writel(mif_cfg, gp->regs + MIF_CFG);
  1650. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1651. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1652. /* We hard-code the PHY address so we can properly bring it out of
  1653. * reset later on, we can't really probe it at this point, though
  1654. * that isn't an issue.
  1655. */
  1656. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1657. gp->mii_phy_addr = 1;
  1658. else
  1659. gp->mii_phy_addr = 0;
  1660. return 0;
  1661. }
  1662. mif_cfg = readl(gp->regs + MIF_CFG);
  1663. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1664. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1665. /* One of the MII PHYs _must_ be present
  1666. * as this chip has no gigabit PHY.
  1667. */
  1668. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1669. pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1670. mif_cfg);
  1671. return -1;
  1672. }
  1673. }
  1674. /* Determine initial PHY interface type guess. MDIO1 is the
  1675. * external PHY and thus takes precedence over MDIO0.
  1676. */
  1677. if (mif_cfg & MIF_CFG_MDI1) {
  1678. gp->phy_type = phy_mii_mdio1;
  1679. mif_cfg |= MIF_CFG_PSELECT;
  1680. writel(mif_cfg, gp->regs + MIF_CFG);
  1681. } else if (mif_cfg & MIF_CFG_MDI0) {
  1682. gp->phy_type = phy_mii_mdio0;
  1683. mif_cfg &= ~MIF_CFG_PSELECT;
  1684. writel(mif_cfg, gp->regs + MIF_CFG);
  1685. } else {
  1686. #ifdef CONFIG_SPARC
  1687. const char *p;
  1688. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1689. if (p && !strcmp(p, "serdes"))
  1690. gp->phy_type = phy_serdes;
  1691. else
  1692. #endif
  1693. gp->phy_type = phy_serialink;
  1694. }
  1695. if (gp->phy_type == phy_mii_mdio1 ||
  1696. gp->phy_type == phy_mii_mdio0) {
  1697. int i;
  1698. for (i = 0; i < 32; i++) {
  1699. gp->mii_phy_addr = i;
  1700. if (phy_read(gp, MII_BMCR) != 0xffff)
  1701. break;
  1702. }
  1703. if (i == 32) {
  1704. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1705. pr_err("RIO MII phy will not respond\n");
  1706. return -1;
  1707. }
  1708. gp->phy_type = phy_serdes;
  1709. }
  1710. }
  1711. /* Fetch the FIFO configurations now too. */
  1712. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1713. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1714. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1715. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1716. if (gp->tx_fifo_sz != (9 * 1024) ||
  1717. gp->rx_fifo_sz != (20 * 1024)) {
  1718. pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1719. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1720. return -1;
  1721. }
  1722. gp->swrst_base = 0;
  1723. } else {
  1724. if (gp->tx_fifo_sz != (2 * 1024) ||
  1725. gp->rx_fifo_sz != (2 * 1024)) {
  1726. pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1727. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1728. return -1;
  1729. }
  1730. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1731. }
  1732. }
  1733. return 0;
  1734. }
  1735. static void gem_reinit_chip(struct gem *gp)
  1736. {
  1737. /* Reset the chip */
  1738. gem_reset(gp);
  1739. /* Make sure ints are disabled */
  1740. gem_disable_ints(gp);
  1741. /* Allocate & setup ring buffers */
  1742. gem_init_rings(gp);
  1743. /* Configure pause thresholds */
  1744. gem_init_pause_thresholds(gp);
  1745. /* Init DMA & MAC engines */
  1746. gem_init_dma(gp);
  1747. gem_init_mac(gp);
  1748. }
  1749. static void gem_stop_phy(struct gem *gp, int wol)
  1750. {
  1751. u32 mifcfg;
  1752. /* Let the chip settle down a bit, it seems that helps
  1753. * for sleep mode on some models
  1754. */
  1755. msleep(10);
  1756. /* Make sure we aren't polling PHY status change. We
  1757. * don't currently use that feature though
  1758. */
  1759. mifcfg = readl(gp->regs + MIF_CFG);
  1760. mifcfg &= ~MIF_CFG_POLL;
  1761. writel(mifcfg, gp->regs + MIF_CFG);
  1762. if (wol && gp->has_wol) {
  1763. unsigned char *e = &gp->dev->dev_addr[0];
  1764. u32 csr;
  1765. /* Setup wake-on-lan for MAGIC packet */
  1766. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1767. gp->regs + MAC_RXCFG);
  1768. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1769. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1770. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1771. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1772. csr = WOL_WAKECSR_ENABLE;
  1773. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1774. csr |= WOL_WAKECSR_MII;
  1775. writel(csr, gp->regs + WOL_WAKECSR);
  1776. } else {
  1777. writel(0, gp->regs + MAC_RXCFG);
  1778. (void)readl(gp->regs + MAC_RXCFG);
  1779. /* Machine sleep will die in strange ways if we
  1780. * dont wait a bit here, looks like the chip takes
  1781. * some time to really shut down
  1782. */
  1783. msleep(10);
  1784. }
  1785. writel(0, gp->regs + MAC_TXCFG);
  1786. writel(0, gp->regs + MAC_XIFCFG);
  1787. writel(0, gp->regs + TXDMA_CFG);
  1788. writel(0, gp->regs + RXDMA_CFG);
  1789. if (!wol) {
  1790. gem_reset(gp);
  1791. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1792. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1793. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1794. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1795. /* According to Apple, we must set the MDIO pins to this begnign
  1796. * state or we may 1) eat more current, 2) damage some PHYs
  1797. */
  1798. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1799. writel(0, gp->regs + MIF_BBCLK);
  1800. writel(0, gp->regs + MIF_BBDATA);
  1801. writel(0, gp->regs + MIF_BBOENAB);
  1802. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1803. (void) readl(gp->regs + MAC_XIFCFG);
  1804. }
  1805. }
  1806. static int gem_do_start(struct net_device *dev)
  1807. {
  1808. struct gem *gp = netdev_priv(dev);
  1809. int rc;
  1810. /* Enable the cell */
  1811. gem_get_cell(gp);
  1812. /* Make sure PCI access and bus master are enabled */
  1813. rc = pci_enable_device(gp->pdev);
  1814. if (rc) {
  1815. netdev_err(dev, "Failed to enable chip on PCI bus !\n");
  1816. /* Put cell and forget it for now, it will be considered as
  1817. * still asleep, a new sleep cycle may bring it back
  1818. */
  1819. gem_put_cell(gp);
  1820. return -ENXIO;
  1821. }
  1822. pci_set_master(gp->pdev);
  1823. /* Init & setup chip hardware */
  1824. gem_reinit_chip(gp);
  1825. /* An interrupt might come in handy */
  1826. rc = request_irq(gp->pdev->irq, gem_interrupt,
  1827. IRQF_SHARED, dev->name, (void *)dev);
  1828. if (rc) {
  1829. netdev_err(dev, "failed to request irq !\n");
  1830. gem_reset(gp);
  1831. gem_clean_rings(gp);
  1832. gem_put_cell(gp);
  1833. return rc;
  1834. }
  1835. /* Mark us as attached again if we come from resume(), this has
  1836. * no effect if we weren't detatched and needs to be done now.
  1837. */
  1838. netif_device_attach(dev);
  1839. /* Restart NAPI & queues */
  1840. gem_netif_start(gp);
  1841. /* Detect & init PHY, start autoneg etc... this will
  1842. * eventually result in starting DMA operations when
  1843. * the link is up
  1844. */
  1845. gem_init_phy(gp);
  1846. return 0;
  1847. }
  1848. static void gem_do_stop(struct net_device *dev, int wol)
  1849. {
  1850. struct gem *gp = netdev_priv(dev);
  1851. /* Stop NAPI and stop tx queue */
  1852. gem_netif_stop(gp);
  1853. /* Make sure ints are disabled. We don't care about
  1854. * synchronizing as NAPI is disabled, thus a stray
  1855. * interrupt will do nothing bad (our irq handler
  1856. * just schedules NAPI)
  1857. */
  1858. gem_disable_ints(gp);
  1859. /* Stop the link timer */
  1860. del_timer_sync(&gp->link_timer);
  1861. /* We cannot cancel the reset task while holding the
  1862. * rtnl lock, we'd get an A->B / B->A deadlock stituation
  1863. * if we did. This is not an issue however as the reset
  1864. * task is synchronized vs. us (rtnl_lock) and will do
  1865. * nothing if the device is down or suspended. We do
  1866. * still clear reset_task_pending to avoid a spurrious
  1867. * reset later on in case we do resume before it gets
  1868. * scheduled.
  1869. */
  1870. gp->reset_task_pending = 0;
  1871. /* If we are going to sleep with WOL */
  1872. gem_stop_dma(gp);
  1873. msleep(10);
  1874. if (!wol)
  1875. gem_reset(gp);
  1876. msleep(10);
  1877. /* Get rid of rings */
  1878. gem_clean_rings(gp);
  1879. /* No irq needed anymore */
  1880. free_irq(gp->pdev->irq, (void *) dev);
  1881. /* Shut the PHY down eventually and setup WOL */
  1882. gem_stop_phy(gp, wol);
  1883. /* Make sure bus master is disabled */
  1884. pci_disable_device(gp->pdev);
  1885. /* Cell not needed neither if no WOL */
  1886. if (!wol)
  1887. gem_put_cell(gp);
  1888. }
  1889. static void gem_reset_task(struct work_struct *work)
  1890. {
  1891. struct gem *gp = container_of(work, struct gem, reset_task);
  1892. /* Lock out the network stack (essentially shield ourselves
  1893. * against a racing open, close, control call, or suspend
  1894. */
  1895. rtnl_lock();
  1896. /* Skip the reset task if suspended or closed, or if it's
  1897. * been cancelled by gem_do_stop (see comment there)
  1898. */
  1899. if (!netif_device_present(gp->dev) ||
  1900. !netif_running(gp->dev) ||
  1901. !gp->reset_task_pending) {
  1902. rtnl_unlock();
  1903. return;
  1904. }
  1905. /* Stop the link timer */
  1906. del_timer_sync(&gp->link_timer);
  1907. /* Stop NAPI and tx */
  1908. gem_netif_stop(gp);
  1909. /* Reset the chip & rings */
  1910. gem_reinit_chip(gp);
  1911. if (gp->lstate == link_up)
  1912. gem_set_link_modes(gp);
  1913. /* Restart NAPI and Tx */
  1914. gem_netif_start(gp);
  1915. /* We are back ! */
  1916. gp->reset_task_pending = 0;
  1917. /* If the link is not up, restart autoneg, else restart the
  1918. * polling timer
  1919. */
  1920. if (gp->lstate != link_up)
  1921. gem_begin_auto_negotiation(gp, NULL);
  1922. else
  1923. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1924. rtnl_unlock();
  1925. }
  1926. static int gem_open(struct net_device *dev)
  1927. {
  1928. /* We allow open while suspended, we just do nothing,
  1929. * the chip will be initialized in resume()
  1930. */
  1931. if (netif_device_present(dev))
  1932. return gem_do_start(dev);
  1933. return 0;
  1934. }
  1935. static int gem_close(struct net_device *dev)
  1936. {
  1937. if (netif_device_present(dev))
  1938. gem_do_stop(dev, 0);
  1939. return 0;
  1940. }
  1941. #ifdef CONFIG_PM
  1942. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1943. {
  1944. struct net_device *dev = pci_get_drvdata(pdev);
  1945. struct gem *gp = netdev_priv(dev);
  1946. /* Lock the network stack first to avoid racing with open/close,
  1947. * reset task and setting calls
  1948. */
  1949. rtnl_lock();
  1950. /* Not running, mark ourselves non-present, no need for
  1951. * a lock here
  1952. */
  1953. if (!netif_running(dev)) {
  1954. netif_device_detach(dev);
  1955. rtnl_unlock();
  1956. return 0;
  1957. }
  1958. netdev_info(dev, "suspending, WakeOnLan %s\n",
  1959. (gp->wake_on_lan && netif_running(dev)) ?
  1960. "enabled" : "disabled");
  1961. /* Tell the network stack we're gone. gem_do_stop() below will
  1962. * synchronize with TX, stop NAPI etc...
  1963. */
  1964. netif_device_detach(dev);
  1965. /* Switch off chip, remember WOL setting */
  1966. gp->asleep_wol = gp->wake_on_lan;
  1967. gem_do_stop(dev, gp->asleep_wol);
  1968. /* Unlock the network stack */
  1969. rtnl_unlock();
  1970. return 0;
  1971. }
  1972. static int gem_resume(struct pci_dev *pdev)
  1973. {
  1974. struct net_device *dev = pci_get_drvdata(pdev);
  1975. struct gem *gp = netdev_priv(dev);
  1976. /* See locking comment in gem_suspend */
  1977. rtnl_lock();
  1978. /* Not running, mark ourselves present, no need for
  1979. * a lock here
  1980. */
  1981. if (!netif_running(dev)) {
  1982. netif_device_attach(dev);
  1983. rtnl_unlock();
  1984. return 0;
  1985. }
  1986. /* Restart chip. If that fails there isn't much we can do, we
  1987. * leave things stopped.
  1988. */
  1989. gem_do_start(dev);
  1990. /* If we had WOL enabled, the cell clock was never turned off during
  1991. * sleep, so we end up beeing unbalanced. Fix that here
  1992. */
  1993. if (gp->asleep_wol)
  1994. gem_put_cell(gp);
  1995. /* Unlock the network stack */
  1996. rtnl_unlock();
  1997. return 0;
  1998. }
  1999. #endif /* CONFIG_PM */
  2000. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2001. {
  2002. struct gem *gp = netdev_priv(dev);
  2003. /* I have seen this being called while the PM was in progress,
  2004. * so we shield against this. Let's also not poke at registers
  2005. * while the reset task is going on.
  2006. *
  2007. * TODO: Move stats collection elsewhere (link timer ?) and
  2008. * make this a nop to avoid all those synchro issues
  2009. */
  2010. if (!netif_device_present(dev) || !netif_running(dev))
  2011. goto bail;
  2012. /* Better safe than sorry... */
  2013. if (WARN_ON(!gp->cell_enabled))
  2014. goto bail;
  2015. dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2016. writel(0, gp->regs + MAC_FCSERR);
  2017. dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
  2018. writel(0, gp->regs + MAC_AERR);
  2019. dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
  2020. writel(0, gp->regs + MAC_LERR);
  2021. dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2022. dev->stats.collisions +=
  2023. (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
  2024. writel(0, gp->regs + MAC_ECOLL);
  2025. writel(0, gp->regs + MAC_LCOLL);
  2026. bail:
  2027. return &dev->stats;
  2028. }
  2029. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2030. {
  2031. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2032. struct gem *gp = netdev_priv(dev);
  2033. unsigned char *e = &dev->dev_addr[0];
  2034. if (!is_valid_ether_addr(macaddr->sa_data))
  2035. return -EADDRNOTAVAIL;
  2036. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2037. /* We'll just catch it later when the device is up'd or resumed */
  2038. if (!netif_running(dev) || !netif_device_present(dev))
  2039. return 0;
  2040. /* Better safe than sorry... */
  2041. if (WARN_ON(!gp->cell_enabled))
  2042. return 0;
  2043. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2044. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2045. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2046. return 0;
  2047. }
  2048. static void gem_set_multicast(struct net_device *dev)
  2049. {
  2050. struct gem *gp = netdev_priv(dev);
  2051. u32 rxcfg, rxcfg_new;
  2052. int limit = 10000;
  2053. if (!netif_running(dev) || !netif_device_present(dev))
  2054. return;
  2055. /* Better safe than sorry... */
  2056. if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
  2057. return;
  2058. rxcfg = readl(gp->regs + MAC_RXCFG);
  2059. rxcfg_new = gem_setup_multicast(gp);
  2060. #ifdef STRIP_FCS
  2061. rxcfg_new |= MAC_RXCFG_SFCS;
  2062. #endif
  2063. gp->mac_rx_cfg = rxcfg_new;
  2064. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2065. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2066. if (!limit--)
  2067. break;
  2068. udelay(10);
  2069. }
  2070. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2071. rxcfg |= rxcfg_new;
  2072. writel(rxcfg, gp->regs + MAC_RXCFG);
  2073. }
  2074. /* Jumbo-grams don't seem to work :-( */
  2075. #define GEM_MIN_MTU 68
  2076. #if 1
  2077. #define GEM_MAX_MTU 1500
  2078. #else
  2079. #define GEM_MAX_MTU 9000
  2080. #endif
  2081. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2082. {
  2083. struct gem *gp = netdev_priv(dev);
  2084. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2085. return -EINVAL;
  2086. dev->mtu = new_mtu;
  2087. /* We'll just catch it later when the device is up'd or resumed */
  2088. if (!netif_running(dev) || !netif_device_present(dev))
  2089. return 0;
  2090. /* Better safe than sorry... */
  2091. if (WARN_ON(!gp->cell_enabled))
  2092. return 0;
  2093. gem_netif_stop(gp);
  2094. gem_reinit_chip(gp);
  2095. if (gp->lstate == link_up)
  2096. gem_set_link_modes(gp);
  2097. gem_netif_start(gp);
  2098. return 0;
  2099. }
  2100. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2101. {
  2102. struct gem *gp = netdev_priv(dev);
  2103. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  2104. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  2105. strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
  2106. }
  2107. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2108. {
  2109. struct gem *gp = netdev_priv(dev);
  2110. if (gp->phy_type == phy_mii_mdio0 ||
  2111. gp->phy_type == phy_mii_mdio1) {
  2112. if (gp->phy_mii.def)
  2113. cmd->supported = gp->phy_mii.def->features;
  2114. else
  2115. cmd->supported = (SUPPORTED_10baseT_Half |
  2116. SUPPORTED_10baseT_Full);
  2117. /* XXX hardcoded stuff for now */
  2118. cmd->port = PORT_MII;
  2119. cmd->transceiver = XCVR_EXTERNAL;
  2120. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2121. /* Return current PHY settings */
  2122. cmd->autoneg = gp->want_autoneg;
  2123. ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
  2124. cmd->duplex = gp->phy_mii.duplex;
  2125. cmd->advertising = gp->phy_mii.advertising;
  2126. /* If we started with a forced mode, we don't have a default
  2127. * advertise set, we need to return something sensible so
  2128. * userland can re-enable autoneg properly.
  2129. */
  2130. if (cmd->advertising == 0)
  2131. cmd->advertising = cmd->supported;
  2132. } else { // XXX PCS ?
  2133. cmd->supported =
  2134. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2135. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2136. SUPPORTED_Autoneg);
  2137. cmd->advertising = cmd->supported;
  2138. ethtool_cmd_speed_set(cmd, 0);
  2139. cmd->duplex = cmd->port = cmd->phy_address =
  2140. cmd->transceiver = cmd->autoneg = 0;
  2141. /* serdes means usually a Fibre connector, with most fixed */
  2142. if (gp->phy_type == phy_serdes) {
  2143. cmd->port = PORT_FIBRE;
  2144. cmd->supported = (SUPPORTED_1000baseT_Half |
  2145. SUPPORTED_1000baseT_Full |
  2146. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2147. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2148. cmd->advertising = cmd->supported;
  2149. cmd->transceiver = XCVR_INTERNAL;
  2150. if (gp->lstate == link_up)
  2151. ethtool_cmd_speed_set(cmd, SPEED_1000);
  2152. cmd->duplex = DUPLEX_FULL;
  2153. cmd->autoneg = 1;
  2154. }
  2155. }
  2156. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2157. return 0;
  2158. }
  2159. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2160. {
  2161. struct gem *gp = netdev_priv(dev);
  2162. u32 speed = ethtool_cmd_speed(cmd);
  2163. /* Verify the settings we care about. */
  2164. if (cmd->autoneg != AUTONEG_ENABLE &&
  2165. cmd->autoneg != AUTONEG_DISABLE)
  2166. return -EINVAL;
  2167. if (cmd->autoneg == AUTONEG_ENABLE &&
  2168. cmd->advertising == 0)
  2169. return -EINVAL;
  2170. if (cmd->autoneg == AUTONEG_DISABLE &&
  2171. ((speed != SPEED_1000 &&
  2172. speed != SPEED_100 &&
  2173. speed != SPEED_10) ||
  2174. (cmd->duplex != DUPLEX_HALF &&
  2175. cmd->duplex != DUPLEX_FULL)))
  2176. return -EINVAL;
  2177. /* Apply settings and restart link process. */
  2178. if (netif_device_present(gp->dev)) {
  2179. del_timer_sync(&gp->link_timer);
  2180. gem_begin_auto_negotiation(gp, cmd);
  2181. }
  2182. return 0;
  2183. }
  2184. static int gem_nway_reset(struct net_device *dev)
  2185. {
  2186. struct gem *gp = netdev_priv(dev);
  2187. if (!gp->want_autoneg)
  2188. return -EINVAL;
  2189. /* Restart link process */
  2190. if (netif_device_present(gp->dev)) {
  2191. del_timer_sync(&gp->link_timer);
  2192. gem_begin_auto_negotiation(gp, NULL);
  2193. }
  2194. return 0;
  2195. }
  2196. static u32 gem_get_msglevel(struct net_device *dev)
  2197. {
  2198. struct gem *gp = netdev_priv(dev);
  2199. return gp->msg_enable;
  2200. }
  2201. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2202. {
  2203. struct gem *gp = netdev_priv(dev);
  2204. gp->msg_enable = value;
  2205. }
  2206. /* Add more when I understand how to program the chip */
  2207. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2208. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2209. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2210. {
  2211. struct gem *gp = netdev_priv(dev);
  2212. /* Add more when I understand how to program the chip */
  2213. if (gp->has_wol) {
  2214. wol->supported = WOL_SUPPORTED_MASK;
  2215. wol->wolopts = gp->wake_on_lan;
  2216. } else {
  2217. wol->supported = 0;
  2218. wol->wolopts = 0;
  2219. }
  2220. }
  2221. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2222. {
  2223. struct gem *gp = netdev_priv(dev);
  2224. if (!gp->has_wol)
  2225. return -EOPNOTSUPP;
  2226. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2227. return 0;
  2228. }
  2229. static const struct ethtool_ops gem_ethtool_ops = {
  2230. .get_drvinfo = gem_get_drvinfo,
  2231. .get_link = ethtool_op_get_link,
  2232. .get_settings = gem_get_settings,
  2233. .set_settings = gem_set_settings,
  2234. .nway_reset = gem_nway_reset,
  2235. .get_msglevel = gem_get_msglevel,
  2236. .set_msglevel = gem_set_msglevel,
  2237. .get_wol = gem_get_wol,
  2238. .set_wol = gem_set_wol,
  2239. };
  2240. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2241. {
  2242. struct gem *gp = netdev_priv(dev);
  2243. struct mii_ioctl_data *data = if_mii(ifr);
  2244. int rc = -EOPNOTSUPP;
  2245. /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
  2246. * netif_device_present() is true and holds rtnl_lock for us
  2247. * so we have nothing to worry about
  2248. */
  2249. switch (cmd) {
  2250. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2251. data->phy_id = gp->mii_phy_addr;
  2252. /* Fallthrough... */
  2253. case SIOCGMIIREG: /* Read MII PHY register. */
  2254. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2255. data->reg_num & 0x1f);
  2256. rc = 0;
  2257. break;
  2258. case SIOCSMIIREG: /* Write MII PHY register. */
  2259. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2260. data->val_in);
  2261. rc = 0;
  2262. break;
  2263. }
  2264. return rc;
  2265. }
  2266. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2267. /* Fetch MAC address from vital product data of PCI ROM. */
  2268. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2269. {
  2270. int this_offset;
  2271. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2272. void __iomem *p = rom_base + this_offset;
  2273. int i;
  2274. if (readb(p + 0) != 0x90 ||
  2275. readb(p + 1) != 0x00 ||
  2276. readb(p + 2) != 0x09 ||
  2277. readb(p + 3) != 0x4e ||
  2278. readb(p + 4) != 0x41 ||
  2279. readb(p + 5) != 0x06)
  2280. continue;
  2281. this_offset += 6;
  2282. p += 6;
  2283. for (i = 0; i < 6; i++)
  2284. dev_addr[i] = readb(p + i);
  2285. return 1;
  2286. }
  2287. return 0;
  2288. }
  2289. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2290. {
  2291. size_t size;
  2292. void __iomem *p = pci_map_rom(pdev, &size);
  2293. if (p) {
  2294. int found;
  2295. found = readb(p) == 0x55 &&
  2296. readb(p + 1) == 0xaa &&
  2297. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2298. pci_unmap_rom(pdev, p);
  2299. if (found)
  2300. return;
  2301. }
  2302. /* Sun MAC prefix then 3 random bytes. */
  2303. dev_addr[0] = 0x08;
  2304. dev_addr[1] = 0x00;
  2305. dev_addr[2] = 0x20;
  2306. get_random_bytes(dev_addr + 3, 3);
  2307. }
  2308. #endif /* not Sparc and not PPC */
  2309. static int __devinit gem_get_device_address(struct gem *gp)
  2310. {
  2311. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2312. struct net_device *dev = gp->dev;
  2313. const unsigned char *addr;
  2314. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2315. if (addr == NULL) {
  2316. #ifdef CONFIG_SPARC
  2317. addr = idprom->id_ethaddr;
  2318. #else
  2319. printk("\n");
  2320. pr_err("%s: can't get mac-address\n", dev->name);
  2321. return -1;
  2322. #endif
  2323. }
  2324. memcpy(dev->dev_addr, addr, 6);
  2325. #else
  2326. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2327. #endif
  2328. return 0;
  2329. }
  2330. static void gem_remove_one(struct pci_dev *pdev)
  2331. {
  2332. struct net_device *dev = pci_get_drvdata(pdev);
  2333. if (dev) {
  2334. struct gem *gp = netdev_priv(dev);
  2335. unregister_netdev(dev);
  2336. /* Ensure reset task is truely gone */
  2337. cancel_work_sync(&gp->reset_task);
  2338. /* Free resources */
  2339. pci_free_consistent(pdev,
  2340. sizeof(struct gem_init_block),
  2341. gp->init_block,
  2342. gp->gblock_dvma);
  2343. iounmap(gp->regs);
  2344. pci_release_regions(pdev);
  2345. free_netdev(dev);
  2346. pci_set_drvdata(pdev, NULL);
  2347. }
  2348. }
  2349. static const struct net_device_ops gem_netdev_ops = {
  2350. .ndo_open = gem_open,
  2351. .ndo_stop = gem_close,
  2352. .ndo_start_xmit = gem_start_xmit,
  2353. .ndo_get_stats = gem_get_stats,
  2354. .ndo_set_rx_mode = gem_set_multicast,
  2355. .ndo_do_ioctl = gem_ioctl,
  2356. .ndo_tx_timeout = gem_tx_timeout,
  2357. .ndo_change_mtu = gem_change_mtu,
  2358. .ndo_validate_addr = eth_validate_addr,
  2359. .ndo_set_mac_address = gem_set_mac_address,
  2360. #ifdef CONFIG_NET_POLL_CONTROLLER
  2361. .ndo_poll_controller = gem_poll_controller,
  2362. #endif
  2363. };
  2364. static int __devinit gem_init_one(struct pci_dev *pdev,
  2365. const struct pci_device_id *ent)
  2366. {
  2367. unsigned long gemreg_base, gemreg_len;
  2368. struct net_device *dev;
  2369. struct gem *gp;
  2370. int err, pci_using_dac;
  2371. printk_once(KERN_INFO "%s", version);
  2372. /* Apple gmac note: during probe, the chip is powered up by
  2373. * the arch code to allow the code below to work (and to let
  2374. * the chip be probed on the config space. It won't stay powered
  2375. * up until the interface is brought up however, so we can't rely
  2376. * on register configuration done at this point.
  2377. */
  2378. err = pci_enable_device(pdev);
  2379. if (err) {
  2380. pr_err("Cannot enable MMIO operation, aborting\n");
  2381. return err;
  2382. }
  2383. pci_set_master(pdev);
  2384. /* Configure DMA attributes. */
  2385. /* All of the GEM documentation states that 64-bit DMA addressing
  2386. * is fully supported and should work just fine. However the
  2387. * front end for RIO based GEMs is different and only supports
  2388. * 32-bit addressing.
  2389. *
  2390. * For now we assume the various PPC GEMs are 32-bit only as well.
  2391. */
  2392. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2393. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2394. !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2395. pci_using_dac = 1;
  2396. } else {
  2397. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2398. if (err) {
  2399. pr_err("No usable DMA configuration, aborting\n");
  2400. goto err_disable_device;
  2401. }
  2402. pci_using_dac = 0;
  2403. }
  2404. gemreg_base = pci_resource_start(pdev, 0);
  2405. gemreg_len = pci_resource_len(pdev, 0);
  2406. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2407. pr_err("Cannot find proper PCI device base address, aborting\n");
  2408. err = -ENODEV;
  2409. goto err_disable_device;
  2410. }
  2411. dev = alloc_etherdev(sizeof(*gp));
  2412. if (!dev) {
  2413. err = -ENOMEM;
  2414. goto err_disable_device;
  2415. }
  2416. SET_NETDEV_DEV(dev, &pdev->dev);
  2417. gp = netdev_priv(dev);
  2418. err = pci_request_regions(pdev, DRV_NAME);
  2419. if (err) {
  2420. pr_err("Cannot obtain PCI resources, aborting\n");
  2421. goto err_out_free_netdev;
  2422. }
  2423. gp->pdev = pdev;
  2424. gp->dev = dev;
  2425. gp->msg_enable = DEFAULT_MSG;
  2426. init_timer(&gp->link_timer);
  2427. gp->link_timer.function = gem_link_timer;
  2428. gp->link_timer.data = (unsigned long) gp;
  2429. INIT_WORK(&gp->reset_task, gem_reset_task);
  2430. gp->lstate = link_down;
  2431. gp->timer_ticks = 0;
  2432. netif_carrier_off(dev);
  2433. gp->regs = ioremap(gemreg_base, gemreg_len);
  2434. if (!gp->regs) {
  2435. pr_err("Cannot map device registers, aborting\n");
  2436. err = -EIO;
  2437. goto err_out_free_res;
  2438. }
  2439. /* On Apple, we want a reference to the Open Firmware device-tree
  2440. * node. We use it for clock control.
  2441. */
  2442. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2443. gp->of_node = pci_device_to_OF_node(pdev);
  2444. #endif
  2445. /* Only Apple version supports WOL afaik */
  2446. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2447. gp->has_wol = 1;
  2448. /* Make sure cell is enabled */
  2449. gem_get_cell(gp);
  2450. /* Make sure everything is stopped and in init state */
  2451. gem_reset(gp);
  2452. /* Fill up the mii_phy structure (even if we won't use it) */
  2453. gp->phy_mii.dev = dev;
  2454. gp->phy_mii.mdio_read = _phy_read;
  2455. gp->phy_mii.mdio_write = _phy_write;
  2456. #ifdef CONFIG_PPC_PMAC
  2457. gp->phy_mii.platform_data = gp->of_node;
  2458. #endif
  2459. /* By default, we start with autoneg */
  2460. gp->want_autoneg = 1;
  2461. /* Check fifo sizes, PHY type, etc... */
  2462. if (gem_check_invariants(gp)) {
  2463. err = -ENODEV;
  2464. goto err_out_iounmap;
  2465. }
  2466. /* It is guaranteed that the returned buffer will be at least
  2467. * PAGE_SIZE aligned.
  2468. */
  2469. gp->init_block = (struct gem_init_block *)
  2470. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2471. &gp->gblock_dvma);
  2472. if (!gp->init_block) {
  2473. pr_err("Cannot allocate init block, aborting\n");
  2474. err = -ENOMEM;
  2475. goto err_out_iounmap;
  2476. }
  2477. if (gem_get_device_address(gp))
  2478. goto err_out_free_consistent;
  2479. dev->netdev_ops = &gem_netdev_ops;
  2480. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2481. dev->ethtool_ops = &gem_ethtool_ops;
  2482. dev->watchdog_timeo = 5 * HZ;
  2483. dev->dma = 0;
  2484. /* Set that now, in case PM kicks in now */
  2485. pci_set_drvdata(pdev, dev);
  2486. /* We can do scatter/gather and HW checksum */
  2487. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
  2488. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  2489. if (pci_using_dac)
  2490. dev->features |= NETIF_F_HIGHDMA;
  2491. /* Register with kernel */
  2492. if (register_netdev(dev)) {
  2493. pr_err("Cannot register net device, aborting\n");
  2494. err = -ENOMEM;
  2495. goto err_out_free_consistent;
  2496. }
  2497. /* Undo the get_cell with appropriate locking (we could use
  2498. * ndo_init/uninit but that would be even more clumsy imho)
  2499. */
  2500. rtnl_lock();
  2501. gem_put_cell(gp);
  2502. rtnl_unlock();
  2503. netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2504. dev->dev_addr);
  2505. return 0;
  2506. err_out_free_consistent:
  2507. gem_remove_one(pdev);
  2508. err_out_iounmap:
  2509. gem_put_cell(gp);
  2510. iounmap(gp->regs);
  2511. err_out_free_res:
  2512. pci_release_regions(pdev);
  2513. err_out_free_netdev:
  2514. free_netdev(dev);
  2515. err_disable_device:
  2516. pci_disable_device(pdev);
  2517. return err;
  2518. }
  2519. static struct pci_driver gem_driver = {
  2520. .name = GEM_MODULE_NAME,
  2521. .id_table = gem_pci_tbl,
  2522. .probe = gem_init_one,
  2523. .remove = gem_remove_one,
  2524. #ifdef CONFIG_PM
  2525. .suspend = gem_suspend,
  2526. .resume = gem_resume,
  2527. #endif /* CONFIG_PM */
  2528. };
  2529. static int __init gem_init(void)
  2530. {
  2531. return pci_register_driver(&gem_driver);
  2532. }
  2533. static void __exit gem_cleanup(void)
  2534. {
  2535. pci_unregister_driver(&gem_driver);
  2536. }
  2537. module_init(gem_init);
  2538. module_exit(gem_cleanup);