nic.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/pci.h>
  14. #include <linux/module.h>
  15. #include <linux/seq_file.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "regs.h"
  21. #include "io.h"
  22. #include "workarounds.h"
  23. /**************************************************************************
  24. *
  25. * Configurable values
  26. *
  27. **************************************************************************
  28. */
  29. /* This is set to 16 for a good reason. In summary, if larger than
  30. * 16, the descriptor cache holds more than a default socket
  31. * buffer's worth of packets (for UDP we can only have at most one
  32. * socket buffer's worth outstanding). This combined with the fact
  33. * that we only get 1 TX event per descriptor cache means the NIC
  34. * goes idle.
  35. */
  36. #define TX_DC_ENTRIES 16
  37. #define TX_DC_ENTRIES_ORDER 1
  38. #define RX_DC_ENTRIES 64
  39. #define RX_DC_ENTRIES_ORDER 3
  40. /* If EFX_MAX_INT_ERRORS internal errors occur within
  41. * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  42. * disable it.
  43. */
  44. #define EFX_INT_ERROR_EXPIRE 3600
  45. #define EFX_MAX_INT_ERRORS 5
  46. /* Depth of RX flush request fifo */
  47. #define EFX_RX_FLUSH_COUNT 4
  48. /* Driver generated events */
  49. #define _EFX_CHANNEL_MAGIC_TEST 0x000101
  50. #define _EFX_CHANNEL_MAGIC_FILL 0x000102
  51. #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
  52. #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
  53. #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
  54. #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
  55. #define EFX_CHANNEL_MAGIC_TEST(_channel) \
  56. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  57. #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
  58. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
  59. efx_rx_queue_index(_rx_queue))
  60. #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
  61. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
  62. efx_rx_queue_index(_rx_queue))
  63. #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
  64. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
  65. (_tx_queue)->queue)
  66. /**************************************************************************
  67. *
  68. * Solarstorm hardware access
  69. *
  70. **************************************************************************/
  71. static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  72. unsigned int index)
  73. {
  74. efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  75. value, index);
  76. }
  77. /* Read the current event from the event queue */
  78. static inline efx_qword_t *efx_event(struct efx_channel *channel,
  79. unsigned int index)
  80. {
  81. return ((efx_qword_t *) (channel->eventq.addr)) +
  82. (index & channel->eventq_mask);
  83. }
  84. /* See if an event is present
  85. *
  86. * We check both the high and low dword of the event for all ones. We
  87. * wrote all ones when we cleared the event, and no valid event can
  88. * have all ones in either its high or low dwords. This approach is
  89. * robust against reordering.
  90. *
  91. * Note that using a single 64-bit comparison is incorrect; even
  92. * though the CPU read will be atomic, the DMA write may not be.
  93. */
  94. static inline int efx_event_present(efx_qword_t *event)
  95. {
  96. return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  97. EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  98. }
  99. static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  100. const efx_oword_t *mask)
  101. {
  102. return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  103. ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  104. }
  105. int efx_nic_test_registers(struct efx_nic *efx,
  106. const struct efx_nic_register_test *regs,
  107. size_t n_regs)
  108. {
  109. unsigned address = 0, i, j;
  110. efx_oword_t mask, imask, original, reg, buf;
  111. /* Falcon should be in loopback to isolate the XMAC from the PHY */
  112. WARN_ON(!LOOPBACK_INTERNAL(efx));
  113. for (i = 0; i < n_regs; ++i) {
  114. address = regs[i].address;
  115. mask = imask = regs[i].mask;
  116. EFX_INVERT_OWORD(imask);
  117. efx_reado(efx, &original, address);
  118. /* bit sweep on and off */
  119. for (j = 0; j < 128; j++) {
  120. if (!EFX_EXTRACT_OWORD32(mask, j, j))
  121. continue;
  122. /* Test this testable bit can be set in isolation */
  123. EFX_AND_OWORD(reg, original, mask);
  124. EFX_SET_OWORD32(reg, j, j, 1);
  125. efx_writeo(efx, &reg, address);
  126. efx_reado(efx, &buf, address);
  127. if (efx_masked_compare_oword(&reg, &buf, &mask))
  128. goto fail;
  129. /* Test this testable bit can be cleared in isolation */
  130. EFX_OR_OWORD(reg, original, mask);
  131. EFX_SET_OWORD32(reg, j, j, 0);
  132. efx_writeo(efx, &reg, address);
  133. efx_reado(efx, &buf, address);
  134. if (efx_masked_compare_oword(&reg, &buf, &mask))
  135. goto fail;
  136. }
  137. efx_writeo(efx, &original, address);
  138. }
  139. return 0;
  140. fail:
  141. netif_err(efx, hw, efx->net_dev,
  142. "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
  143. " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
  144. EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
  145. return -EIO;
  146. }
  147. /**************************************************************************
  148. *
  149. * Special buffer handling
  150. * Special buffers are used for event queues and the TX and RX
  151. * descriptor rings.
  152. *
  153. *************************************************************************/
  154. /*
  155. * Initialise a special buffer
  156. *
  157. * This will define a buffer (previously allocated via
  158. * efx_alloc_special_buffer()) in the buffer table, allowing
  159. * it to be used for event queues, descriptor rings etc.
  160. */
  161. static void
  162. efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  163. {
  164. efx_qword_t buf_desc;
  165. unsigned int index;
  166. dma_addr_t dma_addr;
  167. int i;
  168. EFX_BUG_ON_PARANOID(!buffer->addr);
  169. /* Write buffer descriptors to NIC */
  170. for (i = 0; i < buffer->entries; i++) {
  171. index = buffer->index + i;
  172. dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
  173. netif_dbg(efx, probe, efx->net_dev,
  174. "mapping special buffer %d at %llx\n",
  175. index, (unsigned long long)dma_addr);
  176. EFX_POPULATE_QWORD_3(buf_desc,
  177. FRF_AZ_BUF_ADR_REGION, 0,
  178. FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
  179. FRF_AZ_BUF_OWNER_ID_FBUF, 0);
  180. efx_write_buf_tbl(efx, &buf_desc, index);
  181. }
  182. }
  183. /* Unmaps a buffer and clears the buffer table entries */
  184. static void
  185. efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  186. {
  187. efx_oword_t buf_tbl_upd;
  188. unsigned int start = buffer->index;
  189. unsigned int end = (buffer->index + buffer->entries - 1);
  190. if (!buffer->entries)
  191. return;
  192. netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
  193. buffer->index, buffer->index + buffer->entries - 1);
  194. EFX_POPULATE_OWORD_4(buf_tbl_upd,
  195. FRF_AZ_BUF_UPD_CMD, 0,
  196. FRF_AZ_BUF_CLR_CMD, 1,
  197. FRF_AZ_BUF_CLR_END_ID, end,
  198. FRF_AZ_BUF_CLR_START_ID, start);
  199. efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
  200. }
  201. /*
  202. * Allocate a new special buffer
  203. *
  204. * This allocates memory for a new buffer, clears it and allocates a
  205. * new buffer ID range. It does not write into the buffer table.
  206. *
  207. * This call will allocate 4KB buffers, since 8KB buffers can't be
  208. * used for event queues and descriptor rings.
  209. */
  210. static int efx_alloc_special_buffer(struct efx_nic *efx,
  211. struct efx_special_buffer *buffer,
  212. unsigned int len)
  213. {
  214. len = ALIGN(len, EFX_BUF_SIZE);
  215. buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
  216. &buffer->dma_addr, GFP_KERNEL);
  217. if (!buffer->addr)
  218. return -ENOMEM;
  219. buffer->len = len;
  220. buffer->entries = len / EFX_BUF_SIZE;
  221. BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
  222. /* All zeros is a potentially valid event so memset to 0xff */
  223. memset(buffer->addr, 0xff, len);
  224. /* Select new buffer ID */
  225. buffer->index = efx->next_buffer_table;
  226. efx->next_buffer_table += buffer->entries;
  227. #ifdef CONFIG_SFC_SRIOV
  228. BUG_ON(efx_sriov_enabled(efx) &&
  229. efx->vf_buftbl_base < efx->next_buffer_table);
  230. #endif
  231. netif_dbg(efx, probe, efx->net_dev,
  232. "allocating special buffers %d-%d at %llx+%x "
  233. "(virt %p phys %llx)\n", buffer->index,
  234. buffer->index + buffer->entries - 1,
  235. (u64)buffer->dma_addr, len,
  236. buffer->addr, (u64)virt_to_phys(buffer->addr));
  237. return 0;
  238. }
  239. static void
  240. efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  241. {
  242. if (!buffer->addr)
  243. return;
  244. netif_dbg(efx, hw, efx->net_dev,
  245. "deallocating special buffers %d-%d at %llx+%x "
  246. "(virt %p phys %llx)\n", buffer->index,
  247. buffer->index + buffer->entries - 1,
  248. (u64)buffer->dma_addr, buffer->len,
  249. buffer->addr, (u64)virt_to_phys(buffer->addr));
  250. dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
  251. buffer->dma_addr);
  252. buffer->addr = NULL;
  253. buffer->entries = 0;
  254. }
  255. /**************************************************************************
  256. *
  257. * Generic buffer handling
  258. * These buffers are used for interrupt status and MAC stats
  259. *
  260. **************************************************************************/
  261. int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
  262. unsigned int len)
  263. {
  264. buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
  265. &buffer->dma_addr);
  266. if (!buffer->addr)
  267. return -ENOMEM;
  268. buffer->len = len;
  269. memset(buffer->addr, 0, len);
  270. return 0;
  271. }
  272. void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
  273. {
  274. if (buffer->addr) {
  275. pci_free_consistent(efx->pci_dev, buffer->len,
  276. buffer->addr, buffer->dma_addr);
  277. buffer->addr = NULL;
  278. }
  279. }
  280. /**************************************************************************
  281. *
  282. * TX path
  283. *
  284. **************************************************************************/
  285. /* Returns a pointer to the specified transmit descriptor in the TX
  286. * descriptor queue belonging to the specified channel.
  287. */
  288. static inline efx_qword_t *
  289. efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  290. {
  291. return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
  292. }
  293. /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
  294. static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
  295. {
  296. unsigned write_ptr;
  297. efx_dword_t reg;
  298. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  299. EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
  300. efx_writed_page(tx_queue->efx, &reg,
  301. FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
  302. }
  303. /* Write pointer and first descriptor for TX descriptor ring */
  304. static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
  305. const efx_qword_t *txd)
  306. {
  307. unsigned write_ptr;
  308. efx_oword_t reg;
  309. BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
  310. BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
  311. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  312. EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
  313. FRF_AZ_TX_DESC_WPTR, write_ptr);
  314. reg.qword[0] = *txd;
  315. efx_writeo_page(tx_queue->efx, &reg,
  316. FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
  317. }
  318. static inline bool
  319. efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
  320. {
  321. unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
  322. if (empty_read_count == 0)
  323. return false;
  324. tx_queue->empty_read_count = 0;
  325. return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  326. }
  327. /* For each entry inserted into the software descriptor ring, create a
  328. * descriptor in the hardware TX descriptor ring (in host memory), and
  329. * write a doorbell.
  330. */
  331. void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
  332. {
  333. struct efx_tx_buffer *buffer;
  334. efx_qword_t *txd;
  335. unsigned write_ptr;
  336. unsigned old_write_count = tx_queue->write_count;
  337. BUG_ON(tx_queue->write_count == tx_queue->insert_count);
  338. do {
  339. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  340. buffer = &tx_queue->buffer[write_ptr];
  341. txd = efx_tx_desc(tx_queue, write_ptr);
  342. ++tx_queue->write_count;
  343. /* Create TX descriptor ring entry */
  344. EFX_POPULATE_QWORD_4(*txd,
  345. FSF_AZ_TX_KER_CONT, buffer->continuation,
  346. FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
  347. FSF_AZ_TX_KER_BUF_REGION, 0,
  348. FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
  349. } while (tx_queue->write_count != tx_queue->insert_count);
  350. wmb(); /* Ensure descriptors are written before they are fetched */
  351. if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
  352. txd = efx_tx_desc(tx_queue,
  353. old_write_count & tx_queue->ptr_mask);
  354. efx_push_tx_desc(tx_queue, txd);
  355. ++tx_queue->pushes;
  356. } else {
  357. efx_notify_tx_desc(tx_queue);
  358. }
  359. }
  360. /* Allocate hardware resources for a TX queue */
  361. int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
  362. {
  363. struct efx_nic *efx = tx_queue->efx;
  364. unsigned entries;
  365. entries = tx_queue->ptr_mask + 1;
  366. return efx_alloc_special_buffer(efx, &tx_queue->txd,
  367. entries * sizeof(efx_qword_t));
  368. }
  369. void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
  370. {
  371. struct efx_nic *efx = tx_queue->efx;
  372. efx_oword_t reg;
  373. /* Pin TX descriptor ring */
  374. efx_init_special_buffer(efx, &tx_queue->txd);
  375. /* Push TX descriptor ring to card */
  376. EFX_POPULATE_OWORD_10(reg,
  377. FRF_AZ_TX_DESCQ_EN, 1,
  378. FRF_AZ_TX_ISCSI_DDIG_EN, 0,
  379. FRF_AZ_TX_ISCSI_HDIG_EN, 0,
  380. FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
  381. FRF_AZ_TX_DESCQ_EVQ_ID,
  382. tx_queue->channel->channel,
  383. FRF_AZ_TX_DESCQ_OWNER_ID, 0,
  384. FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
  385. FRF_AZ_TX_DESCQ_SIZE,
  386. __ffs(tx_queue->txd.entries),
  387. FRF_AZ_TX_DESCQ_TYPE, 0,
  388. FRF_BZ_TX_NON_IP_DROP_DIS, 1);
  389. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  390. int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
  391. EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
  392. EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
  393. !csum);
  394. }
  395. efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
  396. tx_queue->queue);
  397. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
  398. /* Only 128 bits in this register */
  399. BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
  400. efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
  401. if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
  402. clear_bit_le(tx_queue->queue, (void *)&reg);
  403. else
  404. set_bit_le(tx_queue->queue, (void *)&reg);
  405. efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
  406. }
  407. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  408. EFX_POPULATE_OWORD_1(reg,
  409. FRF_BZ_TX_PACE,
  410. (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
  411. FFE_BZ_TX_PACE_OFF :
  412. FFE_BZ_TX_PACE_RESERVED);
  413. efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
  414. tx_queue->queue);
  415. }
  416. }
  417. static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
  418. {
  419. struct efx_nic *efx = tx_queue->efx;
  420. efx_oword_t tx_flush_descq;
  421. EFX_POPULATE_OWORD_2(tx_flush_descq,
  422. FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
  423. FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
  424. efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
  425. }
  426. void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
  427. {
  428. struct efx_nic *efx = tx_queue->efx;
  429. efx_oword_t tx_desc_ptr;
  430. /* Remove TX descriptor ring from card */
  431. EFX_ZERO_OWORD(tx_desc_ptr);
  432. efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
  433. tx_queue->queue);
  434. /* Unpin TX descriptor ring */
  435. efx_fini_special_buffer(efx, &tx_queue->txd);
  436. }
  437. /* Free buffers backing TX queue */
  438. void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
  439. {
  440. efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
  441. }
  442. /**************************************************************************
  443. *
  444. * RX path
  445. *
  446. **************************************************************************/
  447. /* Returns a pointer to the specified descriptor in the RX descriptor queue */
  448. static inline efx_qword_t *
  449. efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
  450. {
  451. return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
  452. }
  453. /* This creates an entry in the RX descriptor queue */
  454. static inline void
  455. efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
  456. {
  457. struct efx_rx_buffer *rx_buf;
  458. efx_qword_t *rxd;
  459. rxd = efx_rx_desc(rx_queue, index);
  460. rx_buf = efx_rx_buffer(rx_queue, index);
  461. EFX_POPULATE_QWORD_3(*rxd,
  462. FSF_AZ_RX_KER_BUF_SIZE,
  463. rx_buf->len -
  464. rx_queue->efx->type->rx_buffer_padding,
  465. FSF_AZ_RX_KER_BUF_REGION, 0,
  466. FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
  467. }
  468. /* This writes to the RX_DESC_WPTR register for the specified receive
  469. * descriptor ring.
  470. */
  471. void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
  472. {
  473. struct efx_nic *efx = rx_queue->efx;
  474. efx_dword_t reg;
  475. unsigned write_ptr;
  476. while (rx_queue->notified_count != rx_queue->added_count) {
  477. efx_build_rx_desc(
  478. rx_queue,
  479. rx_queue->notified_count & rx_queue->ptr_mask);
  480. ++rx_queue->notified_count;
  481. }
  482. wmb();
  483. write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
  484. EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
  485. efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
  486. efx_rx_queue_index(rx_queue));
  487. }
  488. int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
  489. {
  490. struct efx_nic *efx = rx_queue->efx;
  491. unsigned entries;
  492. entries = rx_queue->ptr_mask + 1;
  493. return efx_alloc_special_buffer(efx, &rx_queue->rxd,
  494. entries * sizeof(efx_qword_t));
  495. }
  496. void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
  497. {
  498. efx_oword_t rx_desc_ptr;
  499. struct efx_nic *efx = rx_queue->efx;
  500. bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
  501. bool iscsi_digest_en = is_b0;
  502. netif_dbg(efx, hw, efx->net_dev,
  503. "RX queue %d ring in special buffers %d-%d\n",
  504. efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
  505. rx_queue->rxd.index + rx_queue->rxd.entries - 1);
  506. /* Pin RX descriptor ring */
  507. efx_init_special_buffer(efx, &rx_queue->rxd);
  508. /* Push RX descriptor ring to card */
  509. EFX_POPULATE_OWORD_10(rx_desc_ptr,
  510. FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
  511. FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
  512. FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
  513. FRF_AZ_RX_DESCQ_EVQ_ID,
  514. efx_rx_queue_channel(rx_queue)->channel,
  515. FRF_AZ_RX_DESCQ_OWNER_ID, 0,
  516. FRF_AZ_RX_DESCQ_LABEL,
  517. efx_rx_queue_index(rx_queue),
  518. FRF_AZ_RX_DESCQ_SIZE,
  519. __ffs(rx_queue->rxd.entries),
  520. FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
  521. /* For >=B0 this is scatter so disable */
  522. FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
  523. FRF_AZ_RX_DESCQ_EN, 1);
  524. efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  525. efx_rx_queue_index(rx_queue));
  526. }
  527. static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
  528. {
  529. struct efx_nic *efx = rx_queue->efx;
  530. efx_oword_t rx_flush_descq;
  531. EFX_POPULATE_OWORD_2(rx_flush_descq,
  532. FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
  533. FRF_AZ_RX_FLUSH_DESCQ,
  534. efx_rx_queue_index(rx_queue));
  535. efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
  536. }
  537. void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
  538. {
  539. efx_oword_t rx_desc_ptr;
  540. struct efx_nic *efx = rx_queue->efx;
  541. /* Remove RX descriptor ring from card */
  542. EFX_ZERO_OWORD(rx_desc_ptr);
  543. efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  544. efx_rx_queue_index(rx_queue));
  545. /* Unpin RX descriptor ring */
  546. efx_fini_special_buffer(efx, &rx_queue->rxd);
  547. }
  548. /* Free buffers backing RX queue */
  549. void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
  550. {
  551. efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
  552. }
  553. /**************************************************************************
  554. *
  555. * Flush handling
  556. *
  557. **************************************************************************/
  558. /* efx_nic_flush_queues() must be woken up when all flushes are completed,
  559. * or more RX flushes can be kicked off.
  560. */
  561. static bool efx_flush_wake(struct efx_nic *efx)
  562. {
  563. /* Ensure that all updates are visible to efx_nic_flush_queues() */
  564. smp_mb();
  565. return (atomic_read(&efx->drain_pending) == 0 ||
  566. (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
  567. && atomic_read(&efx->rxq_flush_pending) > 0));
  568. }
  569. /* Flush all the transmit queues, and continue flushing receive queues until
  570. * they're all flushed. Wait for the DRAIN events to be recieved so that there
  571. * are no more RX and TX events left on any channel. */
  572. int efx_nic_flush_queues(struct efx_nic *efx)
  573. {
  574. unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
  575. struct efx_channel *channel;
  576. struct efx_rx_queue *rx_queue;
  577. struct efx_tx_queue *tx_queue;
  578. int rc = 0;
  579. efx->fc_disable++;
  580. efx->type->prepare_flush(efx);
  581. efx_for_each_channel(channel, efx) {
  582. efx_for_each_channel_tx_queue(tx_queue, channel) {
  583. atomic_inc(&efx->drain_pending);
  584. efx_flush_tx_queue(tx_queue);
  585. }
  586. efx_for_each_channel_rx_queue(rx_queue, channel) {
  587. atomic_inc(&efx->drain_pending);
  588. rx_queue->flush_pending = true;
  589. atomic_inc(&efx->rxq_flush_pending);
  590. }
  591. }
  592. while (timeout && atomic_read(&efx->drain_pending) > 0) {
  593. /* If SRIOV is enabled, then offload receive queue flushing to
  594. * the firmware (though we will still have to poll for
  595. * completion). If that fails, fall back to the old scheme.
  596. */
  597. if (efx_sriov_enabled(efx)) {
  598. rc = efx_mcdi_flush_rxqs(efx);
  599. if (!rc)
  600. goto wait;
  601. }
  602. /* The hardware supports four concurrent rx flushes, each of
  603. * which may need to be retried if there is an outstanding
  604. * descriptor fetch
  605. */
  606. efx_for_each_channel(channel, efx) {
  607. efx_for_each_channel_rx_queue(rx_queue, channel) {
  608. if (atomic_read(&efx->rxq_flush_outstanding) >=
  609. EFX_RX_FLUSH_COUNT)
  610. break;
  611. if (rx_queue->flush_pending) {
  612. rx_queue->flush_pending = false;
  613. atomic_dec(&efx->rxq_flush_pending);
  614. atomic_inc(&efx->rxq_flush_outstanding);
  615. efx_flush_rx_queue(rx_queue);
  616. }
  617. }
  618. }
  619. wait:
  620. timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
  621. timeout);
  622. }
  623. if (atomic_read(&efx->drain_pending)) {
  624. netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
  625. "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
  626. atomic_read(&efx->rxq_flush_outstanding),
  627. atomic_read(&efx->rxq_flush_pending));
  628. rc = -ETIMEDOUT;
  629. atomic_set(&efx->drain_pending, 0);
  630. atomic_set(&efx->rxq_flush_pending, 0);
  631. atomic_set(&efx->rxq_flush_outstanding, 0);
  632. }
  633. efx->fc_disable--;
  634. return rc;
  635. }
  636. /**************************************************************************
  637. *
  638. * Event queue processing
  639. * Event queues are processed by per-channel tasklets.
  640. *
  641. **************************************************************************/
  642. /* Update a channel's event queue's read pointer (RPTR) register
  643. *
  644. * This writes the EVQ_RPTR_REG register for the specified channel's
  645. * event queue.
  646. */
  647. void efx_nic_eventq_read_ack(struct efx_channel *channel)
  648. {
  649. efx_dword_t reg;
  650. struct efx_nic *efx = channel->efx;
  651. EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
  652. channel->eventq_read_ptr & channel->eventq_mask);
  653. efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
  654. channel->channel);
  655. }
  656. /* Use HW to insert a SW defined event */
  657. void efx_generate_event(struct efx_nic *efx, unsigned int evq,
  658. efx_qword_t *event)
  659. {
  660. efx_oword_t drv_ev_reg;
  661. BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
  662. FRF_AZ_DRV_EV_DATA_WIDTH != 64);
  663. drv_ev_reg.u32[0] = event->u32[0];
  664. drv_ev_reg.u32[1] = event->u32[1];
  665. drv_ev_reg.u32[2] = 0;
  666. drv_ev_reg.u32[3] = 0;
  667. EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
  668. efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
  669. }
  670. static void efx_magic_event(struct efx_channel *channel, u32 magic)
  671. {
  672. efx_qword_t event;
  673. EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
  674. FSE_AZ_EV_CODE_DRV_GEN_EV,
  675. FSF_AZ_DRV_GEN_EV_MAGIC, magic);
  676. efx_generate_event(channel->efx, channel->channel, &event);
  677. }
  678. /* Handle a transmit completion event
  679. *
  680. * The NIC batches TX completion events; the message we receive is of
  681. * the form "complete all TX events up to this index".
  682. */
  683. static int
  684. efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
  685. {
  686. unsigned int tx_ev_desc_ptr;
  687. unsigned int tx_ev_q_label;
  688. struct efx_tx_queue *tx_queue;
  689. struct efx_nic *efx = channel->efx;
  690. int tx_packets = 0;
  691. if (unlikely(ACCESS_ONCE(efx->reset_pending)))
  692. return 0;
  693. if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
  694. /* Transmit completion */
  695. tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
  696. tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
  697. tx_queue = efx_channel_get_tx_queue(
  698. channel, tx_ev_q_label % EFX_TXQ_TYPES);
  699. tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
  700. tx_queue->ptr_mask);
  701. efx_xmit_done(tx_queue, tx_ev_desc_ptr);
  702. } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
  703. /* Rewrite the FIFO write pointer */
  704. tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
  705. tx_queue = efx_channel_get_tx_queue(
  706. channel, tx_ev_q_label % EFX_TXQ_TYPES);
  707. netif_tx_lock(efx->net_dev);
  708. efx_notify_tx_desc(tx_queue);
  709. netif_tx_unlock(efx->net_dev);
  710. } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
  711. EFX_WORKAROUND_10727(efx)) {
  712. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  713. } else {
  714. netif_err(efx, tx_err, efx->net_dev,
  715. "channel %d unexpected TX event "
  716. EFX_QWORD_FMT"\n", channel->channel,
  717. EFX_QWORD_VAL(*event));
  718. }
  719. return tx_packets;
  720. }
  721. /* Detect errors included in the rx_evt_pkt_ok bit. */
  722. static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
  723. const efx_qword_t *event)
  724. {
  725. struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
  726. struct efx_nic *efx = rx_queue->efx;
  727. bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
  728. bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
  729. bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
  730. bool rx_ev_other_err, rx_ev_pause_frm;
  731. bool rx_ev_hdr_type, rx_ev_mcast_pkt;
  732. unsigned rx_ev_pkt_type;
  733. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
  734. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
  735. rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
  736. rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
  737. rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
  738. FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
  739. rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
  740. FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
  741. rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
  742. FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
  743. rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
  744. rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
  745. rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
  746. 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
  747. rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
  748. /* Every error apart from tobe_disc and pause_frm */
  749. rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
  750. rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
  751. rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
  752. /* Count errors that are not in MAC stats. Ignore expected
  753. * checksum errors during self-test. */
  754. if (rx_ev_frm_trunc)
  755. ++channel->n_rx_frm_trunc;
  756. else if (rx_ev_tobe_disc)
  757. ++channel->n_rx_tobe_disc;
  758. else if (!efx->loopback_selftest) {
  759. if (rx_ev_ip_hdr_chksum_err)
  760. ++channel->n_rx_ip_hdr_chksum_err;
  761. else if (rx_ev_tcp_udp_chksum_err)
  762. ++channel->n_rx_tcp_udp_chksum_err;
  763. }
  764. /* TOBE_DISC is expected on unicast mismatches; don't print out an
  765. * error message. FRM_TRUNC indicates RXDP dropped the packet due
  766. * to a FIFO overflow.
  767. */
  768. #ifdef DEBUG
  769. if (rx_ev_other_err && net_ratelimit()) {
  770. netif_dbg(efx, rx_err, efx->net_dev,
  771. " RX queue %d unexpected RX event "
  772. EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
  773. efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
  774. rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
  775. rx_ev_ip_hdr_chksum_err ?
  776. " [IP_HDR_CHKSUM_ERR]" : "",
  777. rx_ev_tcp_udp_chksum_err ?
  778. " [TCP_UDP_CHKSUM_ERR]" : "",
  779. rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
  780. rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
  781. rx_ev_drib_nib ? " [DRIB_NIB]" : "",
  782. rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
  783. rx_ev_pause_frm ? " [PAUSE]" : "");
  784. }
  785. #endif
  786. /* The frame must be discarded if any of these are true. */
  787. return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
  788. rx_ev_tobe_disc | rx_ev_pause_frm) ?
  789. EFX_RX_PKT_DISCARD : 0;
  790. }
  791. /* Handle receive events that are not in-order. */
  792. static void
  793. efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
  794. {
  795. struct efx_nic *efx = rx_queue->efx;
  796. unsigned expected, dropped;
  797. expected = rx_queue->removed_count & rx_queue->ptr_mask;
  798. dropped = (index - expected) & rx_queue->ptr_mask;
  799. netif_info(efx, rx_err, efx->net_dev,
  800. "dropped %d events (index=%d expected=%d)\n",
  801. dropped, index, expected);
  802. efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
  803. RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
  804. }
  805. /* Handle a packet received event
  806. *
  807. * The NIC gives a "discard" flag if it's a unicast packet with the
  808. * wrong destination address
  809. * Also "is multicast" and "matches multicast filter" flags can be used to
  810. * discard non-matching multicast packets.
  811. */
  812. static void
  813. efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
  814. {
  815. unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
  816. unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
  817. unsigned expected_ptr;
  818. bool rx_ev_pkt_ok;
  819. u16 flags;
  820. struct efx_rx_queue *rx_queue;
  821. struct efx_nic *efx = channel->efx;
  822. if (unlikely(ACCESS_ONCE(efx->reset_pending)))
  823. return;
  824. /* Basic packet information */
  825. rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
  826. rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
  827. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
  828. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
  829. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
  830. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
  831. channel->channel);
  832. rx_queue = efx_channel_get_rx_queue(channel);
  833. rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
  834. expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
  835. if (unlikely(rx_ev_desc_ptr != expected_ptr))
  836. efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
  837. if (likely(rx_ev_pkt_ok)) {
  838. /* If packet is marked as OK and packet type is TCP/IP or
  839. * UDP/IP, then we can rely on the hardware checksum.
  840. */
  841. flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
  842. rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
  843. EFX_RX_PKT_CSUMMED : 0;
  844. } else {
  845. flags = efx_handle_rx_not_ok(rx_queue, event);
  846. }
  847. /* Detect multicast packets that didn't match the filter */
  848. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
  849. if (rx_ev_mcast_pkt) {
  850. unsigned int rx_ev_mcast_hash_match =
  851. EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
  852. if (unlikely(!rx_ev_mcast_hash_match)) {
  853. ++channel->n_rx_mcast_mismatch;
  854. flags |= EFX_RX_PKT_DISCARD;
  855. }
  856. }
  857. channel->irq_mod_score += 2;
  858. /* Handle received packet */
  859. efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
  860. }
  861. /* If this flush done event corresponds to a &struct efx_tx_queue, then
  862. * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
  863. * of all transmit completions.
  864. */
  865. static void
  866. efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
  867. {
  868. struct efx_tx_queue *tx_queue;
  869. int qid;
  870. qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
  871. if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
  872. tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
  873. qid % EFX_TXQ_TYPES);
  874. efx_magic_event(tx_queue->channel,
  875. EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
  876. }
  877. }
  878. /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
  879. * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
  880. * the RX queue back to the mask of RX queues in need of flushing.
  881. */
  882. static void
  883. efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
  884. {
  885. struct efx_channel *channel;
  886. struct efx_rx_queue *rx_queue;
  887. int qid;
  888. bool failed;
  889. qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
  890. failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
  891. if (qid >= efx->n_channels)
  892. return;
  893. channel = efx_get_channel(efx, qid);
  894. if (!efx_channel_has_rx_queue(channel))
  895. return;
  896. rx_queue = efx_channel_get_rx_queue(channel);
  897. if (failed) {
  898. netif_info(efx, hw, efx->net_dev,
  899. "RXQ %d flush retry\n", qid);
  900. rx_queue->flush_pending = true;
  901. atomic_inc(&efx->rxq_flush_pending);
  902. } else {
  903. efx_magic_event(efx_rx_queue_channel(rx_queue),
  904. EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
  905. }
  906. atomic_dec(&efx->rxq_flush_outstanding);
  907. if (efx_flush_wake(efx))
  908. wake_up(&efx->flush_wq);
  909. }
  910. static void
  911. efx_handle_drain_event(struct efx_channel *channel)
  912. {
  913. struct efx_nic *efx = channel->efx;
  914. WARN_ON(atomic_read(&efx->drain_pending) == 0);
  915. atomic_dec(&efx->drain_pending);
  916. if (efx_flush_wake(efx))
  917. wake_up(&efx->flush_wq);
  918. }
  919. static void
  920. efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
  921. {
  922. struct efx_nic *efx = channel->efx;
  923. struct efx_rx_queue *rx_queue =
  924. efx_channel_has_rx_queue(channel) ?
  925. efx_channel_get_rx_queue(channel) : NULL;
  926. unsigned magic, code;
  927. magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
  928. code = _EFX_CHANNEL_MAGIC_CODE(magic);
  929. if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
  930. channel->event_test_cpu = raw_smp_processor_id();
  931. } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
  932. /* The queue must be empty, so we won't receive any rx
  933. * events, so efx_process_channel() won't refill the
  934. * queue. Refill it here */
  935. efx_fast_push_rx_descriptors(rx_queue);
  936. } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
  937. rx_queue->enabled = false;
  938. efx_handle_drain_event(channel);
  939. } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
  940. efx_handle_drain_event(channel);
  941. } else {
  942. netif_dbg(efx, hw, efx->net_dev, "channel %d received "
  943. "generated event "EFX_QWORD_FMT"\n",
  944. channel->channel, EFX_QWORD_VAL(*event));
  945. }
  946. }
  947. static void
  948. efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
  949. {
  950. struct efx_nic *efx = channel->efx;
  951. unsigned int ev_sub_code;
  952. unsigned int ev_sub_data;
  953. ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
  954. ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
  955. switch (ev_sub_code) {
  956. case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
  957. netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
  958. channel->channel, ev_sub_data);
  959. efx_handle_tx_flush_done(efx, event);
  960. efx_sriov_tx_flush_done(efx, event);
  961. break;
  962. case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
  963. netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
  964. channel->channel, ev_sub_data);
  965. efx_handle_rx_flush_done(efx, event);
  966. efx_sriov_rx_flush_done(efx, event);
  967. break;
  968. case FSE_AZ_EVQ_INIT_DONE_EV:
  969. netif_dbg(efx, hw, efx->net_dev,
  970. "channel %d EVQ %d initialised\n",
  971. channel->channel, ev_sub_data);
  972. break;
  973. case FSE_AZ_SRM_UPD_DONE_EV:
  974. netif_vdbg(efx, hw, efx->net_dev,
  975. "channel %d SRAM update done\n", channel->channel);
  976. break;
  977. case FSE_AZ_WAKE_UP_EV:
  978. netif_vdbg(efx, hw, efx->net_dev,
  979. "channel %d RXQ %d wakeup event\n",
  980. channel->channel, ev_sub_data);
  981. break;
  982. case FSE_AZ_TIMER_EV:
  983. netif_vdbg(efx, hw, efx->net_dev,
  984. "channel %d RX queue %d timer expired\n",
  985. channel->channel, ev_sub_data);
  986. break;
  987. case FSE_AA_RX_RECOVER_EV:
  988. netif_err(efx, rx_err, efx->net_dev,
  989. "channel %d seen DRIVER RX_RESET event. "
  990. "Resetting.\n", channel->channel);
  991. atomic_inc(&efx->rx_reset);
  992. efx_schedule_reset(efx,
  993. EFX_WORKAROUND_6555(efx) ?
  994. RESET_TYPE_RX_RECOVERY :
  995. RESET_TYPE_DISABLE);
  996. break;
  997. case FSE_BZ_RX_DSC_ERROR_EV:
  998. if (ev_sub_data < EFX_VI_BASE) {
  999. netif_err(efx, rx_err, efx->net_dev,
  1000. "RX DMA Q %d reports descriptor fetch error."
  1001. " RX Q %d is disabled.\n", ev_sub_data,
  1002. ev_sub_data);
  1003. efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
  1004. } else
  1005. efx_sriov_desc_fetch_err(efx, ev_sub_data);
  1006. break;
  1007. case FSE_BZ_TX_DSC_ERROR_EV:
  1008. if (ev_sub_data < EFX_VI_BASE) {
  1009. netif_err(efx, tx_err, efx->net_dev,
  1010. "TX DMA Q %d reports descriptor fetch error."
  1011. " TX Q %d is disabled.\n", ev_sub_data,
  1012. ev_sub_data);
  1013. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  1014. } else
  1015. efx_sriov_desc_fetch_err(efx, ev_sub_data);
  1016. break;
  1017. default:
  1018. netif_vdbg(efx, hw, efx->net_dev,
  1019. "channel %d unknown driver event code %d "
  1020. "data %04x\n", channel->channel, ev_sub_code,
  1021. ev_sub_data);
  1022. break;
  1023. }
  1024. }
  1025. int efx_nic_process_eventq(struct efx_channel *channel, int budget)
  1026. {
  1027. struct efx_nic *efx = channel->efx;
  1028. unsigned int read_ptr;
  1029. efx_qword_t event, *p_event;
  1030. int ev_code;
  1031. int tx_packets = 0;
  1032. int spent = 0;
  1033. read_ptr = channel->eventq_read_ptr;
  1034. for (;;) {
  1035. p_event = efx_event(channel, read_ptr);
  1036. event = *p_event;
  1037. if (!efx_event_present(&event))
  1038. /* End of events */
  1039. break;
  1040. netif_vdbg(channel->efx, intr, channel->efx->net_dev,
  1041. "channel %d event is "EFX_QWORD_FMT"\n",
  1042. channel->channel, EFX_QWORD_VAL(event));
  1043. /* Clear this event by marking it all ones */
  1044. EFX_SET_QWORD(*p_event);
  1045. ++read_ptr;
  1046. ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
  1047. switch (ev_code) {
  1048. case FSE_AZ_EV_CODE_RX_EV:
  1049. efx_handle_rx_event(channel, &event);
  1050. if (++spent == budget)
  1051. goto out;
  1052. break;
  1053. case FSE_AZ_EV_CODE_TX_EV:
  1054. tx_packets += efx_handle_tx_event(channel, &event);
  1055. if (tx_packets > efx->txq_entries) {
  1056. spent = budget;
  1057. goto out;
  1058. }
  1059. break;
  1060. case FSE_AZ_EV_CODE_DRV_GEN_EV:
  1061. efx_handle_generated_event(channel, &event);
  1062. break;
  1063. case FSE_AZ_EV_CODE_DRIVER_EV:
  1064. efx_handle_driver_event(channel, &event);
  1065. break;
  1066. case FSE_CZ_EV_CODE_USER_EV:
  1067. efx_sriov_event(channel, &event);
  1068. break;
  1069. case FSE_CZ_EV_CODE_MCDI_EV:
  1070. efx_mcdi_process_event(channel, &event);
  1071. break;
  1072. case FSE_AZ_EV_CODE_GLOBAL_EV:
  1073. if (efx->type->handle_global_event &&
  1074. efx->type->handle_global_event(channel, &event))
  1075. break;
  1076. /* else fall through */
  1077. default:
  1078. netif_err(channel->efx, hw, channel->efx->net_dev,
  1079. "channel %d unknown event type %d (data "
  1080. EFX_QWORD_FMT ")\n", channel->channel,
  1081. ev_code, EFX_QWORD_VAL(event));
  1082. }
  1083. }
  1084. out:
  1085. channel->eventq_read_ptr = read_ptr;
  1086. return spent;
  1087. }
  1088. /* Check whether an event is present in the eventq at the current
  1089. * read pointer. Only useful for self-test.
  1090. */
  1091. bool efx_nic_event_present(struct efx_channel *channel)
  1092. {
  1093. return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
  1094. }
  1095. /* Allocate buffer table entries for event queue */
  1096. int efx_nic_probe_eventq(struct efx_channel *channel)
  1097. {
  1098. struct efx_nic *efx = channel->efx;
  1099. unsigned entries;
  1100. entries = channel->eventq_mask + 1;
  1101. return efx_alloc_special_buffer(efx, &channel->eventq,
  1102. entries * sizeof(efx_qword_t));
  1103. }
  1104. void efx_nic_init_eventq(struct efx_channel *channel)
  1105. {
  1106. efx_oword_t reg;
  1107. struct efx_nic *efx = channel->efx;
  1108. netif_dbg(efx, hw, efx->net_dev,
  1109. "channel %d event queue in special buffers %d-%d\n",
  1110. channel->channel, channel->eventq.index,
  1111. channel->eventq.index + channel->eventq.entries - 1);
  1112. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
  1113. EFX_POPULATE_OWORD_3(reg,
  1114. FRF_CZ_TIMER_Q_EN, 1,
  1115. FRF_CZ_HOST_NOTIFY_MODE, 0,
  1116. FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
  1117. efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
  1118. }
  1119. /* Pin event queue buffer */
  1120. efx_init_special_buffer(efx, &channel->eventq);
  1121. /* Fill event queue with all ones (i.e. empty events) */
  1122. memset(channel->eventq.addr, 0xff, channel->eventq.len);
  1123. /* Push event queue to card */
  1124. EFX_POPULATE_OWORD_3(reg,
  1125. FRF_AZ_EVQ_EN, 1,
  1126. FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
  1127. FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
  1128. efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
  1129. channel->channel);
  1130. efx->type->push_irq_moderation(channel);
  1131. }
  1132. void efx_nic_fini_eventq(struct efx_channel *channel)
  1133. {
  1134. efx_oword_t reg;
  1135. struct efx_nic *efx = channel->efx;
  1136. /* Remove event queue from card */
  1137. EFX_ZERO_OWORD(reg);
  1138. efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
  1139. channel->channel);
  1140. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
  1141. efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
  1142. /* Unpin event queue */
  1143. efx_fini_special_buffer(efx, &channel->eventq);
  1144. }
  1145. /* Free buffers backing event queue */
  1146. void efx_nic_remove_eventq(struct efx_channel *channel)
  1147. {
  1148. efx_free_special_buffer(channel->efx, &channel->eventq);
  1149. }
  1150. void efx_nic_event_test_start(struct efx_channel *channel)
  1151. {
  1152. channel->event_test_cpu = -1;
  1153. smp_wmb();
  1154. efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
  1155. }
  1156. void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
  1157. {
  1158. efx_magic_event(efx_rx_queue_channel(rx_queue),
  1159. EFX_CHANNEL_MAGIC_FILL(rx_queue));
  1160. }
  1161. /**************************************************************************
  1162. *
  1163. * Hardware interrupts
  1164. * The hardware interrupt handler does very little work; all the event
  1165. * queue processing is carried out by per-channel tasklets.
  1166. *
  1167. **************************************************************************/
  1168. /* Enable/disable/generate interrupts */
  1169. static inline void efx_nic_interrupts(struct efx_nic *efx,
  1170. bool enabled, bool force)
  1171. {
  1172. efx_oword_t int_en_reg_ker;
  1173. EFX_POPULATE_OWORD_3(int_en_reg_ker,
  1174. FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
  1175. FRF_AZ_KER_INT_KER, force,
  1176. FRF_AZ_DRV_INT_EN_KER, enabled);
  1177. efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
  1178. }
  1179. void efx_nic_enable_interrupts(struct efx_nic *efx)
  1180. {
  1181. EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
  1182. wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
  1183. efx_nic_interrupts(efx, true, false);
  1184. }
  1185. void efx_nic_disable_interrupts(struct efx_nic *efx)
  1186. {
  1187. /* Disable interrupts */
  1188. efx_nic_interrupts(efx, false, false);
  1189. }
  1190. /* Generate a test interrupt
  1191. * Interrupt must already have been enabled, otherwise nasty things
  1192. * may happen.
  1193. */
  1194. void efx_nic_irq_test_start(struct efx_nic *efx)
  1195. {
  1196. efx->last_irq_cpu = -1;
  1197. smp_wmb();
  1198. efx_nic_interrupts(efx, true, true);
  1199. }
  1200. /* Process a fatal interrupt
  1201. * Disable bus mastering ASAP and schedule a reset
  1202. */
  1203. irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
  1204. {
  1205. struct falcon_nic_data *nic_data = efx->nic_data;
  1206. efx_oword_t *int_ker = efx->irq_status.addr;
  1207. efx_oword_t fatal_intr;
  1208. int error, mem_perr;
  1209. efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
  1210. error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
  1211. netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
  1212. EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
  1213. EFX_OWORD_VAL(fatal_intr),
  1214. error ? "disabling bus mastering" : "no recognised error");
  1215. /* If this is a memory parity error dump which blocks are offending */
  1216. mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
  1217. EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
  1218. if (mem_perr) {
  1219. efx_oword_t reg;
  1220. efx_reado(efx, &reg, FR_AZ_MEM_STAT);
  1221. netif_err(efx, hw, efx->net_dev,
  1222. "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
  1223. EFX_OWORD_VAL(reg));
  1224. }
  1225. /* Disable both devices */
  1226. pci_clear_master(efx->pci_dev);
  1227. if (efx_nic_is_dual_func(efx))
  1228. pci_clear_master(nic_data->pci_dev2);
  1229. efx_nic_disable_interrupts(efx);
  1230. /* Count errors and reset or disable the NIC accordingly */
  1231. if (efx->int_error_count == 0 ||
  1232. time_after(jiffies, efx->int_error_expire)) {
  1233. efx->int_error_count = 0;
  1234. efx->int_error_expire =
  1235. jiffies + EFX_INT_ERROR_EXPIRE * HZ;
  1236. }
  1237. if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
  1238. netif_err(efx, hw, efx->net_dev,
  1239. "SYSTEM ERROR - reset scheduled\n");
  1240. efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
  1241. } else {
  1242. netif_err(efx, hw, efx->net_dev,
  1243. "SYSTEM ERROR - max number of errors seen."
  1244. "NIC will be disabled\n");
  1245. efx_schedule_reset(efx, RESET_TYPE_DISABLE);
  1246. }
  1247. return IRQ_HANDLED;
  1248. }
  1249. /* Handle a legacy interrupt
  1250. * Acknowledges the interrupt and schedule event queue processing.
  1251. */
  1252. static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
  1253. {
  1254. struct efx_nic *efx = dev_id;
  1255. efx_oword_t *int_ker = efx->irq_status.addr;
  1256. irqreturn_t result = IRQ_NONE;
  1257. struct efx_channel *channel;
  1258. efx_dword_t reg;
  1259. u32 queues;
  1260. int syserr;
  1261. /* Could this be ours? If interrupts are disabled then the
  1262. * channel state may not be valid.
  1263. */
  1264. if (!efx->legacy_irq_enabled)
  1265. return result;
  1266. /* Read the ISR which also ACKs the interrupts */
  1267. efx_readd(efx, &reg, FR_BZ_INT_ISR0);
  1268. queues = EFX_EXTRACT_DWORD(reg, 0, 31);
  1269. /* Handle non-event-queue sources */
  1270. if (queues & (1U << efx->irq_level)) {
  1271. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  1272. if (unlikely(syserr))
  1273. return efx_nic_fatal_interrupt(efx);
  1274. efx->last_irq_cpu = raw_smp_processor_id();
  1275. }
  1276. if (queues != 0) {
  1277. if (EFX_WORKAROUND_15783(efx))
  1278. efx->irq_zero_count = 0;
  1279. /* Schedule processing of any interrupting queues */
  1280. efx_for_each_channel(channel, efx) {
  1281. if (queues & 1)
  1282. efx_schedule_channel_irq(channel);
  1283. queues >>= 1;
  1284. }
  1285. result = IRQ_HANDLED;
  1286. } else if (EFX_WORKAROUND_15783(efx)) {
  1287. efx_qword_t *event;
  1288. /* We can't return IRQ_HANDLED more than once on seeing ISR=0
  1289. * because this might be a shared interrupt. */
  1290. if (efx->irq_zero_count++ == 0)
  1291. result = IRQ_HANDLED;
  1292. /* Ensure we schedule or rearm all event queues */
  1293. efx_for_each_channel(channel, efx) {
  1294. event = efx_event(channel, channel->eventq_read_ptr);
  1295. if (efx_event_present(event))
  1296. efx_schedule_channel_irq(channel);
  1297. else
  1298. efx_nic_eventq_read_ack(channel);
  1299. }
  1300. }
  1301. if (result == IRQ_HANDLED)
  1302. netif_vdbg(efx, intr, efx->net_dev,
  1303. "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
  1304. irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
  1305. return result;
  1306. }
  1307. /* Handle an MSI interrupt
  1308. *
  1309. * Handle an MSI hardware interrupt. This routine schedules event
  1310. * queue processing. No interrupt acknowledgement cycle is necessary.
  1311. * Also, we never need to check that the interrupt is for us, since
  1312. * MSI interrupts cannot be shared.
  1313. */
  1314. static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
  1315. {
  1316. struct efx_channel *channel = *(struct efx_channel **)dev_id;
  1317. struct efx_nic *efx = channel->efx;
  1318. efx_oword_t *int_ker = efx->irq_status.addr;
  1319. int syserr;
  1320. netif_vdbg(efx, intr, efx->net_dev,
  1321. "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
  1322. irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
  1323. /* Handle non-event-queue sources */
  1324. if (channel->channel == efx->irq_level) {
  1325. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  1326. if (unlikely(syserr))
  1327. return efx_nic_fatal_interrupt(efx);
  1328. efx->last_irq_cpu = raw_smp_processor_id();
  1329. }
  1330. /* Schedule processing of the channel */
  1331. efx_schedule_channel_irq(channel);
  1332. return IRQ_HANDLED;
  1333. }
  1334. /* Setup RSS indirection table.
  1335. * This maps from the hash value of the packet to RXQ
  1336. */
  1337. void efx_nic_push_rx_indir_table(struct efx_nic *efx)
  1338. {
  1339. size_t i = 0;
  1340. efx_dword_t dword;
  1341. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
  1342. return;
  1343. BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
  1344. FR_BZ_RX_INDIRECTION_TBL_ROWS);
  1345. for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
  1346. EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
  1347. efx->rx_indir_table[i]);
  1348. efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
  1349. }
  1350. }
  1351. /* Hook interrupt handler(s)
  1352. * Try MSI and then legacy interrupts.
  1353. */
  1354. int efx_nic_init_interrupt(struct efx_nic *efx)
  1355. {
  1356. struct efx_channel *channel;
  1357. int rc;
  1358. if (!EFX_INT_MODE_USE_MSI(efx)) {
  1359. irq_handler_t handler;
  1360. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1361. handler = efx_legacy_interrupt;
  1362. else
  1363. handler = falcon_legacy_interrupt_a1;
  1364. rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
  1365. efx->name, efx);
  1366. if (rc) {
  1367. netif_err(efx, drv, efx->net_dev,
  1368. "failed to hook legacy IRQ %d\n",
  1369. efx->pci_dev->irq);
  1370. goto fail1;
  1371. }
  1372. return 0;
  1373. }
  1374. /* Hook MSI or MSI-X interrupt */
  1375. efx_for_each_channel(channel, efx) {
  1376. rc = request_irq(channel->irq, efx_msi_interrupt,
  1377. IRQF_PROBE_SHARED, /* Not shared */
  1378. efx->channel_name[channel->channel],
  1379. &efx->channel[channel->channel]);
  1380. if (rc) {
  1381. netif_err(efx, drv, efx->net_dev,
  1382. "failed to hook IRQ %d\n", channel->irq);
  1383. goto fail2;
  1384. }
  1385. }
  1386. return 0;
  1387. fail2:
  1388. efx_for_each_channel(channel, efx)
  1389. free_irq(channel->irq, &efx->channel[channel->channel]);
  1390. fail1:
  1391. return rc;
  1392. }
  1393. void efx_nic_fini_interrupt(struct efx_nic *efx)
  1394. {
  1395. struct efx_channel *channel;
  1396. efx_oword_t reg;
  1397. /* Disable MSI/MSI-X interrupts */
  1398. efx_for_each_channel(channel, efx) {
  1399. if (channel->irq)
  1400. free_irq(channel->irq, &efx->channel[channel->channel]);
  1401. }
  1402. /* ACK legacy interrupt */
  1403. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1404. efx_reado(efx, &reg, FR_BZ_INT_ISR0);
  1405. else
  1406. falcon_irq_ack_a1(efx);
  1407. /* Disable legacy interrupt */
  1408. if (efx->legacy_irq)
  1409. free_irq(efx->legacy_irq, efx);
  1410. }
  1411. /* Looks at available SRAM resources and works out how many queues we
  1412. * can support, and where things like descriptor caches should live.
  1413. *
  1414. * SRAM is split up as follows:
  1415. * 0 buftbl entries for channels
  1416. * efx->vf_buftbl_base buftbl entries for SR-IOV
  1417. * efx->rx_dc_base RX descriptor caches
  1418. * efx->tx_dc_base TX descriptor caches
  1419. */
  1420. void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
  1421. {
  1422. unsigned vi_count, buftbl_min;
  1423. /* Account for the buffer table entries backing the datapath channels
  1424. * and the descriptor caches for those channels.
  1425. */
  1426. buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
  1427. efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
  1428. efx->n_channels * EFX_MAX_EVQ_SIZE)
  1429. * sizeof(efx_qword_t) / EFX_BUF_SIZE);
  1430. vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
  1431. #ifdef CONFIG_SFC_SRIOV
  1432. if (efx_sriov_wanted(efx)) {
  1433. unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
  1434. efx->vf_buftbl_base = buftbl_min;
  1435. vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
  1436. vi_count = max(vi_count, EFX_VI_BASE);
  1437. buftbl_free = (sram_lim_qw - buftbl_min -
  1438. vi_count * vi_dc_entries);
  1439. entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
  1440. efx_vf_size(efx));
  1441. vf_limit = min(buftbl_free / entries_per_vf,
  1442. (1024U - EFX_VI_BASE) >> efx->vi_scale);
  1443. if (efx->vf_count > vf_limit) {
  1444. netif_err(efx, probe, efx->net_dev,
  1445. "Reducing VF count from from %d to %d\n",
  1446. efx->vf_count, vf_limit);
  1447. efx->vf_count = vf_limit;
  1448. }
  1449. vi_count += efx->vf_count * efx_vf_size(efx);
  1450. }
  1451. #endif
  1452. efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
  1453. efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
  1454. }
  1455. u32 efx_nic_fpga_ver(struct efx_nic *efx)
  1456. {
  1457. efx_oword_t altera_build;
  1458. efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
  1459. return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
  1460. }
  1461. void efx_nic_init_common(struct efx_nic *efx)
  1462. {
  1463. efx_oword_t temp;
  1464. /* Set positions of descriptor caches in SRAM. */
  1465. EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
  1466. efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
  1467. EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
  1468. efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
  1469. /* Set TX descriptor cache size. */
  1470. BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
  1471. EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
  1472. efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
  1473. /* Set RX descriptor cache size. Set low watermark to size-8, as
  1474. * this allows most efficient prefetching.
  1475. */
  1476. BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
  1477. EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
  1478. efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
  1479. EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
  1480. efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
  1481. /* Program INT_KER address */
  1482. EFX_POPULATE_OWORD_2(temp,
  1483. FRF_AZ_NORM_INT_VEC_DIS_KER,
  1484. EFX_INT_MODE_USE_MSI(efx),
  1485. FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
  1486. efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
  1487. if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
  1488. /* Use an interrupt level unused by event queues */
  1489. efx->irq_level = 0x1f;
  1490. else
  1491. /* Use a valid MSI-X vector */
  1492. efx->irq_level = 0;
  1493. /* Enable all the genuinely fatal interrupts. (They are still
  1494. * masked by the overall interrupt mask, controlled by
  1495. * falcon_interrupts()).
  1496. *
  1497. * Note: All other fatal interrupts are enabled
  1498. */
  1499. EFX_POPULATE_OWORD_3(temp,
  1500. FRF_AZ_ILL_ADR_INT_KER_EN, 1,
  1501. FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
  1502. FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
  1503. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
  1504. EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
  1505. EFX_INVERT_OWORD(temp);
  1506. efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
  1507. efx_nic_push_rx_indir_table(efx);
  1508. /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
  1509. * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
  1510. */
  1511. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  1512. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
  1513. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
  1514. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
  1515. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
  1516. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
  1517. /* Enable SW_EV to inherit in char driver - assume harmless here */
  1518. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
  1519. /* Prefetch threshold 2 => fetch when descriptor cache half empty */
  1520. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
  1521. /* Disable hardware watchdog which can misfire */
  1522. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
  1523. /* Squash TX of packets of 16 bytes or less */
  1524. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1525. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  1526. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  1527. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  1528. EFX_POPULATE_OWORD_4(temp,
  1529. /* Default values */
  1530. FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
  1531. FRF_BZ_TX_PACE_SB_AF, 0xb,
  1532. FRF_BZ_TX_PACE_FB_BASE, 0,
  1533. /* Allow large pace values in the
  1534. * fast bin. */
  1535. FRF_BZ_TX_PACE_BIN_TH,
  1536. FFE_BZ_TX_PACE_RESERVED);
  1537. efx_writeo(efx, &temp, FR_BZ_TX_PACE);
  1538. }
  1539. }
  1540. /* Register dump */
  1541. #define REGISTER_REVISION_A 1
  1542. #define REGISTER_REVISION_B 2
  1543. #define REGISTER_REVISION_C 3
  1544. #define REGISTER_REVISION_Z 3 /* latest revision */
  1545. struct efx_nic_reg {
  1546. u32 offset:24;
  1547. u32 min_revision:2, max_revision:2;
  1548. };
  1549. #define REGISTER(name, min_rev, max_rev) { \
  1550. FR_ ## min_rev ## max_rev ## _ ## name, \
  1551. REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
  1552. }
  1553. #define REGISTER_AA(name) REGISTER(name, A, A)
  1554. #define REGISTER_AB(name) REGISTER(name, A, B)
  1555. #define REGISTER_AZ(name) REGISTER(name, A, Z)
  1556. #define REGISTER_BB(name) REGISTER(name, B, B)
  1557. #define REGISTER_BZ(name) REGISTER(name, B, Z)
  1558. #define REGISTER_CZ(name) REGISTER(name, C, Z)
  1559. static const struct efx_nic_reg efx_nic_regs[] = {
  1560. REGISTER_AZ(ADR_REGION),
  1561. REGISTER_AZ(INT_EN_KER),
  1562. REGISTER_BZ(INT_EN_CHAR),
  1563. REGISTER_AZ(INT_ADR_KER),
  1564. REGISTER_BZ(INT_ADR_CHAR),
  1565. /* INT_ACK_KER is WO */
  1566. /* INT_ISR0 is RC */
  1567. REGISTER_AZ(HW_INIT),
  1568. REGISTER_CZ(USR_EV_CFG),
  1569. REGISTER_AB(EE_SPI_HCMD),
  1570. REGISTER_AB(EE_SPI_HADR),
  1571. REGISTER_AB(EE_SPI_HDATA),
  1572. REGISTER_AB(EE_BASE_PAGE),
  1573. REGISTER_AB(EE_VPD_CFG0),
  1574. /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
  1575. /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
  1576. /* PCIE_CORE_INDIRECT is indirect */
  1577. REGISTER_AB(NIC_STAT),
  1578. REGISTER_AB(GPIO_CTL),
  1579. REGISTER_AB(GLB_CTL),
  1580. /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
  1581. REGISTER_BZ(DP_CTRL),
  1582. REGISTER_AZ(MEM_STAT),
  1583. REGISTER_AZ(CS_DEBUG),
  1584. REGISTER_AZ(ALTERA_BUILD),
  1585. REGISTER_AZ(CSR_SPARE),
  1586. REGISTER_AB(PCIE_SD_CTL0123),
  1587. REGISTER_AB(PCIE_SD_CTL45),
  1588. REGISTER_AB(PCIE_PCS_CTL_STAT),
  1589. /* DEBUG_DATA_OUT is not used */
  1590. /* DRV_EV is WO */
  1591. REGISTER_AZ(EVQ_CTL),
  1592. REGISTER_AZ(EVQ_CNT1),
  1593. REGISTER_AZ(EVQ_CNT2),
  1594. REGISTER_AZ(BUF_TBL_CFG),
  1595. REGISTER_AZ(SRM_RX_DC_CFG),
  1596. REGISTER_AZ(SRM_TX_DC_CFG),
  1597. REGISTER_AZ(SRM_CFG),
  1598. /* BUF_TBL_UPD is WO */
  1599. REGISTER_AZ(SRM_UPD_EVQ),
  1600. REGISTER_AZ(SRAM_PARITY),
  1601. REGISTER_AZ(RX_CFG),
  1602. REGISTER_BZ(RX_FILTER_CTL),
  1603. /* RX_FLUSH_DESCQ is WO */
  1604. REGISTER_AZ(RX_DC_CFG),
  1605. REGISTER_AZ(RX_DC_PF_WM),
  1606. REGISTER_BZ(RX_RSS_TKEY),
  1607. /* RX_NODESC_DROP is RC */
  1608. REGISTER_AA(RX_SELF_RST),
  1609. /* RX_DEBUG, RX_PUSH_DROP are not used */
  1610. REGISTER_CZ(RX_RSS_IPV6_REG1),
  1611. REGISTER_CZ(RX_RSS_IPV6_REG2),
  1612. REGISTER_CZ(RX_RSS_IPV6_REG3),
  1613. /* TX_FLUSH_DESCQ is WO */
  1614. REGISTER_AZ(TX_DC_CFG),
  1615. REGISTER_AA(TX_CHKSM_CFG),
  1616. REGISTER_AZ(TX_CFG),
  1617. /* TX_PUSH_DROP is not used */
  1618. REGISTER_AZ(TX_RESERVED),
  1619. REGISTER_BZ(TX_PACE),
  1620. /* TX_PACE_DROP_QID is RC */
  1621. REGISTER_BB(TX_VLAN),
  1622. REGISTER_BZ(TX_IPFIL_PORTEN),
  1623. REGISTER_AB(MD_TXD),
  1624. REGISTER_AB(MD_RXD),
  1625. REGISTER_AB(MD_CS),
  1626. REGISTER_AB(MD_PHY_ADR),
  1627. REGISTER_AB(MD_ID),
  1628. /* MD_STAT is RC */
  1629. REGISTER_AB(MAC_STAT_DMA),
  1630. REGISTER_AB(MAC_CTRL),
  1631. REGISTER_BB(GEN_MODE),
  1632. REGISTER_AB(MAC_MC_HASH_REG0),
  1633. REGISTER_AB(MAC_MC_HASH_REG1),
  1634. REGISTER_AB(GM_CFG1),
  1635. REGISTER_AB(GM_CFG2),
  1636. /* GM_IPG and GM_HD are not used */
  1637. REGISTER_AB(GM_MAX_FLEN),
  1638. /* GM_TEST is not used */
  1639. REGISTER_AB(GM_ADR1),
  1640. REGISTER_AB(GM_ADR2),
  1641. REGISTER_AB(GMF_CFG0),
  1642. REGISTER_AB(GMF_CFG1),
  1643. REGISTER_AB(GMF_CFG2),
  1644. REGISTER_AB(GMF_CFG3),
  1645. REGISTER_AB(GMF_CFG4),
  1646. REGISTER_AB(GMF_CFG5),
  1647. REGISTER_BB(TX_SRC_MAC_CTL),
  1648. REGISTER_AB(XM_ADR_LO),
  1649. REGISTER_AB(XM_ADR_HI),
  1650. REGISTER_AB(XM_GLB_CFG),
  1651. REGISTER_AB(XM_TX_CFG),
  1652. REGISTER_AB(XM_RX_CFG),
  1653. REGISTER_AB(XM_MGT_INT_MASK),
  1654. REGISTER_AB(XM_FC),
  1655. REGISTER_AB(XM_PAUSE_TIME),
  1656. REGISTER_AB(XM_TX_PARAM),
  1657. REGISTER_AB(XM_RX_PARAM),
  1658. /* XM_MGT_INT_MSK (note no 'A') is RC */
  1659. REGISTER_AB(XX_PWR_RST),
  1660. REGISTER_AB(XX_SD_CTL),
  1661. REGISTER_AB(XX_TXDRV_CTL),
  1662. /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
  1663. /* XX_CORE_STAT is partly RC */
  1664. };
  1665. struct efx_nic_reg_table {
  1666. u32 offset:24;
  1667. u32 min_revision:2, max_revision:2;
  1668. u32 step:6, rows:21;
  1669. };
  1670. #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
  1671. offset, \
  1672. REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
  1673. step, rows \
  1674. }
  1675. #define REGISTER_TABLE(name, min_rev, max_rev) \
  1676. REGISTER_TABLE_DIMENSIONS( \
  1677. name, FR_ ## min_rev ## max_rev ## _ ## name, \
  1678. min_rev, max_rev, \
  1679. FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
  1680. FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
  1681. #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
  1682. #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
  1683. #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
  1684. #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
  1685. #define REGISTER_TABLE_BB_CZ(name) \
  1686. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
  1687. FR_BZ_ ## name ## _STEP, \
  1688. FR_BB_ ## name ## _ROWS), \
  1689. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
  1690. FR_BZ_ ## name ## _STEP, \
  1691. FR_CZ_ ## name ## _ROWS)
  1692. #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
  1693. static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
  1694. /* DRIVER is not used */
  1695. /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
  1696. REGISTER_TABLE_BB(TX_IPFIL_TBL),
  1697. REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
  1698. REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
  1699. REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
  1700. REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
  1701. REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
  1702. REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
  1703. REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
  1704. /* We can't reasonably read all of the buffer table (up to 8MB!).
  1705. * However this driver will only use a few entries. Reading
  1706. * 1K entries allows for some expansion of queue count and
  1707. * size before we need to change the version. */
  1708. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
  1709. A, A, 8, 1024),
  1710. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
  1711. B, Z, 8, 1024),
  1712. REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
  1713. REGISTER_TABLE_BB_CZ(TIMER_TBL),
  1714. REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
  1715. REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
  1716. /* TX_FILTER_TBL0 is huge and not used by this driver */
  1717. REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
  1718. REGISTER_TABLE_CZ(MC_TREG_SMEM),
  1719. /* MSIX_PBA_TABLE is not mapped */
  1720. /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
  1721. REGISTER_TABLE_BZ(RX_FILTER_TBL0),
  1722. };
  1723. size_t efx_nic_get_regs_len(struct efx_nic *efx)
  1724. {
  1725. const struct efx_nic_reg *reg;
  1726. const struct efx_nic_reg_table *table;
  1727. size_t len = 0;
  1728. for (reg = efx_nic_regs;
  1729. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  1730. reg++)
  1731. if (efx->type->revision >= reg->min_revision &&
  1732. efx->type->revision <= reg->max_revision)
  1733. len += sizeof(efx_oword_t);
  1734. for (table = efx_nic_reg_tables;
  1735. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  1736. table++)
  1737. if (efx->type->revision >= table->min_revision &&
  1738. efx->type->revision <= table->max_revision)
  1739. len += table->rows * min_t(size_t, table->step, 16);
  1740. return len;
  1741. }
  1742. void efx_nic_get_regs(struct efx_nic *efx, void *buf)
  1743. {
  1744. const struct efx_nic_reg *reg;
  1745. const struct efx_nic_reg_table *table;
  1746. for (reg = efx_nic_regs;
  1747. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  1748. reg++) {
  1749. if (efx->type->revision >= reg->min_revision &&
  1750. efx->type->revision <= reg->max_revision) {
  1751. efx_reado(efx, (efx_oword_t *)buf, reg->offset);
  1752. buf += sizeof(efx_oword_t);
  1753. }
  1754. }
  1755. for (table = efx_nic_reg_tables;
  1756. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  1757. table++) {
  1758. size_t size, i;
  1759. if (!(efx->type->revision >= table->min_revision &&
  1760. efx->type->revision <= table->max_revision))
  1761. continue;
  1762. size = min_t(size_t, table->step, 16);
  1763. for (i = 0; i < table->rows; i++) {
  1764. switch (table->step) {
  1765. case 4: /* 32-bit register or SRAM */
  1766. efx_readd_table(efx, buf, table->offset, i);
  1767. break;
  1768. case 8: /* 64-bit SRAM */
  1769. efx_sram_readq(efx,
  1770. efx->membase + table->offset,
  1771. buf, i);
  1772. break;
  1773. case 16: /* 128-bit register */
  1774. efx_reado_table(efx, buf, table->offset, i);
  1775. break;
  1776. case 32: /* 128-bit register, interleaved */
  1777. efx_reado_table(efx, buf, table->offset, 2 * i);
  1778. break;
  1779. default:
  1780. WARN_ON(1);
  1781. return;
  1782. }
  1783. buf += size;
  1784. }
  1785. }
  1786. }