qlge_main.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/module.h>
  13. #include <linux/list.h>
  14. #include <linux/pci.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sched.h>
  18. #include <linux/slab.h>
  19. #include <linux/dmapool.h>
  20. #include <linux/mempool.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/kthread.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/errno.h>
  25. #include <linux/ioport.h>
  26. #include <linux/in.h>
  27. #include <linux/ip.h>
  28. #include <linux/ipv6.h>
  29. #include <net/ipv6.h>
  30. #include <linux/tcp.h>
  31. #include <linux/udp.h>
  32. #include <linux/if_arp.h>
  33. #include <linux/if_ether.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/prefetch.h>
  43. #include <net/ip6_checksum.h>
  44. #include "qlge.h"
  45. char qlge_driver_name[] = DRV_NAME;
  46. const char qlge_driver_version[] = DRV_VERSION;
  47. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  48. MODULE_DESCRIPTION(DRV_STRING " ");
  49. MODULE_LICENSE("GPL");
  50. MODULE_VERSION(DRV_VERSION);
  51. static const u32 default_msg =
  52. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  53. /* NETIF_MSG_TIMER | */
  54. NETIF_MSG_IFDOWN |
  55. NETIF_MSG_IFUP |
  56. NETIF_MSG_RX_ERR |
  57. NETIF_MSG_TX_ERR |
  58. /* NETIF_MSG_TX_QUEUED | */
  59. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  60. /* NETIF_MSG_PKTDATA | */
  61. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  62. static int debug = -1; /* defaults above */
  63. module_param(debug, int, 0664);
  64. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65. #define MSIX_IRQ 0
  66. #define MSI_IRQ 1
  67. #define LEG_IRQ 2
  68. static int qlge_irq_type = MSIX_IRQ;
  69. module_param(qlge_irq_type, int, 0664);
  70. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  71. static int qlge_mpi_coredump;
  72. module_param(qlge_mpi_coredump, int, 0);
  73. MODULE_PARM_DESC(qlge_mpi_coredump,
  74. "Option to enable MPI firmware dump. "
  75. "Default is OFF - Do Not allocate memory. ");
  76. static int qlge_force_coredump;
  77. module_param(qlge_force_coredump, int, 0);
  78. MODULE_PARM_DESC(qlge_force_coredump,
  79. "Option to allow force of firmware core dump. "
  80. "Default is OFF - Do not allow.");
  81. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  83. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  84. /* required last entry */
  85. {0,}
  86. };
  87. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  88. static int ql_wol(struct ql_adapter *qdev);
  89. static void qlge_set_multicast_list(struct net_device *ndev);
  90. /* This hardware semaphore causes exclusive access to
  91. * resources shared between the NIC driver, MPI firmware,
  92. * FCOE firmware and the FC driver.
  93. */
  94. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  95. {
  96. u32 sem_bits = 0;
  97. switch (sem_mask) {
  98. case SEM_XGMAC0_MASK:
  99. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  100. break;
  101. case SEM_XGMAC1_MASK:
  102. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  103. break;
  104. case SEM_ICB_MASK:
  105. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  106. break;
  107. case SEM_MAC_ADDR_MASK:
  108. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  109. break;
  110. case SEM_FLASH_MASK:
  111. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  112. break;
  113. case SEM_PROBE_MASK:
  114. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  115. break;
  116. case SEM_RT_IDX_MASK:
  117. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  118. break;
  119. case SEM_PROC_REG_MASK:
  120. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  121. break;
  122. default:
  123. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  124. return -EINVAL;
  125. }
  126. ql_write32(qdev, SEM, sem_bits | sem_mask);
  127. return !(ql_read32(qdev, SEM) & sem_bits);
  128. }
  129. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  130. {
  131. unsigned int wait_count = 30;
  132. do {
  133. if (!ql_sem_trylock(qdev, sem_mask))
  134. return 0;
  135. udelay(100);
  136. } while (--wait_count);
  137. return -ETIMEDOUT;
  138. }
  139. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  140. {
  141. ql_write32(qdev, SEM, sem_mask);
  142. ql_read32(qdev, SEM); /* flush */
  143. }
  144. /* This function waits for a specific bit to come ready
  145. * in a given register. It is used mostly by the initialize
  146. * process, but is also used in kernel thread API such as
  147. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  148. */
  149. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  150. {
  151. u32 temp;
  152. int count = UDELAY_COUNT;
  153. while (count) {
  154. temp = ql_read32(qdev, reg);
  155. /* check for errors */
  156. if (temp & err_bit) {
  157. netif_alert(qdev, probe, qdev->ndev,
  158. "register 0x%.08x access error, value = 0x%.08x!.\n",
  159. reg, temp);
  160. return -EIO;
  161. } else if (temp & bit)
  162. return 0;
  163. udelay(UDELAY_DELAY);
  164. count--;
  165. }
  166. netif_alert(qdev, probe, qdev->ndev,
  167. "Timed out waiting for reg %x to come ready.\n", reg);
  168. return -ETIMEDOUT;
  169. }
  170. /* The CFG register is used to download TX and RX control blocks
  171. * to the chip. This function waits for an operation to complete.
  172. */
  173. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  174. {
  175. int count = UDELAY_COUNT;
  176. u32 temp;
  177. while (count) {
  178. temp = ql_read32(qdev, CFG);
  179. if (temp & CFG_LE)
  180. return -EIO;
  181. if (!(temp & bit))
  182. return 0;
  183. udelay(UDELAY_DELAY);
  184. count--;
  185. }
  186. return -ETIMEDOUT;
  187. }
  188. /* Used to issue init control blocks to hw. Maps control block,
  189. * sets address, triggers download, waits for completion.
  190. */
  191. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  192. u16 q_id)
  193. {
  194. u64 map;
  195. int status = 0;
  196. int direction;
  197. u32 mask;
  198. u32 value;
  199. direction =
  200. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  201. PCI_DMA_FROMDEVICE;
  202. map = pci_map_single(qdev->pdev, ptr, size, direction);
  203. if (pci_dma_mapping_error(qdev->pdev, map)) {
  204. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  205. return -ENOMEM;
  206. }
  207. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  208. if (status)
  209. return status;
  210. status = ql_wait_cfg(qdev, bit);
  211. if (status) {
  212. netif_err(qdev, ifup, qdev->ndev,
  213. "Timed out waiting for CFG to come ready.\n");
  214. goto exit;
  215. }
  216. ql_write32(qdev, ICB_L, (u32) map);
  217. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  218. mask = CFG_Q_MASK | (bit << 16);
  219. value = bit | (q_id << CFG_Q_SHIFT);
  220. ql_write32(qdev, CFG, (mask | value));
  221. /*
  222. * Wait for the bit to clear after signaling hw.
  223. */
  224. status = ql_wait_cfg(qdev, bit);
  225. exit:
  226. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  227. pci_unmap_single(qdev->pdev, map, size, direction);
  228. return status;
  229. }
  230. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  231. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  232. u32 *value)
  233. {
  234. u32 offset = 0;
  235. int status;
  236. switch (type) {
  237. case MAC_ADDR_TYPE_MULTI_MAC:
  238. case MAC_ADDR_TYPE_CAM_MAC:
  239. {
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. status =
  255. ql_wait_reg_rdy(qdev,
  256. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  257. if (status)
  258. goto exit;
  259. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  260. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  261. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  262. status =
  263. ql_wait_reg_rdy(qdev,
  264. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  265. if (status)
  266. goto exit;
  267. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  268. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  269. status =
  270. ql_wait_reg_rdy(qdev,
  271. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  272. if (status)
  273. goto exit;
  274. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  275. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  276. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  277. status =
  278. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  279. MAC_ADDR_MR, 0);
  280. if (status)
  281. goto exit;
  282. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  283. }
  284. break;
  285. }
  286. case MAC_ADDR_TYPE_VLAN:
  287. case MAC_ADDR_TYPE_MULTI_FLTR:
  288. default:
  289. netif_crit(qdev, ifup, qdev->ndev,
  290. "Address type %d not yet supported.\n", type);
  291. status = -EPERM;
  292. }
  293. exit:
  294. return status;
  295. }
  296. /* Set up a MAC, multicast or VLAN address for the
  297. * inbound frame matching.
  298. */
  299. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  300. u16 index)
  301. {
  302. u32 offset = 0;
  303. int status = 0;
  304. switch (type) {
  305. case MAC_ADDR_TYPE_MULTI_MAC:
  306. {
  307. u32 upper = (addr[0] << 8) | addr[1];
  308. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  309. (addr[4] << 8) | (addr[5]);
  310. status =
  311. ql_wait_reg_rdy(qdev,
  312. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  313. if (status)
  314. goto exit;
  315. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  316. (index << MAC_ADDR_IDX_SHIFT) |
  317. type | MAC_ADDR_E);
  318. ql_write32(qdev, MAC_ADDR_DATA, lower);
  319. status =
  320. ql_wait_reg_rdy(qdev,
  321. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  322. if (status)
  323. goto exit;
  324. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  325. (index << MAC_ADDR_IDX_SHIFT) |
  326. type | MAC_ADDR_E);
  327. ql_write32(qdev, MAC_ADDR_DATA, upper);
  328. status =
  329. ql_wait_reg_rdy(qdev,
  330. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  331. if (status)
  332. goto exit;
  333. break;
  334. }
  335. case MAC_ADDR_TYPE_CAM_MAC:
  336. {
  337. u32 cam_output;
  338. u32 upper = (addr[0] << 8) | addr[1];
  339. u32 lower =
  340. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  341. (addr[5]);
  342. status =
  343. ql_wait_reg_rdy(qdev,
  344. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  345. if (status)
  346. goto exit;
  347. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  348. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  349. type); /* type */
  350. ql_write32(qdev, MAC_ADDR_DATA, lower);
  351. status =
  352. ql_wait_reg_rdy(qdev,
  353. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  354. if (status)
  355. goto exit;
  356. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  357. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  358. type); /* type */
  359. ql_write32(qdev, MAC_ADDR_DATA, upper);
  360. status =
  361. ql_wait_reg_rdy(qdev,
  362. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  363. if (status)
  364. goto exit;
  365. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  366. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  367. type); /* type */
  368. /* This field should also include the queue id
  369. and possibly the function id. Right now we hardcode
  370. the route field to NIC core.
  371. */
  372. cam_output = (CAM_OUT_ROUTE_NIC |
  373. (qdev->
  374. func << CAM_OUT_FUNC_SHIFT) |
  375. (0 << CAM_OUT_CQ_ID_SHIFT));
  376. if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
  377. cam_output |= CAM_OUT_RV;
  378. /* route to NIC core */
  379. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  380. break;
  381. }
  382. case MAC_ADDR_TYPE_VLAN:
  383. {
  384. u32 enable_bit = *((u32 *) &addr[0]);
  385. /* For VLAN, the addr actually holds a bit that
  386. * either enables or disables the vlan id we are
  387. * addressing. It's either MAC_ADDR_E on or off.
  388. * That's bit-27 we're talking about.
  389. */
  390. status =
  391. ql_wait_reg_rdy(qdev,
  392. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  393. if (status)
  394. goto exit;
  395. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  396. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  397. type | /* type */
  398. enable_bit); /* enable/disable */
  399. break;
  400. }
  401. case MAC_ADDR_TYPE_MULTI_FLTR:
  402. default:
  403. netif_crit(qdev, ifup, qdev->ndev,
  404. "Address type %d not yet supported.\n", type);
  405. status = -EPERM;
  406. }
  407. exit:
  408. return status;
  409. }
  410. /* Set or clear MAC address in hardware. We sometimes
  411. * have to clear it to prevent wrong frame routing
  412. * especially in a bonding environment.
  413. */
  414. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  415. {
  416. int status;
  417. char zero_mac_addr[ETH_ALEN];
  418. char *addr;
  419. if (set) {
  420. addr = &qdev->current_mac_addr[0];
  421. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  422. "Set Mac addr %pM\n", addr);
  423. } else {
  424. memset(zero_mac_addr, 0, ETH_ALEN);
  425. addr = &zero_mac_addr[0];
  426. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  427. "Clearing MAC address\n");
  428. }
  429. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  430. if (status)
  431. return status;
  432. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  433. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  434. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  435. if (status)
  436. netif_err(qdev, ifup, qdev->ndev,
  437. "Failed to init mac address.\n");
  438. return status;
  439. }
  440. void ql_link_on(struct ql_adapter *qdev)
  441. {
  442. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  443. netif_carrier_on(qdev->ndev);
  444. ql_set_mac_addr(qdev, 1);
  445. }
  446. void ql_link_off(struct ql_adapter *qdev)
  447. {
  448. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  449. netif_carrier_off(qdev->ndev);
  450. ql_set_mac_addr(qdev, 0);
  451. }
  452. /* Get a specific frame routing value from the CAM.
  453. * Used for debug and reg dump.
  454. */
  455. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  456. {
  457. int status = 0;
  458. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  459. if (status)
  460. goto exit;
  461. ql_write32(qdev, RT_IDX,
  462. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  463. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  464. if (status)
  465. goto exit;
  466. *value = ql_read32(qdev, RT_DATA);
  467. exit:
  468. return status;
  469. }
  470. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  471. * to route different frame types to various inbound queues. We send broadcast/
  472. * multicast/error frames to the default queue for slow handling,
  473. * and CAM hit/RSS frames to the fast handling queues.
  474. */
  475. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  476. int enable)
  477. {
  478. int status = -EINVAL; /* Return error if no mask match. */
  479. u32 value = 0;
  480. switch (mask) {
  481. case RT_IDX_CAM_HIT:
  482. {
  483. value = RT_IDX_DST_CAM_Q | /* dest */
  484. RT_IDX_TYPE_NICQ | /* type */
  485. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  486. break;
  487. }
  488. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  489. {
  490. value = RT_IDX_DST_DFLT_Q | /* dest */
  491. RT_IDX_TYPE_NICQ | /* type */
  492. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  493. break;
  494. }
  495. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  496. {
  497. value = RT_IDX_DST_DFLT_Q | /* dest */
  498. RT_IDX_TYPE_NICQ | /* type */
  499. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  500. break;
  501. }
  502. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  503. {
  504. value = RT_IDX_DST_DFLT_Q | /* dest */
  505. RT_IDX_TYPE_NICQ | /* type */
  506. (RT_IDX_IP_CSUM_ERR_SLOT <<
  507. RT_IDX_IDX_SHIFT); /* index */
  508. break;
  509. }
  510. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  511. {
  512. value = RT_IDX_DST_DFLT_Q | /* dest */
  513. RT_IDX_TYPE_NICQ | /* type */
  514. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  515. RT_IDX_IDX_SHIFT); /* index */
  516. break;
  517. }
  518. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  519. {
  520. value = RT_IDX_DST_DFLT_Q | /* dest */
  521. RT_IDX_TYPE_NICQ | /* type */
  522. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  523. break;
  524. }
  525. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  526. {
  527. value = RT_IDX_DST_DFLT_Q | /* dest */
  528. RT_IDX_TYPE_NICQ | /* type */
  529. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  530. break;
  531. }
  532. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  533. {
  534. value = RT_IDX_DST_DFLT_Q | /* dest */
  535. RT_IDX_TYPE_NICQ | /* type */
  536. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  537. break;
  538. }
  539. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  540. {
  541. value = RT_IDX_DST_RSS | /* dest */
  542. RT_IDX_TYPE_NICQ | /* type */
  543. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  544. break;
  545. }
  546. case 0: /* Clear the E-bit on an entry. */
  547. {
  548. value = RT_IDX_DST_DFLT_Q | /* dest */
  549. RT_IDX_TYPE_NICQ | /* type */
  550. (index << RT_IDX_IDX_SHIFT);/* index */
  551. break;
  552. }
  553. default:
  554. netif_err(qdev, ifup, qdev->ndev,
  555. "Mask type %d not yet supported.\n", mask);
  556. status = -EPERM;
  557. goto exit;
  558. }
  559. if (value) {
  560. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  561. if (status)
  562. goto exit;
  563. value |= (enable ? RT_IDX_E : 0);
  564. ql_write32(qdev, RT_IDX, value);
  565. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  566. }
  567. exit:
  568. return status;
  569. }
  570. static void ql_enable_interrupts(struct ql_adapter *qdev)
  571. {
  572. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  573. }
  574. static void ql_disable_interrupts(struct ql_adapter *qdev)
  575. {
  576. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  577. }
  578. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  579. * Otherwise, we may have multiple outstanding workers and don't want to
  580. * enable until the last one finishes. In this case, the irq_cnt gets
  581. * incremented every time we queue a worker and decremented every time
  582. * a worker finishes. Once it hits zero we enable the interrupt.
  583. */
  584. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  585. {
  586. u32 var = 0;
  587. unsigned long hw_flags = 0;
  588. struct intr_context *ctx = qdev->intr_context + intr;
  589. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  590. /* Always enable if we're MSIX multi interrupts and
  591. * it's not the default (zeroeth) interrupt.
  592. */
  593. ql_write32(qdev, INTR_EN,
  594. ctx->intr_en_mask);
  595. var = ql_read32(qdev, STS);
  596. return var;
  597. }
  598. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  599. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  600. ql_write32(qdev, INTR_EN,
  601. ctx->intr_en_mask);
  602. var = ql_read32(qdev, STS);
  603. }
  604. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  605. return var;
  606. }
  607. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  608. {
  609. u32 var = 0;
  610. struct intr_context *ctx;
  611. /* HW disables for us if we're MSIX multi interrupts and
  612. * it's not the default (zeroeth) interrupt.
  613. */
  614. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  615. return 0;
  616. ctx = qdev->intr_context + intr;
  617. spin_lock(&qdev->hw_lock);
  618. if (!atomic_read(&ctx->irq_cnt)) {
  619. ql_write32(qdev, INTR_EN,
  620. ctx->intr_dis_mask);
  621. var = ql_read32(qdev, STS);
  622. }
  623. atomic_inc(&ctx->irq_cnt);
  624. spin_unlock(&qdev->hw_lock);
  625. return var;
  626. }
  627. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  628. {
  629. int i;
  630. for (i = 0; i < qdev->intr_count; i++) {
  631. /* The enable call does a atomic_dec_and_test
  632. * and enables only if the result is zero.
  633. * So we precharge it here.
  634. */
  635. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  636. i == 0))
  637. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  638. ql_enable_completion_interrupt(qdev, i);
  639. }
  640. }
  641. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  642. {
  643. int status, i;
  644. u16 csum = 0;
  645. __le16 *flash = (__le16 *)&qdev->flash;
  646. status = strncmp((char *)&qdev->flash, str, 4);
  647. if (status) {
  648. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  649. return status;
  650. }
  651. for (i = 0; i < size; i++)
  652. csum += le16_to_cpu(*flash++);
  653. if (csum)
  654. netif_err(qdev, ifup, qdev->ndev,
  655. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  656. return csum;
  657. }
  658. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  659. {
  660. int status = 0;
  661. /* wait for reg to come ready */
  662. status = ql_wait_reg_rdy(qdev,
  663. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  664. if (status)
  665. goto exit;
  666. /* set up for reg read */
  667. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  668. /* wait for reg to come ready */
  669. status = ql_wait_reg_rdy(qdev,
  670. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  671. if (status)
  672. goto exit;
  673. /* This data is stored on flash as an array of
  674. * __le32. Since ql_read32() returns cpu endian
  675. * we need to swap it back.
  676. */
  677. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  678. exit:
  679. return status;
  680. }
  681. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  682. {
  683. u32 i, size;
  684. int status;
  685. __le32 *p = (__le32 *)&qdev->flash;
  686. u32 offset;
  687. u8 mac_addr[6];
  688. /* Get flash offset for function and adjust
  689. * for dword access.
  690. */
  691. if (!qdev->port)
  692. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  693. else
  694. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  695. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  696. return -ETIMEDOUT;
  697. size = sizeof(struct flash_params_8000) / sizeof(u32);
  698. for (i = 0; i < size; i++, p++) {
  699. status = ql_read_flash_word(qdev, i+offset, p);
  700. if (status) {
  701. netif_err(qdev, ifup, qdev->ndev,
  702. "Error reading flash.\n");
  703. goto exit;
  704. }
  705. }
  706. status = ql_validate_flash(qdev,
  707. sizeof(struct flash_params_8000) / sizeof(u16),
  708. "8000");
  709. if (status) {
  710. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  711. status = -EINVAL;
  712. goto exit;
  713. }
  714. /* Extract either manufacturer or BOFM modified
  715. * MAC address.
  716. */
  717. if (qdev->flash.flash_params_8000.data_type1 == 2)
  718. memcpy(mac_addr,
  719. qdev->flash.flash_params_8000.mac_addr1,
  720. qdev->ndev->addr_len);
  721. else
  722. memcpy(mac_addr,
  723. qdev->flash.flash_params_8000.mac_addr,
  724. qdev->ndev->addr_len);
  725. if (!is_valid_ether_addr(mac_addr)) {
  726. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  727. status = -EINVAL;
  728. goto exit;
  729. }
  730. memcpy(qdev->ndev->dev_addr,
  731. mac_addr,
  732. qdev->ndev->addr_len);
  733. exit:
  734. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  735. return status;
  736. }
  737. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  738. {
  739. int i;
  740. int status;
  741. __le32 *p = (__le32 *)&qdev->flash;
  742. u32 offset = 0;
  743. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  744. /* Second function's parameters follow the first
  745. * function's.
  746. */
  747. if (qdev->port)
  748. offset = size;
  749. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  750. return -ETIMEDOUT;
  751. for (i = 0; i < size; i++, p++) {
  752. status = ql_read_flash_word(qdev, i+offset, p);
  753. if (status) {
  754. netif_err(qdev, ifup, qdev->ndev,
  755. "Error reading flash.\n");
  756. goto exit;
  757. }
  758. }
  759. status = ql_validate_flash(qdev,
  760. sizeof(struct flash_params_8012) / sizeof(u16),
  761. "8012");
  762. if (status) {
  763. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  764. status = -EINVAL;
  765. goto exit;
  766. }
  767. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  768. status = -EINVAL;
  769. goto exit;
  770. }
  771. memcpy(qdev->ndev->dev_addr,
  772. qdev->flash.flash_params_8012.mac_addr,
  773. qdev->ndev->addr_len);
  774. exit:
  775. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  776. return status;
  777. }
  778. /* xgmac register are located behind the xgmac_addr and xgmac_data
  779. * register pair. Each read/write requires us to wait for the ready
  780. * bit before reading/writing the data.
  781. */
  782. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  783. {
  784. int status;
  785. /* wait for reg to come ready */
  786. status = ql_wait_reg_rdy(qdev,
  787. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  788. if (status)
  789. return status;
  790. /* write the data to the data reg */
  791. ql_write32(qdev, XGMAC_DATA, data);
  792. /* trigger the write */
  793. ql_write32(qdev, XGMAC_ADDR, reg);
  794. return status;
  795. }
  796. /* xgmac register are located behind the xgmac_addr and xgmac_data
  797. * register pair. Each read/write requires us to wait for the ready
  798. * bit before reading/writing the data.
  799. */
  800. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  801. {
  802. int status = 0;
  803. /* wait for reg to come ready */
  804. status = ql_wait_reg_rdy(qdev,
  805. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  806. if (status)
  807. goto exit;
  808. /* set up for reg read */
  809. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  810. /* wait for reg to come ready */
  811. status = ql_wait_reg_rdy(qdev,
  812. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  813. if (status)
  814. goto exit;
  815. /* get the data */
  816. *data = ql_read32(qdev, XGMAC_DATA);
  817. exit:
  818. return status;
  819. }
  820. /* This is used for reading the 64-bit statistics regs. */
  821. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  822. {
  823. int status = 0;
  824. u32 hi = 0;
  825. u32 lo = 0;
  826. status = ql_read_xgmac_reg(qdev, reg, &lo);
  827. if (status)
  828. goto exit;
  829. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  830. if (status)
  831. goto exit;
  832. *data = (u64) lo | ((u64) hi << 32);
  833. exit:
  834. return status;
  835. }
  836. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  837. {
  838. int status;
  839. /*
  840. * Get MPI firmware version for driver banner
  841. * and ethool info.
  842. */
  843. status = ql_mb_about_fw(qdev);
  844. if (status)
  845. goto exit;
  846. status = ql_mb_get_fw_state(qdev);
  847. if (status)
  848. goto exit;
  849. /* Wake up a worker to get/set the TX/RX frame sizes. */
  850. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  851. exit:
  852. return status;
  853. }
  854. /* Take the MAC Core out of reset.
  855. * Enable statistics counting.
  856. * Take the transmitter/receiver out of reset.
  857. * This functionality may be done in the MPI firmware at a
  858. * later date.
  859. */
  860. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  861. {
  862. int status = 0;
  863. u32 data;
  864. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  865. /* Another function has the semaphore, so
  866. * wait for the port init bit to come ready.
  867. */
  868. netif_info(qdev, link, qdev->ndev,
  869. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  870. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  871. if (status) {
  872. netif_crit(qdev, link, qdev->ndev,
  873. "Port initialize timed out.\n");
  874. }
  875. return status;
  876. }
  877. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  878. /* Set the core reset. */
  879. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  880. if (status)
  881. goto end;
  882. data |= GLOBAL_CFG_RESET;
  883. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  884. if (status)
  885. goto end;
  886. /* Clear the core reset and turn on jumbo for receiver. */
  887. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  888. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  889. data |= GLOBAL_CFG_TX_STAT_EN;
  890. data |= GLOBAL_CFG_RX_STAT_EN;
  891. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  892. if (status)
  893. goto end;
  894. /* Enable transmitter, and clear it's reset. */
  895. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  896. if (status)
  897. goto end;
  898. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  899. data |= TX_CFG_EN; /* Enable the transmitter. */
  900. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  901. if (status)
  902. goto end;
  903. /* Enable receiver and clear it's reset. */
  904. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  905. if (status)
  906. goto end;
  907. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  908. data |= RX_CFG_EN; /* Enable the receiver. */
  909. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  910. if (status)
  911. goto end;
  912. /* Turn on jumbo. */
  913. status =
  914. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  915. if (status)
  916. goto end;
  917. status =
  918. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  919. if (status)
  920. goto end;
  921. /* Signal to the world that the port is enabled. */
  922. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  923. end:
  924. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  925. return status;
  926. }
  927. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  928. {
  929. return PAGE_SIZE << qdev->lbq_buf_order;
  930. }
  931. /* Get the next large buffer. */
  932. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  933. {
  934. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  935. rx_ring->lbq_curr_idx++;
  936. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  937. rx_ring->lbq_curr_idx = 0;
  938. rx_ring->lbq_free_cnt++;
  939. return lbq_desc;
  940. }
  941. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  942. struct rx_ring *rx_ring)
  943. {
  944. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  945. pci_dma_sync_single_for_cpu(qdev->pdev,
  946. dma_unmap_addr(lbq_desc, mapaddr),
  947. rx_ring->lbq_buf_size,
  948. PCI_DMA_FROMDEVICE);
  949. /* If it's the last chunk of our master page then
  950. * we unmap it.
  951. */
  952. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  953. == ql_lbq_block_size(qdev))
  954. pci_unmap_page(qdev->pdev,
  955. lbq_desc->p.pg_chunk.map,
  956. ql_lbq_block_size(qdev),
  957. PCI_DMA_FROMDEVICE);
  958. return lbq_desc;
  959. }
  960. /* Get the next small buffer. */
  961. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  962. {
  963. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  964. rx_ring->sbq_curr_idx++;
  965. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  966. rx_ring->sbq_curr_idx = 0;
  967. rx_ring->sbq_free_cnt++;
  968. return sbq_desc;
  969. }
  970. /* Update an rx ring index. */
  971. static void ql_update_cq(struct rx_ring *rx_ring)
  972. {
  973. rx_ring->cnsmr_idx++;
  974. rx_ring->curr_entry++;
  975. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  976. rx_ring->cnsmr_idx = 0;
  977. rx_ring->curr_entry = rx_ring->cq_base;
  978. }
  979. }
  980. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  981. {
  982. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  983. }
  984. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  985. struct bq_desc *lbq_desc)
  986. {
  987. if (!rx_ring->pg_chunk.page) {
  988. u64 map;
  989. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  990. GFP_ATOMIC,
  991. qdev->lbq_buf_order);
  992. if (unlikely(!rx_ring->pg_chunk.page)) {
  993. netif_err(qdev, drv, qdev->ndev,
  994. "page allocation failed.\n");
  995. return -ENOMEM;
  996. }
  997. rx_ring->pg_chunk.offset = 0;
  998. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  999. 0, ql_lbq_block_size(qdev),
  1000. PCI_DMA_FROMDEVICE);
  1001. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1002. __free_pages(rx_ring->pg_chunk.page,
  1003. qdev->lbq_buf_order);
  1004. netif_err(qdev, drv, qdev->ndev,
  1005. "PCI mapping failed.\n");
  1006. return -ENOMEM;
  1007. }
  1008. rx_ring->pg_chunk.map = map;
  1009. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1010. }
  1011. /* Copy the current master pg_chunk info
  1012. * to the current descriptor.
  1013. */
  1014. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1015. /* Adjust the master page chunk for next
  1016. * buffer get.
  1017. */
  1018. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1019. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1020. rx_ring->pg_chunk.page = NULL;
  1021. lbq_desc->p.pg_chunk.last_flag = 1;
  1022. } else {
  1023. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1024. get_page(rx_ring->pg_chunk.page);
  1025. lbq_desc->p.pg_chunk.last_flag = 0;
  1026. }
  1027. return 0;
  1028. }
  1029. /* Process (refill) a large buffer queue. */
  1030. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1031. {
  1032. u32 clean_idx = rx_ring->lbq_clean_idx;
  1033. u32 start_idx = clean_idx;
  1034. struct bq_desc *lbq_desc;
  1035. u64 map;
  1036. int i;
  1037. while (rx_ring->lbq_free_cnt > 32) {
  1038. for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
  1039. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1040. "lbq: try cleaning clean_idx = %d.\n",
  1041. clean_idx);
  1042. lbq_desc = &rx_ring->lbq[clean_idx];
  1043. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1044. rx_ring->lbq_clean_idx = clean_idx;
  1045. netif_err(qdev, ifup, qdev->ndev,
  1046. "Could not get a page chunk, i=%d, clean_idx =%d .\n",
  1047. i, clean_idx);
  1048. return;
  1049. }
  1050. map = lbq_desc->p.pg_chunk.map +
  1051. lbq_desc->p.pg_chunk.offset;
  1052. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1053. dma_unmap_len_set(lbq_desc, maplen,
  1054. rx_ring->lbq_buf_size);
  1055. *lbq_desc->addr = cpu_to_le64(map);
  1056. pci_dma_sync_single_for_device(qdev->pdev, map,
  1057. rx_ring->lbq_buf_size,
  1058. PCI_DMA_FROMDEVICE);
  1059. clean_idx++;
  1060. if (clean_idx == rx_ring->lbq_len)
  1061. clean_idx = 0;
  1062. }
  1063. rx_ring->lbq_clean_idx = clean_idx;
  1064. rx_ring->lbq_prod_idx += 16;
  1065. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1066. rx_ring->lbq_prod_idx = 0;
  1067. rx_ring->lbq_free_cnt -= 16;
  1068. }
  1069. if (start_idx != clean_idx) {
  1070. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1071. "lbq: updating prod idx = %d.\n",
  1072. rx_ring->lbq_prod_idx);
  1073. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1074. rx_ring->lbq_prod_idx_db_reg);
  1075. }
  1076. }
  1077. /* Process (refill) a small buffer queue. */
  1078. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1079. {
  1080. u32 clean_idx = rx_ring->sbq_clean_idx;
  1081. u32 start_idx = clean_idx;
  1082. struct bq_desc *sbq_desc;
  1083. u64 map;
  1084. int i;
  1085. while (rx_ring->sbq_free_cnt > 16) {
  1086. for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
  1087. sbq_desc = &rx_ring->sbq[clean_idx];
  1088. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1089. "sbq: try cleaning clean_idx = %d.\n",
  1090. clean_idx);
  1091. if (sbq_desc->p.skb == NULL) {
  1092. netif_printk(qdev, rx_status, KERN_DEBUG,
  1093. qdev->ndev,
  1094. "sbq: getting new skb for index %d.\n",
  1095. sbq_desc->index);
  1096. sbq_desc->p.skb =
  1097. netdev_alloc_skb(qdev->ndev,
  1098. SMALL_BUFFER_SIZE);
  1099. if (sbq_desc->p.skb == NULL) {
  1100. netif_err(qdev, probe, qdev->ndev,
  1101. "Couldn't get an skb.\n");
  1102. rx_ring->sbq_clean_idx = clean_idx;
  1103. return;
  1104. }
  1105. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1106. map = pci_map_single(qdev->pdev,
  1107. sbq_desc->p.skb->data,
  1108. rx_ring->sbq_buf_size,
  1109. PCI_DMA_FROMDEVICE);
  1110. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1111. netif_err(qdev, ifup, qdev->ndev,
  1112. "PCI mapping failed.\n");
  1113. rx_ring->sbq_clean_idx = clean_idx;
  1114. dev_kfree_skb_any(sbq_desc->p.skb);
  1115. sbq_desc->p.skb = NULL;
  1116. return;
  1117. }
  1118. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1119. dma_unmap_len_set(sbq_desc, maplen,
  1120. rx_ring->sbq_buf_size);
  1121. *sbq_desc->addr = cpu_to_le64(map);
  1122. }
  1123. clean_idx++;
  1124. if (clean_idx == rx_ring->sbq_len)
  1125. clean_idx = 0;
  1126. }
  1127. rx_ring->sbq_clean_idx = clean_idx;
  1128. rx_ring->sbq_prod_idx += 16;
  1129. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1130. rx_ring->sbq_prod_idx = 0;
  1131. rx_ring->sbq_free_cnt -= 16;
  1132. }
  1133. if (start_idx != clean_idx) {
  1134. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1135. "sbq: updating prod idx = %d.\n",
  1136. rx_ring->sbq_prod_idx);
  1137. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1138. rx_ring->sbq_prod_idx_db_reg);
  1139. }
  1140. }
  1141. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1142. struct rx_ring *rx_ring)
  1143. {
  1144. ql_update_sbq(qdev, rx_ring);
  1145. ql_update_lbq(qdev, rx_ring);
  1146. }
  1147. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1148. * fails at some stage, or from the interrupt when a tx completes.
  1149. */
  1150. static void ql_unmap_send(struct ql_adapter *qdev,
  1151. struct tx_ring_desc *tx_ring_desc, int mapped)
  1152. {
  1153. int i;
  1154. for (i = 0; i < mapped; i++) {
  1155. if (i == 0 || (i == 7 && mapped > 7)) {
  1156. /*
  1157. * Unmap the skb->data area, or the
  1158. * external sglist (AKA the Outbound
  1159. * Address List (OAL)).
  1160. * If its the zeroeth element, then it's
  1161. * the skb->data area. If it's the 7th
  1162. * element and there is more than 6 frags,
  1163. * then its an OAL.
  1164. */
  1165. if (i == 7) {
  1166. netif_printk(qdev, tx_done, KERN_DEBUG,
  1167. qdev->ndev,
  1168. "unmapping OAL area.\n");
  1169. }
  1170. pci_unmap_single(qdev->pdev,
  1171. dma_unmap_addr(&tx_ring_desc->map[i],
  1172. mapaddr),
  1173. dma_unmap_len(&tx_ring_desc->map[i],
  1174. maplen),
  1175. PCI_DMA_TODEVICE);
  1176. } else {
  1177. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1178. "unmapping frag %d.\n", i);
  1179. pci_unmap_page(qdev->pdev,
  1180. dma_unmap_addr(&tx_ring_desc->map[i],
  1181. mapaddr),
  1182. dma_unmap_len(&tx_ring_desc->map[i],
  1183. maplen), PCI_DMA_TODEVICE);
  1184. }
  1185. }
  1186. }
  1187. /* Map the buffers for this transmit. This will return
  1188. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1189. */
  1190. static int ql_map_send(struct ql_adapter *qdev,
  1191. struct ob_mac_iocb_req *mac_iocb_ptr,
  1192. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1193. {
  1194. int len = skb_headlen(skb);
  1195. dma_addr_t map;
  1196. int frag_idx, err, map_idx = 0;
  1197. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1198. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1199. if (frag_cnt) {
  1200. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1201. "frag_cnt = %d.\n", frag_cnt);
  1202. }
  1203. /*
  1204. * Map the skb buffer first.
  1205. */
  1206. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1207. err = pci_dma_mapping_error(qdev->pdev, map);
  1208. if (err) {
  1209. netif_err(qdev, tx_queued, qdev->ndev,
  1210. "PCI mapping failed with error: %d\n", err);
  1211. return NETDEV_TX_BUSY;
  1212. }
  1213. tbd->len = cpu_to_le32(len);
  1214. tbd->addr = cpu_to_le64(map);
  1215. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1216. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1217. map_idx++;
  1218. /*
  1219. * This loop fills the remainder of the 8 address descriptors
  1220. * in the IOCB. If there are more than 7 fragments, then the
  1221. * eighth address desc will point to an external list (OAL).
  1222. * When this happens, the remainder of the frags will be stored
  1223. * in this list.
  1224. */
  1225. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1226. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1227. tbd++;
  1228. if (frag_idx == 6 && frag_cnt > 7) {
  1229. /* Let's tack on an sglist.
  1230. * Our control block will now
  1231. * look like this:
  1232. * iocb->seg[0] = skb->data
  1233. * iocb->seg[1] = frag[0]
  1234. * iocb->seg[2] = frag[1]
  1235. * iocb->seg[3] = frag[2]
  1236. * iocb->seg[4] = frag[3]
  1237. * iocb->seg[5] = frag[4]
  1238. * iocb->seg[6] = frag[5]
  1239. * iocb->seg[7] = ptr to OAL (external sglist)
  1240. * oal->seg[0] = frag[6]
  1241. * oal->seg[1] = frag[7]
  1242. * oal->seg[2] = frag[8]
  1243. * oal->seg[3] = frag[9]
  1244. * oal->seg[4] = frag[10]
  1245. * etc...
  1246. */
  1247. /* Tack on the OAL in the eighth segment of IOCB. */
  1248. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1249. sizeof(struct oal),
  1250. PCI_DMA_TODEVICE);
  1251. err = pci_dma_mapping_error(qdev->pdev, map);
  1252. if (err) {
  1253. netif_err(qdev, tx_queued, qdev->ndev,
  1254. "PCI mapping outbound address list with error: %d\n",
  1255. err);
  1256. goto map_error;
  1257. }
  1258. tbd->addr = cpu_to_le64(map);
  1259. /*
  1260. * The length is the number of fragments
  1261. * that remain to be mapped times the length
  1262. * of our sglist (OAL).
  1263. */
  1264. tbd->len =
  1265. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1266. (frag_cnt - frag_idx)) | TX_DESC_C);
  1267. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1268. map);
  1269. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1270. sizeof(struct oal));
  1271. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1272. map_idx++;
  1273. }
  1274. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  1275. DMA_TO_DEVICE);
  1276. err = dma_mapping_error(&qdev->pdev->dev, map);
  1277. if (err) {
  1278. netif_err(qdev, tx_queued, qdev->ndev,
  1279. "PCI mapping frags failed with error: %d.\n",
  1280. err);
  1281. goto map_error;
  1282. }
  1283. tbd->addr = cpu_to_le64(map);
  1284. tbd->len = cpu_to_le32(skb_frag_size(frag));
  1285. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1286. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1287. skb_frag_size(frag));
  1288. }
  1289. /* Save the number of segments we've mapped. */
  1290. tx_ring_desc->map_cnt = map_idx;
  1291. /* Terminate the last segment. */
  1292. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1293. return NETDEV_TX_OK;
  1294. map_error:
  1295. /*
  1296. * If the first frag mapping failed, then i will be zero.
  1297. * This causes the unmap of the skb->data area. Otherwise
  1298. * we pass in the number of frags that mapped successfully
  1299. * so they can be umapped.
  1300. */
  1301. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1302. return NETDEV_TX_BUSY;
  1303. }
  1304. /* Process an inbound completion from an rx ring. */
  1305. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1306. struct rx_ring *rx_ring,
  1307. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1308. u32 length,
  1309. u16 vlan_id)
  1310. {
  1311. struct sk_buff *skb;
  1312. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1313. struct napi_struct *napi = &rx_ring->napi;
  1314. napi->dev = qdev->ndev;
  1315. skb = napi_get_frags(napi);
  1316. if (!skb) {
  1317. netif_err(qdev, drv, qdev->ndev,
  1318. "Couldn't get an skb, exiting.\n");
  1319. rx_ring->rx_dropped++;
  1320. put_page(lbq_desc->p.pg_chunk.page);
  1321. return;
  1322. }
  1323. prefetch(lbq_desc->p.pg_chunk.va);
  1324. __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1325. lbq_desc->p.pg_chunk.page,
  1326. lbq_desc->p.pg_chunk.offset,
  1327. length);
  1328. skb->len += length;
  1329. skb->data_len += length;
  1330. skb->truesize += length;
  1331. skb_shinfo(skb)->nr_frags++;
  1332. rx_ring->rx_packets++;
  1333. rx_ring->rx_bytes += length;
  1334. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1335. skb_record_rx_queue(skb, rx_ring->cq_id);
  1336. if (vlan_id != 0xffff)
  1337. __vlan_hwaccel_put_tag(skb, vlan_id);
  1338. napi_gro_frags(napi);
  1339. }
  1340. /* Process an inbound completion from an rx ring. */
  1341. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1342. struct rx_ring *rx_ring,
  1343. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1344. u32 length,
  1345. u16 vlan_id)
  1346. {
  1347. struct net_device *ndev = qdev->ndev;
  1348. struct sk_buff *skb = NULL;
  1349. void *addr;
  1350. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1351. struct napi_struct *napi = &rx_ring->napi;
  1352. skb = netdev_alloc_skb(ndev, length);
  1353. if (!skb) {
  1354. netif_err(qdev, drv, qdev->ndev,
  1355. "Couldn't get an skb, need to unwind!.\n");
  1356. rx_ring->rx_dropped++;
  1357. put_page(lbq_desc->p.pg_chunk.page);
  1358. return;
  1359. }
  1360. addr = lbq_desc->p.pg_chunk.va;
  1361. prefetch(addr);
  1362. /* Frame error, so drop the packet. */
  1363. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1364. netif_info(qdev, drv, qdev->ndev,
  1365. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1366. rx_ring->rx_errors++;
  1367. goto err_out;
  1368. }
  1369. /* The max framesize filter on this chip is set higher than
  1370. * MTU since FCoE uses 2k frames.
  1371. */
  1372. if (skb->len > ndev->mtu + ETH_HLEN) {
  1373. netif_err(qdev, drv, qdev->ndev,
  1374. "Segment too small, dropping.\n");
  1375. rx_ring->rx_dropped++;
  1376. goto err_out;
  1377. }
  1378. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1379. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1380. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1381. length);
  1382. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1383. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1384. length-ETH_HLEN);
  1385. skb->len += length-ETH_HLEN;
  1386. skb->data_len += length-ETH_HLEN;
  1387. skb->truesize += length-ETH_HLEN;
  1388. rx_ring->rx_packets++;
  1389. rx_ring->rx_bytes += skb->len;
  1390. skb->protocol = eth_type_trans(skb, ndev);
  1391. skb_checksum_none_assert(skb);
  1392. if ((ndev->features & NETIF_F_RXCSUM) &&
  1393. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1394. /* TCP frame. */
  1395. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1396. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1397. "TCP checksum done!\n");
  1398. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1399. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1400. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1401. /* Unfragmented ipv4 UDP frame. */
  1402. struct iphdr *iph =
  1403. (struct iphdr *) ((u8 *)addr + ETH_HLEN);
  1404. if (!(iph->frag_off &
  1405. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1406. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1407. netif_printk(qdev, rx_status, KERN_DEBUG,
  1408. qdev->ndev,
  1409. "UDP checksum done!\n");
  1410. }
  1411. }
  1412. }
  1413. skb_record_rx_queue(skb, rx_ring->cq_id);
  1414. if (vlan_id != 0xffff)
  1415. __vlan_hwaccel_put_tag(skb, vlan_id);
  1416. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1417. napi_gro_receive(napi, skb);
  1418. else
  1419. netif_receive_skb(skb);
  1420. return;
  1421. err_out:
  1422. dev_kfree_skb_any(skb);
  1423. put_page(lbq_desc->p.pg_chunk.page);
  1424. }
  1425. /* Process an inbound completion from an rx ring. */
  1426. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1427. struct rx_ring *rx_ring,
  1428. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1429. u32 length,
  1430. u16 vlan_id)
  1431. {
  1432. struct net_device *ndev = qdev->ndev;
  1433. struct sk_buff *skb = NULL;
  1434. struct sk_buff *new_skb = NULL;
  1435. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1436. skb = sbq_desc->p.skb;
  1437. /* Allocate new_skb and copy */
  1438. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1439. if (new_skb == NULL) {
  1440. netif_err(qdev, probe, qdev->ndev,
  1441. "No skb available, drop the packet.\n");
  1442. rx_ring->rx_dropped++;
  1443. return;
  1444. }
  1445. skb_reserve(new_skb, NET_IP_ALIGN);
  1446. memcpy(skb_put(new_skb, length), skb->data, length);
  1447. skb = new_skb;
  1448. /* Frame error, so drop the packet. */
  1449. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1450. netif_info(qdev, drv, qdev->ndev,
  1451. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1452. dev_kfree_skb_any(skb);
  1453. rx_ring->rx_errors++;
  1454. return;
  1455. }
  1456. /* loopback self test for ethtool */
  1457. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1458. ql_check_lb_frame(qdev, skb);
  1459. dev_kfree_skb_any(skb);
  1460. return;
  1461. }
  1462. /* The max framesize filter on this chip is set higher than
  1463. * MTU since FCoE uses 2k frames.
  1464. */
  1465. if (skb->len > ndev->mtu + ETH_HLEN) {
  1466. dev_kfree_skb_any(skb);
  1467. rx_ring->rx_dropped++;
  1468. return;
  1469. }
  1470. prefetch(skb->data);
  1471. skb->dev = ndev;
  1472. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1473. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1474. "%s Multicast.\n",
  1475. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1476. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1477. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1478. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1479. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1480. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1481. }
  1482. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1483. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1484. "Promiscuous Packet.\n");
  1485. rx_ring->rx_packets++;
  1486. rx_ring->rx_bytes += skb->len;
  1487. skb->protocol = eth_type_trans(skb, ndev);
  1488. skb_checksum_none_assert(skb);
  1489. /* If rx checksum is on, and there are no
  1490. * csum or frame errors.
  1491. */
  1492. if ((ndev->features & NETIF_F_RXCSUM) &&
  1493. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1494. /* TCP frame. */
  1495. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1496. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1497. "TCP checksum done!\n");
  1498. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1499. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1500. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1501. /* Unfragmented ipv4 UDP frame. */
  1502. struct iphdr *iph = (struct iphdr *) skb->data;
  1503. if (!(iph->frag_off &
  1504. ntohs(IP_MF|IP_OFFSET))) {
  1505. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1506. netif_printk(qdev, rx_status, KERN_DEBUG,
  1507. qdev->ndev,
  1508. "UDP checksum done!\n");
  1509. }
  1510. }
  1511. }
  1512. skb_record_rx_queue(skb, rx_ring->cq_id);
  1513. if (vlan_id != 0xffff)
  1514. __vlan_hwaccel_put_tag(skb, vlan_id);
  1515. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1516. napi_gro_receive(&rx_ring->napi, skb);
  1517. else
  1518. netif_receive_skb(skb);
  1519. }
  1520. static void ql_realign_skb(struct sk_buff *skb, int len)
  1521. {
  1522. void *temp_addr = skb->data;
  1523. /* Undo the skb_reserve(skb,32) we did before
  1524. * giving to hardware, and realign data on
  1525. * a 2-byte boundary.
  1526. */
  1527. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1528. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1529. skb_copy_to_linear_data(skb, temp_addr,
  1530. (unsigned int)len);
  1531. }
  1532. /*
  1533. * This function builds an skb for the given inbound
  1534. * completion. It will be rewritten for readability in the near
  1535. * future, but for not it works well.
  1536. */
  1537. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1538. struct rx_ring *rx_ring,
  1539. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1540. {
  1541. struct bq_desc *lbq_desc;
  1542. struct bq_desc *sbq_desc;
  1543. struct sk_buff *skb = NULL;
  1544. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1545. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1546. /*
  1547. * Handle the header buffer if present.
  1548. */
  1549. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1550. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1551. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1552. "Header of %d bytes in small buffer.\n", hdr_len);
  1553. /*
  1554. * Headers fit nicely into a small buffer.
  1555. */
  1556. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1557. pci_unmap_single(qdev->pdev,
  1558. dma_unmap_addr(sbq_desc, mapaddr),
  1559. dma_unmap_len(sbq_desc, maplen),
  1560. PCI_DMA_FROMDEVICE);
  1561. skb = sbq_desc->p.skb;
  1562. ql_realign_skb(skb, hdr_len);
  1563. skb_put(skb, hdr_len);
  1564. sbq_desc->p.skb = NULL;
  1565. }
  1566. /*
  1567. * Handle the data buffer(s).
  1568. */
  1569. if (unlikely(!length)) { /* Is there data too? */
  1570. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1571. "No Data buffer in this packet.\n");
  1572. return skb;
  1573. }
  1574. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1575. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1576. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1577. "Headers in small, data of %d bytes in small, combine them.\n",
  1578. length);
  1579. /*
  1580. * Data is less than small buffer size so it's
  1581. * stuffed in a small buffer.
  1582. * For this case we append the data
  1583. * from the "data" small buffer to the "header" small
  1584. * buffer.
  1585. */
  1586. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1587. pci_dma_sync_single_for_cpu(qdev->pdev,
  1588. dma_unmap_addr
  1589. (sbq_desc, mapaddr),
  1590. dma_unmap_len
  1591. (sbq_desc, maplen),
  1592. PCI_DMA_FROMDEVICE);
  1593. memcpy(skb_put(skb, length),
  1594. sbq_desc->p.skb->data, length);
  1595. pci_dma_sync_single_for_device(qdev->pdev,
  1596. dma_unmap_addr
  1597. (sbq_desc,
  1598. mapaddr),
  1599. dma_unmap_len
  1600. (sbq_desc,
  1601. maplen),
  1602. PCI_DMA_FROMDEVICE);
  1603. } else {
  1604. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1605. "%d bytes in a single small buffer.\n",
  1606. length);
  1607. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1608. skb = sbq_desc->p.skb;
  1609. ql_realign_skb(skb, length);
  1610. skb_put(skb, length);
  1611. pci_unmap_single(qdev->pdev,
  1612. dma_unmap_addr(sbq_desc,
  1613. mapaddr),
  1614. dma_unmap_len(sbq_desc,
  1615. maplen),
  1616. PCI_DMA_FROMDEVICE);
  1617. sbq_desc->p.skb = NULL;
  1618. }
  1619. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1620. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1621. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1622. "Header in small, %d bytes in large. Chain large to small!\n",
  1623. length);
  1624. /*
  1625. * The data is in a single large buffer. We
  1626. * chain it to the header buffer's skb and let
  1627. * it rip.
  1628. */
  1629. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1630. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1631. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1632. lbq_desc->p.pg_chunk.offset, length);
  1633. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1634. lbq_desc->p.pg_chunk.offset,
  1635. length);
  1636. skb->len += length;
  1637. skb->data_len += length;
  1638. skb->truesize += length;
  1639. } else {
  1640. /*
  1641. * The headers and data are in a single large buffer. We
  1642. * copy it to a new skb and let it go. This can happen with
  1643. * jumbo mtu on a non-TCP/UDP frame.
  1644. */
  1645. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1646. skb = netdev_alloc_skb(qdev->ndev, length);
  1647. if (skb == NULL) {
  1648. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1649. "No skb available, drop the packet.\n");
  1650. return NULL;
  1651. }
  1652. pci_unmap_page(qdev->pdev,
  1653. dma_unmap_addr(lbq_desc,
  1654. mapaddr),
  1655. dma_unmap_len(lbq_desc, maplen),
  1656. PCI_DMA_FROMDEVICE);
  1657. skb_reserve(skb, NET_IP_ALIGN);
  1658. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1659. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1660. length);
  1661. skb_fill_page_desc(skb, 0,
  1662. lbq_desc->p.pg_chunk.page,
  1663. lbq_desc->p.pg_chunk.offset,
  1664. length);
  1665. skb->len += length;
  1666. skb->data_len += length;
  1667. skb->truesize += length;
  1668. length -= length;
  1669. __pskb_pull_tail(skb,
  1670. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1671. VLAN_ETH_HLEN : ETH_HLEN);
  1672. }
  1673. } else {
  1674. /*
  1675. * The data is in a chain of large buffers
  1676. * pointed to by a small buffer. We loop
  1677. * thru and chain them to the our small header
  1678. * buffer's skb.
  1679. * frags: There are 18 max frags and our small
  1680. * buffer will hold 32 of them. The thing is,
  1681. * we'll use 3 max for our 9000 byte jumbo
  1682. * frames. If the MTU goes up we could
  1683. * eventually be in trouble.
  1684. */
  1685. int size, i = 0;
  1686. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1687. pci_unmap_single(qdev->pdev,
  1688. dma_unmap_addr(sbq_desc, mapaddr),
  1689. dma_unmap_len(sbq_desc, maplen),
  1690. PCI_DMA_FROMDEVICE);
  1691. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1692. /*
  1693. * This is an non TCP/UDP IP frame, so
  1694. * the headers aren't split into a small
  1695. * buffer. We have to use the small buffer
  1696. * that contains our sg list as our skb to
  1697. * send upstairs. Copy the sg list here to
  1698. * a local buffer and use it to find the
  1699. * pages to chain.
  1700. */
  1701. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1702. "%d bytes of headers & data in chain of large.\n",
  1703. length);
  1704. skb = sbq_desc->p.skb;
  1705. sbq_desc->p.skb = NULL;
  1706. skb_reserve(skb, NET_IP_ALIGN);
  1707. }
  1708. while (length > 0) {
  1709. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1710. size = (length < rx_ring->lbq_buf_size) ? length :
  1711. rx_ring->lbq_buf_size;
  1712. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1713. "Adding page %d to skb for %d bytes.\n",
  1714. i, size);
  1715. skb_fill_page_desc(skb, i,
  1716. lbq_desc->p.pg_chunk.page,
  1717. lbq_desc->p.pg_chunk.offset,
  1718. size);
  1719. skb->len += size;
  1720. skb->data_len += size;
  1721. skb->truesize += size;
  1722. length -= size;
  1723. i++;
  1724. }
  1725. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1726. VLAN_ETH_HLEN : ETH_HLEN);
  1727. }
  1728. return skb;
  1729. }
  1730. /* Process an inbound completion from an rx ring. */
  1731. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1732. struct rx_ring *rx_ring,
  1733. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1734. u16 vlan_id)
  1735. {
  1736. struct net_device *ndev = qdev->ndev;
  1737. struct sk_buff *skb = NULL;
  1738. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1739. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1740. if (unlikely(!skb)) {
  1741. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1742. "No skb available, drop packet.\n");
  1743. rx_ring->rx_dropped++;
  1744. return;
  1745. }
  1746. /* Frame error, so drop the packet. */
  1747. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1748. netif_info(qdev, drv, qdev->ndev,
  1749. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1750. dev_kfree_skb_any(skb);
  1751. rx_ring->rx_errors++;
  1752. return;
  1753. }
  1754. /* The max framesize filter on this chip is set higher than
  1755. * MTU since FCoE uses 2k frames.
  1756. */
  1757. if (skb->len > ndev->mtu + ETH_HLEN) {
  1758. dev_kfree_skb_any(skb);
  1759. rx_ring->rx_dropped++;
  1760. return;
  1761. }
  1762. /* loopback self test for ethtool */
  1763. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1764. ql_check_lb_frame(qdev, skb);
  1765. dev_kfree_skb_any(skb);
  1766. return;
  1767. }
  1768. prefetch(skb->data);
  1769. skb->dev = ndev;
  1770. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1771. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1772. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1773. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1774. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1775. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1776. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1777. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1778. rx_ring->rx_multicast++;
  1779. }
  1780. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1781. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1782. "Promiscuous Packet.\n");
  1783. }
  1784. skb->protocol = eth_type_trans(skb, ndev);
  1785. skb_checksum_none_assert(skb);
  1786. /* If rx checksum is on, and there are no
  1787. * csum or frame errors.
  1788. */
  1789. if ((ndev->features & NETIF_F_RXCSUM) &&
  1790. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1791. /* TCP frame. */
  1792. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1793. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1794. "TCP checksum done!\n");
  1795. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1796. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1797. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1798. /* Unfragmented ipv4 UDP frame. */
  1799. struct iphdr *iph = (struct iphdr *) skb->data;
  1800. if (!(iph->frag_off &
  1801. ntohs(IP_MF|IP_OFFSET))) {
  1802. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1803. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1804. "TCP checksum done!\n");
  1805. }
  1806. }
  1807. }
  1808. rx_ring->rx_packets++;
  1809. rx_ring->rx_bytes += skb->len;
  1810. skb_record_rx_queue(skb, rx_ring->cq_id);
  1811. if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
  1812. __vlan_hwaccel_put_tag(skb, vlan_id);
  1813. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1814. napi_gro_receive(&rx_ring->napi, skb);
  1815. else
  1816. netif_receive_skb(skb);
  1817. }
  1818. /* Process an inbound completion from an rx ring. */
  1819. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1820. struct rx_ring *rx_ring,
  1821. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1822. {
  1823. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1824. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1825. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1826. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1827. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1828. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1829. /* The data and headers are split into
  1830. * separate buffers.
  1831. */
  1832. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1833. vlan_id);
  1834. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1835. /* The data fit in a single small buffer.
  1836. * Allocate a new skb, copy the data and
  1837. * return the buffer to the free pool.
  1838. */
  1839. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1840. length, vlan_id);
  1841. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1842. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1843. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1844. /* TCP packet in a page chunk that's been checksummed.
  1845. * Tack it on to our GRO skb and let it go.
  1846. */
  1847. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1848. length, vlan_id);
  1849. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1850. /* Non-TCP packet in a page chunk. Allocate an
  1851. * skb, tack it on frags, and send it up.
  1852. */
  1853. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1854. length, vlan_id);
  1855. } else {
  1856. /* Non-TCP/UDP large frames that span multiple buffers
  1857. * can be processed corrrectly by the split frame logic.
  1858. */
  1859. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1860. vlan_id);
  1861. }
  1862. return (unsigned long)length;
  1863. }
  1864. /* Process an outbound completion from an rx ring. */
  1865. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1866. struct ob_mac_iocb_rsp *mac_rsp)
  1867. {
  1868. struct tx_ring *tx_ring;
  1869. struct tx_ring_desc *tx_ring_desc;
  1870. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1871. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1872. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1873. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1874. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1875. tx_ring->tx_packets++;
  1876. dev_kfree_skb(tx_ring_desc->skb);
  1877. tx_ring_desc->skb = NULL;
  1878. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1879. OB_MAC_IOCB_RSP_S |
  1880. OB_MAC_IOCB_RSP_L |
  1881. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1882. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1883. netif_warn(qdev, tx_done, qdev->ndev,
  1884. "Total descriptor length did not match transfer length.\n");
  1885. }
  1886. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1887. netif_warn(qdev, tx_done, qdev->ndev,
  1888. "Frame too short to be valid, not sent.\n");
  1889. }
  1890. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1891. netif_warn(qdev, tx_done, qdev->ndev,
  1892. "Frame too long, but sent anyway.\n");
  1893. }
  1894. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1895. netif_warn(qdev, tx_done, qdev->ndev,
  1896. "PCI backplane error. Frame not sent.\n");
  1897. }
  1898. }
  1899. atomic_inc(&tx_ring->tx_count);
  1900. }
  1901. /* Fire up a handler to reset the MPI processor. */
  1902. void ql_queue_fw_error(struct ql_adapter *qdev)
  1903. {
  1904. ql_link_off(qdev);
  1905. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1906. }
  1907. void ql_queue_asic_error(struct ql_adapter *qdev)
  1908. {
  1909. ql_link_off(qdev);
  1910. ql_disable_interrupts(qdev);
  1911. /* Clear adapter up bit to signal the recovery
  1912. * process that it shouldn't kill the reset worker
  1913. * thread
  1914. */
  1915. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1916. /* Set asic recovery bit to indicate reset process that we are
  1917. * in fatal error recovery process rather than normal close
  1918. */
  1919. set_bit(QL_ASIC_RECOVERY, &qdev->flags);
  1920. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1921. }
  1922. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1923. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1924. {
  1925. switch (ib_ae_rsp->event) {
  1926. case MGMT_ERR_EVENT:
  1927. netif_err(qdev, rx_err, qdev->ndev,
  1928. "Management Processor Fatal Error.\n");
  1929. ql_queue_fw_error(qdev);
  1930. return;
  1931. case CAM_LOOKUP_ERR_EVENT:
  1932. netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
  1933. netdev_err(qdev->ndev, "This event shouldn't occur.\n");
  1934. ql_queue_asic_error(qdev);
  1935. return;
  1936. case SOFT_ECC_ERROR_EVENT:
  1937. netdev_err(qdev->ndev, "Soft ECC error detected.\n");
  1938. ql_queue_asic_error(qdev);
  1939. break;
  1940. case PCI_ERR_ANON_BUF_RD:
  1941. netdev_err(qdev->ndev, "PCI error occurred when reading "
  1942. "anonymous buffers from rx_ring %d.\n",
  1943. ib_ae_rsp->q_id);
  1944. ql_queue_asic_error(qdev);
  1945. break;
  1946. default:
  1947. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  1948. ib_ae_rsp->event);
  1949. ql_queue_asic_error(qdev);
  1950. break;
  1951. }
  1952. }
  1953. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1954. {
  1955. struct ql_adapter *qdev = rx_ring->qdev;
  1956. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1957. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1958. int count = 0;
  1959. struct tx_ring *tx_ring;
  1960. /* While there are entries in the completion queue. */
  1961. while (prod != rx_ring->cnsmr_idx) {
  1962. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1963. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  1964. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  1965. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1966. rmb();
  1967. switch (net_rsp->opcode) {
  1968. case OPCODE_OB_MAC_TSO_IOCB:
  1969. case OPCODE_OB_MAC_IOCB:
  1970. ql_process_mac_tx_intr(qdev, net_rsp);
  1971. break;
  1972. default:
  1973. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1974. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1975. net_rsp->opcode);
  1976. }
  1977. count++;
  1978. ql_update_cq(rx_ring);
  1979. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1980. }
  1981. if (!net_rsp)
  1982. return 0;
  1983. ql_write_cq_idx(rx_ring);
  1984. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1985. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  1986. if (atomic_read(&tx_ring->queue_stopped) &&
  1987. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1988. /*
  1989. * The queue got stopped because the tx_ring was full.
  1990. * Wake it up, because it's now at least 25% empty.
  1991. */
  1992. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1993. }
  1994. return count;
  1995. }
  1996. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1997. {
  1998. struct ql_adapter *qdev = rx_ring->qdev;
  1999. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2000. struct ql_net_rsp_iocb *net_rsp;
  2001. int count = 0;
  2002. /* While there are entries in the completion queue. */
  2003. while (prod != rx_ring->cnsmr_idx) {
  2004. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2005. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2006. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2007. net_rsp = rx_ring->curr_entry;
  2008. rmb();
  2009. switch (net_rsp->opcode) {
  2010. case OPCODE_IB_MAC_IOCB:
  2011. ql_process_mac_rx_intr(qdev, rx_ring,
  2012. (struct ib_mac_iocb_rsp *)
  2013. net_rsp);
  2014. break;
  2015. case OPCODE_IB_AE_IOCB:
  2016. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2017. net_rsp);
  2018. break;
  2019. default:
  2020. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2021. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2022. net_rsp->opcode);
  2023. break;
  2024. }
  2025. count++;
  2026. ql_update_cq(rx_ring);
  2027. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2028. if (count == budget)
  2029. break;
  2030. }
  2031. ql_update_buffer_queues(qdev, rx_ring);
  2032. ql_write_cq_idx(rx_ring);
  2033. return count;
  2034. }
  2035. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2036. {
  2037. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2038. struct ql_adapter *qdev = rx_ring->qdev;
  2039. struct rx_ring *trx_ring;
  2040. int i, work_done = 0;
  2041. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2042. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2043. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2044. /* Service the TX rings first. They start
  2045. * right after the RSS rings. */
  2046. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2047. trx_ring = &qdev->rx_ring[i];
  2048. /* If this TX completion ring belongs to this vector and
  2049. * it's not empty then service it.
  2050. */
  2051. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2052. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2053. trx_ring->cnsmr_idx)) {
  2054. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2055. "%s: Servicing TX completion ring %d.\n",
  2056. __func__, trx_ring->cq_id);
  2057. ql_clean_outbound_rx_ring(trx_ring);
  2058. }
  2059. }
  2060. /*
  2061. * Now service the RSS ring if it's active.
  2062. */
  2063. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2064. rx_ring->cnsmr_idx) {
  2065. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2066. "%s: Servicing RX completion ring %d.\n",
  2067. __func__, rx_ring->cq_id);
  2068. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2069. }
  2070. if (work_done < budget) {
  2071. napi_complete(napi);
  2072. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2073. }
  2074. return work_done;
  2075. }
  2076. static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
  2077. {
  2078. struct ql_adapter *qdev = netdev_priv(ndev);
  2079. if (features & NETIF_F_HW_VLAN_RX) {
  2080. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2081. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2082. } else {
  2083. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2084. }
  2085. }
  2086. static netdev_features_t qlge_fix_features(struct net_device *ndev,
  2087. netdev_features_t features)
  2088. {
  2089. /*
  2090. * Since there is no support for separate rx/tx vlan accel
  2091. * enable/disable make sure tx flag is always in same state as rx.
  2092. */
  2093. if (features & NETIF_F_HW_VLAN_RX)
  2094. features |= NETIF_F_HW_VLAN_TX;
  2095. else
  2096. features &= ~NETIF_F_HW_VLAN_TX;
  2097. return features;
  2098. }
  2099. static int qlge_set_features(struct net_device *ndev,
  2100. netdev_features_t features)
  2101. {
  2102. netdev_features_t changed = ndev->features ^ features;
  2103. if (changed & NETIF_F_HW_VLAN_RX)
  2104. qlge_vlan_mode(ndev, features);
  2105. return 0;
  2106. }
  2107. static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
  2108. {
  2109. u32 enable_bit = MAC_ADDR_E;
  2110. int err;
  2111. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2112. MAC_ADDR_TYPE_VLAN, vid);
  2113. if (err)
  2114. netif_err(qdev, ifup, qdev->ndev,
  2115. "Failed to init vlan address.\n");
  2116. return err;
  2117. }
  2118. static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2119. {
  2120. struct ql_adapter *qdev = netdev_priv(ndev);
  2121. int status;
  2122. int err;
  2123. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2124. if (status)
  2125. return status;
  2126. err = __qlge_vlan_rx_add_vid(qdev, vid);
  2127. set_bit(vid, qdev->active_vlans);
  2128. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2129. return err;
  2130. }
  2131. static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
  2132. {
  2133. u32 enable_bit = 0;
  2134. int err;
  2135. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2136. MAC_ADDR_TYPE_VLAN, vid);
  2137. if (err)
  2138. netif_err(qdev, ifup, qdev->ndev,
  2139. "Failed to clear vlan address.\n");
  2140. return err;
  2141. }
  2142. static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2143. {
  2144. struct ql_adapter *qdev = netdev_priv(ndev);
  2145. int status;
  2146. int err;
  2147. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2148. if (status)
  2149. return status;
  2150. err = __qlge_vlan_rx_kill_vid(qdev, vid);
  2151. clear_bit(vid, qdev->active_vlans);
  2152. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2153. return err;
  2154. }
  2155. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2156. {
  2157. int status;
  2158. u16 vid;
  2159. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2160. if (status)
  2161. return;
  2162. for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
  2163. __qlge_vlan_rx_add_vid(qdev, vid);
  2164. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2165. }
  2166. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2167. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2168. {
  2169. struct rx_ring *rx_ring = dev_id;
  2170. napi_schedule(&rx_ring->napi);
  2171. return IRQ_HANDLED;
  2172. }
  2173. /* This handles a fatal error, MPI activity, and the default
  2174. * rx_ring in an MSI-X multiple vector environment.
  2175. * In MSI/Legacy environment it also process the rest of
  2176. * the rx_rings.
  2177. */
  2178. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2179. {
  2180. struct rx_ring *rx_ring = dev_id;
  2181. struct ql_adapter *qdev = rx_ring->qdev;
  2182. struct intr_context *intr_context = &qdev->intr_context[0];
  2183. u32 var;
  2184. int work_done = 0;
  2185. spin_lock(&qdev->hw_lock);
  2186. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2187. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2188. "Shared Interrupt, Not ours!\n");
  2189. spin_unlock(&qdev->hw_lock);
  2190. return IRQ_NONE;
  2191. }
  2192. spin_unlock(&qdev->hw_lock);
  2193. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2194. /*
  2195. * Check for fatal error.
  2196. */
  2197. if (var & STS_FE) {
  2198. ql_queue_asic_error(qdev);
  2199. netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
  2200. var = ql_read32(qdev, ERR_STS);
  2201. netdev_err(qdev->ndev, "Resetting chip. "
  2202. "Error Status Register = 0x%x\n", var);
  2203. return IRQ_HANDLED;
  2204. }
  2205. /*
  2206. * Check MPI processor activity.
  2207. */
  2208. if ((var & STS_PI) &&
  2209. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2210. /*
  2211. * We've got an async event or mailbox completion.
  2212. * Handle it and clear the source of the interrupt.
  2213. */
  2214. netif_err(qdev, intr, qdev->ndev,
  2215. "Got MPI processor interrupt.\n");
  2216. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2217. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2218. queue_delayed_work_on(smp_processor_id(),
  2219. qdev->workqueue, &qdev->mpi_work, 0);
  2220. work_done++;
  2221. }
  2222. /*
  2223. * Get the bit-mask that shows the active queues for this
  2224. * pass. Compare it to the queues that this irq services
  2225. * and call napi if there's a match.
  2226. */
  2227. var = ql_read32(qdev, ISR1);
  2228. if (var & intr_context->irq_mask) {
  2229. netif_info(qdev, intr, qdev->ndev,
  2230. "Waking handler for rx_ring[0].\n");
  2231. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2232. napi_schedule(&rx_ring->napi);
  2233. work_done++;
  2234. }
  2235. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2236. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2237. }
  2238. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2239. {
  2240. if (skb_is_gso(skb)) {
  2241. int err;
  2242. if (skb_header_cloned(skb)) {
  2243. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2244. if (err)
  2245. return err;
  2246. }
  2247. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2248. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2249. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2250. mac_iocb_ptr->total_hdrs_len =
  2251. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2252. mac_iocb_ptr->net_trans_offset =
  2253. cpu_to_le16(skb_network_offset(skb) |
  2254. skb_transport_offset(skb)
  2255. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2256. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2257. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2258. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2259. struct iphdr *iph = ip_hdr(skb);
  2260. iph->check = 0;
  2261. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2262. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2263. iph->daddr, 0,
  2264. IPPROTO_TCP,
  2265. 0);
  2266. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2267. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2268. tcp_hdr(skb)->check =
  2269. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2270. &ipv6_hdr(skb)->daddr,
  2271. 0, IPPROTO_TCP, 0);
  2272. }
  2273. return 1;
  2274. }
  2275. return 0;
  2276. }
  2277. static void ql_hw_csum_setup(struct sk_buff *skb,
  2278. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2279. {
  2280. int len;
  2281. struct iphdr *iph = ip_hdr(skb);
  2282. __sum16 *check;
  2283. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2284. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2285. mac_iocb_ptr->net_trans_offset =
  2286. cpu_to_le16(skb_network_offset(skb) |
  2287. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2288. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2289. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2290. if (likely(iph->protocol == IPPROTO_TCP)) {
  2291. check = &(tcp_hdr(skb)->check);
  2292. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2293. mac_iocb_ptr->total_hdrs_len =
  2294. cpu_to_le16(skb_transport_offset(skb) +
  2295. (tcp_hdr(skb)->doff << 2));
  2296. } else {
  2297. check = &(udp_hdr(skb)->check);
  2298. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2299. mac_iocb_ptr->total_hdrs_len =
  2300. cpu_to_le16(skb_transport_offset(skb) +
  2301. sizeof(struct udphdr));
  2302. }
  2303. *check = ~csum_tcpudp_magic(iph->saddr,
  2304. iph->daddr, len, iph->protocol, 0);
  2305. }
  2306. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2307. {
  2308. struct tx_ring_desc *tx_ring_desc;
  2309. struct ob_mac_iocb_req *mac_iocb_ptr;
  2310. struct ql_adapter *qdev = netdev_priv(ndev);
  2311. int tso;
  2312. struct tx_ring *tx_ring;
  2313. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2314. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2315. if (skb_padto(skb, ETH_ZLEN))
  2316. return NETDEV_TX_OK;
  2317. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2318. netif_info(qdev, tx_queued, qdev->ndev,
  2319. "%s: shutting down tx queue %d du to lack of resources.\n",
  2320. __func__, tx_ring_idx);
  2321. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2322. atomic_inc(&tx_ring->queue_stopped);
  2323. tx_ring->tx_errors++;
  2324. return NETDEV_TX_BUSY;
  2325. }
  2326. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2327. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2328. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2329. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2330. mac_iocb_ptr->tid = tx_ring_desc->index;
  2331. /* We use the upper 32-bits to store the tx queue for this IO.
  2332. * When we get the completion we can use it to establish the context.
  2333. */
  2334. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2335. tx_ring_desc->skb = skb;
  2336. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2337. if (vlan_tx_tag_present(skb)) {
  2338. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2339. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2340. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2341. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2342. }
  2343. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2344. if (tso < 0) {
  2345. dev_kfree_skb_any(skb);
  2346. return NETDEV_TX_OK;
  2347. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2348. ql_hw_csum_setup(skb,
  2349. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2350. }
  2351. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2352. NETDEV_TX_OK) {
  2353. netif_err(qdev, tx_queued, qdev->ndev,
  2354. "Could not map the segments.\n");
  2355. tx_ring->tx_errors++;
  2356. return NETDEV_TX_BUSY;
  2357. }
  2358. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2359. tx_ring->prod_idx++;
  2360. if (tx_ring->prod_idx == tx_ring->wq_len)
  2361. tx_ring->prod_idx = 0;
  2362. wmb();
  2363. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2364. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2365. "tx queued, slot %d, len %d\n",
  2366. tx_ring->prod_idx, skb->len);
  2367. atomic_dec(&tx_ring->tx_count);
  2368. return NETDEV_TX_OK;
  2369. }
  2370. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2371. {
  2372. if (qdev->rx_ring_shadow_reg_area) {
  2373. pci_free_consistent(qdev->pdev,
  2374. PAGE_SIZE,
  2375. qdev->rx_ring_shadow_reg_area,
  2376. qdev->rx_ring_shadow_reg_dma);
  2377. qdev->rx_ring_shadow_reg_area = NULL;
  2378. }
  2379. if (qdev->tx_ring_shadow_reg_area) {
  2380. pci_free_consistent(qdev->pdev,
  2381. PAGE_SIZE,
  2382. qdev->tx_ring_shadow_reg_area,
  2383. qdev->tx_ring_shadow_reg_dma);
  2384. qdev->tx_ring_shadow_reg_area = NULL;
  2385. }
  2386. }
  2387. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2388. {
  2389. qdev->rx_ring_shadow_reg_area =
  2390. pci_alloc_consistent(qdev->pdev,
  2391. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2392. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2393. netif_err(qdev, ifup, qdev->ndev,
  2394. "Allocation of RX shadow space failed.\n");
  2395. return -ENOMEM;
  2396. }
  2397. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2398. qdev->tx_ring_shadow_reg_area =
  2399. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2400. &qdev->tx_ring_shadow_reg_dma);
  2401. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2402. netif_err(qdev, ifup, qdev->ndev,
  2403. "Allocation of TX shadow space failed.\n");
  2404. goto err_wqp_sh_area;
  2405. }
  2406. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2407. return 0;
  2408. err_wqp_sh_area:
  2409. pci_free_consistent(qdev->pdev,
  2410. PAGE_SIZE,
  2411. qdev->rx_ring_shadow_reg_area,
  2412. qdev->rx_ring_shadow_reg_dma);
  2413. return -ENOMEM;
  2414. }
  2415. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2416. {
  2417. struct tx_ring_desc *tx_ring_desc;
  2418. int i;
  2419. struct ob_mac_iocb_req *mac_iocb_ptr;
  2420. mac_iocb_ptr = tx_ring->wq_base;
  2421. tx_ring_desc = tx_ring->q;
  2422. for (i = 0; i < tx_ring->wq_len; i++) {
  2423. tx_ring_desc->index = i;
  2424. tx_ring_desc->skb = NULL;
  2425. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2426. mac_iocb_ptr++;
  2427. tx_ring_desc++;
  2428. }
  2429. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2430. atomic_set(&tx_ring->queue_stopped, 0);
  2431. }
  2432. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2433. struct tx_ring *tx_ring)
  2434. {
  2435. if (tx_ring->wq_base) {
  2436. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2437. tx_ring->wq_base, tx_ring->wq_base_dma);
  2438. tx_ring->wq_base = NULL;
  2439. }
  2440. kfree(tx_ring->q);
  2441. tx_ring->q = NULL;
  2442. }
  2443. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2444. struct tx_ring *tx_ring)
  2445. {
  2446. tx_ring->wq_base =
  2447. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2448. &tx_ring->wq_base_dma);
  2449. if ((tx_ring->wq_base == NULL) ||
  2450. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2451. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2452. return -ENOMEM;
  2453. }
  2454. tx_ring->q =
  2455. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2456. if (tx_ring->q == NULL)
  2457. goto err;
  2458. return 0;
  2459. err:
  2460. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2461. tx_ring->wq_base, tx_ring->wq_base_dma);
  2462. return -ENOMEM;
  2463. }
  2464. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2465. {
  2466. struct bq_desc *lbq_desc;
  2467. uint32_t curr_idx, clean_idx;
  2468. curr_idx = rx_ring->lbq_curr_idx;
  2469. clean_idx = rx_ring->lbq_clean_idx;
  2470. while (curr_idx != clean_idx) {
  2471. lbq_desc = &rx_ring->lbq[curr_idx];
  2472. if (lbq_desc->p.pg_chunk.last_flag) {
  2473. pci_unmap_page(qdev->pdev,
  2474. lbq_desc->p.pg_chunk.map,
  2475. ql_lbq_block_size(qdev),
  2476. PCI_DMA_FROMDEVICE);
  2477. lbq_desc->p.pg_chunk.last_flag = 0;
  2478. }
  2479. put_page(lbq_desc->p.pg_chunk.page);
  2480. lbq_desc->p.pg_chunk.page = NULL;
  2481. if (++curr_idx == rx_ring->lbq_len)
  2482. curr_idx = 0;
  2483. }
  2484. }
  2485. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2486. {
  2487. int i;
  2488. struct bq_desc *sbq_desc;
  2489. for (i = 0; i < rx_ring->sbq_len; i++) {
  2490. sbq_desc = &rx_ring->sbq[i];
  2491. if (sbq_desc == NULL) {
  2492. netif_err(qdev, ifup, qdev->ndev,
  2493. "sbq_desc %d is NULL.\n", i);
  2494. return;
  2495. }
  2496. if (sbq_desc->p.skb) {
  2497. pci_unmap_single(qdev->pdev,
  2498. dma_unmap_addr(sbq_desc, mapaddr),
  2499. dma_unmap_len(sbq_desc, maplen),
  2500. PCI_DMA_FROMDEVICE);
  2501. dev_kfree_skb(sbq_desc->p.skb);
  2502. sbq_desc->p.skb = NULL;
  2503. }
  2504. }
  2505. }
  2506. /* Free all large and small rx buffers associated
  2507. * with the completion queues for this device.
  2508. */
  2509. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2510. {
  2511. int i;
  2512. struct rx_ring *rx_ring;
  2513. for (i = 0; i < qdev->rx_ring_count; i++) {
  2514. rx_ring = &qdev->rx_ring[i];
  2515. if (rx_ring->lbq)
  2516. ql_free_lbq_buffers(qdev, rx_ring);
  2517. if (rx_ring->sbq)
  2518. ql_free_sbq_buffers(qdev, rx_ring);
  2519. }
  2520. }
  2521. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2522. {
  2523. struct rx_ring *rx_ring;
  2524. int i;
  2525. for (i = 0; i < qdev->rx_ring_count; i++) {
  2526. rx_ring = &qdev->rx_ring[i];
  2527. if (rx_ring->type != TX_Q)
  2528. ql_update_buffer_queues(qdev, rx_ring);
  2529. }
  2530. }
  2531. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2532. struct rx_ring *rx_ring)
  2533. {
  2534. int i;
  2535. struct bq_desc *lbq_desc;
  2536. __le64 *bq = rx_ring->lbq_base;
  2537. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2538. for (i = 0; i < rx_ring->lbq_len; i++) {
  2539. lbq_desc = &rx_ring->lbq[i];
  2540. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2541. lbq_desc->index = i;
  2542. lbq_desc->addr = bq;
  2543. bq++;
  2544. }
  2545. }
  2546. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2547. struct rx_ring *rx_ring)
  2548. {
  2549. int i;
  2550. struct bq_desc *sbq_desc;
  2551. __le64 *bq = rx_ring->sbq_base;
  2552. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2553. for (i = 0; i < rx_ring->sbq_len; i++) {
  2554. sbq_desc = &rx_ring->sbq[i];
  2555. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2556. sbq_desc->index = i;
  2557. sbq_desc->addr = bq;
  2558. bq++;
  2559. }
  2560. }
  2561. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2562. struct rx_ring *rx_ring)
  2563. {
  2564. /* Free the small buffer queue. */
  2565. if (rx_ring->sbq_base) {
  2566. pci_free_consistent(qdev->pdev,
  2567. rx_ring->sbq_size,
  2568. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2569. rx_ring->sbq_base = NULL;
  2570. }
  2571. /* Free the small buffer queue control blocks. */
  2572. kfree(rx_ring->sbq);
  2573. rx_ring->sbq = NULL;
  2574. /* Free the large buffer queue. */
  2575. if (rx_ring->lbq_base) {
  2576. pci_free_consistent(qdev->pdev,
  2577. rx_ring->lbq_size,
  2578. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2579. rx_ring->lbq_base = NULL;
  2580. }
  2581. /* Free the large buffer queue control blocks. */
  2582. kfree(rx_ring->lbq);
  2583. rx_ring->lbq = NULL;
  2584. /* Free the rx queue. */
  2585. if (rx_ring->cq_base) {
  2586. pci_free_consistent(qdev->pdev,
  2587. rx_ring->cq_size,
  2588. rx_ring->cq_base, rx_ring->cq_base_dma);
  2589. rx_ring->cq_base = NULL;
  2590. }
  2591. }
  2592. /* Allocate queues and buffers for this completions queue based
  2593. * on the values in the parameter structure. */
  2594. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2595. struct rx_ring *rx_ring)
  2596. {
  2597. /*
  2598. * Allocate the completion queue for this rx_ring.
  2599. */
  2600. rx_ring->cq_base =
  2601. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2602. &rx_ring->cq_base_dma);
  2603. if (rx_ring->cq_base == NULL) {
  2604. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2605. return -ENOMEM;
  2606. }
  2607. if (rx_ring->sbq_len) {
  2608. /*
  2609. * Allocate small buffer queue.
  2610. */
  2611. rx_ring->sbq_base =
  2612. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2613. &rx_ring->sbq_base_dma);
  2614. if (rx_ring->sbq_base == NULL) {
  2615. netif_err(qdev, ifup, qdev->ndev,
  2616. "Small buffer queue allocation failed.\n");
  2617. goto err_mem;
  2618. }
  2619. /*
  2620. * Allocate small buffer queue control blocks.
  2621. */
  2622. rx_ring->sbq =
  2623. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2624. GFP_KERNEL);
  2625. if (rx_ring->sbq == NULL) {
  2626. netif_err(qdev, ifup, qdev->ndev,
  2627. "Small buffer queue control block allocation failed.\n");
  2628. goto err_mem;
  2629. }
  2630. ql_init_sbq_ring(qdev, rx_ring);
  2631. }
  2632. if (rx_ring->lbq_len) {
  2633. /*
  2634. * Allocate large buffer queue.
  2635. */
  2636. rx_ring->lbq_base =
  2637. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2638. &rx_ring->lbq_base_dma);
  2639. if (rx_ring->lbq_base == NULL) {
  2640. netif_err(qdev, ifup, qdev->ndev,
  2641. "Large buffer queue allocation failed.\n");
  2642. goto err_mem;
  2643. }
  2644. /*
  2645. * Allocate large buffer queue control blocks.
  2646. */
  2647. rx_ring->lbq =
  2648. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2649. GFP_KERNEL);
  2650. if (rx_ring->lbq == NULL) {
  2651. netif_err(qdev, ifup, qdev->ndev,
  2652. "Large buffer queue control block allocation failed.\n");
  2653. goto err_mem;
  2654. }
  2655. ql_init_lbq_ring(qdev, rx_ring);
  2656. }
  2657. return 0;
  2658. err_mem:
  2659. ql_free_rx_resources(qdev, rx_ring);
  2660. return -ENOMEM;
  2661. }
  2662. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2663. {
  2664. struct tx_ring *tx_ring;
  2665. struct tx_ring_desc *tx_ring_desc;
  2666. int i, j;
  2667. /*
  2668. * Loop through all queues and free
  2669. * any resources.
  2670. */
  2671. for (j = 0; j < qdev->tx_ring_count; j++) {
  2672. tx_ring = &qdev->tx_ring[j];
  2673. for (i = 0; i < tx_ring->wq_len; i++) {
  2674. tx_ring_desc = &tx_ring->q[i];
  2675. if (tx_ring_desc && tx_ring_desc->skb) {
  2676. netif_err(qdev, ifdown, qdev->ndev,
  2677. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2678. tx_ring_desc->skb, j,
  2679. tx_ring_desc->index);
  2680. ql_unmap_send(qdev, tx_ring_desc,
  2681. tx_ring_desc->map_cnt);
  2682. dev_kfree_skb(tx_ring_desc->skb);
  2683. tx_ring_desc->skb = NULL;
  2684. }
  2685. }
  2686. }
  2687. }
  2688. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2689. {
  2690. int i;
  2691. for (i = 0; i < qdev->tx_ring_count; i++)
  2692. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2693. for (i = 0; i < qdev->rx_ring_count; i++)
  2694. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2695. ql_free_shadow_space(qdev);
  2696. }
  2697. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2698. {
  2699. int i;
  2700. /* Allocate space for our shadow registers and such. */
  2701. if (ql_alloc_shadow_space(qdev))
  2702. return -ENOMEM;
  2703. for (i = 0; i < qdev->rx_ring_count; i++) {
  2704. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2705. netif_err(qdev, ifup, qdev->ndev,
  2706. "RX resource allocation failed.\n");
  2707. goto err_mem;
  2708. }
  2709. }
  2710. /* Allocate tx queue resources */
  2711. for (i = 0; i < qdev->tx_ring_count; i++) {
  2712. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2713. netif_err(qdev, ifup, qdev->ndev,
  2714. "TX resource allocation failed.\n");
  2715. goto err_mem;
  2716. }
  2717. }
  2718. return 0;
  2719. err_mem:
  2720. ql_free_mem_resources(qdev);
  2721. return -ENOMEM;
  2722. }
  2723. /* Set up the rx ring control block and pass it to the chip.
  2724. * The control block is defined as
  2725. * "Completion Queue Initialization Control Block", or cqicb.
  2726. */
  2727. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2728. {
  2729. struct cqicb *cqicb = &rx_ring->cqicb;
  2730. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2731. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2732. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2733. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2734. void __iomem *doorbell_area =
  2735. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2736. int err = 0;
  2737. u16 bq_len;
  2738. u64 tmp;
  2739. __le64 *base_indirect_ptr;
  2740. int page_entries;
  2741. /* Set up the shadow registers for this ring. */
  2742. rx_ring->prod_idx_sh_reg = shadow_reg;
  2743. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2744. *rx_ring->prod_idx_sh_reg = 0;
  2745. shadow_reg += sizeof(u64);
  2746. shadow_reg_dma += sizeof(u64);
  2747. rx_ring->lbq_base_indirect = shadow_reg;
  2748. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2749. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2750. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2751. rx_ring->sbq_base_indirect = shadow_reg;
  2752. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2753. /* PCI doorbell mem area + 0x00 for consumer index register */
  2754. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2755. rx_ring->cnsmr_idx = 0;
  2756. rx_ring->curr_entry = rx_ring->cq_base;
  2757. /* PCI doorbell mem area + 0x04 for valid register */
  2758. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2759. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2760. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2761. /* PCI doorbell mem area + 0x1c */
  2762. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2763. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2764. cqicb->msix_vect = rx_ring->irq;
  2765. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2766. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2767. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2768. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2769. /*
  2770. * Set up the control block load flags.
  2771. */
  2772. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2773. FLAGS_LV | /* Load MSI-X vector */
  2774. FLAGS_LI; /* Load irq delay values */
  2775. if (rx_ring->lbq_len) {
  2776. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2777. tmp = (u64)rx_ring->lbq_base_dma;
  2778. base_indirect_ptr = rx_ring->lbq_base_indirect;
  2779. page_entries = 0;
  2780. do {
  2781. *base_indirect_ptr = cpu_to_le64(tmp);
  2782. tmp += DB_PAGE_SIZE;
  2783. base_indirect_ptr++;
  2784. page_entries++;
  2785. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2786. cqicb->lbq_addr =
  2787. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2788. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2789. (u16) rx_ring->lbq_buf_size;
  2790. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2791. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2792. (u16) rx_ring->lbq_len;
  2793. cqicb->lbq_len = cpu_to_le16(bq_len);
  2794. rx_ring->lbq_prod_idx = 0;
  2795. rx_ring->lbq_curr_idx = 0;
  2796. rx_ring->lbq_clean_idx = 0;
  2797. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2798. }
  2799. if (rx_ring->sbq_len) {
  2800. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2801. tmp = (u64)rx_ring->sbq_base_dma;
  2802. base_indirect_ptr = rx_ring->sbq_base_indirect;
  2803. page_entries = 0;
  2804. do {
  2805. *base_indirect_ptr = cpu_to_le64(tmp);
  2806. tmp += DB_PAGE_SIZE;
  2807. base_indirect_ptr++;
  2808. page_entries++;
  2809. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2810. cqicb->sbq_addr =
  2811. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2812. cqicb->sbq_buf_size =
  2813. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2814. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2815. (u16) rx_ring->sbq_len;
  2816. cqicb->sbq_len = cpu_to_le16(bq_len);
  2817. rx_ring->sbq_prod_idx = 0;
  2818. rx_ring->sbq_curr_idx = 0;
  2819. rx_ring->sbq_clean_idx = 0;
  2820. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2821. }
  2822. switch (rx_ring->type) {
  2823. case TX_Q:
  2824. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2825. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2826. break;
  2827. case RX_Q:
  2828. /* Inbound completion handling rx_rings run in
  2829. * separate NAPI contexts.
  2830. */
  2831. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2832. 64);
  2833. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2834. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2835. break;
  2836. default:
  2837. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2838. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2839. }
  2840. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2841. CFG_LCQ, rx_ring->cq_id);
  2842. if (err) {
  2843. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2844. return err;
  2845. }
  2846. return err;
  2847. }
  2848. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2849. {
  2850. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2851. void __iomem *doorbell_area =
  2852. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2853. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2854. (tx_ring->wq_id * sizeof(u64));
  2855. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2856. (tx_ring->wq_id * sizeof(u64));
  2857. int err = 0;
  2858. /*
  2859. * Assign doorbell registers for this tx_ring.
  2860. */
  2861. /* TX PCI doorbell mem area for tx producer index */
  2862. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2863. tx_ring->prod_idx = 0;
  2864. /* TX PCI doorbell mem area + 0x04 */
  2865. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2866. /*
  2867. * Assign shadow registers for this tx_ring.
  2868. */
  2869. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2870. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2871. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2872. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2873. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2874. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2875. wqicb->rid = 0;
  2876. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2877. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2878. ql_init_tx_ring(qdev, tx_ring);
  2879. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2880. (u16) tx_ring->wq_id);
  2881. if (err) {
  2882. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2883. return err;
  2884. }
  2885. return err;
  2886. }
  2887. static void ql_disable_msix(struct ql_adapter *qdev)
  2888. {
  2889. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2890. pci_disable_msix(qdev->pdev);
  2891. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2892. kfree(qdev->msi_x_entry);
  2893. qdev->msi_x_entry = NULL;
  2894. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2895. pci_disable_msi(qdev->pdev);
  2896. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2897. }
  2898. }
  2899. /* We start by trying to get the number of vectors
  2900. * stored in qdev->intr_count. If we don't get that
  2901. * many then we reduce the count and try again.
  2902. */
  2903. static void ql_enable_msix(struct ql_adapter *qdev)
  2904. {
  2905. int i, err;
  2906. /* Get the MSIX vectors. */
  2907. if (qlge_irq_type == MSIX_IRQ) {
  2908. /* Try to alloc space for the msix struct,
  2909. * if it fails then go to MSI/legacy.
  2910. */
  2911. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2912. sizeof(struct msix_entry),
  2913. GFP_KERNEL);
  2914. if (!qdev->msi_x_entry) {
  2915. qlge_irq_type = MSI_IRQ;
  2916. goto msi;
  2917. }
  2918. for (i = 0; i < qdev->intr_count; i++)
  2919. qdev->msi_x_entry[i].entry = i;
  2920. /* Loop to get our vectors. We start with
  2921. * what we want and settle for what we get.
  2922. */
  2923. do {
  2924. err = pci_enable_msix(qdev->pdev,
  2925. qdev->msi_x_entry, qdev->intr_count);
  2926. if (err > 0)
  2927. qdev->intr_count = err;
  2928. } while (err > 0);
  2929. if (err < 0) {
  2930. kfree(qdev->msi_x_entry);
  2931. qdev->msi_x_entry = NULL;
  2932. netif_warn(qdev, ifup, qdev->ndev,
  2933. "MSI-X Enable failed, trying MSI.\n");
  2934. qdev->intr_count = 1;
  2935. qlge_irq_type = MSI_IRQ;
  2936. } else if (err == 0) {
  2937. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2938. netif_info(qdev, ifup, qdev->ndev,
  2939. "MSI-X Enabled, got %d vectors.\n",
  2940. qdev->intr_count);
  2941. return;
  2942. }
  2943. }
  2944. msi:
  2945. qdev->intr_count = 1;
  2946. if (qlge_irq_type == MSI_IRQ) {
  2947. if (!pci_enable_msi(qdev->pdev)) {
  2948. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2949. netif_info(qdev, ifup, qdev->ndev,
  2950. "Running with MSI interrupts.\n");
  2951. return;
  2952. }
  2953. }
  2954. qlge_irq_type = LEG_IRQ;
  2955. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2956. "Running with legacy interrupts.\n");
  2957. }
  2958. /* Each vector services 1 RSS ring and and 1 or more
  2959. * TX completion rings. This function loops through
  2960. * the TX completion rings and assigns the vector that
  2961. * will service it. An example would be if there are
  2962. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2963. * This would mean that vector 0 would service RSS ring 0
  2964. * and TX completion rings 0,1,2 and 3. Vector 1 would
  2965. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2966. */
  2967. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2968. {
  2969. int i, j, vect;
  2970. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2971. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2972. /* Assign irq vectors to TX rx_rings.*/
  2973. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2974. i < qdev->rx_ring_count; i++) {
  2975. if (j == tx_rings_per_vector) {
  2976. vect++;
  2977. j = 0;
  2978. }
  2979. qdev->rx_ring[i].irq = vect;
  2980. j++;
  2981. }
  2982. } else {
  2983. /* For single vector all rings have an irq
  2984. * of zero.
  2985. */
  2986. for (i = 0; i < qdev->rx_ring_count; i++)
  2987. qdev->rx_ring[i].irq = 0;
  2988. }
  2989. }
  2990. /* Set the interrupt mask for this vector. Each vector
  2991. * will service 1 RSS ring and 1 or more TX completion
  2992. * rings. This function sets up a bit mask per vector
  2993. * that indicates which rings it services.
  2994. */
  2995. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2996. {
  2997. int j, vect = ctx->intr;
  2998. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2999. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3000. /* Add the RSS ring serviced by this vector
  3001. * to the mask.
  3002. */
  3003. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3004. /* Add the TX ring(s) serviced by this vector
  3005. * to the mask. */
  3006. for (j = 0; j < tx_rings_per_vector; j++) {
  3007. ctx->irq_mask |=
  3008. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3009. (vect * tx_rings_per_vector) + j].cq_id);
  3010. }
  3011. } else {
  3012. /* For single vector we just shift each queue's
  3013. * ID into the mask.
  3014. */
  3015. for (j = 0; j < qdev->rx_ring_count; j++)
  3016. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3017. }
  3018. }
  3019. /*
  3020. * Here we build the intr_context structures based on
  3021. * our rx_ring count and intr vector count.
  3022. * The intr_context structure is used to hook each vector
  3023. * to possibly different handlers.
  3024. */
  3025. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3026. {
  3027. int i = 0;
  3028. struct intr_context *intr_context = &qdev->intr_context[0];
  3029. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3030. /* Each rx_ring has it's
  3031. * own intr_context since we have separate
  3032. * vectors for each queue.
  3033. */
  3034. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3035. qdev->rx_ring[i].irq = i;
  3036. intr_context->intr = i;
  3037. intr_context->qdev = qdev;
  3038. /* Set up this vector's bit-mask that indicates
  3039. * which queues it services.
  3040. */
  3041. ql_set_irq_mask(qdev, intr_context);
  3042. /*
  3043. * We set up each vectors enable/disable/read bits so
  3044. * there's no bit/mask calculations in the critical path.
  3045. */
  3046. intr_context->intr_en_mask =
  3047. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3048. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3049. | i;
  3050. intr_context->intr_dis_mask =
  3051. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3052. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3053. INTR_EN_IHD | i;
  3054. intr_context->intr_read_mask =
  3055. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3056. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3057. i;
  3058. if (i == 0) {
  3059. /* The first vector/queue handles
  3060. * broadcast/multicast, fatal errors,
  3061. * and firmware events. This in addition
  3062. * to normal inbound NAPI processing.
  3063. */
  3064. intr_context->handler = qlge_isr;
  3065. sprintf(intr_context->name, "%s-rx-%d",
  3066. qdev->ndev->name, i);
  3067. } else {
  3068. /*
  3069. * Inbound queues handle unicast frames only.
  3070. */
  3071. intr_context->handler = qlge_msix_rx_isr;
  3072. sprintf(intr_context->name, "%s-rx-%d",
  3073. qdev->ndev->name, i);
  3074. }
  3075. }
  3076. } else {
  3077. /*
  3078. * All rx_rings use the same intr_context since
  3079. * there is only one vector.
  3080. */
  3081. intr_context->intr = 0;
  3082. intr_context->qdev = qdev;
  3083. /*
  3084. * We set up each vectors enable/disable/read bits so
  3085. * there's no bit/mask calculations in the critical path.
  3086. */
  3087. intr_context->intr_en_mask =
  3088. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3089. intr_context->intr_dis_mask =
  3090. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3091. INTR_EN_TYPE_DISABLE;
  3092. intr_context->intr_read_mask =
  3093. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3094. /*
  3095. * Single interrupt means one handler for all rings.
  3096. */
  3097. intr_context->handler = qlge_isr;
  3098. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3099. /* Set up this vector's bit-mask that indicates
  3100. * which queues it services. In this case there is
  3101. * a single vector so it will service all RSS and
  3102. * TX completion rings.
  3103. */
  3104. ql_set_irq_mask(qdev, intr_context);
  3105. }
  3106. /* Tell the TX completion rings which MSIx vector
  3107. * they will be using.
  3108. */
  3109. ql_set_tx_vect(qdev);
  3110. }
  3111. static void ql_free_irq(struct ql_adapter *qdev)
  3112. {
  3113. int i;
  3114. struct intr_context *intr_context = &qdev->intr_context[0];
  3115. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3116. if (intr_context->hooked) {
  3117. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3118. free_irq(qdev->msi_x_entry[i].vector,
  3119. &qdev->rx_ring[i]);
  3120. } else {
  3121. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3122. }
  3123. }
  3124. }
  3125. ql_disable_msix(qdev);
  3126. }
  3127. static int ql_request_irq(struct ql_adapter *qdev)
  3128. {
  3129. int i;
  3130. int status = 0;
  3131. struct pci_dev *pdev = qdev->pdev;
  3132. struct intr_context *intr_context = &qdev->intr_context[0];
  3133. ql_resolve_queues_to_irqs(qdev);
  3134. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3135. atomic_set(&intr_context->irq_cnt, 0);
  3136. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3137. status = request_irq(qdev->msi_x_entry[i].vector,
  3138. intr_context->handler,
  3139. 0,
  3140. intr_context->name,
  3141. &qdev->rx_ring[i]);
  3142. if (status) {
  3143. netif_err(qdev, ifup, qdev->ndev,
  3144. "Failed request for MSIX interrupt %d.\n",
  3145. i);
  3146. goto err_irq;
  3147. }
  3148. } else {
  3149. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3150. "trying msi or legacy interrupts.\n");
  3151. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3152. "%s: irq = %d.\n", __func__, pdev->irq);
  3153. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3154. "%s: context->name = %s.\n", __func__,
  3155. intr_context->name);
  3156. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3157. "%s: dev_id = 0x%p.\n", __func__,
  3158. &qdev->rx_ring[0]);
  3159. status =
  3160. request_irq(pdev->irq, qlge_isr,
  3161. test_bit(QL_MSI_ENABLED,
  3162. &qdev->
  3163. flags) ? 0 : IRQF_SHARED,
  3164. intr_context->name, &qdev->rx_ring[0]);
  3165. if (status)
  3166. goto err_irq;
  3167. netif_err(qdev, ifup, qdev->ndev,
  3168. "Hooked intr %d, queue type %s, with name %s.\n",
  3169. i,
  3170. qdev->rx_ring[0].type == DEFAULT_Q ?
  3171. "DEFAULT_Q" :
  3172. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3173. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3174. intr_context->name);
  3175. }
  3176. intr_context->hooked = 1;
  3177. }
  3178. return status;
  3179. err_irq:
  3180. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3181. ql_free_irq(qdev);
  3182. return status;
  3183. }
  3184. static int ql_start_rss(struct ql_adapter *qdev)
  3185. {
  3186. static const u8 init_hash_seed[] = {
  3187. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3188. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3189. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3190. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3191. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3192. };
  3193. struct ricb *ricb = &qdev->ricb;
  3194. int status = 0;
  3195. int i;
  3196. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3197. memset((void *)ricb, 0, sizeof(*ricb));
  3198. ricb->base_cq = RSS_L4K;
  3199. ricb->flags =
  3200. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3201. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3202. /*
  3203. * Fill out the Indirection Table.
  3204. */
  3205. for (i = 0; i < 1024; i++)
  3206. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3207. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3208. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3209. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3210. if (status) {
  3211. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3212. return status;
  3213. }
  3214. return status;
  3215. }
  3216. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3217. {
  3218. int i, status = 0;
  3219. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3220. if (status)
  3221. return status;
  3222. /* Clear all the entries in the routing table. */
  3223. for (i = 0; i < 16; i++) {
  3224. status = ql_set_routing_reg(qdev, i, 0, 0);
  3225. if (status) {
  3226. netif_err(qdev, ifup, qdev->ndev,
  3227. "Failed to init routing register for CAM packets.\n");
  3228. break;
  3229. }
  3230. }
  3231. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3232. return status;
  3233. }
  3234. /* Initialize the frame-to-queue routing. */
  3235. static int ql_route_initialize(struct ql_adapter *qdev)
  3236. {
  3237. int status = 0;
  3238. /* Clear all the entries in the routing table. */
  3239. status = ql_clear_routing_entries(qdev);
  3240. if (status)
  3241. return status;
  3242. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3243. if (status)
  3244. return status;
  3245. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3246. RT_IDX_IP_CSUM_ERR, 1);
  3247. if (status) {
  3248. netif_err(qdev, ifup, qdev->ndev,
  3249. "Failed to init routing register "
  3250. "for IP CSUM error packets.\n");
  3251. goto exit;
  3252. }
  3253. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3254. RT_IDX_TU_CSUM_ERR, 1);
  3255. if (status) {
  3256. netif_err(qdev, ifup, qdev->ndev,
  3257. "Failed to init routing register "
  3258. "for TCP/UDP CSUM error packets.\n");
  3259. goto exit;
  3260. }
  3261. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3262. if (status) {
  3263. netif_err(qdev, ifup, qdev->ndev,
  3264. "Failed to init routing register for broadcast packets.\n");
  3265. goto exit;
  3266. }
  3267. /* If we have more than one inbound queue, then turn on RSS in the
  3268. * routing block.
  3269. */
  3270. if (qdev->rss_ring_count > 1) {
  3271. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3272. RT_IDX_RSS_MATCH, 1);
  3273. if (status) {
  3274. netif_err(qdev, ifup, qdev->ndev,
  3275. "Failed to init routing register for MATCH RSS packets.\n");
  3276. goto exit;
  3277. }
  3278. }
  3279. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3280. RT_IDX_CAM_HIT, 1);
  3281. if (status)
  3282. netif_err(qdev, ifup, qdev->ndev,
  3283. "Failed to init routing register for CAM packets.\n");
  3284. exit:
  3285. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3286. return status;
  3287. }
  3288. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3289. {
  3290. int status, set;
  3291. /* If check if the link is up and use to
  3292. * determine if we are setting or clearing
  3293. * the MAC address in the CAM.
  3294. */
  3295. set = ql_read32(qdev, STS);
  3296. set &= qdev->port_link_up;
  3297. status = ql_set_mac_addr(qdev, set);
  3298. if (status) {
  3299. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3300. return status;
  3301. }
  3302. status = ql_route_initialize(qdev);
  3303. if (status)
  3304. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3305. return status;
  3306. }
  3307. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3308. {
  3309. u32 value, mask;
  3310. int i;
  3311. int status = 0;
  3312. /*
  3313. * Set up the System register to halt on errors.
  3314. */
  3315. value = SYS_EFE | SYS_FAE;
  3316. mask = value << 16;
  3317. ql_write32(qdev, SYS, mask | value);
  3318. /* Set the default queue, and VLAN behavior. */
  3319. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3320. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3321. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3322. /* Set the MPI interrupt to enabled. */
  3323. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3324. /* Enable the function, set pagesize, enable error checking. */
  3325. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3326. FSC_EC | FSC_VM_PAGE_4K;
  3327. value |= SPLT_SETTING;
  3328. /* Set/clear header splitting. */
  3329. mask = FSC_VM_PAGESIZE_MASK |
  3330. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3331. ql_write32(qdev, FSC, mask | value);
  3332. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3333. /* Set RX packet routing to use port/pci function on which the
  3334. * packet arrived on in addition to usual frame routing.
  3335. * This is helpful on bonding where both interfaces can have
  3336. * the same MAC address.
  3337. */
  3338. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3339. /* Reroute all packets to our Interface.
  3340. * They may have been routed to MPI firmware
  3341. * due to WOL.
  3342. */
  3343. value = ql_read32(qdev, MGMT_RCV_CFG);
  3344. value &= ~MGMT_RCV_CFG_RM;
  3345. mask = 0xffff0000;
  3346. /* Sticky reg needs clearing due to WOL. */
  3347. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3348. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3349. /* Default WOL is enable on Mezz cards */
  3350. if (qdev->pdev->subsystem_device == 0x0068 ||
  3351. qdev->pdev->subsystem_device == 0x0180)
  3352. qdev->wol = WAKE_MAGIC;
  3353. /* Start up the rx queues. */
  3354. for (i = 0; i < qdev->rx_ring_count; i++) {
  3355. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3356. if (status) {
  3357. netif_err(qdev, ifup, qdev->ndev,
  3358. "Failed to start rx ring[%d].\n", i);
  3359. return status;
  3360. }
  3361. }
  3362. /* If there is more than one inbound completion queue
  3363. * then download a RICB to configure RSS.
  3364. */
  3365. if (qdev->rss_ring_count > 1) {
  3366. status = ql_start_rss(qdev);
  3367. if (status) {
  3368. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3369. return status;
  3370. }
  3371. }
  3372. /* Start up the tx queues. */
  3373. for (i = 0; i < qdev->tx_ring_count; i++) {
  3374. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3375. if (status) {
  3376. netif_err(qdev, ifup, qdev->ndev,
  3377. "Failed to start tx ring[%d].\n", i);
  3378. return status;
  3379. }
  3380. }
  3381. /* Initialize the port and set the max framesize. */
  3382. status = qdev->nic_ops->port_initialize(qdev);
  3383. if (status)
  3384. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3385. /* Set up the MAC address and frame routing filter. */
  3386. status = ql_cam_route_initialize(qdev);
  3387. if (status) {
  3388. netif_err(qdev, ifup, qdev->ndev,
  3389. "Failed to init CAM/Routing tables.\n");
  3390. return status;
  3391. }
  3392. /* Start NAPI for the RSS queues. */
  3393. for (i = 0; i < qdev->rss_ring_count; i++)
  3394. napi_enable(&qdev->rx_ring[i].napi);
  3395. return status;
  3396. }
  3397. /* Issue soft reset to chip. */
  3398. static int ql_adapter_reset(struct ql_adapter *qdev)
  3399. {
  3400. u32 value;
  3401. int status = 0;
  3402. unsigned long end_jiffies;
  3403. /* Clear all the entries in the routing table. */
  3404. status = ql_clear_routing_entries(qdev);
  3405. if (status) {
  3406. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3407. return status;
  3408. }
  3409. end_jiffies = jiffies +
  3410. max((unsigned long)1, usecs_to_jiffies(30));
  3411. /* Check if bit is set then skip the mailbox command and
  3412. * clear the bit, else we are in normal reset process.
  3413. */
  3414. if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
  3415. /* Stop management traffic. */
  3416. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3417. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3418. ql_wait_fifo_empty(qdev);
  3419. } else
  3420. clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
  3421. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3422. do {
  3423. value = ql_read32(qdev, RST_FO);
  3424. if ((value & RST_FO_FR) == 0)
  3425. break;
  3426. cpu_relax();
  3427. } while (time_before(jiffies, end_jiffies));
  3428. if (value & RST_FO_FR) {
  3429. netif_err(qdev, ifdown, qdev->ndev,
  3430. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3431. status = -ETIMEDOUT;
  3432. }
  3433. /* Resume management traffic. */
  3434. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3435. return status;
  3436. }
  3437. static void ql_display_dev_info(struct net_device *ndev)
  3438. {
  3439. struct ql_adapter *qdev = netdev_priv(ndev);
  3440. netif_info(qdev, probe, qdev->ndev,
  3441. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3442. "XG Roll = %d, XG Rev = %d.\n",
  3443. qdev->func,
  3444. qdev->port,
  3445. qdev->chip_rev_id & 0x0000000f,
  3446. qdev->chip_rev_id >> 4 & 0x0000000f,
  3447. qdev->chip_rev_id >> 8 & 0x0000000f,
  3448. qdev->chip_rev_id >> 12 & 0x0000000f);
  3449. netif_info(qdev, probe, qdev->ndev,
  3450. "MAC address %pM\n", ndev->dev_addr);
  3451. }
  3452. static int ql_wol(struct ql_adapter *qdev)
  3453. {
  3454. int status = 0;
  3455. u32 wol = MB_WOL_DISABLE;
  3456. /* The CAM is still intact after a reset, but if we
  3457. * are doing WOL, then we may need to program the
  3458. * routing regs. We would also need to issue the mailbox
  3459. * commands to instruct the MPI what to do per the ethtool
  3460. * settings.
  3461. */
  3462. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3463. WAKE_MCAST | WAKE_BCAST)) {
  3464. netif_err(qdev, ifdown, qdev->ndev,
  3465. "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
  3466. qdev->wol);
  3467. return -EINVAL;
  3468. }
  3469. if (qdev->wol & WAKE_MAGIC) {
  3470. status = ql_mb_wol_set_magic(qdev, 1);
  3471. if (status) {
  3472. netif_err(qdev, ifdown, qdev->ndev,
  3473. "Failed to set magic packet on %s.\n",
  3474. qdev->ndev->name);
  3475. return status;
  3476. } else
  3477. netif_info(qdev, drv, qdev->ndev,
  3478. "Enabled magic packet successfully on %s.\n",
  3479. qdev->ndev->name);
  3480. wol |= MB_WOL_MAGIC_PKT;
  3481. }
  3482. if (qdev->wol) {
  3483. wol |= MB_WOL_MODE_ON;
  3484. status = ql_mb_wol_mode(qdev, wol);
  3485. netif_err(qdev, drv, qdev->ndev,
  3486. "WOL %s (wol code 0x%x) on %s\n",
  3487. (status == 0) ? "Successfully set" : "Failed",
  3488. wol, qdev->ndev->name);
  3489. }
  3490. return status;
  3491. }
  3492. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3493. {
  3494. /* Don't kill the reset worker thread if we
  3495. * are in the process of recovery.
  3496. */
  3497. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3498. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3499. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3500. cancel_delayed_work_sync(&qdev->mpi_work);
  3501. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3502. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3503. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3504. }
  3505. static int ql_adapter_down(struct ql_adapter *qdev)
  3506. {
  3507. int i, status = 0;
  3508. ql_link_off(qdev);
  3509. ql_cancel_all_work_sync(qdev);
  3510. for (i = 0; i < qdev->rss_ring_count; i++)
  3511. napi_disable(&qdev->rx_ring[i].napi);
  3512. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3513. ql_disable_interrupts(qdev);
  3514. ql_tx_ring_clean(qdev);
  3515. /* Call netif_napi_del() from common point.
  3516. */
  3517. for (i = 0; i < qdev->rss_ring_count; i++)
  3518. netif_napi_del(&qdev->rx_ring[i].napi);
  3519. status = ql_adapter_reset(qdev);
  3520. if (status)
  3521. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3522. qdev->func);
  3523. ql_free_rx_buffers(qdev);
  3524. return status;
  3525. }
  3526. static int ql_adapter_up(struct ql_adapter *qdev)
  3527. {
  3528. int err = 0;
  3529. err = ql_adapter_initialize(qdev);
  3530. if (err) {
  3531. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3532. goto err_init;
  3533. }
  3534. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3535. ql_alloc_rx_buffers(qdev);
  3536. /* If the port is initialized and the
  3537. * link is up the turn on the carrier.
  3538. */
  3539. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3540. (ql_read32(qdev, STS) & qdev->port_link_up))
  3541. ql_link_on(qdev);
  3542. /* Restore rx mode. */
  3543. clear_bit(QL_ALLMULTI, &qdev->flags);
  3544. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3545. qlge_set_multicast_list(qdev->ndev);
  3546. /* Restore vlan setting. */
  3547. qlge_restore_vlan(qdev);
  3548. ql_enable_interrupts(qdev);
  3549. ql_enable_all_completion_interrupts(qdev);
  3550. netif_tx_start_all_queues(qdev->ndev);
  3551. return 0;
  3552. err_init:
  3553. ql_adapter_reset(qdev);
  3554. return err;
  3555. }
  3556. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3557. {
  3558. ql_free_mem_resources(qdev);
  3559. ql_free_irq(qdev);
  3560. }
  3561. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3562. {
  3563. int status = 0;
  3564. if (ql_alloc_mem_resources(qdev)) {
  3565. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3566. return -ENOMEM;
  3567. }
  3568. status = ql_request_irq(qdev);
  3569. return status;
  3570. }
  3571. static int qlge_close(struct net_device *ndev)
  3572. {
  3573. struct ql_adapter *qdev = netdev_priv(ndev);
  3574. /* If we hit pci_channel_io_perm_failure
  3575. * failure condition, then we already
  3576. * brought the adapter down.
  3577. */
  3578. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3579. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3580. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3581. return 0;
  3582. }
  3583. /*
  3584. * Wait for device to recover from a reset.
  3585. * (Rarely happens, but possible.)
  3586. */
  3587. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3588. msleep(1);
  3589. ql_adapter_down(qdev);
  3590. ql_release_adapter_resources(qdev);
  3591. return 0;
  3592. }
  3593. static int ql_configure_rings(struct ql_adapter *qdev)
  3594. {
  3595. int i;
  3596. struct rx_ring *rx_ring;
  3597. struct tx_ring *tx_ring;
  3598. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3599. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3600. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3601. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3602. /* In a perfect world we have one RSS ring for each CPU
  3603. * and each has it's own vector. To do that we ask for
  3604. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3605. * vector count to what we actually get. We then
  3606. * allocate an RSS ring for each.
  3607. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3608. */
  3609. qdev->intr_count = cpu_cnt;
  3610. ql_enable_msix(qdev);
  3611. /* Adjust the RSS ring count to the actual vector count. */
  3612. qdev->rss_ring_count = qdev->intr_count;
  3613. qdev->tx_ring_count = cpu_cnt;
  3614. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3615. for (i = 0; i < qdev->tx_ring_count; i++) {
  3616. tx_ring = &qdev->tx_ring[i];
  3617. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3618. tx_ring->qdev = qdev;
  3619. tx_ring->wq_id = i;
  3620. tx_ring->wq_len = qdev->tx_ring_size;
  3621. tx_ring->wq_size =
  3622. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3623. /*
  3624. * The completion queue ID for the tx rings start
  3625. * immediately after the rss rings.
  3626. */
  3627. tx_ring->cq_id = qdev->rss_ring_count + i;
  3628. }
  3629. for (i = 0; i < qdev->rx_ring_count; i++) {
  3630. rx_ring = &qdev->rx_ring[i];
  3631. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3632. rx_ring->qdev = qdev;
  3633. rx_ring->cq_id = i;
  3634. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3635. if (i < qdev->rss_ring_count) {
  3636. /*
  3637. * Inbound (RSS) queues.
  3638. */
  3639. rx_ring->cq_len = qdev->rx_ring_size;
  3640. rx_ring->cq_size =
  3641. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3642. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3643. rx_ring->lbq_size =
  3644. rx_ring->lbq_len * sizeof(__le64);
  3645. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3646. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3647. rx_ring->sbq_size =
  3648. rx_ring->sbq_len * sizeof(__le64);
  3649. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3650. rx_ring->type = RX_Q;
  3651. } else {
  3652. /*
  3653. * Outbound queue handles outbound completions only.
  3654. */
  3655. /* outbound cq is same size as tx_ring it services. */
  3656. rx_ring->cq_len = qdev->tx_ring_size;
  3657. rx_ring->cq_size =
  3658. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3659. rx_ring->lbq_len = 0;
  3660. rx_ring->lbq_size = 0;
  3661. rx_ring->lbq_buf_size = 0;
  3662. rx_ring->sbq_len = 0;
  3663. rx_ring->sbq_size = 0;
  3664. rx_ring->sbq_buf_size = 0;
  3665. rx_ring->type = TX_Q;
  3666. }
  3667. }
  3668. return 0;
  3669. }
  3670. static int qlge_open(struct net_device *ndev)
  3671. {
  3672. int err = 0;
  3673. struct ql_adapter *qdev = netdev_priv(ndev);
  3674. err = ql_adapter_reset(qdev);
  3675. if (err)
  3676. return err;
  3677. err = ql_configure_rings(qdev);
  3678. if (err)
  3679. return err;
  3680. err = ql_get_adapter_resources(qdev);
  3681. if (err)
  3682. goto error_up;
  3683. err = ql_adapter_up(qdev);
  3684. if (err)
  3685. goto error_up;
  3686. return err;
  3687. error_up:
  3688. ql_release_adapter_resources(qdev);
  3689. return err;
  3690. }
  3691. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3692. {
  3693. struct rx_ring *rx_ring;
  3694. int i, status;
  3695. u32 lbq_buf_len;
  3696. /* Wait for an outstanding reset to complete. */
  3697. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3698. int i = 3;
  3699. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3700. netif_err(qdev, ifup, qdev->ndev,
  3701. "Waiting for adapter UP...\n");
  3702. ssleep(1);
  3703. }
  3704. if (!i) {
  3705. netif_err(qdev, ifup, qdev->ndev,
  3706. "Timed out waiting for adapter UP\n");
  3707. return -ETIMEDOUT;
  3708. }
  3709. }
  3710. status = ql_adapter_down(qdev);
  3711. if (status)
  3712. goto error;
  3713. /* Get the new rx buffer size. */
  3714. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3715. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3716. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3717. for (i = 0; i < qdev->rss_ring_count; i++) {
  3718. rx_ring = &qdev->rx_ring[i];
  3719. /* Set the new size. */
  3720. rx_ring->lbq_buf_size = lbq_buf_len;
  3721. }
  3722. status = ql_adapter_up(qdev);
  3723. if (status)
  3724. goto error;
  3725. return status;
  3726. error:
  3727. netif_alert(qdev, ifup, qdev->ndev,
  3728. "Driver up/down cycle failed, closing device.\n");
  3729. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3730. dev_close(qdev->ndev);
  3731. return status;
  3732. }
  3733. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3734. {
  3735. struct ql_adapter *qdev = netdev_priv(ndev);
  3736. int status;
  3737. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3738. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3739. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3740. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3741. } else
  3742. return -EINVAL;
  3743. queue_delayed_work(qdev->workqueue,
  3744. &qdev->mpi_port_cfg_work, 3*HZ);
  3745. ndev->mtu = new_mtu;
  3746. if (!netif_running(qdev->ndev)) {
  3747. return 0;
  3748. }
  3749. status = ql_change_rx_buffers(qdev);
  3750. if (status) {
  3751. netif_err(qdev, ifup, qdev->ndev,
  3752. "Changing MTU failed.\n");
  3753. }
  3754. return status;
  3755. }
  3756. static struct net_device_stats *qlge_get_stats(struct net_device
  3757. *ndev)
  3758. {
  3759. struct ql_adapter *qdev = netdev_priv(ndev);
  3760. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3761. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3762. unsigned long pkts, mcast, dropped, errors, bytes;
  3763. int i;
  3764. /* Get RX stats. */
  3765. pkts = mcast = dropped = errors = bytes = 0;
  3766. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3767. pkts += rx_ring->rx_packets;
  3768. bytes += rx_ring->rx_bytes;
  3769. dropped += rx_ring->rx_dropped;
  3770. errors += rx_ring->rx_errors;
  3771. mcast += rx_ring->rx_multicast;
  3772. }
  3773. ndev->stats.rx_packets = pkts;
  3774. ndev->stats.rx_bytes = bytes;
  3775. ndev->stats.rx_dropped = dropped;
  3776. ndev->stats.rx_errors = errors;
  3777. ndev->stats.multicast = mcast;
  3778. /* Get TX stats. */
  3779. pkts = errors = bytes = 0;
  3780. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3781. pkts += tx_ring->tx_packets;
  3782. bytes += tx_ring->tx_bytes;
  3783. errors += tx_ring->tx_errors;
  3784. }
  3785. ndev->stats.tx_packets = pkts;
  3786. ndev->stats.tx_bytes = bytes;
  3787. ndev->stats.tx_errors = errors;
  3788. return &ndev->stats;
  3789. }
  3790. static void qlge_set_multicast_list(struct net_device *ndev)
  3791. {
  3792. struct ql_adapter *qdev = netdev_priv(ndev);
  3793. struct netdev_hw_addr *ha;
  3794. int i, status;
  3795. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3796. if (status)
  3797. return;
  3798. /*
  3799. * Set or clear promiscuous mode if a
  3800. * transition is taking place.
  3801. */
  3802. if (ndev->flags & IFF_PROMISC) {
  3803. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3804. if (ql_set_routing_reg
  3805. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3806. netif_err(qdev, hw, qdev->ndev,
  3807. "Failed to set promiscuous mode.\n");
  3808. } else {
  3809. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3810. }
  3811. }
  3812. } else {
  3813. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3814. if (ql_set_routing_reg
  3815. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3816. netif_err(qdev, hw, qdev->ndev,
  3817. "Failed to clear promiscuous mode.\n");
  3818. } else {
  3819. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3820. }
  3821. }
  3822. }
  3823. /*
  3824. * Set or clear all multicast mode if a
  3825. * transition is taking place.
  3826. */
  3827. if ((ndev->flags & IFF_ALLMULTI) ||
  3828. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3829. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3830. if (ql_set_routing_reg
  3831. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3832. netif_err(qdev, hw, qdev->ndev,
  3833. "Failed to set all-multi mode.\n");
  3834. } else {
  3835. set_bit(QL_ALLMULTI, &qdev->flags);
  3836. }
  3837. }
  3838. } else {
  3839. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3840. if (ql_set_routing_reg
  3841. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3842. netif_err(qdev, hw, qdev->ndev,
  3843. "Failed to clear all-multi mode.\n");
  3844. } else {
  3845. clear_bit(QL_ALLMULTI, &qdev->flags);
  3846. }
  3847. }
  3848. }
  3849. if (!netdev_mc_empty(ndev)) {
  3850. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3851. if (status)
  3852. goto exit;
  3853. i = 0;
  3854. netdev_for_each_mc_addr(ha, ndev) {
  3855. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3856. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3857. netif_err(qdev, hw, qdev->ndev,
  3858. "Failed to loadmulticast address.\n");
  3859. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3860. goto exit;
  3861. }
  3862. i++;
  3863. }
  3864. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3865. if (ql_set_routing_reg
  3866. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3867. netif_err(qdev, hw, qdev->ndev,
  3868. "Failed to set multicast match mode.\n");
  3869. } else {
  3870. set_bit(QL_ALLMULTI, &qdev->flags);
  3871. }
  3872. }
  3873. exit:
  3874. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3875. }
  3876. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3877. {
  3878. struct ql_adapter *qdev = netdev_priv(ndev);
  3879. struct sockaddr *addr = p;
  3880. int status;
  3881. if (!is_valid_ether_addr(addr->sa_data))
  3882. return -EADDRNOTAVAIL;
  3883. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3884. /* Update local copy of current mac address. */
  3885. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3886. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3887. if (status)
  3888. return status;
  3889. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3890. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3891. if (status)
  3892. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3893. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3894. return status;
  3895. }
  3896. static void qlge_tx_timeout(struct net_device *ndev)
  3897. {
  3898. struct ql_adapter *qdev = netdev_priv(ndev);
  3899. ql_queue_asic_error(qdev);
  3900. }
  3901. static void ql_asic_reset_work(struct work_struct *work)
  3902. {
  3903. struct ql_adapter *qdev =
  3904. container_of(work, struct ql_adapter, asic_reset_work.work);
  3905. int status;
  3906. rtnl_lock();
  3907. status = ql_adapter_down(qdev);
  3908. if (status)
  3909. goto error;
  3910. status = ql_adapter_up(qdev);
  3911. if (status)
  3912. goto error;
  3913. /* Restore rx mode. */
  3914. clear_bit(QL_ALLMULTI, &qdev->flags);
  3915. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3916. qlge_set_multicast_list(qdev->ndev);
  3917. rtnl_unlock();
  3918. return;
  3919. error:
  3920. netif_alert(qdev, ifup, qdev->ndev,
  3921. "Driver up/down cycle failed, closing device\n");
  3922. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3923. dev_close(qdev->ndev);
  3924. rtnl_unlock();
  3925. }
  3926. static const struct nic_operations qla8012_nic_ops = {
  3927. .get_flash = ql_get_8012_flash_params,
  3928. .port_initialize = ql_8012_port_initialize,
  3929. };
  3930. static const struct nic_operations qla8000_nic_ops = {
  3931. .get_flash = ql_get_8000_flash_params,
  3932. .port_initialize = ql_8000_port_initialize,
  3933. };
  3934. /* Find the pcie function number for the other NIC
  3935. * on this chip. Since both NIC functions share a
  3936. * common firmware we have the lowest enabled function
  3937. * do any common work. Examples would be resetting
  3938. * after a fatal firmware error, or doing a firmware
  3939. * coredump.
  3940. */
  3941. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3942. {
  3943. int status = 0;
  3944. u32 temp;
  3945. u32 nic_func1, nic_func2;
  3946. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3947. &temp);
  3948. if (status)
  3949. return status;
  3950. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3951. MPI_TEST_NIC_FUNC_MASK);
  3952. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3953. MPI_TEST_NIC_FUNC_MASK);
  3954. if (qdev->func == nic_func1)
  3955. qdev->alt_func = nic_func2;
  3956. else if (qdev->func == nic_func2)
  3957. qdev->alt_func = nic_func1;
  3958. else
  3959. status = -EIO;
  3960. return status;
  3961. }
  3962. static int ql_get_board_info(struct ql_adapter *qdev)
  3963. {
  3964. int status;
  3965. qdev->func =
  3966. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3967. if (qdev->func > 3)
  3968. return -EIO;
  3969. status = ql_get_alt_pcie_func(qdev);
  3970. if (status)
  3971. return status;
  3972. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3973. if (qdev->port) {
  3974. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3975. qdev->port_link_up = STS_PL1;
  3976. qdev->port_init = STS_PI1;
  3977. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3978. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3979. } else {
  3980. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3981. qdev->port_link_up = STS_PL0;
  3982. qdev->port_init = STS_PI0;
  3983. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3984. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3985. }
  3986. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3987. qdev->device_id = qdev->pdev->device;
  3988. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3989. qdev->nic_ops = &qla8012_nic_ops;
  3990. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3991. qdev->nic_ops = &qla8000_nic_ops;
  3992. return status;
  3993. }
  3994. static void ql_release_all(struct pci_dev *pdev)
  3995. {
  3996. struct net_device *ndev = pci_get_drvdata(pdev);
  3997. struct ql_adapter *qdev = netdev_priv(ndev);
  3998. if (qdev->workqueue) {
  3999. destroy_workqueue(qdev->workqueue);
  4000. qdev->workqueue = NULL;
  4001. }
  4002. if (qdev->reg_base)
  4003. iounmap(qdev->reg_base);
  4004. if (qdev->doorbell_area)
  4005. iounmap(qdev->doorbell_area);
  4006. vfree(qdev->mpi_coredump);
  4007. pci_release_regions(pdev);
  4008. pci_set_drvdata(pdev, NULL);
  4009. }
  4010. static int __devinit ql_init_device(struct pci_dev *pdev,
  4011. struct net_device *ndev, int cards_found)
  4012. {
  4013. struct ql_adapter *qdev = netdev_priv(ndev);
  4014. int err = 0;
  4015. memset((void *)qdev, 0, sizeof(*qdev));
  4016. err = pci_enable_device(pdev);
  4017. if (err) {
  4018. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4019. return err;
  4020. }
  4021. qdev->ndev = ndev;
  4022. qdev->pdev = pdev;
  4023. pci_set_drvdata(pdev, ndev);
  4024. /* Set PCIe read request size */
  4025. err = pcie_set_readrq(pdev, 4096);
  4026. if (err) {
  4027. dev_err(&pdev->dev, "Set readrq failed.\n");
  4028. goto err_out1;
  4029. }
  4030. err = pci_request_regions(pdev, DRV_NAME);
  4031. if (err) {
  4032. dev_err(&pdev->dev, "PCI region request failed.\n");
  4033. return err;
  4034. }
  4035. pci_set_master(pdev);
  4036. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4037. set_bit(QL_DMA64, &qdev->flags);
  4038. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4039. } else {
  4040. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4041. if (!err)
  4042. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4043. }
  4044. if (err) {
  4045. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4046. goto err_out2;
  4047. }
  4048. /* Set PCIe reset type for EEH to fundamental. */
  4049. pdev->needs_freset = 1;
  4050. pci_save_state(pdev);
  4051. qdev->reg_base =
  4052. ioremap_nocache(pci_resource_start(pdev, 1),
  4053. pci_resource_len(pdev, 1));
  4054. if (!qdev->reg_base) {
  4055. dev_err(&pdev->dev, "Register mapping failed.\n");
  4056. err = -ENOMEM;
  4057. goto err_out2;
  4058. }
  4059. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4060. qdev->doorbell_area =
  4061. ioremap_nocache(pci_resource_start(pdev, 3),
  4062. pci_resource_len(pdev, 3));
  4063. if (!qdev->doorbell_area) {
  4064. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4065. err = -ENOMEM;
  4066. goto err_out2;
  4067. }
  4068. err = ql_get_board_info(qdev);
  4069. if (err) {
  4070. dev_err(&pdev->dev, "Register access failed.\n");
  4071. err = -EIO;
  4072. goto err_out2;
  4073. }
  4074. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4075. spin_lock_init(&qdev->hw_lock);
  4076. spin_lock_init(&qdev->stats_lock);
  4077. if (qlge_mpi_coredump) {
  4078. qdev->mpi_coredump =
  4079. vmalloc(sizeof(struct ql_mpi_coredump));
  4080. if (qdev->mpi_coredump == NULL) {
  4081. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4082. err = -ENOMEM;
  4083. goto err_out2;
  4084. }
  4085. if (qlge_force_coredump)
  4086. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4087. }
  4088. /* make sure the EEPROM is good */
  4089. err = qdev->nic_ops->get_flash(qdev);
  4090. if (err) {
  4091. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4092. goto err_out2;
  4093. }
  4094. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4095. /* Keep local copy of current mac address. */
  4096. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4097. /* Set up the default ring sizes. */
  4098. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4099. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4100. /* Set up the coalescing parameters. */
  4101. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4102. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4103. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4104. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4105. /*
  4106. * Set up the operating parameters.
  4107. */
  4108. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4109. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4110. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4111. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4112. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4113. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4114. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4115. init_completion(&qdev->ide_completion);
  4116. mutex_init(&qdev->mpi_mutex);
  4117. if (!cards_found) {
  4118. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4119. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4120. DRV_NAME, DRV_VERSION);
  4121. }
  4122. return 0;
  4123. err_out2:
  4124. ql_release_all(pdev);
  4125. err_out1:
  4126. pci_disable_device(pdev);
  4127. return err;
  4128. }
  4129. static const struct net_device_ops qlge_netdev_ops = {
  4130. .ndo_open = qlge_open,
  4131. .ndo_stop = qlge_close,
  4132. .ndo_start_xmit = qlge_send,
  4133. .ndo_change_mtu = qlge_change_mtu,
  4134. .ndo_get_stats = qlge_get_stats,
  4135. .ndo_set_rx_mode = qlge_set_multicast_list,
  4136. .ndo_set_mac_address = qlge_set_mac_address,
  4137. .ndo_validate_addr = eth_validate_addr,
  4138. .ndo_tx_timeout = qlge_tx_timeout,
  4139. .ndo_fix_features = qlge_fix_features,
  4140. .ndo_set_features = qlge_set_features,
  4141. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4142. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4143. };
  4144. static void ql_timer(unsigned long data)
  4145. {
  4146. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4147. u32 var = 0;
  4148. var = ql_read32(qdev, STS);
  4149. if (pci_channel_offline(qdev->pdev)) {
  4150. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4151. return;
  4152. }
  4153. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4154. }
  4155. static int __devinit qlge_probe(struct pci_dev *pdev,
  4156. const struct pci_device_id *pci_entry)
  4157. {
  4158. struct net_device *ndev = NULL;
  4159. struct ql_adapter *qdev = NULL;
  4160. static int cards_found = 0;
  4161. int err = 0;
  4162. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4163. min(MAX_CPUS, (int)num_online_cpus()));
  4164. if (!ndev)
  4165. return -ENOMEM;
  4166. err = ql_init_device(pdev, ndev, cards_found);
  4167. if (err < 0) {
  4168. free_netdev(ndev);
  4169. return err;
  4170. }
  4171. qdev = netdev_priv(ndev);
  4172. SET_NETDEV_DEV(ndev, &pdev->dev);
  4173. ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  4174. NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
  4175. NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
  4176. ndev->features = ndev->hw_features |
  4177. NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
  4178. if (test_bit(QL_DMA64, &qdev->flags))
  4179. ndev->features |= NETIF_F_HIGHDMA;
  4180. /*
  4181. * Set up net_device structure.
  4182. */
  4183. ndev->tx_queue_len = qdev->tx_ring_size;
  4184. ndev->irq = pdev->irq;
  4185. ndev->netdev_ops = &qlge_netdev_ops;
  4186. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4187. ndev->watchdog_timeo = 10 * HZ;
  4188. err = register_netdev(ndev);
  4189. if (err) {
  4190. dev_err(&pdev->dev, "net device registration failed.\n");
  4191. ql_release_all(pdev);
  4192. pci_disable_device(pdev);
  4193. return err;
  4194. }
  4195. /* Start up the timer to trigger EEH if
  4196. * the bus goes dead
  4197. */
  4198. init_timer_deferrable(&qdev->timer);
  4199. qdev->timer.data = (unsigned long)qdev;
  4200. qdev->timer.function = ql_timer;
  4201. qdev->timer.expires = jiffies + (5*HZ);
  4202. add_timer(&qdev->timer);
  4203. ql_link_off(qdev);
  4204. ql_display_dev_info(ndev);
  4205. atomic_set(&qdev->lb_count, 0);
  4206. cards_found++;
  4207. return 0;
  4208. }
  4209. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4210. {
  4211. return qlge_send(skb, ndev);
  4212. }
  4213. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4214. {
  4215. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4216. }
  4217. static void __devexit qlge_remove(struct pci_dev *pdev)
  4218. {
  4219. struct net_device *ndev = pci_get_drvdata(pdev);
  4220. struct ql_adapter *qdev = netdev_priv(ndev);
  4221. del_timer_sync(&qdev->timer);
  4222. ql_cancel_all_work_sync(qdev);
  4223. unregister_netdev(ndev);
  4224. ql_release_all(pdev);
  4225. pci_disable_device(pdev);
  4226. free_netdev(ndev);
  4227. }
  4228. /* Clean up resources without touching hardware. */
  4229. static void ql_eeh_close(struct net_device *ndev)
  4230. {
  4231. int i;
  4232. struct ql_adapter *qdev = netdev_priv(ndev);
  4233. if (netif_carrier_ok(ndev)) {
  4234. netif_carrier_off(ndev);
  4235. netif_stop_queue(ndev);
  4236. }
  4237. /* Disabling the timer */
  4238. del_timer_sync(&qdev->timer);
  4239. ql_cancel_all_work_sync(qdev);
  4240. for (i = 0; i < qdev->rss_ring_count; i++)
  4241. netif_napi_del(&qdev->rx_ring[i].napi);
  4242. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4243. ql_tx_ring_clean(qdev);
  4244. ql_free_rx_buffers(qdev);
  4245. ql_release_adapter_resources(qdev);
  4246. }
  4247. /*
  4248. * This callback is called by the PCI subsystem whenever
  4249. * a PCI bus error is detected.
  4250. */
  4251. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4252. enum pci_channel_state state)
  4253. {
  4254. struct net_device *ndev = pci_get_drvdata(pdev);
  4255. struct ql_adapter *qdev = netdev_priv(ndev);
  4256. switch (state) {
  4257. case pci_channel_io_normal:
  4258. return PCI_ERS_RESULT_CAN_RECOVER;
  4259. case pci_channel_io_frozen:
  4260. netif_device_detach(ndev);
  4261. if (netif_running(ndev))
  4262. ql_eeh_close(ndev);
  4263. pci_disable_device(pdev);
  4264. return PCI_ERS_RESULT_NEED_RESET;
  4265. case pci_channel_io_perm_failure:
  4266. dev_err(&pdev->dev,
  4267. "%s: pci_channel_io_perm_failure.\n", __func__);
  4268. ql_eeh_close(ndev);
  4269. set_bit(QL_EEH_FATAL, &qdev->flags);
  4270. return PCI_ERS_RESULT_DISCONNECT;
  4271. }
  4272. /* Request a slot reset. */
  4273. return PCI_ERS_RESULT_NEED_RESET;
  4274. }
  4275. /*
  4276. * This callback is called after the PCI buss has been reset.
  4277. * Basically, this tries to restart the card from scratch.
  4278. * This is a shortened version of the device probe/discovery code,
  4279. * it resembles the first-half of the () routine.
  4280. */
  4281. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4282. {
  4283. struct net_device *ndev = pci_get_drvdata(pdev);
  4284. struct ql_adapter *qdev = netdev_priv(ndev);
  4285. pdev->error_state = pci_channel_io_normal;
  4286. pci_restore_state(pdev);
  4287. if (pci_enable_device(pdev)) {
  4288. netif_err(qdev, ifup, qdev->ndev,
  4289. "Cannot re-enable PCI device after reset.\n");
  4290. return PCI_ERS_RESULT_DISCONNECT;
  4291. }
  4292. pci_set_master(pdev);
  4293. if (ql_adapter_reset(qdev)) {
  4294. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4295. set_bit(QL_EEH_FATAL, &qdev->flags);
  4296. return PCI_ERS_RESULT_DISCONNECT;
  4297. }
  4298. return PCI_ERS_RESULT_RECOVERED;
  4299. }
  4300. static void qlge_io_resume(struct pci_dev *pdev)
  4301. {
  4302. struct net_device *ndev = pci_get_drvdata(pdev);
  4303. struct ql_adapter *qdev = netdev_priv(ndev);
  4304. int err = 0;
  4305. if (netif_running(ndev)) {
  4306. err = qlge_open(ndev);
  4307. if (err) {
  4308. netif_err(qdev, ifup, qdev->ndev,
  4309. "Device initialization failed after reset.\n");
  4310. return;
  4311. }
  4312. } else {
  4313. netif_err(qdev, ifup, qdev->ndev,
  4314. "Device was not running prior to EEH.\n");
  4315. }
  4316. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4317. netif_device_attach(ndev);
  4318. }
  4319. static struct pci_error_handlers qlge_err_handler = {
  4320. .error_detected = qlge_io_error_detected,
  4321. .slot_reset = qlge_io_slot_reset,
  4322. .resume = qlge_io_resume,
  4323. };
  4324. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4325. {
  4326. struct net_device *ndev = pci_get_drvdata(pdev);
  4327. struct ql_adapter *qdev = netdev_priv(ndev);
  4328. int err;
  4329. netif_device_detach(ndev);
  4330. del_timer_sync(&qdev->timer);
  4331. if (netif_running(ndev)) {
  4332. err = ql_adapter_down(qdev);
  4333. if (!err)
  4334. return err;
  4335. }
  4336. ql_wol(qdev);
  4337. err = pci_save_state(pdev);
  4338. if (err)
  4339. return err;
  4340. pci_disable_device(pdev);
  4341. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4342. return 0;
  4343. }
  4344. #ifdef CONFIG_PM
  4345. static int qlge_resume(struct pci_dev *pdev)
  4346. {
  4347. struct net_device *ndev = pci_get_drvdata(pdev);
  4348. struct ql_adapter *qdev = netdev_priv(ndev);
  4349. int err;
  4350. pci_set_power_state(pdev, PCI_D0);
  4351. pci_restore_state(pdev);
  4352. err = pci_enable_device(pdev);
  4353. if (err) {
  4354. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4355. return err;
  4356. }
  4357. pci_set_master(pdev);
  4358. pci_enable_wake(pdev, PCI_D3hot, 0);
  4359. pci_enable_wake(pdev, PCI_D3cold, 0);
  4360. if (netif_running(ndev)) {
  4361. err = ql_adapter_up(qdev);
  4362. if (err)
  4363. return err;
  4364. }
  4365. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4366. netif_device_attach(ndev);
  4367. return 0;
  4368. }
  4369. #endif /* CONFIG_PM */
  4370. static void qlge_shutdown(struct pci_dev *pdev)
  4371. {
  4372. qlge_suspend(pdev, PMSG_SUSPEND);
  4373. }
  4374. static struct pci_driver qlge_driver = {
  4375. .name = DRV_NAME,
  4376. .id_table = qlge_pci_tbl,
  4377. .probe = qlge_probe,
  4378. .remove = __devexit_p(qlge_remove),
  4379. #ifdef CONFIG_PM
  4380. .suspend = qlge_suspend,
  4381. .resume = qlge_resume,
  4382. #endif
  4383. .shutdown = qlge_shutdown,
  4384. .err_handler = &qlge_err_handler
  4385. };
  4386. static int __init qlge_init_module(void)
  4387. {
  4388. return pci_register_driver(&qlge_driver);
  4389. }
  4390. static void __exit qlge_exit(void)
  4391. {
  4392. pci_unregister_driver(&qlge_driver);
  4393. }
  4394. module_init(qlge_init_module);
  4395. module_exit(qlge_exit);