swiotlb-xen.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
  36. #include <linux/bootmem.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/export.h>
  39. #include <xen/swiotlb-xen.h>
  40. #include <xen/page.h>
  41. #include <xen/xen-ops.h>
  42. #include <xen/hvc-console.h>
  43. #include <asm/dma-mapping.h>
  44. #include <asm/xen/page-coherent.h>
  45. /*
  46. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  47. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  48. * API.
  49. */
  50. #ifndef CONFIG_X86
  51. static unsigned long dma_alloc_coherent_mask(struct device *dev,
  52. gfp_t gfp)
  53. {
  54. unsigned long dma_mask = 0;
  55. dma_mask = dev->coherent_dma_mask;
  56. if (!dma_mask)
  57. dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
  58. return dma_mask;
  59. }
  60. #endif
  61. static char *xen_io_tlb_start, *xen_io_tlb_end;
  62. static unsigned long xen_io_tlb_nslabs;
  63. /*
  64. * Quick lookup value of the bus address of the IOTLB.
  65. */
  66. static u64 start_dma_addr;
  67. static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  68. {
  69. return phys_to_machine(XPADDR(paddr)).maddr;
  70. }
  71. static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  72. {
  73. return machine_to_phys(XMADDR(baddr)).paddr;
  74. }
  75. static inline dma_addr_t xen_virt_to_bus(void *address)
  76. {
  77. return xen_phys_to_bus(virt_to_phys(address));
  78. }
  79. static int check_pages_physically_contiguous(unsigned long pfn,
  80. unsigned int offset,
  81. size_t length)
  82. {
  83. unsigned long next_mfn;
  84. int i;
  85. int nr_pages;
  86. next_mfn = pfn_to_mfn(pfn);
  87. nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  88. for (i = 1; i < nr_pages; i++) {
  89. if (pfn_to_mfn(++pfn) != ++next_mfn)
  90. return 0;
  91. }
  92. return 1;
  93. }
  94. static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
  95. {
  96. unsigned long pfn = PFN_DOWN(p);
  97. unsigned int offset = p & ~PAGE_MASK;
  98. if (offset + size <= PAGE_SIZE)
  99. return 0;
  100. if (check_pages_physically_contiguous(pfn, offset, size))
  101. return 0;
  102. return 1;
  103. }
  104. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  105. {
  106. unsigned long mfn = PFN_DOWN(dma_addr);
  107. unsigned long pfn = mfn_to_local_pfn(mfn);
  108. phys_addr_t paddr;
  109. /* If the address is outside our domain, it CAN
  110. * have the same virtual address as another address
  111. * in our domain. Therefore _only_ check address within our domain.
  112. */
  113. if (pfn_valid(pfn)) {
  114. paddr = PFN_PHYS(pfn);
  115. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  116. paddr < virt_to_phys(xen_io_tlb_end);
  117. }
  118. return 0;
  119. }
  120. static int max_dma_bits = 32;
  121. static int
  122. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  123. {
  124. int i, rc;
  125. int dma_bits;
  126. dma_addr_t dma_handle;
  127. phys_addr_t p = virt_to_phys(buf);
  128. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  129. i = 0;
  130. do {
  131. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  132. do {
  133. rc = xen_create_contiguous_region(
  134. p + (i << IO_TLB_SHIFT),
  135. get_order(slabs << IO_TLB_SHIFT),
  136. dma_bits, &dma_handle);
  137. } while (rc && dma_bits++ < max_dma_bits);
  138. if (rc)
  139. return rc;
  140. i += slabs;
  141. } while (i < nslabs);
  142. return 0;
  143. }
  144. static unsigned long xen_set_nslabs(unsigned long nr_tbl)
  145. {
  146. if (!nr_tbl) {
  147. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  148. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  149. } else
  150. xen_io_tlb_nslabs = nr_tbl;
  151. return xen_io_tlb_nslabs << IO_TLB_SHIFT;
  152. }
  153. enum xen_swiotlb_err {
  154. XEN_SWIOTLB_UNKNOWN = 0,
  155. XEN_SWIOTLB_ENOMEM,
  156. XEN_SWIOTLB_EFIXUP
  157. };
  158. static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
  159. {
  160. switch (err) {
  161. case XEN_SWIOTLB_ENOMEM:
  162. return "Cannot allocate Xen-SWIOTLB buffer\n";
  163. case XEN_SWIOTLB_EFIXUP:
  164. return "Failed to get contiguous memory for DMA from Xen!\n"\
  165. "You either: don't have the permissions, do not have"\
  166. " enough free memory under 4GB, or the hypervisor memory"\
  167. " is too fragmented!";
  168. default:
  169. break;
  170. }
  171. return "";
  172. }
  173. int __ref xen_swiotlb_init(int verbose, bool early)
  174. {
  175. unsigned long bytes, order;
  176. int rc = -ENOMEM;
  177. enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
  178. unsigned int repeat = 3;
  179. xen_io_tlb_nslabs = swiotlb_nr_tbl();
  180. retry:
  181. bytes = xen_set_nslabs(xen_io_tlb_nslabs);
  182. order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
  183. /*
  184. * Get IO TLB memory from any location.
  185. */
  186. if (early)
  187. xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
  188. else {
  189. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  190. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  191. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  192. xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
  193. if (xen_io_tlb_start)
  194. break;
  195. order--;
  196. }
  197. if (order != get_order(bytes)) {
  198. pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
  199. (PAGE_SIZE << order) >> 20);
  200. xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
  201. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  202. }
  203. }
  204. if (!xen_io_tlb_start) {
  205. m_ret = XEN_SWIOTLB_ENOMEM;
  206. goto error;
  207. }
  208. xen_io_tlb_end = xen_io_tlb_start + bytes;
  209. /*
  210. * And replace that memory with pages under 4GB.
  211. */
  212. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  213. bytes,
  214. xen_io_tlb_nslabs);
  215. if (rc) {
  216. if (early)
  217. free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
  218. else {
  219. free_pages((unsigned long)xen_io_tlb_start, order);
  220. xen_io_tlb_start = NULL;
  221. }
  222. m_ret = XEN_SWIOTLB_EFIXUP;
  223. goto error;
  224. }
  225. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  226. if (early) {
  227. if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
  228. verbose))
  229. panic("Cannot allocate SWIOTLB buffer");
  230. rc = 0;
  231. } else
  232. rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
  233. return rc;
  234. error:
  235. if (repeat--) {
  236. xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
  237. (xen_io_tlb_nslabs >> 1));
  238. pr_info("Lowering to %luMB\n",
  239. (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
  240. goto retry;
  241. }
  242. pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
  243. if (early)
  244. panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
  245. else
  246. free_pages((unsigned long)xen_io_tlb_start, order);
  247. return rc;
  248. }
  249. void *
  250. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  251. dma_addr_t *dma_handle, gfp_t flags,
  252. struct dma_attrs *attrs)
  253. {
  254. void *ret;
  255. int order = get_order(size);
  256. u64 dma_mask = DMA_BIT_MASK(32);
  257. phys_addr_t phys;
  258. dma_addr_t dev_addr;
  259. /*
  260. * Ignore region specifiers - the kernel's ideas of
  261. * pseudo-phys memory layout has nothing to do with the
  262. * machine physical layout. We can't allocate highmem
  263. * because we can't return a pointer to it.
  264. */
  265. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  266. if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
  267. return ret;
  268. /* On ARM this function returns an ioremap'ped virtual address for
  269. * which virt_to_phys doesn't return the corresponding physical
  270. * address. In fact on ARM virt_to_phys only works for kernel direct
  271. * mapped RAM memory. Also see comment below.
  272. */
  273. ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
  274. if (!ret)
  275. return ret;
  276. if (hwdev && hwdev->coherent_dma_mask)
  277. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  278. /* At this point dma_handle is the physical address, next we are
  279. * going to set it to the machine address.
  280. * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
  281. * to *dma_handle. */
  282. phys = *dma_handle;
  283. dev_addr = xen_phys_to_bus(phys);
  284. if (((dev_addr + size - 1 <= dma_mask)) &&
  285. !range_straddles_page_boundary(phys, size))
  286. *dma_handle = dev_addr;
  287. else {
  288. if (xen_create_contiguous_region(phys, order,
  289. fls64(dma_mask), dma_handle) != 0) {
  290. xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
  291. return NULL;
  292. }
  293. }
  294. memset(ret, 0, size);
  295. return ret;
  296. }
  297. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  298. void
  299. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  300. dma_addr_t dev_addr, struct dma_attrs *attrs)
  301. {
  302. int order = get_order(size);
  303. phys_addr_t phys;
  304. u64 dma_mask = DMA_BIT_MASK(32);
  305. if (dma_release_from_coherent(hwdev, order, vaddr))
  306. return;
  307. if (hwdev && hwdev->coherent_dma_mask)
  308. dma_mask = hwdev->coherent_dma_mask;
  309. /* do not use virt_to_phys because on ARM it doesn't return you the
  310. * physical address */
  311. phys = xen_bus_to_phys(dev_addr);
  312. if (((dev_addr + size - 1 > dma_mask)) ||
  313. range_straddles_page_boundary(phys, size))
  314. xen_destroy_contiguous_region(phys, order);
  315. xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
  316. }
  317. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  318. /*
  319. * Map a single buffer of the indicated size for DMA in streaming mode. The
  320. * physical address to use is returned.
  321. *
  322. * Once the device is given the dma address, the device owns this memory until
  323. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  324. */
  325. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  326. unsigned long offset, size_t size,
  327. enum dma_data_direction dir,
  328. struct dma_attrs *attrs)
  329. {
  330. phys_addr_t map, phys = page_to_phys(page) + offset;
  331. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  332. BUG_ON(dir == DMA_NONE);
  333. /*
  334. * If the address happens to be in the device's DMA window,
  335. * we can safely return the device addr and not worry about bounce
  336. * buffering it.
  337. */
  338. if (dma_capable(dev, dev_addr, size) &&
  339. !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
  340. /* we are not interested in the dma_addr returned by
  341. * xen_dma_map_page, only in the potential cache flushes executed
  342. * by the function. */
  343. xen_dma_map_page(dev, page, offset, size, dir, attrs);
  344. return dev_addr;
  345. }
  346. /*
  347. * Oh well, have to allocate and map a bounce buffer.
  348. */
  349. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  350. if (map == SWIOTLB_MAP_ERROR)
  351. return DMA_ERROR_CODE;
  352. xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
  353. map & ~PAGE_MASK, size, dir, attrs);
  354. dev_addr = xen_phys_to_bus(map);
  355. /*
  356. * Ensure that the address returned is DMA'ble
  357. */
  358. if (!dma_capable(dev, dev_addr, size)) {
  359. swiotlb_tbl_unmap_single(dev, map, size, dir);
  360. dev_addr = 0;
  361. }
  362. return dev_addr;
  363. }
  364. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  365. /*
  366. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  367. * match what was provided for in a previous xen_swiotlb_map_page call. All
  368. * other usages are undefined.
  369. *
  370. * After this call, reads by the cpu to the buffer are guaranteed to see
  371. * whatever the device wrote there.
  372. */
  373. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  374. size_t size, enum dma_data_direction dir,
  375. struct dma_attrs *attrs)
  376. {
  377. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  378. BUG_ON(dir == DMA_NONE);
  379. xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);
  380. /* NOTE: We use dev_addr here, not paddr! */
  381. if (is_xen_swiotlb_buffer(dev_addr)) {
  382. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  383. return;
  384. }
  385. if (dir != DMA_FROM_DEVICE)
  386. return;
  387. /*
  388. * phys_to_virt doesn't work with hihgmem page but we could
  389. * call dma_mark_clean() with hihgmem page here. However, we
  390. * are fine since dma_mark_clean() is null on POWERPC. We can
  391. * make dma_mark_clean() take a physical address if necessary.
  392. */
  393. dma_mark_clean(phys_to_virt(paddr), size);
  394. }
  395. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  396. size_t size, enum dma_data_direction dir,
  397. struct dma_attrs *attrs)
  398. {
  399. xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
  400. }
  401. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  402. /*
  403. * Make physical memory consistent for a single streaming mode DMA translation
  404. * after a transfer.
  405. *
  406. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  407. * using the cpu, yet do not wish to teardown the dma mapping, you must
  408. * call this function before doing so. At the next point you give the dma
  409. * address back to the card, you must first perform a
  410. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  411. */
  412. static void
  413. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  414. size_t size, enum dma_data_direction dir,
  415. enum dma_sync_target target)
  416. {
  417. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  418. BUG_ON(dir == DMA_NONE);
  419. if (target == SYNC_FOR_CPU)
  420. xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
  421. /* NOTE: We use dev_addr here, not paddr! */
  422. if (is_xen_swiotlb_buffer(dev_addr))
  423. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  424. if (target == SYNC_FOR_DEVICE)
  425. xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
  426. if (dir != DMA_FROM_DEVICE)
  427. return;
  428. dma_mark_clean(phys_to_virt(paddr), size);
  429. }
  430. void
  431. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  432. size_t size, enum dma_data_direction dir)
  433. {
  434. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  435. }
  436. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  437. void
  438. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  439. size_t size, enum dma_data_direction dir)
  440. {
  441. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  442. }
  443. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  444. /*
  445. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  446. * This is the scatter-gather version of the above xen_swiotlb_map_page
  447. * interface. Here the scatter gather list elements are each tagged with the
  448. * appropriate dma address and length. They are obtained via
  449. * sg_dma_{address,length}(SG).
  450. *
  451. * NOTE: An implementation may be able to use a smaller number of
  452. * DMA address/length pairs than there are SG table elements.
  453. * (for example via virtual mapping capabilities)
  454. * The routine returns the number of addr/length pairs actually
  455. * used, at most nents.
  456. *
  457. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  458. * same here.
  459. */
  460. int
  461. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  462. int nelems, enum dma_data_direction dir,
  463. struct dma_attrs *attrs)
  464. {
  465. struct scatterlist *sg;
  466. int i;
  467. BUG_ON(dir == DMA_NONE);
  468. for_each_sg(sgl, sg, nelems, i) {
  469. phys_addr_t paddr = sg_phys(sg);
  470. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  471. if (swiotlb_force ||
  472. !dma_capable(hwdev, dev_addr, sg->length) ||
  473. range_straddles_page_boundary(paddr, sg->length)) {
  474. phys_addr_t map = swiotlb_tbl_map_single(hwdev,
  475. start_dma_addr,
  476. sg_phys(sg),
  477. sg->length,
  478. dir);
  479. if (map == SWIOTLB_MAP_ERROR) {
  480. dev_warn(hwdev, "swiotlb buffer is full\n");
  481. /* Don't panic here, we expect map_sg users
  482. to do proper error handling. */
  483. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  484. attrs);
  485. sg_dma_len(sgl) = 0;
  486. return DMA_ERROR_CODE;
  487. }
  488. sg->dma_address = xen_phys_to_bus(map);
  489. } else {
  490. /* we are not interested in the dma_addr returned by
  491. * xen_dma_map_page, only in the potential cache flushes executed
  492. * by the function. */
  493. xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
  494. paddr & ~PAGE_MASK,
  495. sg->length,
  496. dir,
  497. attrs);
  498. sg->dma_address = dev_addr;
  499. }
  500. sg_dma_len(sg) = sg->length;
  501. }
  502. return nelems;
  503. }
  504. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  505. /*
  506. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  507. * concerning calls here are the same as for swiotlb_unmap_page() above.
  508. */
  509. void
  510. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  511. int nelems, enum dma_data_direction dir,
  512. struct dma_attrs *attrs)
  513. {
  514. struct scatterlist *sg;
  515. int i;
  516. BUG_ON(dir == DMA_NONE);
  517. for_each_sg(sgl, sg, nelems, i)
  518. xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
  519. }
  520. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  521. /*
  522. * Make physical memory consistent for a set of streaming mode DMA translations
  523. * after a transfer.
  524. *
  525. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  526. * and usage.
  527. */
  528. static void
  529. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  530. int nelems, enum dma_data_direction dir,
  531. enum dma_sync_target target)
  532. {
  533. struct scatterlist *sg;
  534. int i;
  535. for_each_sg(sgl, sg, nelems, i)
  536. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  537. sg_dma_len(sg), dir, target);
  538. }
  539. void
  540. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  541. int nelems, enum dma_data_direction dir)
  542. {
  543. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  544. }
  545. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  546. void
  547. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  548. int nelems, enum dma_data_direction dir)
  549. {
  550. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  551. }
  552. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  553. int
  554. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  555. {
  556. return !dma_addr;
  557. }
  558. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  559. /*
  560. * Return whether the given device DMA address mask can be supported
  561. * properly. For example, if your device can only drive the low 24-bits
  562. * during bus mastering, then you would pass 0x00ffffff as the mask to
  563. * this function.
  564. */
  565. int
  566. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  567. {
  568. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  569. }
  570. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
  571. int
  572. xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
  573. {
  574. if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
  575. return -EIO;
  576. *dev->dma_mask = dma_mask;
  577. return 0;
  578. }
  579. EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);