rt2400pci.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. #define WAIT_FOR_BBP(__dev, __reg) \
  46. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  47. #define WAIT_FOR_RF(__dev, __reg) \
  48. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  49. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  50. const unsigned int word, const u8 value)
  51. {
  52. u32 reg;
  53. mutex_lock(&rt2x00dev->csr_mutex);
  54. /*
  55. * Wait until the BBP becomes available, afterwards we
  56. * can safely write the new data into the register.
  57. */
  58. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  59. reg = 0;
  60. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  61. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  62. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  63. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  64. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  65. }
  66. mutex_unlock(&rt2x00dev->csr_mutex);
  67. }
  68. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  69. const unsigned int word, u8 *value)
  70. {
  71. u32 reg;
  72. mutex_lock(&rt2x00dev->csr_mutex);
  73. /*
  74. * Wait until the BBP becomes available, afterwards we
  75. * can safely write the read request into the register.
  76. * After the data has been written, we wait until hardware
  77. * returns the correct value, if at any time the register
  78. * doesn't become available in time, reg will be 0xffffffff
  79. * which means we return 0xff to the caller.
  80. */
  81. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  82. reg = 0;
  83. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  84. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  85. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  86. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  87. WAIT_FOR_BBP(rt2x00dev, &reg);
  88. }
  89. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  90. mutex_unlock(&rt2x00dev->csr_mutex);
  91. }
  92. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  93. const unsigned int word, const u32 value)
  94. {
  95. u32 reg;
  96. mutex_lock(&rt2x00dev->csr_mutex);
  97. /*
  98. * Wait until the RF becomes available, afterwards we
  99. * can safely write the new data into the register.
  100. */
  101. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  102. reg = 0;
  103. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  104. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  105. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  106. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  107. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  108. rt2x00_rf_write(rt2x00dev, word, value);
  109. }
  110. mutex_unlock(&rt2x00dev->csr_mutex);
  111. }
  112. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  113. {
  114. struct rt2x00_dev *rt2x00dev = eeprom->data;
  115. u32 reg;
  116. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  117. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  118. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  119. eeprom->reg_data_clock =
  120. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  121. eeprom->reg_chip_select =
  122. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  123. }
  124. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  125. {
  126. struct rt2x00_dev *rt2x00dev = eeprom->data;
  127. u32 reg = 0;
  128. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  131. !!eeprom->reg_data_clock);
  132. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  133. !!eeprom->reg_chip_select);
  134. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  135. }
  136. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  137. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  138. .owner = THIS_MODULE,
  139. .csr = {
  140. .read = rt2x00pci_register_read,
  141. .write = rt2x00pci_register_write,
  142. .flags = RT2X00DEBUGFS_OFFSET,
  143. .word_base = CSR_REG_BASE,
  144. .word_size = sizeof(u32),
  145. .word_count = CSR_REG_SIZE / sizeof(u32),
  146. },
  147. .eeprom = {
  148. .read = rt2x00_eeprom_read,
  149. .write = rt2x00_eeprom_write,
  150. .word_base = EEPROM_BASE,
  151. .word_size = sizeof(u16),
  152. .word_count = EEPROM_SIZE / sizeof(u16),
  153. },
  154. .bbp = {
  155. .read = rt2400pci_bbp_read,
  156. .write = rt2400pci_bbp_write,
  157. .word_base = BBP_BASE,
  158. .word_size = sizeof(u8),
  159. .word_count = BBP_SIZE / sizeof(u8),
  160. },
  161. .rf = {
  162. .read = rt2x00_rf_read,
  163. .write = rt2400pci_rf_write,
  164. .word_base = RF_BASE,
  165. .word_size = sizeof(u32),
  166. .word_count = RF_SIZE / sizeof(u32),
  167. },
  168. };
  169. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  170. #ifdef CONFIG_RT2X00_LIB_RFKILL
  171. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  172. {
  173. u32 reg;
  174. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  175. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  176. }
  177. #else
  178. #define rt2400pci_rfkill_poll NULL
  179. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  180. #ifdef CONFIG_RT2X00_LIB_LEDS
  181. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  182. enum led_brightness brightness)
  183. {
  184. struct rt2x00_led *led =
  185. container_of(led_cdev, struct rt2x00_led, led_dev);
  186. unsigned int enabled = brightness != LED_OFF;
  187. u32 reg;
  188. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  189. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  190. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  191. else if (led->type == LED_TYPE_ACTIVITY)
  192. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  193. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  194. }
  195. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  196. unsigned long *delay_on,
  197. unsigned long *delay_off)
  198. {
  199. struct rt2x00_led *led =
  200. container_of(led_cdev, struct rt2x00_led, led_dev);
  201. u32 reg;
  202. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  203. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  204. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  205. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  206. return 0;
  207. }
  208. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  209. struct rt2x00_led *led,
  210. enum led_type type)
  211. {
  212. led->rt2x00dev = rt2x00dev;
  213. led->type = type;
  214. led->led_dev.brightness_set = rt2400pci_brightness_set;
  215. led->led_dev.blink_set = rt2400pci_blink_set;
  216. led->flags = LED_INITIALIZED;
  217. }
  218. #endif /* CONFIG_RT2X00_LIB_LEDS */
  219. /*
  220. * Configuration handlers.
  221. */
  222. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  223. const unsigned int filter_flags)
  224. {
  225. u32 reg;
  226. /*
  227. * Start configuration steps.
  228. * Note that the version error will always be dropped
  229. * since there is no filter for it at this time.
  230. */
  231. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  232. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  233. !(filter_flags & FIF_FCSFAIL));
  234. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  235. !(filter_flags & FIF_PLCPFAIL));
  236. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  237. !(filter_flags & FIF_CONTROL));
  238. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  239. !(filter_flags & FIF_PROMISC_IN_BSS));
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  241. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  242. !rt2x00dev->intf_ap_count);
  243. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  244. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  245. }
  246. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  247. struct rt2x00_intf *intf,
  248. struct rt2x00intf_conf *conf,
  249. const unsigned int flags)
  250. {
  251. unsigned int bcn_preload;
  252. u32 reg;
  253. if (flags & CONFIG_UPDATE_TYPE) {
  254. /*
  255. * Enable beacon config
  256. */
  257. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  258. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  259. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  260. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  261. /*
  262. * Enable synchronisation.
  263. */
  264. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  265. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  266. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  267. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  268. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  269. }
  270. if (flags & CONFIG_UPDATE_MAC)
  271. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  272. conf->mac, sizeof(conf->mac));
  273. if (flags & CONFIG_UPDATE_BSSID)
  274. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  275. conf->bssid, sizeof(conf->bssid));
  276. }
  277. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  278. struct rt2x00lib_erp *erp)
  279. {
  280. int preamble_mask;
  281. u32 reg;
  282. /*
  283. * When short preamble is enabled, we should set bit 0x08
  284. */
  285. preamble_mask = erp->short_preamble << 3;
  286. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  287. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, erp->ack_timeout);
  288. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  289. erp->ack_consume_time);
  290. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  291. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  292. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  293. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  294. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  295. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  296. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  297. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  298. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  299. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  300. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  301. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  302. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  303. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  304. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  305. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  306. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  307. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  308. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  309. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  310. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  311. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  312. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  313. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  314. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  315. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  316. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  317. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  318. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
  319. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
  320. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  321. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  322. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  323. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  324. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  325. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  326. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  327. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  328. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  329. }
  330. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  331. struct antenna_setup *ant)
  332. {
  333. u8 r1;
  334. u8 r4;
  335. /*
  336. * We should never come here because rt2x00lib is supposed
  337. * to catch this and send us the correct antenna explicitely.
  338. */
  339. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  340. ant->tx == ANTENNA_SW_DIVERSITY);
  341. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  342. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  343. /*
  344. * Configure the TX antenna.
  345. */
  346. switch (ant->tx) {
  347. case ANTENNA_HW_DIVERSITY:
  348. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  349. break;
  350. case ANTENNA_A:
  351. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  352. break;
  353. case ANTENNA_B:
  354. default:
  355. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  356. break;
  357. }
  358. /*
  359. * Configure the RX antenna.
  360. */
  361. switch (ant->rx) {
  362. case ANTENNA_HW_DIVERSITY:
  363. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  364. break;
  365. case ANTENNA_A:
  366. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  367. break;
  368. case ANTENNA_B:
  369. default:
  370. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  371. break;
  372. }
  373. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  374. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  375. }
  376. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  377. struct rf_channel *rf)
  378. {
  379. /*
  380. * Switch on tuning bits.
  381. */
  382. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  383. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  384. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  385. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  386. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  387. /*
  388. * RF2420 chipset don't need any additional actions.
  389. */
  390. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  391. return;
  392. /*
  393. * For the RT2421 chipsets we need to write an invalid
  394. * reference clock rate to activate auto_tune.
  395. * After that we set the value back to the correct channel.
  396. */
  397. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  398. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  399. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  400. msleep(1);
  401. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  402. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  403. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  404. msleep(1);
  405. /*
  406. * Switch off tuning bits.
  407. */
  408. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  409. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  410. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  411. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  412. /*
  413. * Clear false CRC during channel switch.
  414. */
  415. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  416. }
  417. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  418. {
  419. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  420. }
  421. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  422. struct rt2x00lib_conf *libconf)
  423. {
  424. u32 reg;
  425. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  426. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  427. libconf->conf->long_frame_max_tx_count);
  428. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  429. libconf->conf->short_frame_max_tx_count);
  430. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  431. }
  432. static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
  433. struct rt2x00lib_conf *libconf)
  434. {
  435. enum dev_state state =
  436. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  437. STATE_SLEEP : STATE_AWAKE;
  438. u32 reg;
  439. if (state == STATE_SLEEP) {
  440. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  441. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  442. (rt2x00dev->beacon_int - 20) * 16);
  443. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  444. libconf->conf->listen_interval - 1);
  445. /* We must first disable autowake before it can be enabled */
  446. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  447. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  448. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  449. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  450. }
  451. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  452. }
  453. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  454. struct rt2x00lib_conf *libconf,
  455. const unsigned int flags)
  456. {
  457. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  458. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  459. if (flags & IEEE80211_CONF_CHANGE_POWER)
  460. rt2400pci_config_txpower(rt2x00dev,
  461. libconf->conf->power_level);
  462. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  463. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  464. if (flags & IEEE80211_CONF_CHANGE_PS)
  465. rt2400pci_config_ps(rt2x00dev, libconf);
  466. }
  467. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  468. const int cw_min, const int cw_max)
  469. {
  470. u32 reg;
  471. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  472. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  473. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  474. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  475. }
  476. /*
  477. * Link tuning
  478. */
  479. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  480. struct link_qual *qual)
  481. {
  482. u32 reg;
  483. u8 bbp;
  484. /*
  485. * Update FCS error count from register.
  486. */
  487. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  488. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  489. /*
  490. * Update False CCA count from register.
  491. */
  492. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  493. qual->false_cca = bbp;
  494. }
  495. static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  496. struct link_qual *qual, u8 vgc_level)
  497. {
  498. rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
  499. qual->vgc_level = vgc_level;
  500. qual->vgc_level_reg = vgc_level;
  501. }
  502. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  503. struct link_qual *qual)
  504. {
  505. rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
  506. }
  507. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  508. struct link_qual *qual, const u32 count)
  509. {
  510. /*
  511. * The link tuner should not run longer then 60 seconds,
  512. * and should run once every 2 seconds.
  513. */
  514. if (count > 60 || !(count & 1))
  515. return;
  516. /*
  517. * Base r13 link tuning on the false cca count.
  518. */
  519. if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
  520. rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
  521. else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
  522. rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
  523. }
  524. /*
  525. * Initialization functions.
  526. */
  527. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  528. {
  529. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  530. u32 word;
  531. if (entry->queue->qid == QID_RX) {
  532. rt2x00_desc_read(entry_priv->desc, 0, &word);
  533. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  534. } else {
  535. rt2x00_desc_read(entry_priv->desc, 0, &word);
  536. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  537. rt2x00_get_field32(word, TXD_W0_VALID));
  538. }
  539. }
  540. static void rt2400pci_clear_entry(struct queue_entry *entry)
  541. {
  542. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  543. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  544. u32 word;
  545. if (entry->queue->qid == QID_RX) {
  546. rt2x00_desc_read(entry_priv->desc, 2, &word);
  547. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  548. rt2x00_desc_write(entry_priv->desc, 2, word);
  549. rt2x00_desc_read(entry_priv->desc, 1, &word);
  550. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  551. rt2x00_desc_write(entry_priv->desc, 1, word);
  552. rt2x00_desc_read(entry_priv->desc, 0, &word);
  553. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  554. rt2x00_desc_write(entry_priv->desc, 0, word);
  555. } else {
  556. rt2x00_desc_read(entry_priv->desc, 0, &word);
  557. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  558. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  559. rt2x00_desc_write(entry_priv->desc, 0, word);
  560. }
  561. }
  562. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  563. {
  564. struct queue_entry_priv_pci *entry_priv;
  565. u32 reg;
  566. /*
  567. * Initialize registers.
  568. */
  569. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  570. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  571. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  572. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  573. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  574. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  575. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  576. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  577. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  578. entry_priv->desc_dma);
  579. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  580. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  581. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  582. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  583. entry_priv->desc_dma);
  584. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  585. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  586. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  587. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  588. entry_priv->desc_dma);
  589. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  590. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  591. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  592. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  593. entry_priv->desc_dma);
  594. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  595. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  596. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  597. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  598. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  599. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  600. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  601. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  602. entry_priv->desc_dma);
  603. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  604. return 0;
  605. }
  606. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  607. {
  608. u32 reg;
  609. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  610. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  611. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  612. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  613. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  614. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  615. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  616. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  617. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  618. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  619. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  620. (rt2x00dev->rx->data_size / 128));
  621. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  622. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  623. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  624. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  625. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  626. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  627. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  628. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  629. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  630. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  631. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  632. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  633. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  634. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  635. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  636. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  637. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  638. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  639. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  640. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  641. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  642. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  643. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  644. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  645. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  646. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  647. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  648. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  649. return -EBUSY;
  650. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  651. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  652. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  653. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  654. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  655. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  656. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  657. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  658. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  659. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  660. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  661. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  662. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  663. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  664. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  665. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  666. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  667. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  668. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  669. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  670. /*
  671. * We must clear the FCS and FIFO error count.
  672. * These registers are cleared on read,
  673. * so we may pass a useless variable to store the value.
  674. */
  675. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  676. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  677. return 0;
  678. }
  679. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  680. {
  681. unsigned int i;
  682. u8 value;
  683. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  684. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  685. if ((value != 0xff) && (value != 0x00))
  686. return 0;
  687. udelay(REGISTER_BUSY_DELAY);
  688. }
  689. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  690. return -EACCES;
  691. }
  692. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  693. {
  694. unsigned int i;
  695. u16 eeprom;
  696. u8 reg_id;
  697. u8 value;
  698. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  699. return -EACCES;
  700. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  701. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  702. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  703. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  704. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  705. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  706. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  707. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  708. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  709. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  710. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  711. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  712. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  713. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  714. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  715. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  716. if (eeprom != 0xffff && eeprom != 0x0000) {
  717. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  718. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  719. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  720. }
  721. }
  722. return 0;
  723. }
  724. /*
  725. * Device state switch handlers.
  726. */
  727. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  728. enum dev_state state)
  729. {
  730. u32 reg;
  731. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  732. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  733. (state == STATE_RADIO_RX_OFF) ||
  734. (state == STATE_RADIO_RX_OFF_LINK));
  735. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  736. }
  737. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  738. enum dev_state state)
  739. {
  740. int mask = (state == STATE_RADIO_IRQ_OFF);
  741. u32 reg;
  742. /*
  743. * When interrupts are being enabled, the interrupt registers
  744. * should clear the register to assure a clean state.
  745. */
  746. if (state == STATE_RADIO_IRQ_ON) {
  747. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  748. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  749. }
  750. /*
  751. * Only toggle the interrupts bits we are going to use.
  752. * Non-checked interrupt bits are disabled by default.
  753. */
  754. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  755. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  756. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  757. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  758. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  759. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  760. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  761. }
  762. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  763. {
  764. /*
  765. * Initialize all registers.
  766. */
  767. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  768. rt2400pci_init_registers(rt2x00dev) ||
  769. rt2400pci_init_bbp(rt2x00dev)))
  770. return -EIO;
  771. return 0;
  772. }
  773. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  774. {
  775. /*
  776. * Disable power
  777. */
  778. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  779. }
  780. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  781. enum dev_state state)
  782. {
  783. u32 reg;
  784. unsigned int i;
  785. char put_to_sleep;
  786. char bbp_state;
  787. char rf_state;
  788. put_to_sleep = (state != STATE_AWAKE);
  789. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  790. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  791. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  792. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  793. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  794. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  795. /*
  796. * Device is not guaranteed to be in the requested state yet.
  797. * We must wait until the register indicates that the
  798. * device has entered the correct state.
  799. */
  800. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  801. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  802. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  803. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  804. if (bbp_state == state && rf_state == state)
  805. return 0;
  806. msleep(10);
  807. }
  808. return -EBUSY;
  809. }
  810. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  811. enum dev_state state)
  812. {
  813. int retval = 0;
  814. switch (state) {
  815. case STATE_RADIO_ON:
  816. retval = rt2400pci_enable_radio(rt2x00dev);
  817. break;
  818. case STATE_RADIO_OFF:
  819. rt2400pci_disable_radio(rt2x00dev);
  820. break;
  821. case STATE_RADIO_RX_ON:
  822. case STATE_RADIO_RX_ON_LINK:
  823. case STATE_RADIO_RX_OFF:
  824. case STATE_RADIO_RX_OFF_LINK:
  825. rt2400pci_toggle_rx(rt2x00dev, state);
  826. break;
  827. case STATE_RADIO_IRQ_ON:
  828. case STATE_RADIO_IRQ_OFF:
  829. rt2400pci_toggle_irq(rt2x00dev, state);
  830. break;
  831. case STATE_DEEP_SLEEP:
  832. case STATE_SLEEP:
  833. case STATE_STANDBY:
  834. case STATE_AWAKE:
  835. retval = rt2400pci_set_state(rt2x00dev, state);
  836. break;
  837. default:
  838. retval = -ENOTSUPP;
  839. break;
  840. }
  841. if (unlikely(retval))
  842. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  843. state, retval);
  844. return retval;
  845. }
  846. /*
  847. * TX descriptor initialization
  848. */
  849. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  850. struct sk_buff *skb,
  851. struct txentry_desc *txdesc)
  852. {
  853. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  854. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  855. __le32 *txd = skbdesc->desc;
  856. u32 word;
  857. /*
  858. * Start writing the descriptor words.
  859. */
  860. rt2x00_desc_read(entry_priv->desc, 1, &word);
  861. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  862. rt2x00_desc_write(entry_priv->desc, 1, word);
  863. rt2x00_desc_read(txd, 2, &word);
  864. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
  865. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
  866. rt2x00_desc_write(txd, 2, word);
  867. rt2x00_desc_read(txd, 3, &word);
  868. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  869. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  870. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  871. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  872. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  873. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  874. rt2x00_desc_write(txd, 3, word);
  875. rt2x00_desc_read(txd, 4, &word);
  876. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  877. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  878. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  879. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  880. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  881. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  882. rt2x00_desc_write(txd, 4, word);
  883. rt2x00_desc_read(txd, 0, &word);
  884. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  885. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  886. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  887. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  888. rt2x00_set_field32(&word, TXD_W0_ACK,
  889. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  890. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  891. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  892. rt2x00_set_field32(&word, TXD_W0_RTS,
  893. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  894. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  895. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  896. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  897. rt2x00_desc_write(txd, 0, word);
  898. }
  899. /*
  900. * TX data initialization
  901. */
  902. static void rt2400pci_write_beacon(struct queue_entry *entry)
  903. {
  904. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  905. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  906. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  907. u32 word;
  908. u32 reg;
  909. /*
  910. * Disable beaconing while we are reloading the beacon data,
  911. * otherwise we might be sending out invalid data.
  912. */
  913. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  914. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  915. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  916. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  917. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  918. /*
  919. * Replace rt2x00lib allocated descriptor with the
  920. * pointer to the _real_ hardware descriptor.
  921. * After that, map the beacon to DMA and update the
  922. * descriptor.
  923. */
  924. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  925. skbdesc->desc = entry_priv->desc;
  926. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  927. rt2x00_desc_read(entry_priv->desc, 1, &word);
  928. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  929. rt2x00_desc_write(entry_priv->desc, 1, word);
  930. }
  931. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  932. const enum data_queue_qid queue)
  933. {
  934. u32 reg;
  935. if (queue == QID_BEACON) {
  936. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  937. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  938. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  939. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  940. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  941. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  942. }
  943. return;
  944. }
  945. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  946. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  947. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  948. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  949. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  950. }
  951. static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  952. const enum data_queue_qid qid)
  953. {
  954. u32 reg;
  955. if (qid == QID_BEACON) {
  956. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  957. } else {
  958. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  959. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  960. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  961. }
  962. }
  963. /*
  964. * RX control handlers
  965. */
  966. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  967. struct rxdone_entry_desc *rxdesc)
  968. {
  969. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  970. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  971. u32 word0;
  972. u32 word2;
  973. u32 word3;
  974. u32 word4;
  975. u64 tsf;
  976. u32 rx_low;
  977. u32 rx_high;
  978. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  979. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  980. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  981. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  982. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  983. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  984. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  985. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  986. /*
  987. * We only get the lower 32bits from the timestamp,
  988. * to get the full 64bits we must complement it with
  989. * the timestamp from get_tsf().
  990. * Note that when a wraparound of the lower 32bits
  991. * has occurred between the frame arrival and the get_tsf()
  992. * call, we must decrease the higher 32bits with 1 to get
  993. * to correct value.
  994. */
  995. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
  996. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  997. rx_high = upper_32_bits(tsf);
  998. if ((u32)tsf <= rx_low)
  999. rx_high--;
  1000. /*
  1001. * Obtain the status about this packet.
  1002. * The signal is the PLCP value, and needs to be stripped
  1003. * of the preamble bit (0x08).
  1004. */
  1005. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1006. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1007. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  1008. entry->queue->rt2x00dev->rssi_offset;
  1009. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1010. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1011. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1012. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1013. }
  1014. /*
  1015. * Interrupt functions.
  1016. */
  1017. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1018. const enum data_queue_qid queue_idx)
  1019. {
  1020. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1021. struct queue_entry_priv_pci *entry_priv;
  1022. struct queue_entry *entry;
  1023. struct txdone_entry_desc txdesc;
  1024. u32 word;
  1025. while (!rt2x00queue_empty(queue)) {
  1026. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1027. entry_priv = entry->priv_data;
  1028. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1029. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1030. !rt2x00_get_field32(word, TXD_W0_VALID))
  1031. break;
  1032. /*
  1033. * Obtain the status about this packet.
  1034. */
  1035. txdesc.flags = 0;
  1036. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1037. case 0: /* Success */
  1038. case 1: /* Success with retry */
  1039. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1040. break;
  1041. case 2: /* Failure, excessive retries */
  1042. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1043. /* Don't break, this is a failed frame! */
  1044. default: /* Failure */
  1045. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1046. }
  1047. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1048. rt2x00lib_txdone(entry, &txdesc);
  1049. }
  1050. }
  1051. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1052. {
  1053. struct rt2x00_dev *rt2x00dev = dev_instance;
  1054. u32 reg;
  1055. /*
  1056. * Get the interrupt sources & saved to local variable.
  1057. * Write register value back to clear pending interrupts.
  1058. */
  1059. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1060. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1061. if (!reg)
  1062. return IRQ_NONE;
  1063. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1064. return IRQ_HANDLED;
  1065. /*
  1066. * Handle interrupts, walk through all bits
  1067. * and run the tasks, the bits are checked in order of
  1068. * priority.
  1069. */
  1070. /*
  1071. * 1 - Beacon timer expired interrupt.
  1072. */
  1073. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1074. rt2x00lib_beacondone(rt2x00dev);
  1075. /*
  1076. * 2 - Rx ring done interrupt.
  1077. */
  1078. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1079. rt2x00pci_rxdone(rt2x00dev);
  1080. /*
  1081. * 3 - Atim ring transmit done interrupt.
  1082. */
  1083. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1084. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1085. /*
  1086. * 4 - Priority ring transmit done interrupt.
  1087. */
  1088. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1089. rt2400pci_txdone(rt2x00dev, QID_AC_BE);
  1090. /*
  1091. * 5 - Tx ring transmit done interrupt.
  1092. */
  1093. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1094. rt2400pci_txdone(rt2x00dev, QID_AC_BK);
  1095. return IRQ_HANDLED;
  1096. }
  1097. /*
  1098. * Device probe functions.
  1099. */
  1100. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1101. {
  1102. struct eeprom_93cx6 eeprom;
  1103. u32 reg;
  1104. u16 word;
  1105. u8 *mac;
  1106. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1107. eeprom.data = rt2x00dev;
  1108. eeprom.register_read = rt2400pci_eepromregister_read;
  1109. eeprom.register_write = rt2400pci_eepromregister_write;
  1110. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1111. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1112. eeprom.reg_data_in = 0;
  1113. eeprom.reg_data_out = 0;
  1114. eeprom.reg_data_clock = 0;
  1115. eeprom.reg_chip_select = 0;
  1116. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1117. EEPROM_SIZE / sizeof(u16));
  1118. /*
  1119. * Start validation of the data that has been read.
  1120. */
  1121. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1122. if (!is_valid_ether_addr(mac)) {
  1123. random_ether_addr(mac);
  1124. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1125. }
  1126. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1127. if (word == 0xffff) {
  1128. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1129. return -EINVAL;
  1130. }
  1131. return 0;
  1132. }
  1133. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1134. {
  1135. u32 reg;
  1136. u16 value;
  1137. u16 eeprom;
  1138. /*
  1139. * Read EEPROM word for configuration.
  1140. */
  1141. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1142. /*
  1143. * Identify RF chipset.
  1144. */
  1145. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1146. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1147. rt2x00_set_chip_rf(rt2x00dev, value, reg);
  1148. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1149. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1150. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1151. return -ENODEV;
  1152. }
  1153. /*
  1154. * Identify default antenna configuration.
  1155. */
  1156. rt2x00dev->default_ant.tx =
  1157. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1158. rt2x00dev->default_ant.rx =
  1159. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1160. /*
  1161. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1162. * I am not 100% sure about this, but the legacy drivers do not
  1163. * indicate antenna swapping in software is required when
  1164. * diversity is enabled.
  1165. */
  1166. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1167. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1168. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1169. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1170. /*
  1171. * Store led mode, for correct led behaviour.
  1172. */
  1173. #ifdef CONFIG_RT2X00_LIB_LEDS
  1174. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1175. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1176. if (value == LED_MODE_TXRX_ACTIVITY ||
  1177. value == LED_MODE_DEFAULT ||
  1178. value == LED_MODE_ASUS)
  1179. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1180. LED_TYPE_ACTIVITY);
  1181. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1182. /*
  1183. * Detect if this device has an hardware controlled radio.
  1184. */
  1185. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1186. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1187. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1188. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1189. /*
  1190. * Check if the BBP tuning should be enabled.
  1191. */
  1192. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1193. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1194. return 0;
  1195. }
  1196. /*
  1197. * RF value list for RF2420 & RF2421
  1198. * Supports: 2.4 GHz
  1199. */
  1200. static const struct rf_channel rf_vals_b[] = {
  1201. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1202. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1203. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1204. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1205. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1206. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1207. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1208. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1209. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1210. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1211. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1212. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1213. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1214. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1215. };
  1216. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1217. {
  1218. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1219. struct channel_info *info;
  1220. char *tx_power;
  1221. unsigned int i;
  1222. /*
  1223. * Initialize all hw fields.
  1224. */
  1225. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1226. IEEE80211_HW_SIGNAL_DBM |
  1227. IEEE80211_HW_SUPPORTS_PS |
  1228. IEEE80211_HW_PS_NULLFUNC_STACK;
  1229. rt2x00dev->hw->extra_tx_headroom = 0;
  1230. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1231. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1232. rt2x00_eeprom_addr(rt2x00dev,
  1233. EEPROM_MAC_ADDR_0));
  1234. /*
  1235. * Initialize hw_mode information.
  1236. */
  1237. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1238. spec->supported_rates = SUPPORT_RATE_CCK;
  1239. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1240. spec->channels = rf_vals_b;
  1241. /*
  1242. * Create channel information array
  1243. */
  1244. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1245. if (!info)
  1246. return -ENOMEM;
  1247. spec->channels_info = info;
  1248. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1249. for (i = 0; i < 14; i++)
  1250. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1251. return 0;
  1252. }
  1253. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1254. {
  1255. int retval;
  1256. /*
  1257. * Allocate eeprom data.
  1258. */
  1259. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1260. if (retval)
  1261. return retval;
  1262. retval = rt2400pci_init_eeprom(rt2x00dev);
  1263. if (retval)
  1264. return retval;
  1265. /*
  1266. * Initialize hw specifications.
  1267. */
  1268. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1269. if (retval)
  1270. return retval;
  1271. /*
  1272. * This device requires the atim queue and DMA-mapped skbs.
  1273. */
  1274. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1275. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1276. /*
  1277. * Set the rssi offset.
  1278. */
  1279. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1280. return 0;
  1281. }
  1282. /*
  1283. * IEEE80211 stack callback functions.
  1284. */
  1285. static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
  1286. const struct ieee80211_tx_queue_params *params)
  1287. {
  1288. struct rt2x00_dev *rt2x00dev = hw->priv;
  1289. /*
  1290. * We don't support variating cw_min and cw_max variables
  1291. * per queue. So by default we only configure the TX queue,
  1292. * and ignore all other configurations.
  1293. */
  1294. if (queue != 0)
  1295. return -EINVAL;
  1296. if (rt2x00mac_conf_tx(hw, queue, params))
  1297. return -EINVAL;
  1298. /*
  1299. * Write configuration to register.
  1300. */
  1301. rt2400pci_config_cw(rt2x00dev,
  1302. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1303. return 0;
  1304. }
  1305. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1306. {
  1307. struct rt2x00_dev *rt2x00dev = hw->priv;
  1308. u64 tsf;
  1309. u32 reg;
  1310. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1311. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1312. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1313. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1314. return tsf;
  1315. }
  1316. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1317. {
  1318. struct rt2x00_dev *rt2x00dev = hw->priv;
  1319. u32 reg;
  1320. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1321. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1322. }
  1323. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1324. .tx = rt2x00mac_tx,
  1325. .start = rt2x00mac_start,
  1326. .stop = rt2x00mac_stop,
  1327. .add_interface = rt2x00mac_add_interface,
  1328. .remove_interface = rt2x00mac_remove_interface,
  1329. .config = rt2x00mac_config,
  1330. .configure_filter = rt2x00mac_configure_filter,
  1331. .get_stats = rt2x00mac_get_stats,
  1332. .bss_info_changed = rt2x00mac_bss_info_changed,
  1333. .conf_tx = rt2400pci_conf_tx,
  1334. .get_tx_stats = rt2x00mac_get_tx_stats,
  1335. .get_tsf = rt2400pci_get_tsf,
  1336. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1337. };
  1338. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1339. .irq_handler = rt2400pci_interrupt,
  1340. .probe_hw = rt2400pci_probe_hw,
  1341. .initialize = rt2x00pci_initialize,
  1342. .uninitialize = rt2x00pci_uninitialize,
  1343. .get_entry_state = rt2400pci_get_entry_state,
  1344. .clear_entry = rt2400pci_clear_entry,
  1345. .set_device_state = rt2400pci_set_device_state,
  1346. .rfkill_poll = rt2400pci_rfkill_poll,
  1347. .link_stats = rt2400pci_link_stats,
  1348. .reset_tuner = rt2400pci_reset_tuner,
  1349. .link_tuner = rt2400pci_link_tuner,
  1350. .write_tx_desc = rt2400pci_write_tx_desc,
  1351. .write_tx_data = rt2x00pci_write_tx_data,
  1352. .write_beacon = rt2400pci_write_beacon,
  1353. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1354. .kill_tx_queue = rt2400pci_kill_tx_queue,
  1355. .fill_rxdone = rt2400pci_fill_rxdone,
  1356. .config_filter = rt2400pci_config_filter,
  1357. .config_intf = rt2400pci_config_intf,
  1358. .config_erp = rt2400pci_config_erp,
  1359. .config_ant = rt2400pci_config_ant,
  1360. .config = rt2400pci_config,
  1361. };
  1362. static const struct data_queue_desc rt2400pci_queue_rx = {
  1363. .entry_num = RX_ENTRIES,
  1364. .data_size = DATA_FRAME_SIZE,
  1365. .desc_size = RXD_DESC_SIZE,
  1366. .priv_size = sizeof(struct queue_entry_priv_pci),
  1367. };
  1368. static const struct data_queue_desc rt2400pci_queue_tx = {
  1369. .entry_num = TX_ENTRIES,
  1370. .data_size = DATA_FRAME_SIZE,
  1371. .desc_size = TXD_DESC_SIZE,
  1372. .priv_size = sizeof(struct queue_entry_priv_pci),
  1373. };
  1374. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1375. .entry_num = BEACON_ENTRIES,
  1376. .data_size = MGMT_FRAME_SIZE,
  1377. .desc_size = TXD_DESC_SIZE,
  1378. .priv_size = sizeof(struct queue_entry_priv_pci),
  1379. };
  1380. static const struct data_queue_desc rt2400pci_queue_atim = {
  1381. .entry_num = ATIM_ENTRIES,
  1382. .data_size = DATA_FRAME_SIZE,
  1383. .desc_size = TXD_DESC_SIZE,
  1384. .priv_size = sizeof(struct queue_entry_priv_pci),
  1385. };
  1386. static const struct rt2x00_ops rt2400pci_ops = {
  1387. .name = KBUILD_MODNAME,
  1388. .max_sta_intf = 1,
  1389. .max_ap_intf = 1,
  1390. .eeprom_size = EEPROM_SIZE,
  1391. .rf_size = RF_SIZE,
  1392. .tx_queues = NUM_TX_QUEUES,
  1393. .rx = &rt2400pci_queue_rx,
  1394. .tx = &rt2400pci_queue_tx,
  1395. .bcn = &rt2400pci_queue_bcn,
  1396. .atim = &rt2400pci_queue_atim,
  1397. .lib = &rt2400pci_rt2x00_ops,
  1398. .hw = &rt2400pci_mac80211_ops,
  1399. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1400. .debugfs = &rt2400pci_rt2x00debug,
  1401. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1402. };
  1403. /*
  1404. * RT2400pci module information.
  1405. */
  1406. static struct pci_device_id rt2400pci_device_table[] = {
  1407. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1408. { 0, }
  1409. };
  1410. MODULE_AUTHOR(DRV_PROJECT);
  1411. MODULE_VERSION(DRV_VERSION);
  1412. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1413. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1414. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1415. MODULE_LICENSE("GPL");
  1416. static struct pci_driver rt2400pci_driver = {
  1417. .name = KBUILD_MODNAME,
  1418. .id_table = rt2400pci_device_table,
  1419. .probe = rt2x00pci_probe,
  1420. .remove = __devexit_p(rt2x00pci_remove),
  1421. .suspend = rt2x00pci_suspend,
  1422. .resume = rt2x00pci_resume,
  1423. };
  1424. static int __init rt2400pci_init(void)
  1425. {
  1426. return pci_register_driver(&rt2400pci_driver);
  1427. }
  1428. static void __exit rt2400pci_exit(void)
  1429. {
  1430. pci_unregister_driver(&rt2400pci_driver);
  1431. }
  1432. module_init(rt2400pci_init);
  1433. module_exit(rt2400pci_exit);