bootmem.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. /*
  2. * linux/mm/bootmem.c
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  6. *
  7. * simple boot-time physical memory area allocator and
  8. * free memory collector. It's used to deal with reserved
  9. * system memory and memory holes as well.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/pfn.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/module.h>
  15. #include <asm/bug.h>
  16. #include <asm/io.h>
  17. #include <asm/processor.h>
  18. #include "internal.h"
  19. /*
  20. * Access to this subsystem has to be serialized externally. (this is
  21. * true for the boot process anyway)
  22. */
  23. unsigned long max_low_pfn;
  24. unsigned long min_low_pfn;
  25. unsigned long max_pfn;
  26. static LIST_HEAD(bdata_list);
  27. #ifdef CONFIG_CRASH_DUMP
  28. /*
  29. * If we have booted due to a crash, max_pfn will be a very low value. We need
  30. * to know the amount of memory that the previous kernel used.
  31. */
  32. unsigned long saved_max_pfn;
  33. #endif
  34. bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
  35. /* return the number of _pages_ that will be allocated for the boot bitmap */
  36. unsigned long __init bootmem_bootmap_pages(unsigned long pages)
  37. {
  38. unsigned long mapsize;
  39. mapsize = (pages+7)/8;
  40. mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
  41. mapsize >>= PAGE_SHIFT;
  42. return mapsize;
  43. }
  44. /*
  45. * link bdata in order
  46. */
  47. static void __init link_bootmem(bootmem_data_t *bdata)
  48. {
  49. bootmem_data_t *ent;
  50. if (list_empty(&bdata_list)) {
  51. list_add(&bdata->list, &bdata_list);
  52. return;
  53. }
  54. /* insert in order */
  55. list_for_each_entry(ent, &bdata_list, list) {
  56. if (bdata->node_boot_start < ent->node_boot_start) {
  57. list_add_tail(&bdata->list, &ent->list);
  58. return;
  59. }
  60. }
  61. list_add_tail(&bdata->list, &bdata_list);
  62. }
  63. /*
  64. * Given an initialised bdata, it returns the size of the boot bitmap
  65. */
  66. static unsigned long __init get_mapsize(bootmem_data_t *bdata)
  67. {
  68. unsigned long mapsize;
  69. unsigned long start = PFN_DOWN(bdata->node_boot_start);
  70. unsigned long end = bdata->node_low_pfn;
  71. mapsize = ((end - start) + 7) / 8;
  72. return ALIGN(mapsize, sizeof(long));
  73. }
  74. /*
  75. * Called once to set up the allocator itself.
  76. */
  77. static unsigned long __init init_bootmem_core(pg_data_t *pgdat,
  78. unsigned long mapstart, unsigned long start, unsigned long end)
  79. {
  80. bootmem_data_t *bdata = pgdat->bdata;
  81. unsigned long mapsize;
  82. mminit_validate_memmodel_limits(&start, &end);
  83. bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
  84. bdata->node_boot_start = PFN_PHYS(start);
  85. bdata->node_low_pfn = end;
  86. link_bootmem(bdata);
  87. /*
  88. * Initially all pages are reserved - setup_arch() has to
  89. * register free RAM areas explicitly.
  90. */
  91. mapsize = get_mapsize(bdata);
  92. memset(bdata->node_bootmem_map, 0xff, mapsize);
  93. return mapsize;
  94. }
  95. /*
  96. * Marks a particular physical memory range as unallocatable. Usable RAM
  97. * might be used for boot-time allocations - or it might get added
  98. * to the free page pool later on.
  99. */
  100. static int __init can_reserve_bootmem_core(bootmem_data_t *bdata,
  101. unsigned long addr, unsigned long size, int flags)
  102. {
  103. unsigned long sidx, eidx;
  104. unsigned long i;
  105. BUG_ON(!size);
  106. /* out of range, don't hold other */
  107. if (addr + size < bdata->node_boot_start ||
  108. PFN_DOWN(addr) > bdata->node_low_pfn)
  109. return 0;
  110. /*
  111. * Round up to index to the range.
  112. */
  113. if (addr > bdata->node_boot_start)
  114. sidx= PFN_DOWN(addr - bdata->node_boot_start);
  115. else
  116. sidx = 0;
  117. eidx = PFN_UP(addr + size - bdata->node_boot_start);
  118. if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
  119. eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
  120. for (i = sidx; i < eidx; i++) {
  121. if (test_bit(i, bdata->node_bootmem_map)) {
  122. if (flags & BOOTMEM_EXCLUSIVE)
  123. return -EBUSY;
  124. }
  125. }
  126. return 0;
  127. }
  128. static void __init reserve_bootmem_core(bootmem_data_t *bdata,
  129. unsigned long addr, unsigned long size, int flags)
  130. {
  131. unsigned long sidx, eidx;
  132. unsigned long i;
  133. BUG_ON(!size);
  134. /* out of range */
  135. if (addr + size < bdata->node_boot_start ||
  136. PFN_DOWN(addr) > bdata->node_low_pfn)
  137. return;
  138. /*
  139. * Round up to index to the range.
  140. */
  141. if (addr > bdata->node_boot_start)
  142. sidx= PFN_DOWN(addr - bdata->node_boot_start);
  143. else
  144. sidx = 0;
  145. eidx = PFN_UP(addr + size - bdata->node_boot_start);
  146. if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
  147. eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
  148. for (i = sidx; i < eidx; i++) {
  149. if (test_and_set_bit(i, bdata->node_bootmem_map)) {
  150. #ifdef CONFIG_DEBUG_BOOTMEM
  151. printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
  152. #endif
  153. }
  154. }
  155. }
  156. static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
  157. unsigned long size)
  158. {
  159. unsigned long sidx, eidx;
  160. unsigned long i;
  161. BUG_ON(!size);
  162. /* out range */
  163. if (addr + size < bdata->node_boot_start ||
  164. PFN_DOWN(addr) > bdata->node_low_pfn)
  165. return;
  166. /*
  167. * round down end of usable mem, partially free pages are
  168. * considered reserved.
  169. */
  170. if (addr >= bdata->node_boot_start && addr < bdata->last_success)
  171. bdata->last_success = addr;
  172. /*
  173. * Round up to index to the range.
  174. */
  175. if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start))
  176. sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
  177. else
  178. sidx = 0;
  179. eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
  180. if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
  181. eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
  182. for (i = sidx; i < eidx; i++) {
  183. if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
  184. BUG();
  185. }
  186. }
  187. /*
  188. * We 'merge' subsequent allocations to save space. We might 'lose'
  189. * some fraction of a page if allocations cannot be satisfied due to
  190. * size constraints on boxes where there is physical RAM space
  191. * fragmentation - in these cases (mostly large memory boxes) this
  192. * is not a problem.
  193. *
  194. * On low memory boxes we get it right in 100% of the cases.
  195. *
  196. * alignment has to be a power of 2 value.
  197. *
  198. * NOTE: This function is _not_ reentrant.
  199. */
  200. void * __init
  201. __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
  202. unsigned long align, unsigned long goal, unsigned long limit)
  203. {
  204. unsigned long areasize, preferred;
  205. unsigned long i, start = 0, incr, eidx, end_pfn;
  206. void *ret;
  207. unsigned long node_boot_start;
  208. void *node_bootmem_map;
  209. if (!size) {
  210. printk("__alloc_bootmem_core(): zero-sized request\n");
  211. BUG();
  212. }
  213. BUG_ON(align & (align-1));
  214. /* on nodes without memory - bootmem_map is NULL */
  215. if (!bdata->node_bootmem_map)
  216. return NULL;
  217. /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */
  218. node_boot_start = bdata->node_boot_start;
  219. node_bootmem_map = bdata->node_bootmem_map;
  220. if (align) {
  221. node_boot_start = ALIGN(bdata->node_boot_start, align);
  222. if (node_boot_start > bdata->node_boot_start)
  223. node_bootmem_map = (unsigned long *)bdata->node_bootmem_map +
  224. PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG;
  225. }
  226. if (limit && node_boot_start >= limit)
  227. return NULL;
  228. end_pfn = bdata->node_low_pfn;
  229. limit = PFN_DOWN(limit);
  230. if (limit && end_pfn > limit)
  231. end_pfn = limit;
  232. eidx = end_pfn - PFN_DOWN(node_boot_start);
  233. /*
  234. * We try to allocate bootmem pages above 'goal'
  235. * first, then we try to allocate lower pages.
  236. */
  237. preferred = 0;
  238. if (goal && PFN_DOWN(goal) < end_pfn) {
  239. if (goal > node_boot_start)
  240. preferred = goal - node_boot_start;
  241. if (bdata->last_success > node_boot_start &&
  242. bdata->last_success - node_boot_start >= preferred)
  243. if (!limit || (limit && limit > bdata->last_success))
  244. preferred = bdata->last_success - node_boot_start;
  245. }
  246. preferred = PFN_DOWN(ALIGN(preferred, align));
  247. areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
  248. incr = align >> PAGE_SHIFT ? : 1;
  249. restart_scan:
  250. for (i = preferred; i < eidx;) {
  251. unsigned long j;
  252. i = find_next_zero_bit(node_bootmem_map, eidx, i);
  253. i = ALIGN(i, incr);
  254. if (i >= eidx)
  255. break;
  256. if (test_bit(i, node_bootmem_map)) {
  257. i += incr;
  258. continue;
  259. }
  260. for (j = i + 1; j < i + areasize; ++j) {
  261. if (j >= eidx)
  262. goto fail_block;
  263. if (test_bit(j, node_bootmem_map))
  264. goto fail_block;
  265. }
  266. start = i;
  267. goto found;
  268. fail_block:
  269. i = ALIGN(j, incr);
  270. if (i == j)
  271. i += incr;
  272. }
  273. if (preferred > 0) {
  274. preferred = 0;
  275. goto restart_scan;
  276. }
  277. return NULL;
  278. found:
  279. bdata->last_success = PFN_PHYS(start) + node_boot_start;
  280. BUG_ON(start >= eidx);
  281. /*
  282. * Is the next page of the previous allocation-end the start
  283. * of this allocation's buffer? If yes then we can 'merge'
  284. * the previous partial page with this allocation.
  285. */
  286. if (align < PAGE_SIZE &&
  287. bdata->last_offset && bdata->last_pos+1 == start) {
  288. unsigned long offset, remaining_size;
  289. offset = ALIGN(bdata->last_offset, align);
  290. BUG_ON(offset > PAGE_SIZE);
  291. remaining_size = PAGE_SIZE - offset;
  292. if (size < remaining_size) {
  293. areasize = 0;
  294. /* last_pos unchanged */
  295. bdata->last_offset = offset + size;
  296. ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
  297. offset + node_boot_start);
  298. } else {
  299. remaining_size = size - remaining_size;
  300. areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
  301. ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
  302. offset + node_boot_start);
  303. bdata->last_pos = start + areasize - 1;
  304. bdata->last_offset = remaining_size;
  305. }
  306. bdata->last_offset &= ~PAGE_MASK;
  307. } else {
  308. bdata->last_pos = start + areasize - 1;
  309. bdata->last_offset = size & ~PAGE_MASK;
  310. ret = phys_to_virt(start * PAGE_SIZE + node_boot_start);
  311. }
  312. /*
  313. * Reserve the area now:
  314. */
  315. for (i = start; i < start + areasize; i++)
  316. if (unlikely(test_and_set_bit(i, node_bootmem_map)))
  317. BUG();
  318. memset(ret, 0, size);
  319. return ret;
  320. }
  321. static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
  322. {
  323. struct page *page;
  324. unsigned long pfn;
  325. bootmem_data_t *bdata = pgdat->bdata;
  326. unsigned long i, count;
  327. unsigned long idx;
  328. unsigned long *map;
  329. int gofast = 0;
  330. BUG_ON(!bdata->node_bootmem_map);
  331. count = 0;
  332. /* first extant page of the node */
  333. pfn = PFN_DOWN(bdata->node_boot_start);
  334. idx = bdata->node_low_pfn - pfn;
  335. map = bdata->node_bootmem_map;
  336. /*
  337. * Check if we are aligned to BITS_PER_LONG pages. If so, we might
  338. * be able to free page orders of that size at once.
  339. */
  340. if (!(pfn & (BITS_PER_LONG-1)))
  341. gofast = 1;
  342. for (i = 0; i < idx; ) {
  343. unsigned long v = ~map[i / BITS_PER_LONG];
  344. if (gofast && v == ~0UL) {
  345. int order;
  346. page = pfn_to_page(pfn);
  347. count += BITS_PER_LONG;
  348. order = ffs(BITS_PER_LONG) - 1;
  349. __free_pages_bootmem(page, order);
  350. i += BITS_PER_LONG;
  351. page += BITS_PER_LONG;
  352. } else if (v) {
  353. unsigned long m;
  354. page = pfn_to_page(pfn);
  355. for (m = 1; m && i < idx; m<<=1, page++, i++) {
  356. if (v & m) {
  357. count++;
  358. __free_pages_bootmem(page, 0);
  359. }
  360. }
  361. } else {
  362. i += BITS_PER_LONG;
  363. }
  364. pfn += BITS_PER_LONG;
  365. }
  366. /*
  367. * Now free the allocator bitmap itself, it's not
  368. * needed anymore:
  369. */
  370. page = virt_to_page(bdata->node_bootmem_map);
  371. idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
  372. for (i = 0; i < idx; i++, page++)
  373. __free_pages_bootmem(page, 0);
  374. count += i;
  375. bdata->node_bootmem_map = NULL;
  376. return count;
  377. }
  378. unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
  379. unsigned long startpfn, unsigned long endpfn)
  380. {
  381. return init_bootmem_core(pgdat, freepfn, startpfn, endpfn);
  382. }
  383. int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
  384. unsigned long size, int flags)
  385. {
  386. int ret;
  387. ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
  388. if (ret < 0)
  389. return -ENOMEM;
  390. reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
  391. return 0;
  392. }
  393. void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
  394. unsigned long size)
  395. {
  396. free_bootmem_core(pgdat->bdata, physaddr, size);
  397. }
  398. unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
  399. {
  400. register_page_bootmem_info_node(pgdat);
  401. return free_all_bootmem_core(pgdat);
  402. }
  403. unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
  404. {
  405. max_low_pfn = pages;
  406. min_low_pfn = start;
  407. return init_bootmem_core(NODE_DATA(0), start, 0, pages);
  408. }
  409. #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
  410. int __init reserve_bootmem(unsigned long addr, unsigned long size,
  411. int flags)
  412. {
  413. bootmem_data_t *bdata;
  414. int ret;
  415. list_for_each_entry(bdata, &bdata_list, list) {
  416. ret = can_reserve_bootmem_core(bdata, addr, size, flags);
  417. if (ret < 0)
  418. return ret;
  419. }
  420. list_for_each_entry(bdata, &bdata_list, list)
  421. reserve_bootmem_core(bdata, addr, size, flags);
  422. return 0;
  423. }
  424. #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
  425. void __init free_bootmem(unsigned long addr, unsigned long size)
  426. {
  427. bootmem_data_t *bdata;
  428. list_for_each_entry(bdata, &bdata_list, list)
  429. free_bootmem_core(bdata, addr, size);
  430. }
  431. unsigned long __init free_all_bootmem(void)
  432. {
  433. return free_all_bootmem_core(NODE_DATA(0));
  434. }
  435. void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
  436. unsigned long goal)
  437. {
  438. bootmem_data_t *bdata;
  439. void *ptr;
  440. list_for_each_entry(bdata, &bdata_list, list) {
  441. ptr = __alloc_bootmem_core(bdata, size, align, goal, 0);
  442. if (ptr)
  443. return ptr;
  444. }
  445. return NULL;
  446. }
  447. void * __init __alloc_bootmem(unsigned long size, unsigned long align,
  448. unsigned long goal)
  449. {
  450. void *mem = __alloc_bootmem_nopanic(size,align,goal);
  451. if (mem)
  452. return mem;
  453. /*
  454. * Whoops, we cannot satisfy the allocation request.
  455. */
  456. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  457. panic("Out of memory");
  458. return NULL;
  459. }
  460. void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
  461. unsigned long align, unsigned long goal)
  462. {
  463. void *ptr;
  464. ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
  465. if (ptr)
  466. return ptr;
  467. return __alloc_bootmem(size, align, goal);
  468. }
  469. #ifdef CONFIG_SPARSEMEM
  470. void * __init alloc_bootmem_section(unsigned long size,
  471. unsigned long section_nr)
  472. {
  473. void *ptr;
  474. unsigned long limit, goal, start_nr, end_nr, pfn;
  475. struct pglist_data *pgdat;
  476. pfn = section_nr_to_pfn(section_nr);
  477. goal = PFN_PHYS(pfn);
  478. limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1;
  479. pgdat = NODE_DATA(early_pfn_to_nid(pfn));
  480. ptr = __alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal,
  481. limit);
  482. if (!ptr)
  483. return NULL;
  484. start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr)));
  485. end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size));
  486. if (start_nr != section_nr || end_nr != section_nr) {
  487. printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n",
  488. section_nr);
  489. free_bootmem_core(pgdat->bdata, __pa(ptr), size);
  490. ptr = NULL;
  491. }
  492. return ptr;
  493. }
  494. #endif
  495. #ifndef ARCH_LOW_ADDRESS_LIMIT
  496. #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
  497. #endif
  498. void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
  499. unsigned long goal)
  500. {
  501. bootmem_data_t *bdata;
  502. void *ptr;
  503. list_for_each_entry(bdata, &bdata_list, list) {
  504. ptr = __alloc_bootmem_core(bdata, size, align, goal,
  505. ARCH_LOW_ADDRESS_LIMIT);
  506. if (ptr)
  507. return ptr;
  508. }
  509. /*
  510. * Whoops, we cannot satisfy the allocation request.
  511. */
  512. printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
  513. panic("Out of low memory");
  514. return NULL;
  515. }
  516. void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
  517. unsigned long align, unsigned long goal)
  518. {
  519. return __alloc_bootmem_core(pgdat->bdata, size, align, goal,
  520. ARCH_LOW_ADDRESS_LIMIT);
  521. }