rmap.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->mutex
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. struct anon_vma *anon_vma;
  64. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. if (anon_vma) {
  66. atomic_set(&anon_vma->refcount, 1);
  67. /*
  68. * Initialise the anon_vma root to point to itself. If called
  69. * from fork, the root will be reset to the parents anon_vma.
  70. */
  71. anon_vma->root = anon_vma;
  72. }
  73. return anon_vma;
  74. }
  75. static inline void anon_vma_free(struct anon_vma *anon_vma)
  76. {
  77. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  78. /*
  79. * Synchronize against page_lock_anon_vma() such that
  80. * we can safely hold the lock without the anon_vma getting
  81. * freed.
  82. *
  83. * Relies on the full mb implied by the atomic_dec_and_test() from
  84. * put_anon_vma() against the acquire barrier implied by
  85. * mutex_trylock() from page_lock_anon_vma(). This orders:
  86. *
  87. * page_lock_anon_vma() VS put_anon_vma()
  88. * mutex_trylock() atomic_dec_and_test()
  89. * LOCK MB
  90. * atomic_read() mutex_is_locked()
  91. *
  92. * LOCK should suffice since the actual taking of the lock must
  93. * happen _before_ what follows.
  94. */
  95. if (mutex_is_locked(&anon_vma->root->mutex)) {
  96. anon_vma_lock(anon_vma);
  97. anon_vma_unlock(anon_vma);
  98. }
  99. kmem_cache_free(anon_vma_cachep, anon_vma);
  100. }
  101. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  102. {
  103. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  104. }
  105. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  106. {
  107. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  108. }
  109. static void anon_vma_chain_link(struct vm_area_struct *vma,
  110. struct anon_vma_chain *avc,
  111. struct anon_vma *anon_vma)
  112. {
  113. avc->vma = vma;
  114. avc->anon_vma = anon_vma;
  115. list_add(&avc->same_vma, &vma->anon_vma_chain);
  116. /*
  117. * It's critical to add new vmas to the tail of the anon_vma,
  118. * see comment in huge_memory.c:__split_huge_page().
  119. */
  120. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  121. }
  122. /**
  123. * anon_vma_prepare - attach an anon_vma to a memory region
  124. * @vma: the memory region in question
  125. *
  126. * This makes sure the memory mapping described by 'vma' has
  127. * an 'anon_vma' attached to it, so that we can associate the
  128. * anonymous pages mapped into it with that anon_vma.
  129. *
  130. * The common case will be that we already have one, but if
  131. * not we either need to find an adjacent mapping that we
  132. * can re-use the anon_vma from (very common when the only
  133. * reason for splitting a vma has been mprotect()), or we
  134. * allocate a new one.
  135. *
  136. * Anon-vma allocations are very subtle, because we may have
  137. * optimistically looked up an anon_vma in page_lock_anon_vma()
  138. * and that may actually touch the spinlock even in the newly
  139. * allocated vma (it depends on RCU to make sure that the
  140. * anon_vma isn't actually destroyed).
  141. *
  142. * As a result, we need to do proper anon_vma locking even
  143. * for the new allocation. At the same time, we do not want
  144. * to do any locking for the common case of already having
  145. * an anon_vma.
  146. *
  147. * This must be called with the mmap_sem held for reading.
  148. */
  149. int anon_vma_prepare(struct vm_area_struct *vma)
  150. {
  151. struct anon_vma *anon_vma = vma->anon_vma;
  152. struct anon_vma_chain *avc;
  153. might_sleep();
  154. if (unlikely(!anon_vma)) {
  155. struct mm_struct *mm = vma->vm_mm;
  156. struct anon_vma *allocated;
  157. avc = anon_vma_chain_alloc(GFP_KERNEL);
  158. if (!avc)
  159. goto out_enomem;
  160. anon_vma = find_mergeable_anon_vma(vma);
  161. allocated = NULL;
  162. if (!anon_vma) {
  163. anon_vma = anon_vma_alloc();
  164. if (unlikely(!anon_vma))
  165. goto out_enomem_free_avc;
  166. allocated = anon_vma;
  167. }
  168. anon_vma_lock(anon_vma);
  169. /* page_table_lock to protect against threads */
  170. spin_lock(&mm->page_table_lock);
  171. if (likely(!vma->anon_vma)) {
  172. vma->anon_vma = anon_vma;
  173. anon_vma_chain_link(vma, avc, anon_vma);
  174. allocated = NULL;
  175. avc = NULL;
  176. }
  177. spin_unlock(&mm->page_table_lock);
  178. anon_vma_unlock(anon_vma);
  179. if (unlikely(allocated))
  180. put_anon_vma(allocated);
  181. if (unlikely(avc))
  182. anon_vma_chain_free(avc);
  183. }
  184. return 0;
  185. out_enomem_free_avc:
  186. anon_vma_chain_free(avc);
  187. out_enomem:
  188. return -ENOMEM;
  189. }
  190. /*
  191. * This is a useful helper function for locking the anon_vma root as
  192. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  193. * have the same vma.
  194. *
  195. * Such anon_vma's should have the same root, so you'd expect to see
  196. * just a single mutex_lock for the whole traversal.
  197. */
  198. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  199. {
  200. struct anon_vma *new_root = anon_vma->root;
  201. if (new_root != root) {
  202. if (WARN_ON_ONCE(root))
  203. mutex_unlock(&root->mutex);
  204. root = new_root;
  205. mutex_lock(&root->mutex);
  206. }
  207. return root;
  208. }
  209. static inline void unlock_anon_vma_root(struct anon_vma *root)
  210. {
  211. if (root)
  212. mutex_unlock(&root->mutex);
  213. }
  214. /*
  215. * Attach the anon_vmas from src to dst.
  216. * Returns 0 on success, -ENOMEM on failure.
  217. */
  218. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  219. {
  220. struct anon_vma_chain *avc, *pavc;
  221. struct anon_vma *root = NULL;
  222. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  223. struct anon_vma *anon_vma;
  224. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  225. if (unlikely(!avc)) {
  226. unlock_anon_vma_root(root);
  227. root = NULL;
  228. avc = anon_vma_chain_alloc(GFP_KERNEL);
  229. if (!avc)
  230. goto enomem_failure;
  231. }
  232. anon_vma = pavc->anon_vma;
  233. root = lock_anon_vma_root(root, anon_vma);
  234. anon_vma_chain_link(dst, avc, anon_vma);
  235. }
  236. unlock_anon_vma_root(root);
  237. return 0;
  238. enomem_failure:
  239. unlink_anon_vmas(dst);
  240. return -ENOMEM;
  241. }
  242. /*
  243. * Some rmap walk that needs to find all ptes/hugepmds without false
  244. * negatives (like migrate and split_huge_page) running concurrent
  245. * with operations that copy or move pagetables (like mremap() and
  246. * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
  247. * list to be in a certain order: the dst_vma must be placed after the
  248. * src_vma in the list. This is always guaranteed by fork() but
  249. * mremap() needs to call this function to enforce it in case the
  250. * dst_vma isn't newly allocated and chained with the anon_vma_clone()
  251. * function but just an extension of a pre-existing vma through
  252. * vma_merge.
  253. *
  254. * NOTE: the same_anon_vma list can still be changed by other
  255. * processes while mremap runs because mremap doesn't hold the
  256. * anon_vma mutex to prevent modifications to the list while it
  257. * runs. All we need to enforce is that the relative order of this
  258. * process vmas isn't changing (we don't care about other vmas
  259. * order). Each vma corresponds to an anon_vma_chain structure so
  260. * there's no risk that other processes calling anon_vma_moveto_tail()
  261. * and changing the same_anon_vma list under mremap() will screw with
  262. * the relative order of this process vmas in the list, because we
  263. * they can't alter the order of any vma that belongs to this
  264. * process. And there can't be another anon_vma_moveto_tail() running
  265. * concurrently with mremap() coming from this process because we hold
  266. * the mmap_sem for the whole mremap(). fork() ordering dependency
  267. * also shouldn't be affected because fork() only cares that the
  268. * parent vmas are placed in the list before the child vmas and
  269. * anon_vma_moveto_tail() won't reorder vmas from either the fork()
  270. * parent or child.
  271. */
  272. void anon_vma_moveto_tail(struct vm_area_struct *dst)
  273. {
  274. struct anon_vma_chain *pavc;
  275. struct anon_vma *root = NULL;
  276. list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
  277. struct anon_vma *anon_vma = pavc->anon_vma;
  278. VM_BUG_ON(pavc->vma != dst);
  279. root = lock_anon_vma_root(root, anon_vma);
  280. list_del(&pavc->same_anon_vma);
  281. list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
  282. }
  283. unlock_anon_vma_root(root);
  284. }
  285. /*
  286. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  287. * the corresponding VMA in the parent process is attached to.
  288. * Returns 0 on success, non-zero on failure.
  289. */
  290. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  291. {
  292. struct anon_vma_chain *avc;
  293. struct anon_vma *anon_vma;
  294. /* Don't bother if the parent process has no anon_vma here. */
  295. if (!pvma->anon_vma)
  296. return 0;
  297. /*
  298. * First, attach the new VMA to the parent VMA's anon_vmas,
  299. * so rmap can find non-COWed pages in child processes.
  300. */
  301. if (anon_vma_clone(vma, pvma))
  302. return -ENOMEM;
  303. /* Then add our own anon_vma. */
  304. anon_vma = anon_vma_alloc();
  305. if (!anon_vma)
  306. goto out_error;
  307. avc = anon_vma_chain_alloc(GFP_KERNEL);
  308. if (!avc)
  309. goto out_error_free_anon_vma;
  310. /*
  311. * The root anon_vma's spinlock is the lock actually used when we
  312. * lock any of the anon_vmas in this anon_vma tree.
  313. */
  314. anon_vma->root = pvma->anon_vma->root;
  315. /*
  316. * With refcounts, an anon_vma can stay around longer than the
  317. * process it belongs to. The root anon_vma needs to be pinned until
  318. * this anon_vma is freed, because the lock lives in the root.
  319. */
  320. get_anon_vma(anon_vma->root);
  321. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  322. vma->anon_vma = anon_vma;
  323. anon_vma_lock(anon_vma);
  324. anon_vma_chain_link(vma, avc, anon_vma);
  325. anon_vma_unlock(anon_vma);
  326. return 0;
  327. out_error_free_anon_vma:
  328. put_anon_vma(anon_vma);
  329. out_error:
  330. unlink_anon_vmas(vma);
  331. return -ENOMEM;
  332. }
  333. void unlink_anon_vmas(struct vm_area_struct *vma)
  334. {
  335. struct anon_vma_chain *avc, *next;
  336. struct anon_vma *root = NULL;
  337. /*
  338. * Unlink each anon_vma chained to the VMA. This list is ordered
  339. * from newest to oldest, ensuring the root anon_vma gets freed last.
  340. */
  341. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  342. struct anon_vma *anon_vma = avc->anon_vma;
  343. root = lock_anon_vma_root(root, anon_vma);
  344. list_del(&avc->same_anon_vma);
  345. /*
  346. * Leave empty anon_vmas on the list - we'll need
  347. * to free them outside the lock.
  348. */
  349. if (list_empty(&anon_vma->head))
  350. continue;
  351. list_del(&avc->same_vma);
  352. anon_vma_chain_free(avc);
  353. }
  354. unlock_anon_vma_root(root);
  355. /*
  356. * Iterate the list once more, it now only contains empty and unlinked
  357. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  358. * needing to acquire the anon_vma->root->mutex.
  359. */
  360. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  361. struct anon_vma *anon_vma = avc->anon_vma;
  362. put_anon_vma(anon_vma);
  363. list_del(&avc->same_vma);
  364. anon_vma_chain_free(avc);
  365. }
  366. }
  367. static void anon_vma_ctor(void *data)
  368. {
  369. struct anon_vma *anon_vma = data;
  370. mutex_init(&anon_vma->mutex);
  371. atomic_set(&anon_vma->refcount, 0);
  372. INIT_LIST_HEAD(&anon_vma->head);
  373. }
  374. void __init anon_vma_init(void)
  375. {
  376. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  377. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  378. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  379. }
  380. /*
  381. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  382. *
  383. * Since there is no serialization what so ever against page_remove_rmap()
  384. * the best this function can do is return a locked anon_vma that might
  385. * have been relevant to this page.
  386. *
  387. * The page might have been remapped to a different anon_vma or the anon_vma
  388. * returned may already be freed (and even reused).
  389. *
  390. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  391. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  392. * ensure that any anon_vma obtained from the page will still be valid for as
  393. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  394. *
  395. * All users of this function must be very careful when walking the anon_vma
  396. * chain and verify that the page in question is indeed mapped in it
  397. * [ something equivalent to page_mapped_in_vma() ].
  398. *
  399. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  400. * that the anon_vma pointer from page->mapping is valid if there is a
  401. * mapcount, we can dereference the anon_vma after observing those.
  402. */
  403. struct anon_vma *page_get_anon_vma(struct page *page)
  404. {
  405. struct anon_vma *anon_vma = NULL;
  406. unsigned long anon_mapping;
  407. rcu_read_lock();
  408. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  409. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  410. goto out;
  411. if (!page_mapped(page))
  412. goto out;
  413. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  414. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  415. anon_vma = NULL;
  416. goto out;
  417. }
  418. /*
  419. * If this page is still mapped, then its anon_vma cannot have been
  420. * freed. But if it has been unmapped, we have no security against the
  421. * anon_vma structure being freed and reused (for another anon_vma:
  422. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  423. * above cannot corrupt).
  424. */
  425. if (!page_mapped(page)) {
  426. put_anon_vma(anon_vma);
  427. anon_vma = NULL;
  428. }
  429. out:
  430. rcu_read_unlock();
  431. return anon_vma;
  432. }
  433. /*
  434. * Similar to page_get_anon_vma() except it locks the anon_vma.
  435. *
  436. * Its a little more complex as it tries to keep the fast path to a single
  437. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  438. * reference like with page_get_anon_vma() and then block on the mutex.
  439. */
  440. struct anon_vma *page_lock_anon_vma(struct page *page)
  441. {
  442. struct anon_vma *anon_vma = NULL;
  443. struct anon_vma *root_anon_vma;
  444. unsigned long anon_mapping;
  445. rcu_read_lock();
  446. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  447. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  448. goto out;
  449. if (!page_mapped(page))
  450. goto out;
  451. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  452. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  453. if (mutex_trylock(&root_anon_vma->mutex)) {
  454. /*
  455. * If the page is still mapped, then this anon_vma is still
  456. * its anon_vma, and holding the mutex ensures that it will
  457. * not go away, see anon_vma_free().
  458. */
  459. if (!page_mapped(page)) {
  460. mutex_unlock(&root_anon_vma->mutex);
  461. anon_vma = NULL;
  462. }
  463. goto out;
  464. }
  465. /* trylock failed, we got to sleep */
  466. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  467. anon_vma = NULL;
  468. goto out;
  469. }
  470. if (!page_mapped(page)) {
  471. put_anon_vma(anon_vma);
  472. anon_vma = NULL;
  473. goto out;
  474. }
  475. /* we pinned the anon_vma, its safe to sleep */
  476. rcu_read_unlock();
  477. anon_vma_lock(anon_vma);
  478. if (atomic_dec_and_test(&anon_vma->refcount)) {
  479. /*
  480. * Oops, we held the last refcount, release the lock
  481. * and bail -- can't simply use put_anon_vma() because
  482. * we'll deadlock on the anon_vma_lock() recursion.
  483. */
  484. anon_vma_unlock(anon_vma);
  485. __put_anon_vma(anon_vma);
  486. anon_vma = NULL;
  487. }
  488. return anon_vma;
  489. out:
  490. rcu_read_unlock();
  491. return anon_vma;
  492. }
  493. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  494. {
  495. anon_vma_unlock(anon_vma);
  496. }
  497. /*
  498. * At what user virtual address is page expected in @vma?
  499. * Returns virtual address or -EFAULT if page's index/offset is not
  500. * within the range mapped the @vma.
  501. */
  502. inline unsigned long
  503. vma_address(struct page *page, struct vm_area_struct *vma)
  504. {
  505. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  506. unsigned long address;
  507. if (unlikely(is_vm_hugetlb_page(vma)))
  508. pgoff = page->index << huge_page_order(page_hstate(page));
  509. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  510. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  511. /* page should be within @vma mapping range */
  512. return -EFAULT;
  513. }
  514. return address;
  515. }
  516. /*
  517. * At what user virtual address is page expected in vma?
  518. * Caller should check the page is actually part of the vma.
  519. */
  520. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  521. {
  522. if (PageAnon(page)) {
  523. struct anon_vma *page__anon_vma = page_anon_vma(page);
  524. /*
  525. * Note: swapoff's unuse_vma() is more efficient with this
  526. * check, and needs it to match anon_vma when KSM is active.
  527. */
  528. if (!vma->anon_vma || !page__anon_vma ||
  529. vma->anon_vma->root != page__anon_vma->root)
  530. return -EFAULT;
  531. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  532. if (!vma->vm_file ||
  533. vma->vm_file->f_mapping != page->mapping)
  534. return -EFAULT;
  535. } else
  536. return -EFAULT;
  537. return vma_address(page, vma);
  538. }
  539. /*
  540. * Check that @page is mapped at @address into @mm.
  541. *
  542. * If @sync is false, page_check_address may perform a racy check to avoid
  543. * the page table lock when the pte is not present (helpful when reclaiming
  544. * highly shared pages).
  545. *
  546. * On success returns with pte mapped and locked.
  547. */
  548. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  549. unsigned long address, spinlock_t **ptlp, int sync)
  550. {
  551. pgd_t *pgd;
  552. pud_t *pud;
  553. pmd_t *pmd;
  554. pte_t *pte;
  555. spinlock_t *ptl;
  556. if (unlikely(PageHuge(page))) {
  557. pte = huge_pte_offset(mm, address);
  558. ptl = &mm->page_table_lock;
  559. goto check;
  560. }
  561. pgd = pgd_offset(mm, address);
  562. if (!pgd_present(*pgd))
  563. return NULL;
  564. pud = pud_offset(pgd, address);
  565. if (!pud_present(*pud))
  566. return NULL;
  567. pmd = pmd_offset(pud, address);
  568. if (!pmd_present(*pmd))
  569. return NULL;
  570. if (pmd_trans_huge(*pmd))
  571. return NULL;
  572. pte = pte_offset_map(pmd, address);
  573. /* Make a quick check before getting the lock */
  574. if (!sync && !pte_present(*pte)) {
  575. pte_unmap(pte);
  576. return NULL;
  577. }
  578. ptl = pte_lockptr(mm, pmd);
  579. check:
  580. spin_lock(ptl);
  581. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  582. *ptlp = ptl;
  583. return pte;
  584. }
  585. pte_unmap_unlock(pte, ptl);
  586. return NULL;
  587. }
  588. /**
  589. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  590. * @page: the page to test
  591. * @vma: the VMA to test
  592. *
  593. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  594. * if the page is not mapped into the page tables of this VMA. Only
  595. * valid for normal file or anonymous VMAs.
  596. */
  597. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  598. {
  599. unsigned long address;
  600. pte_t *pte;
  601. spinlock_t *ptl;
  602. address = vma_address(page, vma);
  603. if (address == -EFAULT) /* out of vma range */
  604. return 0;
  605. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  606. if (!pte) /* the page is not in this mm */
  607. return 0;
  608. pte_unmap_unlock(pte, ptl);
  609. return 1;
  610. }
  611. /*
  612. * Subfunctions of page_referenced: page_referenced_one called
  613. * repeatedly from either page_referenced_anon or page_referenced_file.
  614. */
  615. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  616. unsigned long address, unsigned int *mapcount,
  617. unsigned long *vm_flags)
  618. {
  619. struct mm_struct *mm = vma->vm_mm;
  620. int referenced = 0;
  621. if (unlikely(PageTransHuge(page))) {
  622. pmd_t *pmd;
  623. spin_lock(&mm->page_table_lock);
  624. /*
  625. * rmap might return false positives; we must filter
  626. * these out using page_check_address_pmd().
  627. */
  628. pmd = page_check_address_pmd(page, mm, address,
  629. PAGE_CHECK_ADDRESS_PMD_FLAG);
  630. if (!pmd) {
  631. spin_unlock(&mm->page_table_lock);
  632. goto out;
  633. }
  634. if (vma->vm_flags & VM_LOCKED) {
  635. spin_unlock(&mm->page_table_lock);
  636. *mapcount = 0; /* break early from loop */
  637. *vm_flags |= VM_LOCKED;
  638. goto out;
  639. }
  640. /* go ahead even if the pmd is pmd_trans_splitting() */
  641. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  642. referenced++;
  643. spin_unlock(&mm->page_table_lock);
  644. } else {
  645. pte_t *pte;
  646. spinlock_t *ptl;
  647. /*
  648. * rmap might return false positives; we must filter
  649. * these out using page_check_address().
  650. */
  651. pte = page_check_address(page, mm, address, &ptl, 0);
  652. if (!pte)
  653. goto out;
  654. if (vma->vm_flags & VM_LOCKED) {
  655. pte_unmap_unlock(pte, ptl);
  656. *mapcount = 0; /* break early from loop */
  657. *vm_flags |= VM_LOCKED;
  658. goto out;
  659. }
  660. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  661. /*
  662. * Don't treat a reference through a sequentially read
  663. * mapping as such. If the page has been used in
  664. * another mapping, we will catch it; if this other
  665. * mapping is already gone, the unmap path will have
  666. * set PG_referenced or activated the page.
  667. */
  668. if (likely(!VM_SequentialReadHint(vma)))
  669. referenced++;
  670. }
  671. pte_unmap_unlock(pte, ptl);
  672. }
  673. (*mapcount)--;
  674. if (referenced)
  675. *vm_flags |= vma->vm_flags;
  676. out:
  677. return referenced;
  678. }
  679. static int page_referenced_anon(struct page *page,
  680. struct mem_cgroup *memcg,
  681. unsigned long *vm_flags)
  682. {
  683. unsigned int mapcount;
  684. struct anon_vma *anon_vma;
  685. struct anon_vma_chain *avc;
  686. int referenced = 0;
  687. anon_vma = page_lock_anon_vma(page);
  688. if (!anon_vma)
  689. return referenced;
  690. mapcount = page_mapcount(page);
  691. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  692. struct vm_area_struct *vma = avc->vma;
  693. unsigned long address = vma_address(page, vma);
  694. if (address == -EFAULT)
  695. continue;
  696. /*
  697. * If we are reclaiming on behalf of a cgroup, skip
  698. * counting on behalf of references from different
  699. * cgroups
  700. */
  701. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  702. continue;
  703. referenced += page_referenced_one(page, vma, address,
  704. &mapcount, vm_flags);
  705. if (!mapcount)
  706. break;
  707. }
  708. page_unlock_anon_vma(anon_vma);
  709. return referenced;
  710. }
  711. /**
  712. * page_referenced_file - referenced check for object-based rmap
  713. * @page: the page we're checking references on.
  714. * @memcg: target memory control group
  715. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  716. *
  717. * For an object-based mapped page, find all the places it is mapped and
  718. * check/clear the referenced flag. This is done by following the page->mapping
  719. * pointer, then walking the chain of vmas it holds. It returns the number
  720. * of references it found.
  721. *
  722. * This function is only called from page_referenced for object-based pages.
  723. */
  724. static int page_referenced_file(struct page *page,
  725. struct mem_cgroup *memcg,
  726. unsigned long *vm_flags)
  727. {
  728. unsigned int mapcount;
  729. struct address_space *mapping = page->mapping;
  730. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  731. struct vm_area_struct *vma;
  732. int referenced = 0;
  733. /*
  734. * The caller's checks on page->mapping and !PageAnon have made
  735. * sure that this is a file page: the check for page->mapping
  736. * excludes the case just before it gets set on an anon page.
  737. */
  738. BUG_ON(PageAnon(page));
  739. /*
  740. * The page lock not only makes sure that page->mapping cannot
  741. * suddenly be NULLified by truncation, it makes sure that the
  742. * structure at mapping cannot be freed and reused yet,
  743. * so we can safely take mapping->i_mmap_mutex.
  744. */
  745. BUG_ON(!PageLocked(page));
  746. mutex_lock(&mapping->i_mmap_mutex);
  747. /*
  748. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  749. * is more likely to be accurate if we note it after spinning.
  750. */
  751. mapcount = page_mapcount(page);
  752. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  753. unsigned long address = vma_address(page, vma);
  754. if (address == -EFAULT)
  755. continue;
  756. /*
  757. * If we are reclaiming on behalf of a cgroup, skip
  758. * counting on behalf of references from different
  759. * cgroups
  760. */
  761. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  762. continue;
  763. referenced += page_referenced_one(page, vma, address,
  764. &mapcount, vm_flags);
  765. if (!mapcount)
  766. break;
  767. }
  768. mutex_unlock(&mapping->i_mmap_mutex);
  769. return referenced;
  770. }
  771. /**
  772. * page_referenced - test if the page was referenced
  773. * @page: the page to test
  774. * @is_locked: caller holds lock on the page
  775. * @memcg: target memory cgroup
  776. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  777. *
  778. * Quick test_and_clear_referenced for all mappings to a page,
  779. * returns the number of ptes which referenced the page.
  780. */
  781. int page_referenced(struct page *page,
  782. int is_locked,
  783. struct mem_cgroup *memcg,
  784. unsigned long *vm_flags)
  785. {
  786. int referenced = 0;
  787. int we_locked = 0;
  788. *vm_flags = 0;
  789. if (page_mapped(page) && page_rmapping(page)) {
  790. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  791. we_locked = trylock_page(page);
  792. if (!we_locked) {
  793. referenced++;
  794. goto out;
  795. }
  796. }
  797. if (unlikely(PageKsm(page)))
  798. referenced += page_referenced_ksm(page, memcg,
  799. vm_flags);
  800. else if (PageAnon(page))
  801. referenced += page_referenced_anon(page, memcg,
  802. vm_flags);
  803. else if (page->mapping)
  804. referenced += page_referenced_file(page, memcg,
  805. vm_flags);
  806. if (we_locked)
  807. unlock_page(page);
  808. if (page_test_and_clear_young(page_to_pfn(page)))
  809. referenced++;
  810. }
  811. out:
  812. return referenced;
  813. }
  814. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  815. unsigned long address)
  816. {
  817. struct mm_struct *mm = vma->vm_mm;
  818. pte_t *pte;
  819. spinlock_t *ptl;
  820. int ret = 0;
  821. pte = page_check_address(page, mm, address, &ptl, 1);
  822. if (!pte)
  823. goto out;
  824. if (pte_dirty(*pte) || pte_write(*pte)) {
  825. pte_t entry;
  826. flush_cache_page(vma, address, pte_pfn(*pte));
  827. entry = ptep_clear_flush_notify(vma, address, pte);
  828. entry = pte_wrprotect(entry);
  829. entry = pte_mkclean(entry);
  830. set_pte_at(mm, address, pte, entry);
  831. ret = 1;
  832. }
  833. pte_unmap_unlock(pte, ptl);
  834. out:
  835. return ret;
  836. }
  837. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  838. {
  839. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  840. struct vm_area_struct *vma;
  841. int ret = 0;
  842. BUG_ON(PageAnon(page));
  843. mutex_lock(&mapping->i_mmap_mutex);
  844. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  845. if (vma->vm_flags & VM_SHARED) {
  846. unsigned long address = vma_address(page, vma);
  847. if (address == -EFAULT)
  848. continue;
  849. ret += page_mkclean_one(page, vma, address);
  850. }
  851. }
  852. mutex_unlock(&mapping->i_mmap_mutex);
  853. return ret;
  854. }
  855. int page_mkclean(struct page *page)
  856. {
  857. int ret = 0;
  858. BUG_ON(!PageLocked(page));
  859. if (page_mapped(page)) {
  860. struct address_space *mapping = page_mapping(page);
  861. if (mapping) {
  862. ret = page_mkclean_file(mapping, page);
  863. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  864. ret = 1;
  865. }
  866. }
  867. return ret;
  868. }
  869. EXPORT_SYMBOL_GPL(page_mkclean);
  870. /**
  871. * page_move_anon_rmap - move a page to our anon_vma
  872. * @page: the page to move to our anon_vma
  873. * @vma: the vma the page belongs to
  874. * @address: the user virtual address mapped
  875. *
  876. * When a page belongs exclusively to one process after a COW event,
  877. * that page can be moved into the anon_vma that belongs to just that
  878. * process, so the rmap code will not search the parent or sibling
  879. * processes.
  880. */
  881. void page_move_anon_rmap(struct page *page,
  882. struct vm_area_struct *vma, unsigned long address)
  883. {
  884. struct anon_vma *anon_vma = vma->anon_vma;
  885. VM_BUG_ON(!PageLocked(page));
  886. VM_BUG_ON(!anon_vma);
  887. VM_BUG_ON(page->index != linear_page_index(vma, address));
  888. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  889. page->mapping = (struct address_space *) anon_vma;
  890. }
  891. /**
  892. * __page_set_anon_rmap - set up new anonymous rmap
  893. * @page: Page to add to rmap
  894. * @vma: VM area to add page to.
  895. * @address: User virtual address of the mapping
  896. * @exclusive: the page is exclusively owned by the current process
  897. */
  898. static void __page_set_anon_rmap(struct page *page,
  899. struct vm_area_struct *vma, unsigned long address, int exclusive)
  900. {
  901. struct anon_vma *anon_vma = vma->anon_vma;
  902. BUG_ON(!anon_vma);
  903. if (PageAnon(page))
  904. return;
  905. /*
  906. * If the page isn't exclusively mapped into this vma,
  907. * we must use the _oldest_ possible anon_vma for the
  908. * page mapping!
  909. */
  910. if (!exclusive)
  911. anon_vma = anon_vma->root;
  912. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  913. page->mapping = (struct address_space *) anon_vma;
  914. page->index = linear_page_index(vma, address);
  915. }
  916. /**
  917. * __page_check_anon_rmap - sanity check anonymous rmap addition
  918. * @page: the page to add the mapping to
  919. * @vma: the vm area in which the mapping is added
  920. * @address: the user virtual address mapped
  921. */
  922. static void __page_check_anon_rmap(struct page *page,
  923. struct vm_area_struct *vma, unsigned long address)
  924. {
  925. #ifdef CONFIG_DEBUG_VM
  926. /*
  927. * The page's anon-rmap details (mapping and index) are guaranteed to
  928. * be set up correctly at this point.
  929. *
  930. * We have exclusion against page_add_anon_rmap because the caller
  931. * always holds the page locked, except if called from page_dup_rmap,
  932. * in which case the page is already known to be setup.
  933. *
  934. * We have exclusion against page_add_new_anon_rmap because those pages
  935. * are initially only visible via the pagetables, and the pte is locked
  936. * over the call to page_add_new_anon_rmap.
  937. */
  938. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  939. BUG_ON(page->index != linear_page_index(vma, address));
  940. #endif
  941. }
  942. /**
  943. * page_add_anon_rmap - add pte mapping to an anonymous page
  944. * @page: the page to add the mapping to
  945. * @vma: the vm area in which the mapping is added
  946. * @address: the user virtual address mapped
  947. *
  948. * The caller needs to hold the pte lock, and the page must be locked in
  949. * the anon_vma case: to serialize mapping,index checking after setting,
  950. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  951. * (but PageKsm is never downgraded to PageAnon).
  952. */
  953. void page_add_anon_rmap(struct page *page,
  954. struct vm_area_struct *vma, unsigned long address)
  955. {
  956. do_page_add_anon_rmap(page, vma, address, 0);
  957. }
  958. /*
  959. * Special version of the above for do_swap_page, which often runs
  960. * into pages that are exclusively owned by the current process.
  961. * Everybody else should continue to use page_add_anon_rmap above.
  962. */
  963. void do_page_add_anon_rmap(struct page *page,
  964. struct vm_area_struct *vma, unsigned long address, int exclusive)
  965. {
  966. int first = atomic_inc_and_test(&page->_mapcount);
  967. if (first) {
  968. if (!PageTransHuge(page))
  969. __inc_zone_page_state(page, NR_ANON_PAGES);
  970. else
  971. __inc_zone_page_state(page,
  972. NR_ANON_TRANSPARENT_HUGEPAGES);
  973. }
  974. if (unlikely(PageKsm(page)))
  975. return;
  976. VM_BUG_ON(!PageLocked(page));
  977. /* address might be in next vma when migration races vma_adjust */
  978. if (first)
  979. __page_set_anon_rmap(page, vma, address, exclusive);
  980. else
  981. __page_check_anon_rmap(page, vma, address);
  982. }
  983. /**
  984. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  985. * @page: the page to add the mapping to
  986. * @vma: the vm area in which the mapping is added
  987. * @address: the user virtual address mapped
  988. *
  989. * Same as page_add_anon_rmap but must only be called on *new* pages.
  990. * This means the inc-and-test can be bypassed.
  991. * Page does not have to be locked.
  992. */
  993. void page_add_new_anon_rmap(struct page *page,
  994. struct vm_area_struct *vma, unsigned long address)
  995. {
  996. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  997. SetPageSwapBacked(page);
  998. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  999. if (!PageTransHuge(page))
  1000. __inc_zone_page_state(page, NR_ANON_PAGES);
  1001. else
  1002. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1003. __page_set_anon_rmap(page, vma, address, 1);
  1004. if (page_evictable(page, vma))
  1005. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  1006. else
  1007. add_page_to_unevictable_list(page);
  1008. }
  1009. /**
  1010. * page_add_file_rmap - add pte mapping to a file page
  1011. * @page: the page to add the mapping to
  1012. *
  1013. * The caller needs to hold the pte lock.
  1014. */
  1015. void page_add_file_rmap(struct page *page)
  1016. {
  1017. bool locked;
  1018. unsigned long flags;
  1019. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  1020. if (atomic_inc_and_test(&page->_mapcount)) {
  1021. __inc_zone_page_state(page, NR_FILE_MAPPED);
  1022. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1023. }
  1024. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  1025. }
  1026. /**
  1027. * page_remove_rmap - take down pte mapping from a page
  1028. * @page: page to remove mapping from
  1029. *
  1030. * The caller needs to hold the pte lock.
  1031. */
  1032. void page_remove_rmap(struct page *page)
  1033. {
  1034. bool anon = PageAnon(page);
  1035. bool locked;
  1036. unsigned long flags;
  1037. /*
  1038. * The anon case has no mem_cgroup page_stat to update; but may
  1039. * uncharge_page() below, where the lock ordering can deadlock if
  1040. * we hold the lock against page_stat move: so avoid it on anon.
  1041. */
  1042. if (!anon)
  1043. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  1044. /* page still mapped by someone else? */
  1045. if (!atomic_add_negative(-1, &page->_mapcount))
  1046. goto out;
  1047. /*
  1048. * Now that the last pte has gone, s390 must transfer dirty
  1049. * flag from storage key to struct page. We can usually skip
  1050. * this if the page is anon, so about to be freed; but perhaps
  1051. * not if it's in swapcache - there might be another pte slot
  1052. * containing the swap entry, but page not yet written to swap.
  1053. */
  1054. if ((!anon || PageSwapCache(page)) &&
  1055. page_test_and_clear_dirty(page_to_pfn(page), 1))
  1056. set_page_dirty(page);
  1057. /*
  1058. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  1059. * and not charged by memcg for now.
  1060. */
  1061. if (unlikely(PageHuge(page)))
  1062. goto out;
  1063. if (anon) {
  1064. mem_cgroup_uncharge_page(page);
  1065. if (!PageTransHuge(page))
  1066. __dec_zone_page_state(page, NR_ANON_PAGES);
  1067. else
  1068. __dec_zone_page_state(page,
  1069. NR_ANON_TRANSPARENT_HUGEPAGES);
  1070. } else {
  1071. __dec_zone_page_state(page, NR_FILE_MAPPED);
  1072. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1073. }
  1074. /*
  1075. * It would be tidy to reset the PageAnon mapping here,
  1076. * but that might overwrite a racing page_add_anon_rmap
  1077. * which increments mapcount after us but sets mapping
  1078. * before us: so leave the reset to free_hot_cold_page,
  1079. * and remember that it's only reliable while mapped.
  1080. * Leaving it set also helps swapoff to reinstate ptes
  1081. * faster for those pages still in swapcache.
  1082. */
  1083. out:
  1084. if (!anon)
  1085. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  1086. }
  1087. /*
  1088. * Subfunctions of try_to_unmap: try_to_unmap_one called
  1089. * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
  1090. */
  1091. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1092. unsigned long address, enum ttu_flags flags)
  1093. {
  1094. struct mm_struct *mm = vma->vm_mm;
  1095. pte_t *pte;
  1096. pte_t pteval;
  1097. spinlock_t *ptl;
  1098. int ret = SWAP_AGAIN;
  1099. pte = page_check_address(page, mm, address, &ptl, 0);
  1100. if (!pte)
  1101. goto out;
  1102. /*
  1103. * If the page is mlock()d, we cannot swap it out.
  1104. * If it's recently referenced (perhaps page_referenced
  1105. * skipped over this mm) then we should reactivate it.
  1106. */
  1107. if (!(flags & TTU_IGNORE_MLOCK)) {
  1108. if (vma->vm_flags & VM_LOCKED)
  1109. goto out_mlock;
  1110. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1111. goto out_unmap;
  1112. }
  1113. if (!(flags & TTU_IGNORE_ACCESS)) {
  1114. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1115. ret = SWAP_FAIL;
  1116. goto out_unmap;
  1117. }
  1118. }
  1119. /* Nuke the page table entry. */
  1120. flush_cache_page(vma, address, page_to_pfn(page));
  1121. pteval = ptep_clear_flush_notify(vma, address, pte);
  1122. /* Move the dirty bit to the physical page now the pte is gone. */
  1123. if (pte_dirty(pteval))
  1124. set_page_dirty(page);
  1125. /* Update high watermark before we lower rss */
  1126. update_hiwater_rss(mm);
  1127. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1128. if (PageAnon(page))
  1129. dec_mm_counter(mm, MM_ANONPAGES);
  1130. else
  1131. dec_mm_counter(mm, MM_FILEPAGES);
  1132. set_pte_at(mm, address, pte,
  1133. swp_entry_to_pte(make_hwpoison_entry(page)));
  1134. } else if (PageAnon(page)) {
  1135. swp_entry_t entry = { .val = page_private(page) };
  1136. if (PageSwapCache(page)) {
  1137. /*
  1138. * Store the swap location in the pte.
  1139. * See handle_pte_fault() ...
  1140. */
  1141. if (swap_duplicate(entry) < 0) {
  1142. set_pte_at(mm, address, pte, pteval);
  1143. ret = SWAP_FAIL;
  1144. goto out_unmap;
  1145. }
  1146. if (list_empty(&mm->mmlist)) {
  1147. spin_lock(&mmlist_lock);
  1148. if (list_empty(&mm->mmlist))
  1149. list_add(&mm->mmlist, &init_mm.mmlist);
  1150. spin_unlock(&mmlist_lock);
  1151. }
  1152. dec_mm_counter(mm, MM_ANONPAGES);
  1153. inc_mm_counter(mm, MM_SWAPENTS);
  1154. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1155. /*
  1156. * Store the pfn of the page in a special migration
  1157. * pte. do_swap_page() will wait until the migration
  1158. * pte is removed and then restart fault handling.
  1159. */
  1160. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1161. entry = make_migration_entry(page, pte_write(pteval));
  1162. }
  1163. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1164. BUG_ON(pte_file(*pte));
  1165. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1166. (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1167. /* Establish migration entry for a file page */
  1168. swp_entry_t entry;
  1169. entry = make_migration_entry(page, pte_write(pteval));
  1170. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1171. } else
  1172. dec_mm_counter(mm, MM_FILEPAGES);
  1173. page_remove_rmap(page);
  1174. page_cache_release(page);
  1175. out_unmap:
  1176. pte_unmap_unlock(pte, ptl);
  1177. out:
  1178. return ret;
  1179. out_mlock:
  1180. pte_unmap_unlock(pte, ptl);
  1181. /*
  1182. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1183. * unstable result and race. Plus, We can't wait here because
  1184. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1185. * if trylock failed, the page remain in evictable lru and later
  1186. * vmscan could retry to move the page to unevictable lru if the
  1187. * page is actually mlocked.
  1188. */
  1189. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1190. if (vma->vm_flags & VM_LOCKED) {
  1191. mlock_vma_page(page);
  1192. ret = SWAP_MLOCK;
  1193. }
  1194. up_read(&vma->vm_mm->mmap_sem);
  1195. }
  1196. return ret;
  1197. }
  1198. /*
  1199. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1200. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1201. * Consequently, given a particular page and its ->index, we cannot locate the
  1202. * ptes which are mapping that page without an exhaustive linear search.
  1203. *
  1204. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1205. * maps the file to which the target page belongs. The ->vm_private_data field
  1206. * holds the current cursor into that scan. Successive searches will circulate
  1207. * around the vma's virtual address space.
  1208. *
  1209. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1210. * more scanning pressure is placed against them as well. Eventually pages
  1211. * will become fully unmapped and are eligible for eviction.
  1212. *
  1213. * For very sparsely populated VMAs this is a little inefficient - chances are
  1214. * there there won't be many ptes located within the scan cluster. In this case
  1215. * maybe we could scan further - to the end of the pte page, perhaps.
  1216. *
  1217. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1218. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1219. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1220. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1221. */
  1222. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1223. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1224. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1225. struct vm_area_struct *vma, struct page *check_page)
  1226. {
  1227. struct mm_struct *mm = vma->vm_mm;
  1228. pgd_t *pgd;
  1229. pud_t *pud;
  1230. pmd_t *pmd;
  1231. pte_t *pte;
  1232. pte_t pteval;
  1233. spinlock_t *ptl;
  1234. struct page *page;
  1235. unsigned long address;
  1236. unsigned long end;
  1237. int ret = SWAP_AGAIN;
  1238. int locked_vma = 0;
  1239. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1240. end = address + CLUSTER_SIZE;
  1241. if (address < vma->vm_start)
  1242. address = vma->vm_start;
  1243. if (end > vma->vm_end)
  1244. end = vma->vm_end;
  1245. pgd = pgd_offset(mm, address);
  1246. if (!pgd_present(*pgd))
  1247. return ret;
  1248. pud = pud_offset(pgd, address);
  1249. if (!pud_present(*pud))
  1250. return ret;
  1251. pmd = pmd_offset(pud, address);
  1252. if (!pmd_present(*pmd))
  1253. return ret;
  1254. /*
  1255. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1256. * keep the sem while scanning the cluster for mlocking pages.
  1257. */
  1258. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1259. locked_vma = (vma->vm_flags & VM_LOCKED);
  1260. if (!locked_vma)
  1261. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1262. }
  1263. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1264. /* Update high watermark before we lower rss */
  1265. update_hiwater_rss(mm);
  1266. for (; address < end; pte++, address += PAGE_SIZE) {
  1267. if (!pte_present(*pte))
  1268. continue;
  1269. page = vm_normal_page(vma, address, *pte);
  1270. BUG_ON(!page || PageAnon(page));
  1271. if (locked_vma) {
  1272. mlock_vma_page(page); /* no-op if already mlocked */
  1273. if (page == check_page)
  1274. ret = SWAP_MLOCK;
  1275. continue; /* don't unmap */
  1276. }
  1277. if (ptep_clear_flush_young_notify(vma, address, pte))
  1278. continue;
  1279. /* Nuke the page table entry. */
  1280. flush_cache_page(vma, address, pte_pfn(*pte));
  1281. pteval = ptep_clear_flush_notify(vma, address, pte);
  1282. /* If nonlinear, store the file page offset in the pte. */
  1283. if (page->index != linear_page_index(vma, address))
  1284. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1285. /* Move the dirty bit to the physical page now the pte is gone. */
  1286. if (pte_dirty(pteval))
  1287. set_page_dirty(page);
  1288. page_remove_rmap(page);
  1289. page_cache_release(page);
  1290. dec_mm_counter(mm, MM_FILEPAGES);
  1291. (*mapcount)--;
  1292. }
  1293. pte_unmap_unlock(pte - 1, ptl);
  1294. if (locked_vma)
  1295. up_read(&vma->vm_mm->mmap_sem);
  1296. return ret;
  1297. }
  1298. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1299. {
  1300. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1301. if (!maybe_stack)
  1302. return false;
  1303. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1304. VM_STACK_INCOMPLETE_SETUP)
  1305. return true;
  1306. return false;
  1307. }
  1308. /**
  1309. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1310. * rmap method
  1311. * @page: the page to unmap/unlock
  1312. * @flags: action and flags
  1313. *
  1314. * Find all the mappings of a page using the mapping pointer and the vma chains
  1315. * contained in the anon_vma struct it points to.
  1316. *
  1317. * This function is only called from try_to_unmap/try_to_munlock for
  1318. * anonymous pages.
  1319. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1320. * where the page was found will be held for write. So, we won't recheck
  1321. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1322. * 'LOCKED.
  1323. */
  1324. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1325. {
  1326. struct anon_vma *anon_vma;
  1327. struct anon_vma_chain *avc;
  1328. int ret = SWAP_AGAIN;
  1329. anon_vma = page_lock_anon_vma(page);
  1330. if (!anon_vma)
  1331. return ret;
  1332. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1333. struct vm_area_struct *vma = avc->vma;
  1334. unsigned long address;
  1335. /*
  1336. * During exec, a temporary VMA is setup and later moved.
  1337. * The VMA is moved under the anon_vma lock but not the
  1338. * page tables leading to a race where migration cannot
  1339. * find the migration ptes. Rather than increasing the
  1340. * locking requirements of exec(), migration skips
  1341. * temporary VMAs until after exec() completes.
  1342. */
  1343. if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
  1344. is_vma_temporary_stack(vma))
  1345. continue;
  1346. address = vma_address(page, vma);
  1347. if (address == -EFAULT)
  1348. continue;
  1349. ret = try_to_unmap_one(page, vma, address, flags);
  1350. if (ret != SWAP_AGAIN || !page_mapped(page))
  1351. break;
  1352. }
  1353. page_unlock_anon_vma(anon_vma);
  1354. return ret;
  1355. }
  1356. /**
  1357. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1358. * @page: the page to unmap/unlock
  1359. * @flags: action and flags
  1360. *
  1361. * Find all the mappings of a page using the mapping pointer and the vma chains
  1362. * contained in the address_space struct it points to.
  1363. *
  1364. * This function is only called from try_to_unmap/try_to_munlock for
  1365. * object-based pages.
  1366. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1367. * where the page was found will be held for write. So, we won't recheck
  1368. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1369. * 'LOCKED.
  1370. */
  1371. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1372. {
  1373. struct address_space *mapping = page->mapping;
  1374. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1375. struct vm_area_struct *vma;
  1376. int ret = SWAP_AGAIN;
  1377. unsigned long cursor;
  1378. unsigned long max_nl_cursor = 0;
  1379. unsigned long max_nl_size = 0;
  1380. unsigned int mapcount;
  1381. mutex_lock(&mapping->i_mmap_mutex);
  1382. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1383. unsigned long address = vma_address(page, vma);
  1384. if (address == -EFAULT)
  1385. continue;
  1386. ret = try_to_unmap_one(page, vma, address, flags);
  1387. if (ret != SWAP_AGAIN || !page_mapped(page))
  1388. goto out;
  1389. }
  1390. if (list_empty(&mapping->i_mmap_nonlinear))
  1391. goto out;
  1392. /*
  1393. * We don't bother to try to find the munlocked page in nonlinears.
  1394. * It's costly. Instead, later, page reclaim logic may call
  1395. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1396. */
  1397. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1398. goto out;
  1399. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1400. shared.nonlinear) {
  1401. cursor = (unsigned long) vma->vm_private_data;
  1402. if (cursor > max_nl_cursor)
  1403. max_nl_cursor = cursor;
  1404. cursor = vma->vm_end - vma->vm_start;
  1405. if (cursor > max_nl_size)
  1406. max_nl_size = cursor;
  1407. }
  1408. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1409. ret = SWAP_FAIL;
  1410. goto out;
  1411. }
  1412. /*
  1413. * We don't try to search for this page in the nonlinear vmas,
  1414. * and page_referenced wouldn't have found it anyway. Instead
  1415. * just walk the nonlinear vmas trying to age and unmap some.
  1416. * The mapcount of the page we came in with is irrelevant,
  1417. * but even so use it as a guide to how hard we should try?
  1418. */
  1419. mapcount = page_mapcount(page);
  1420. if (!mapcount)
  1421. goto out;
  1422. cond_resched();
  1423. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1424. if (max_nl_cursor == 0)
  1425. max_nl_cursor = CLUSTER_SIZE;
  1426. do {
  1427. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1428. shared.nonlinear) {
  1429. cursor = (unsigned long) vma->vm_private_data;
  1430. while ( cursor < max_nl_cursor &&
  1431. cursor < vma->vm_end - vma->vm_start) {
  1432. if (try_to_unmap_cluster(cursor, &mapcount,
  1433. vma, page) == SWAP_MLOCK)
  1434. ret = SWAP_MLOCK;
  1435. cursor += CLUSTER_SIZE;
  1436. vma->vm_private_data = (void *) cursor;
  1437. if ((int)mapcount <= 0)
  1438. goto out;
  1439. }
  1440. vma->vm_private_data = (void *) max_nl_cursor;
  1441. }
  1442. cond_resched();
  1443. max_nl_cursor += CLUSTER_SIZE;
  1444. } while (max_nl_cursor <= max_nl_size);
  1445. /*
  1446. * Don't loop forever (perhaps all the remaining pages are
  1447. * in locked vmas). Reset cursor on all unreserved nonlinear
  1448. * vmas, now forgetting on which ones it had fallen behind.
  1449. */
  1450. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
  1451. vma->vm_private_data = NULL;
  1452. out:
  1453. mutex_unlock(&mapping->i_mmap_mutex);
  1454. return ret;
  1455. }
  1456. /**
  1457. * try_to_unmap - try to remove all page table mappings to a page
  1458. * @page: the page to get unmapped
  1459. * @flags: action and flags
  1460. *
  1461. * Tries to remove all the page table entries which are mapping this
  1462. * page, used in the pageout path. Caller must hold the page lock.
  1463. * Return values are:
  1464. *
  1465. * SWAP_SUCCESS - we succeeded in removing all mappings
  1466. * SWAP_AGAIN - we missed a mapping, try again later
  1467. * SWAP_FAIL - the page is unswappable
  1468. * SWAP_MLOCK - page is mlocked.
  1469. */
  1470. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1471. {
  1472. int ret;
  1473. BUG_ON(!PageLocked(page));
  1474. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1475. if (unlikely(PageKsm(page)))
  1476. ret = try_to_unmap_ksm(page, flags);
  1477. else if (PageAnon(page))
  1478. ret = try_to_unmap_anon(page, flags);
  1479. else
  1480. ret = try_to_unmap_file(page, flags);
  1481. if (ret != SWAP_MLOCK && !page_mapped(page))
  1482. ret = SWAP_SUCCESS;
  1483. return ret;
  1484. }
  1485. /**
  1486. * try_to_munlock - try to munlock a page
  1487. * @page: the page to be munlocked
  1488. *
  1489. * Called from munlock code. Checks all of the VMAs mapping the page
  1490. * to make sure nobody else has this page mlocked. The page will be
  1491. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1492. *
  1493. * Return values are:
  1494. *
  1495. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1496. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1497. * SWAP_FAIL - page cannot be located at present
  1498. * SWAP_MLOCK - page is now mlocked.
  1499. */
  1500. int try_to_munlock(struct page *page)
  1501. {
  1502. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1503. if (unlikely(PageKsm(page)))
  1504. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1505. else if (PageAnon(page))
  1506. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1507. else
  1508. return try_to_unmap_file(page, TTU_MUNLOCK);
  1509. }
  1510. void __put_anon_vma(struct anon_vma *anon_vma)
  1511. {
  1512. struct anon_vma *root = anon_vma->root;
  1513. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1514. anon_vma_free(root);
  1515. anon_vma_free(anon_vma);
  1516. }
  1517. #ifdef CONFIG_MIGRATION
  1518. /*
  1519. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1520. * Called by migrate.c to remove migration ptes, but might be used more later.
  1521. */
  1522. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1523. struct vm_area_struct *, unsigned long, void *), void *arg)
  1524. {
  1525. struct anon_vma *anon_vma;
  1526. struct anon_vma_chain *avc;
  1527. int ret = SWAP_AGAIN;
  1528. /*
  1529. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1530. * because that depends on page_mapped(); but not all its usages
  1531. * are holding mmap_sem. Users without mmap_sem are required to
  1532. * take a reference count to prevent the anon_vma disappearing
  1533. */
  1534. anon_vma = page_anon_vma(page);
  1535. if (!anon_vma)
  1536. return ret;
  1537. anon_vma_lock(anon_vma);
  1538. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1539. struct vm_area_struct *vma = avc->vma;
  1540. unsigned long address = vma_address(page, vma);
  1541. if (address == -EFAULT)
  1542. continue;
  1543. ret = rmap_one(page, vma, address, arg);
  1544. if (ret != SWAP_AGAIN)
  1545. break;
  1546. }
  1547. anon_vma_unlock(anon_vma);
  1548. return ret;
  1549. }
  1550. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1551. struct vm_area_struct *, unsigned long, void *), void *arg)
  1552. {
  1553. struct address_space *mapping = page->mapping;
  1554. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1555. struct vm_area_struct *vma;
  1556. int ret = SWAP_AGAIN;
  1557. if (!mapping)
  1558. return ret;
  1559. mutex_lock(&mapping->i_mmap_mutex);
  1560. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1561. unsigned long address = vma_address(page, vma);
  1562. if (address == -EFAULT)
  1563. continue;
  1564. ret = rmap_one(page, vma, address, arg);
  1565. if (ret != SWAP_AGAIN)
  1566. break;
  1567. }
  1568. /*
  1569. * No nonlinear handling: being always shared, nonlinear vmas
  1570. * never contain migration ptes. Decide what to do about this
  1571. * limitation to linear when we need rmap_walk() on nonlinear.
  1572. */
  1573. mutex_unlock(&mapping->i_mmap_mutex);
  1574. return ret;
  1575. }
  1576. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1577. struct vm_area_struct *, unsigned long, void *), void *arg)
  1578. {
  1579. VM_BUG_ON(!PageLocked(page));
  1580. if (unlikely(PageKsm(page)))
  1581. return rmap_walk_ksm(page, rmap_one, arg);
  1582. else if (PageAnon(page))
  1583. return rmap_walk_anon(page, rmap_one, arg);
  1584. else
  1585. return rmap_walk_file(page, rmap_one, arg);
  1586. }
  1587. #endif /* CONFIG_MIGRATION */
  1588. #ifdef CONFIG_HUGETLB_PAGE
  1589. /*
  1590. * The following three functions are for anonymous (private mapped) hugepages.
  1591. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1592. * and no lru code, because we handle hugepages differently from common pages.
  1593. */
  1594. static void __hugepage_set_anon_rmap(struct page *page,
  1595. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1596. {
  1597. struct anon_vma *anon_vma = vma->anon_vma;
  1598. BUG_ON(!anon_vma);
  1599. if (PageAnon(page))
  1600. return;
  1601. if (!exclusive)
  1602. anon_vma = anon_vma->root;
  1603. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1604. page->mapping = (struct address_space *) anon_vma;
  1605. page->index = linear_page_index(vma, address);
  1606. }
  1607. void hugepage_add_anon_rmap(struct page *page,
  1608. struct vm_area_struct *vma, unsigned long address)
  1609. {
  1610. struct anon_vma *anon_vma = vma->anon_vma;
  1611. int first;
  1612. BUG_ON(!PageLocked(page));
  1613. BUG_ON(!anon_vma);
  1614. /* address might be in next vma when migration races vma_adjust */
  1615. first = atomic_inc_and_test(&page->_mapcount);
  1616. if (first)
  1617. __hugepage_set_anon_rmap(page, vma, address, 0);
  1618. }
  1619. void hugepage_add_new_anon_rmap(struct page *page,
  1620. struct vm_area_struct *vma, unsigned long address)
  1621. {
  1622. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1623. atomic_set(&page->_mapcount, 0);
  1624. __hugepage_set_anon_rmap(page, vma, address, 1);
  1625. }
  1626. #endif /* CONFIG_HUGETLB_PAGE */