memory.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. void sync_mm_rss(struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (current->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, current->rss_stat.count[i]);
  116. current->rss_stat.count[i] = 0;
  117. }
  118. }
  119. current->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. sync_mm_rss(task->mm);
  139. }
  140. #else /* SPLIT_RSS_COUNTING */
  141. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  142. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  143. static void check_sync_rss_stat(struct task_struct *task)
  144. {
  145. }
  146. #endif /* SPLIT_RSS_COUNTING */
  147. #ifdef HAVE_GENERIC_MMU_GATHER
  148. static int tlb_next_batch(struct mmu_gather *tlb)
  149. {
  150. struct mmu_gather_batch *batch;
  151. batch = tlb->active;
  152. if (batch->next) {
  153. tlb->active = batch->next;
  154. return 1;
  155. }
  156. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  157. if (!batch)
  158. return 0;
  159. batch->next = NULL;
  160. batch->nr = 0;
  161. batch->max = MAX_GATHER_BATCH;
  162. tlb->active->next = batch;
  163. tlb->active = batch;
  164. return 1;
  165. }
  166. /* tlb_gather_mmu
  167. * Called to initialize an (on-stack) mmu_gather structure for page-table
  168. * tear-down from @mm. The @fullmm argument is used when @mm is without
  169. * users and we're going to destroy the full address space (exit/execve).
  170. */
  171. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  172. {
  173. tlb->mm = mm;
  174. tlb->fullmm = fullmm;
  175. tlb->start = -1UL;
  176. tlb->end = 0;
  177. tlb->need_flush = 0;
  178. tlb->fast_mode = (num_possible_cpus() == 1);
  179. tlb->local.next = NULL;
  180. tlb->local.nr = 0;
  181. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  182. tlb->active = &tlb->local;
  183. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  184. tlb->batch = NULL;
  185. #endif
  186. }
  187. void tlb_flush_mmu(struct mmu_gather *tlb)
  188. {
  189. struct mmu_gather_batch *batch;
  190. if (!tlb->need_flush)
  191. return;
  192. tlb->need_flush = 0;
  193. tlb_flush(tlb);
  194. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  195. tlb_table_flush(tlb);
  196. #endif
  197. if (tlb_fast_mode(tlb))
  198. return;
  199. for (batch = &tlb->local; batch; batch = batch->next) {
  200. free_pages_and_swap_cache(batch->pages, batch->nr);
  201. batch->nr = 0;
  202. }
  203. tlb->active = &tlb->local;
  204. }
  205. /* tlb_finish_mmu
  206. * Called at the end of the shootdown operation to free up any resources
  207. * that were required.
  208. */
  209. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  210. {
  211. struct mmu_gather_batch *batch, *next;
  212. tlb->start = start;
  213. tlb->end = end;
  214. tlb_flush_mmu(tlb);
  215. /* keep the page table cache within bounds */
  216. check_pgt_cache();
  217. for (batch = tlb->local.next; batch; batch = next) {
  218. next = batch->next;
  219. free_pages((unsigned long)batch, 0);
  220. }
  221. tlb->local.next = NULL;
  222. }
  223. /* __tlb_remove_page
  224. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  225. * handling the additional races in SMP caused by other CPUs caching valid
  226. * mappings in their TLBs. Returns the number of free page slots left.
  227. * When out of page slots we must call tlb_flush_mmu().
  228. */
  229. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  230. {
  231. struct mmu_gather_batch *batch;
  232. VM_BUG_ON(!tlb->need_flush);
  233. if (tlb_fast_mode(tlb)) {
  234. free_page_and_swap_cache(page);
  235. return 1; /* avoid calling tlb_flush_mmu() */
  236. }
  237. batch = tlb->active;
  238. batch->pages[batch->nr++] = page;
  239. if (batch->nr == batch->max) {
  240. if (!tlb_next_batch(tlb))
  241. return 0;
  242. batch = tlb->active;
  243. }
  244. VM_BUG_ON(batch->nr > batch->max);
  245. return batch->max - batch->nr;
  246. }
  247. #endif /* HAVE_GENERIC_MMU_GATHER */
  248. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  249. /*
  250. * See the comment near struct mmu_table_batch.
  251. */
  252. static void tlb_remove_table_smp_sync(void *arg)
  253. {
  254. /* Simply deliver the interrupt */
  255. }
  256. static void tlb_remove_table_one(void *table)
  257. {
  258. /*
  259. * This isn't an RCU grace period and hence the page-tables cannot be
  260. * assumed to be actually RCU-freed.
  261. *
  262. * It is however sufficient for software page-table walkers that rely on
  263. * IRQ disabling. See the comment near struct mmu_table_batch.
  264. */
  265. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  266. __tlb_remove_table(table);
  267. }
  268. static void tlb_remove_table_rcu(struct rcu_head *head)
  269. {
  270. struct mmu_table_batch *batch;
  271. int i;
  272. batch = container_of(head, struct mmu_table_batch, rcu);
  273. for (i = 0; i < batch->nr; i++)
  274. __tlb_remove_table(batch->tables[i]);
  275. free_page((unsigned long)batch);
  276. }
  277. void tlb_table_flush(struct mmu_gather *tlb)
  278. {
  279. struct mmu_table_batch **batch = &tlb->batch;
  280. if (*batch) {
  281. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  282. *batch = NULL;
  283. }
  284. }
  285. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  286. {
  287. struct mmu_table_batch **batch = &tlb->batch;
  288. tlb->need_flush = 1;
  289. /*
  290. * When there's less then two users of this mm there cannot be a
  291. * concurrent page-table walk.
  292. */
  293. if (atomic_read(&tlb->mm->mm_users) < 2) {
  294. __tlb_remove_table(table);
  295. return;
  296. }
  297. if (*batch == NULL) {
  298. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  299. if (*batch == NULL) {
  300. tlb_remove_table_one(table);
  301. return;
  302. }
  303. (*batch)->nr = 0;
  304. }
  305. (*batch)->tables[(*batch)->nr++] = table;
  306. if ((*batch)->nr == MAX_TABLE_BATCH)
  307. tlb_table_flush(tlb);
  308. }
  309. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  310. /*
  311. * If a p?d_bad entry is found while walking page tables, report
  312. * the error, before resetting entry to p?d_none. Usually (but
  313. * very seldom) called out from the p?d_none_or_clear_bad macros.
  314. */
  315. void pgd_clear_bad(pgd_t *pgd)
  316. {
  317. pgd_ERROR(*pgd);
  318. pgd_clear(pgd);
  319. }
  320. void pud_clear_bad(pud_t *pud)
  321. {
  322. pud_ERROR(*pud);
  323. pud_clear(pud);
  324. }
  325. void pmd_clear_bad(pmd_t *pmd)
  326. {
  327. pmd_ERROR(*pmd);
  328. pmd_clear(pmd);
  329. }
  330. /*
  331. * Note: this doesn't free the actual pages themselves. That
  332. * has been handled earlier when unmapping all the memory regions.
  333. */
  334. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  335. unsigned long addr)
  336. {
  337. pgtable_t token = pmd_pgtable(*pmd);
  338. pmd_clear(pmd);
  339. pte_free_tlb(tlb, token, addr);
  340. tlb->mm->nr_ptes--;
  341. }
  342. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  343. unsigned long addr, unsigned long end,
  344. unsigned long floor, unsigned long ceiling)
  345. {
  346. pmd_t *pmd;
  347. unsigned long next;
  348. unsigned long start;
  349. start = addr;
  350. pmd = pmd_offset(pud, addr);
  351. do {
  352. next = pmd_addr_end(addr, end);
  353. if (pmd_none_or_clear_bad(pmd))
  354. continue;
  355. free_pte_range(tlb, pmd, addr);
  356. } while (pmd++, addr = next, addr != end);
  357. start &= PUD_MASK;
  358. if (start < floor)
  359. return;
  360. if (ceiling) {
  361. ceiling &= PUD_MASK;
  362. if (!ceiling)
  363. return;
  364. }
  365. if (end - 1 > ceiling - 1)
  366. return;
  367. pmd = pmd_offset(pud, start);
  368. pud_clear(pud);
  369. pmd_free_tlb(tlb, pmd, start);
  370. }
  371. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  372. unsigned long addr, unsigned long end,
  373. unsigned long floor, unsigned long ceiling)
  374. {
  375. pud_t *pud;
  376. unsigned long next;
  377. unsigned long start;
  378. start = addr;
  379. pud = pud_offset(pgd, addr);
  380. do {
  381. next = pud_addr_end(addr, end);
  382. if (pud_none_or_clear_bad(pud))
  383. continue;
  384. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  385. } while (pud++, addr = next, addr != end);
  386. start &= PGDIR_MASK;
  387. if (start < floor)
  388. return;
  389. if (ceiling) {
  390. ceiling &= PGDIR_MASK;
  391. if (!ceiling)
  392. return;
  393. }
  394. if (end - 1 > ceiling - 1)
  395. return;
  396. pud = pud_offset(pgd, start);
  397. pgd_clear(pgd);
  398. pud_free_tlb(tlb, pud, start);
  399. }
  400. /*
  401. * This function frees user-level page tables of a process.
  402. *
  403. * Must be called with pagetable lock held.
  404. */
  405. void free_pgd_range(struct mmu_gather *tlb,
  406. unsigned long addr, unsigned long end,
  407. unsigned long floor, unsigned long ceiling)
  408. {
  409. pgd_t *pgd;
  410. unsigned long next;
  411. /*
  412. * The next few lines have given us lots of grief...
  413. *
  414. * Why are we testing PMD* at this top level? Because often
  415. * there will be no work to do at all, and we'd prefer not to
  416. * go all the way down to the bottom just to discover that.
  417. *
  418. * Why all these "- 1"s? Because 0 represents both the bottom
  419. * of the address space and the top of it (using -1 for the
  420. * top wouldn't help much: the masks would do the wrong thing).
  421. * The rule is that addr 0 and floor 0 refer to the bottom of
  422. * the address space, but end 0 and ceiling 0 refer to the top
  423. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  424. * that end 0 case should be mythical).
  425. *
  426. * Wherever addr is brought up or ceiling brought down, we must
  427. * be careful to reject "the opposite 0" before it confuses the
  428. * subsequent tests. But what about where end is brought down
  429. * by PMD_SIZE below? no, end can't go down to 0 there.
  430. *
  431. * Whereas we round start (addr) and ceiling down, by different
  432. * masks at different levels, in order to test whether a table
  433. * now has no other vmas using it, so can be freed, we don't
  434. * bother to round floor or end up - the tests don't need that.
  435. */
  436. addr &= PMD_MASK;
  437. if (addr < floor) {
  438. addr += PMD_SIZE;
  439. if (!addr)
  440. return;
  441. }
  442. if (ceiling) {
  443. ceiling &= PMD_MASK;
  444. if (!ceiling)
  445. return;
  446. }
  447. if (end - 1 > ceiling - 1)
  448. end -= PMD_SIZE;
  449. if (addr > end - 1)
  450. return;
  451. pgd = pgd_offset(tlb->mm, addr);
  452. do {
  453. next = pgd_addr_end(addr, end);
  454. if (pgd_none_or_clear_bad(pgd))
  455. continue;
  456. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  457. } while (pgd++, addr = next, addr != end);
  458. }
  459. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  460. unsigned long floor, unsigned long ceiling)
  461. {
  462. while (vma) {
  463. struct vm_area_struct *next = vma->vm_next;
  464. unsigned long addr = vma->vm_start;
  465. /*
  466. * Hide vma from rmap and truncate_pagecache before freeing
  467. * pgtables
  468. */
  469. unlink_anon_vmas(vma);
  470. unlink_file_vma(vma);
  471. if (is_vm_hugetlb_page(vma)) {
  472. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  473. floor, next? next->vm_start: ceiling);
  474. } else {
  475. /*
  476. * Optimization: gather nearby vmas into one call down
  477. */
  478. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  479. && !is_vm_hugetlb_page(next)) {
  480. vma = next;
  481. next = vma->vm_next;
  482. unlink_anon_vmas(vma);
  483. unlink_file_vma(vma);
  484. }
  485. free_pgd_range(tlb, addr, vma->vm_end,
  486. floor, next? next->vm_start: ceiling);
  487. }
  488. vma = next;
  489. }
  490. }
  491. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  492. pmd_t *pmd, unsigned long address)
  493. {
  494. pgtable_t new = pte_alloc_one(mm, address);
  495. int wait_split_huge_page;
  496. if (!new)
  497. return -ENOMEM;
  498. /*
  499. * Ensure all pte setup (eg. pte page lock and page clearing) are
  500. * visible before the pte is made visible to other CPUs by being
  501. * put into page tables.
  502. *
  503. * The other side of the story is the pointer chasing in the page
  504. * table walking code (when walking the page table without locking;
  505. * ie. most of the time). Fortunately, these data accesses consist
  506. * of a chain of data-dependent loads, meaning most CPUs (alpha
  507. * being the notable exception) will already guarantee loads are
  508. * seen in-order. See the alpha page table accessors for the
  509. * smp_read_barrier_depends() barriers in page table walking code.
  510. */
  511. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  512. spin_lock(&mm->page_table_lock);
  513. wait_split_huge_page = 0;
  514. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  515. mm->nr_ptes++;
  516. pmd_populate(mm, pmd, new);
  517. new = NULL;
  518. } else if (unlikely(pmd_trans_splitting(*pmd)))
  519. wait_split_huge_page = 1;
  520. spin_unlock(&mm->page_table_lock);
  521. if (new)
  522. pte_free(mm, new);
  523. if (wait_split_huge_page)
  524. wait_split_huge_page(vma->anon_vma, pmd);
  525. return 0;
  526. }
  527. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  528. {
  529. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  530. if (!new)
  531. return -ENOMEM;
  532. smp_wmb(); /* See comment in __pte_alloc */
  533. spin_lock(&init_mm.page_table_lock);
  534. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  535. pmd_populate_kernel(&init_mm, pmd, new);
  536. new = NULL;
  537. } else
  538. VM_BUG_ON(pmd_trans_splitting(*pmd));
  539. spin_unlock(&init_mm.page_table_lock);
  540. if (new)
  541. pte_free_kernel(&init_mm, new);
  542. return 0;
  543. }
  544. static inline void init_rss_vec(int *rss)
  545. {
  546. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  547. }
  548. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  549. {
  550. int i;
  551. if (current->mm == mm)
  552. sync_mm_rss(mm);
  553. for (i = 0; i < NR_MM_COUNTERS; i++)
  554. if (rss[i])
  555. add_mm_counter(mm, i, rss[i]);
  556. }
  557. /*
  558. * This function is called to print an error when a bad pte
  559. * is found. For example, we might have a PFN-mapped pte in
  560. * a region that doesn't allow it.
  561. *
  562. * The calling function must still handle the error.
  563. */
  564. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  565. pte_t pte, struct page *page)
  566. {
  567. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  568. pud_t *pud = pud_offset(pgd, addr);
  569. pmd_t *pmd = pmd_offset(pud, addr);
  570. struct address_space *mapping;
  571. pgoff_t index;
  572. static unsigned long resume;
  573. static unsigned long nr_shown;
  574. static unsigned long nr_unshown;
  575. /*
  576. * Allow a burst of 60 reports, then keep quiet for that minute;
  577. * or allow a steady drip of one report per second.
  578. */
  579. if (nr_shown == 60) {
  580. if (time_before(jiffies, resume)) {
  581. nr_unshown++;
  582. return;
  583. }
  584. if (nr_unshown) {
  585. printk(KERN_ALERT
  586. "BUG: Bad page map: %lu messages suppressed\n",
  587. nr_unshown);
  588. nr_unshown = 0;
  589. }
  590. nr_shown = 0;
  591. }
  592. if (nr_shown++ == 0)
  593. resume = jiffies + 60 * HZ;
  594. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  595. index = linear_page_index(vma, addr);
  596. printk(KERN_ALERT
  597. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  598. current->comm,
  599. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  600. if (page)
  601. dump_page(page);
  602. printk(KERN_ALERT
  603. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  604. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  605. /*
  606. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  607. */
  608. if (vma->vm_ops)
  609. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  610. (unsigned long)vma->vm_ops->fault);
  611. if (vma->vm_file && vma->vm_file->f_op)
  612. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  613. (unsigned long)vma->vm_file->f_op->mmap);
  614. dump_stack();
  615. add_taint(TAINT_BAD_PAGE);
  616. }
  617. static inline int is_cow_mapping(vm_flags_t flags)
  618. {
  619. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  620. }
  621. #ifndef is_zero_pfn
  622. static inline int is_zero_pfn(unsigned long pfn)
  623. {
  624. return pfn == zero_pfn;
  625. }
  626. #endif
  627. #ifndef my_zero_pfn
  628. static inline unsigned long my_zero_pfn(unsigned long addr)
  629. {
  630. return zero_pfn;
  631. }
  632. #endif
  633. /*
  634. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  635. *
  636. * "Special" mappings do not wish to be associated with a "struct page" (either
  637. * it doesn't exist, or it exists but they don't want to touch it). In this
  638. * case, NULL is returned here. "Normal" mappings do have a struct page.
  639. *
  640. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  641. * pte bit, in which case this function is trivial. Secondly, an architecture
  642. * may not have a spare pte bit, which requires a more complicated scheme,
  643. * described below.
  644. *
  645. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  646. * special mapping (even if there are underlying and valid "struct pages").
  647. * COWed pages of a VM_PFNMAP are always normal.
  648. *
  649. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  650. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  651. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  652. * mapping will always honor the rule
  653. *
  654. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  655. *
  656. * And for normal mappings this is false.
  657. *
  658. * This restricts such mappings to be a linear translation from virtual address
  659. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  660. * as the vma is not a COW mapping; in that case, we know that all ptes are
  661. * special (because none can have been COWed).
  662. *
  663. *
  664. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  665. *
  666. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  667. * page" backing, however the difference is that _all_ pages with a struct
  668. * page (that is, those where pfn_valid is true) are refcounted and considered
  669. * normal pages by the VM. The disadvantage is that pages are refcounted
  670. * (which can be slower and simply not an option for some PFNMAP users). The
  671. * advantage is that we don't have to follow the strict linearity rule of
  672. * PFNMAP mappings in order to support COWable mappings.
  673. *
  674. */
  675. #ifdef __HAVE_ARCH_PTE_SPECIAL
  676. # define HAVE_PTE_SPECIAL 1
  677. #else
  678. # define HAVE_PTE_SPECIAL 0
  679. #endif
  680. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  681. pte_t pte)
  682. {
  683. unsigned long pfn = pte_pfn(pte);
  684. if (HAVE_PTE_SPECIAL) {
  685. if (likely(!pte_special(pte)))
  686. goto check_pfn;
  687. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  688. return NULL;
  689. if (!is_zero_pfn(pfn))
  690. print_bad_pte(vma, addr, pte, NULL);
  691. return NULL;
  692. }
  693. /* !HAVE_PTE_SPECIAL case follows: */
  694. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  695. if (vma->vm_flags & VM_MIXEDMAP) {
  696. if (!pfn_valid(pfn))
  697. return NULL;
  698. goto out;
  699. } else {
  700. unsigned long off;
  701. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  702. if (pfn == vma->vm_pgoff + off)
  703. return NULL;
  704. if (!is_cow_mapping(vma->vm_flags))
  705. return NULL;
  706. }
  707. }
  708. if (is_zero_pfn(pfn))
  709. return NULL;
  710. check_pfn:
  711. if (unlikely(pfn > highest_memmap_pfn)) {
  712. print_bad_pte(vma, addr, pte, NULL);
  713. return NULL;
  714. }
  715. /*
  716. * NOTE! We still have PageReserved() pages in the page tables.
  717. * eg. VDSO mappings can cause them to exist.
  718. */
  719. out:
  720. return pfn_to_page(pfn);
  721. }
  722. /*
  723. * copy one vm_area from one task to the other. Assumes the page tables
  724. * already present in the new task to be cleared in the whole range
  725. * covered by this vma.
  726. */
  727. static inline unsigned long
  728. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  729. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  730. unsigned long addr, int *rss)
  731. {
  732. unsigned long vm_flags = vma->vm_flags;
  733. pte_t pte = *src_pte;
  734. struct page *page;
  735. /* pte contains position in swap or file, so copy. */
  736. if (unlikely(!pte_present(pte))) {
  737. if (!pte_file(pte)) {
  738. swp_entry_t entry = pte_to_swp_entry(pte);
  739. if (swap_duplicate(entry) < 0)
  740. return entry.val;
  741. /* make sure dst_mm is on swapoff's mmlist. */
  742. if (unlikely(list_empty(&dst_mm->mmlist))) {
  743. spin_lock(&mmlist_lock);
  744. if (list_empty(&dst_mm->mmlist))
  745. list_add(&dst_mm->mmlist,
  746. &src_mm->mmlist);
  747. spin_unlock(&mmlist_lock);
  748. }
  749. if (likely(!non_swap_entry(entry)))
  750. rss[MM_SWAPENTS]++;
  751. else if (is_migration_entry(entry)) {
  752. page = migration_entry_to_page(entry);
  753. if (PageAnon(page))
  754. rss[MM_ANONPAGES]++;
  755. else
  756. rss[MM_FILEPAGES]++;
  757. if (is_write_migration_entry(entry) &&
  758. is_cow_mapping(vm_flags)) {
  759. /*
  760. * COW mappings require pages in both
  761. * parent and child to be set to read.
  762. */
  763. make_migration_entry_read(&entry);
  764. pte = swp_entry_to_pte(entry);
  765. set_pte_at(src_mm, addr, src_pte, pte);
  766. }
  767. }
  768. }
  769. goto out_set_pte;
  770. }
  771. /*
  772. * If it's a COW mapping, write protect it both
  773. * in the parent and the child
  774. */
  775. if (is_cow_mapping(vm_flags)) {
  776. ptep_set_wrprotect(src_mm, addr, src_pte);
  777. pte = pte_wrprotect(pte);
  778. }
  779. /*
  780. * If it's a shared mapping, mark it clean in
  781. * the child
  782. */
  783. if (vm_flags & VM_SHARED)
  784. pte = pte_mkclean(pte);
  785. pte = pte_mkold(pte);
  786. page = vm_normal_page(vma, addr, pte);
  787. if (page) {
  788. get_page(page);
  789. page_dup_rmap(page);
  790. if (PageAnon(page))
  791. rss[MM_ANONPAGES]++;
  792. else
  793. rss[MM_FILEPAGES]++;
  794. }
  795. out_set_pte:
  796. set_pte_at(dst_mm, addr, dst_pte, pte);
  797. return 0;
  798. }
  799. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  800. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  801. unsigned long addr, unsigned long end)
  802. {
  803. pte_t *orig_src_pte, *orig_dst_pte;
  804. pte_t *src_pte, *dst_pte;
  805. spinlock_t *src_ptl, *dst_ptl;
  806. int progress = 0;
  807. int rss[NR_MM_COUNTERS];
  808. swp_entry_t entry = (swp_entry_t){0};
  809. again:
  810. init_rss_vec(rss);
  811. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  812. if (!dst_pte)
  813. return -ENOMEM;
  814. src_pte = pte_offset_map(src_pmd, addr);
  815. src_ptl = pte_lockptr(src_mm, src_pmd);
  816. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  817. orig_src_pte = src_pte;
  818. orig_dst_pte = dst_pte;
  819. arch_enter_lazy_mmu_mode();
  820. do {
  821. /*
  822. * We are holding two locks at this point - either of them
  823. * could generate latencies in another task on another CPU.
  824. */
  825. if (progress >= 32) {
  826. progress = 0;
  827. if (need_resched() ||
  828. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  829. break;
  830. }
  831. if (pte_none(*src_pte)) {
  832. progress++;
  833. continue;
  834. }
  835. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  836. vma, addr, rss);
  837. if (entry.val)
  838. break;
  839. progress += 8;
  840. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  841. arch_leave_lazy_mmu_mode();
  842. spin_unlock(src_ptl);
  843. pte_unmap(orig_src_pte);
  844. add_mm_rss_vec(dst_mm, rss);
  845. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  846. cond_resched();
  847. if (entry.val) {
  848. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  849. return -ENOMEM;
  850. progress = 0;
  851. }
  852. if (addr != end)
  853. goto again;
  854. return 0;
  855. }
  856. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  857. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  858. unsigned long addr, unsigned long end)
  859. {
  860. pmd_t *src_pmd, *dst_pmd;
  861. unsigned long next;
  862. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  863. if (!dst_pmd)
  864. return -ENOMEM;
  865. src_pmd = pmd_offset(src_pud, addr);
  866. do {
  867. next = pmd_addr_end(addr, end);
  868. if (pmd_trans_huge(*src_pmd)) {
  869. int err;
  870. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  871. err = copy_huge_pmd(dst_mm, src_mm,
  872. dst_pmd, src_pmd, addr, vma);
  873. if (err == -ENOMEM)
  874. return -ENOMEM;
  875. if (!err)
  876. continue;
  877. /* fall through */
  878. }
  879. if (pmd_none_or_clear_bad(src_pmd))
  880. continue;
  881. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  882. vma, addr, next))
  883. return -ENOMEM;
  884. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  885. return 0;
  886. }
  887. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  888. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  889. unsigned long addr, unsigned long end)
  890. {
  891. pud_t *src_pud, *dst_pud;
  892. unsigned long next;
  893. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  894. if (!dst_pud)
  895. return -ENOMEM;
  896. src_pud = pud_offset(src_pgd, addr);
  897. do {
  898. next = pud_addr_end(addr, end);
  899. if (pud_none_or_clear_bad(src_pud))
  900. continue;
  901. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  902. vma, addr, next))
  903. return -ENOMEM;
  904. } while (dst_pud++, src_pud++, addr = next, addr != end);
  905. return 0;
  906. }
  907. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  908. struct vm_area_struct *vma)
  909. {
  910. pgd_t *src_pgd, *dst_pgd;
  911. unsigned long next;
  912. unsigned long addr = vma->vm_start;
  913. unsigned long end = vma->vm_end;
  914. int ret;
  915. /*
  916. * Don't copy ptes where a page fault will fill them correctly.
  917. * Fork becomes much lighter when there are big shared or private
  918. * readonly mappings. The tradeoff is that copy_page_range is more
  919. * efficient than faulting.
  920. */
  921. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  922. VM_PFNMAP | VM_MIXEDMAP))) {
  923. if (!vma->anon_vma)
  924. return 0;
  925. }
  926. if (is_vm_hugetlb_page(vma))
  927. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  928. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  929. /*
  930. * We do not free on error cases below as remove_vma
  931. * gets called on error from higher level routine
  932. */
  933. ret = track_pfn_copy(vma);
  934. if (ret)
  935. return ret;
  936. }
  937. /*
  938. * We need to invalidate the secondary MMU mappings only when
  939. * there could be a permission downgrade on the ptes of the
  940. * parent mm. And a permission downgrade will only happen if
  941. * is_cow_mapping() returns true.
  942. */
  943. if (is_cow_mapping(vma->vm_flags))
  944. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  945. ret = 0;
  946. dst_pgd = pgd_offset(dst_mm, addr);
  947. src_pgd = pgd_offset(src_mm, addr);
  948. do {
  949. next = pgd_addr_end(addr, end);
  950. if (pgd_none_or_clear_bad(src_pgd))
  951. continue;
  952. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  953. vma, addr, next))) {
  954. ret = -ENOMEM;
  955. break;
  956. }
  957. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  958. if (is_cow_mapping(vma->vm_flags))
  959. mmu_notifier_invalidate_range_end(src_mm,
  960. vma->vm_start, end);
  961. return ret;
  962. }
  963. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  964. struct vm_area_struct *vma, pmd_t *pmd,
  965. unsigned long addr, unsigned long end,
  966. struct zap_details *details)
  967. {
  968. struct mm_struct *mm = tlb->mm;
  969. int force_flush = 0;
  970. int rss[NR_MM_COUNTERS];
  971. spinlock_t *ptl;
  972. pte_t *start_pte;
  973. pte_t *pte;
  974. again:
  975. init_rss_vec(rss);
  976. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  977. pte = start_pte;
  978. arch_enter_lazy_mmu_mode();
  979. do {
  980. pte_t ptent = *pte;
  981. if (pte_none(ptent)) {
  982. continue;
  983. }
  984. if (pte_present(ptent)) {
  985. struct page *page;
  986. page = vm_normal_page(vma, addr, ptent);
  987. if (unlikely(details) && page) {
  988. /*
  989. * unmap_shared_mapping_pages() wants to
  990. * invalidate cache without truncating:
  991. * unmap shared but keep private pages.
  992. */
  993. if (details->check_mapping &&
  994. details->check_mapping != page->mapping)
  995. continue;
  996. /*
  997. * Each page->index must be checked when
  998. * invalidating or truncating nonlinear.
  999. */
  1000. if (details->nonlinear_vma &&
  1001. (page->index < details->first_index ||
  1002. page->index > details->last_index))
  1003. continue;
  1004. }
  1005. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1006. tlb->fullmm);
  1007. tlb_remove_tlb_entry(tlb, pte, addr);
  1008. if (unlikely(!page))
  1009. continue;
  1010. if (unlikely(details) && details->nonlinear_vma
  1011. && linear_page_index(details->nonlinear_vma,
  1012. addr) != page->index)
  1013. set_pte_at(mm, addr, pte,
  1014. pgoff_to_pte(page->index));
  1015. if (PageAnon(page))
  1016. rss[MM_ANONPAGES]--;
  1017. else {
  1018. if (pte_dirty(ptent))
  1019. set_page_dirty(page);
  1020. if (pte_young(ptent) &&
  1021. likely(!VM_SequentialReadHint(vma)))
  1022. mark_page_accessed(page);
  1023. rss[MM_FILEPAGES]--;
  1024. }
  1025. page_remove_rmap(page);
  1026. if (unlikely(page_mapcount(page) < 0))
  1027. print_bad_pte(vma, addr, ptent, page);
  1028. force_flush = !__tlb_remove_page(tlb, page);
  1029. if (force_flush)
  1030. break;
  1031. continue;
  1032. }
  1033. /*
  1034. * If details->check_mapping, we leave swap entries;
  1035. * if details->nonlinear_vma, we leave file entries.
  1036. */
  1037. if (unlikely(details))
  1038. continue;
  1039. if (pte_file(ptent)) {
  1040. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1041. print_bad_pte(vma, addr, ptent, NULL);
  1042. } else {
  1043. swp_entry_t entry = pte_to_swp_entry(ptent);
  1044. if (!non_swap_entry(entry))
  1045. rss[MM_SWAPENTS]--;
  1046. else if (is_migration_entry(entry)) {
  1047. struct page *page;
  1048. page = migration_entry_to_page(entry);
  1049. if (PageAnon(page))
  1050. rss[MM_ANONPAGES]--;
  1051. else
  1052. rss[MM_FILEPAGES]--;
  1053. }
  1054. if (unlikely(!free_swap_and_cache(entry)))
  1055. print_bad_pte(vma, addr, ptent, NULL);
  1056. }
  1057. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1058. } while (pte++, addr += PAGE_SIZE, addr != end);
  1059. add_mm_rss_vec(mm, rss);
  1060. arch_leave_lazy_mmu_mode();
  1061. pte_unmap_unlock(start_pte, ptl);
  1062. /*
  1063. * mmu_gather ran out of room to batch pages, we break out of
  1064. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1065. * and page-free while holding it.
  1066. */
  1067. if (force_flush) {
  1068. force_flush = 0;
  1069. #ifdef HAVE_GENERIC_MMU_GATHER
  1070. tlb->start = addr;
  1071. tlb->end = end;
  1072. #endif
  1073. tlb_flush_mmu(tlb);
  1074. if (addr != end)
  1075. goto again;
  1076. }
  1077. return addr;
  1078. }
  1079. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1080. struct vm_area_struct *vma, pud_t *pud,
  1081. unsigned long addr, unsigned long end,
  1082. struct zap_details *details)
  1083. {
  1084. pmd_t *pmd;
  1085. unsigned long next;
  1086. pmd = pmd_offset(pud, addr);
  1087. do {
  1088. next = pmd_addr_end(addr, end);
  1089. if (pmd_trans_huge(*pmd)) {
  1090. if (next - addr != HPAGE_PMD_SIZE) {
  1091. #ifdef CONFIG_DEBUG_VM
  1092. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1093. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1094. __func__, addr, end,
  1095. vma->vm_start,
  1096. vma->vm_end);
  1097. BUG();
  1098. }
  1099. #endif
  1100. split_huge_page_pmd(vma->vm_mm, pmd);
  1101. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1102. goto next;
  1103. /* fall through */
  1104. }
  1105. /*
  1106. * Here there can be other concurrent MADV_DONTNEED or
  1107. * trans huge page faults running, and if the pmd is
  1108. * none or trans huge it can change under us. This is
  1109. * because MADV_DONTNEED holds the mmap_sem in read
  1110. * mode.
  1111. */
  1112. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1113. goto next;
  1114. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1115. next:
  1116. cond_resched();
  1117. } while (pmd++, addr = next, addr != end);
  1118. return addr;
  1119. }
  1120. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1121. struct vm_area_struct *vma, pgd_t *pgd,
  1122. unsigned long addr, unsigned long end,
  1123. struct zap_details *details)
  1124. {
  1125. pud_t *pud;
  1126. unsigned long next;
  1127. pud = pud_offset(pgd, addr);
  1128. do {
  1129. next = pud_addr_end(addr, end);
  1130. if (pud_none_or_clear_bad(pud))
  1131. continue;
  1132. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1133. } while (pud++, addr = next, addr != end);
  1134. return addr;
  1135. }
  1136. static void unmap_page_range(struct mmu_gather *tlb,
  1137. struct vm_area_struct *vma,
  1138. unsigned long addr, unsigned long end,
  1139. struct zap_details *details)
  1140. {
  1141. pgd_t *pgd;
  1142. unsigned long next;
  1143. if (details && !details->check_mapping && !details->nonlinear_vma)
  1144. details = NULL;
  1145. BUG_ON(addr >= end);
  1146. mem_cgroup_uncharge_start();
  1147. tlb_start_vma(tlb, vma);
  1148. pgd = pgd_offset(vma->vm_mm, addr);
  1149. do {
  1150. next = pgd_addr_end(addr, end);
  1151. if (pgd_none_or_clear_bad(pgd))
  1152. continue;
  1153. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1154. } while (pgd++, addr = next, addr != end);
  1155. tlb_end_vma(tlb, vma);
  1156. mem_cgroup_uncharge_end();
  1157. }
  1158. static void unmap_single_vma(struct mmu_gather *tlb,
  1159. struct vm_area_struct *vma, unsigned long start_addr,
  1160. unsigned long end_addr,
  1161. struct zap_details *details)
  1162. {
  1163. unsigned long start = max(vma->vm_start, start_addr);
  1164. unsigned long end;
  1165. if (start >= vma->vm_end)
  1166. return;
  1167. end = min(vma->vm_end, end_addr);
  1168. if (end <= vma->vm_start)
  1169. return;
  1170. if (vma->vm_file)
  1171. uprobe_munmap(vma, start, end);
  1172. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1173. untrack_pfn(vma, 0, 0);
  1174. if (start != end) {
  1175. if (unlikely(is_vm_hugetlb_page(vma))) {
  1176. /*
  1177. * It is undesirable to test vma->vm_file as it
  1178. * should be non-null for valid hugetlb area.
  1179. * However, vm_file will be NULL in the error
  1180. * cleanup path of do_mmap_pgoff. When
  1181. * hugetlbfs ->mmap method fails,
  1182. * do_mmap_pgoff() nullifies vma->vm_file
  1183. * before calling this function to clean up.
  1184. * Since no pte has actually been setup, it is
  1185. * safe to do nothing in this case.
  1186. */
  1187. if (vma->vm_file) {
  1188. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1189. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1190. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1191. }
  1192. } else
  1193. unmap_page_range(tlb, vma, start, end, details);
  1194. }
  1195. }
  1196. /**
  1197. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1198. * @tlb: address of the caller's struct mmu_gather
  1199. * @vma: the starting vma
  1200. * @start_addr: virtual address at which to start unmapping
  1201. * @end_addr: virtual address at which to end unmapping
  1202. *
  1203. * Unmap all pages in the vma list.
  1204. *
  1205. * Only addresses between `start' and `end' will be unmapped.
  1206. *
  1207. * The VMA list must be sorted in ascending virtual address order.
  1208. *
  1209. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1210. * range after unmap_vmas() returns. So the only responsibility here is to
  1211. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1212. * drops the lock and schedules.
  1213. */
  1214. void unmap_vmas(struct mmu_gather *tlb,
  1215. struct vm_area_struct *vma, unsigned long start_addr,
  1216. unsigned long end_addr)
  1217. {
  1218. struct mm_struct *mm = vma->vm_mm;
  1219. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1220. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1221. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1222. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1223. }
  1224. /**
  1225. * zap_page_range - remove user pages in a given range
  1226. * @vma: vm_area_struct holding the applicable pages
  1227. * @start: starting address of pages to zap
  1228. * @size: number of bytes to zap
  1229. * @details: details of nonlinear truncation or shared cache invalidation
  1230. *
  1231. * Caller must protect the VMA list
  1232. */
  1233. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1234. unsigned long size, struct zap_details *details)
  1235. {
  1236. struct mm_struct *mm = vma->vm_mm;
  1237. struct mmu_gather tlb;
  1238. unsigned long end = start + size;
  1239. lru_add_drain();
  1240. tlb_gather_mmu(&tlb, mm, 0);
  1241. update_hiwater_rss(mm);
  1242. mmu_notifier_invalidate_range_start(mm, start, end);
  1243. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1244. unmap_single_vma(&tlb, vma, start, end, details);
  1245. mmu_notifier_invalidate_range_end(mm, start, end);
  1246. tlb_finish_mmu(&tlb, start, end);
  1247. }
  1248. /**
  1249. * zap_page_range_single - remove user pages in a given range
  1250. * @vma: vm_area_struct holding the applicable pages
  1251. * @address: starting address of pages to zap
  1252. * @size: number of bytes to zap
  1253. * @details: details of nonlinear truncation or shared cache invalidation
  1254. *
  1255. * The range must fit into one VMA.
  1256. */
  1257. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1258. unsigned long size, struct zap_details *details)
  1259. {
  1260. struct mm_struct *mm = vma->vm_mm;
  1261. struct mmu_gather tlb;
  1262. unsigned long end = address + size;
  1263. lru_add_drain();
  1264. tlb_gather_mmu(&tlb, mm, 0);
  1265. update_hiwater_rss(mm);
  1266. mmu_notifier_invalidate_range_start(mm, address, end);
  1267. unmap_single_vma(&tlb, vma, address, end, details);
  1268. mmu_notifier_invalidate_range_end(mm, address, end);
  1269. tlb_finish_mmu(&tlb, address, end);
  1270. }
  1271. /**
  1272. * zap_vma_ptes - remove ptes mapping the vma
  1273. * @vma: vm_area_struct holding ptes to be zapped
  1274. * @address: starting address of pages to zap
  1275. * @size: number of bytes to zap
  1276. *
  1277. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1278. *
  1279. * The entire address range must be fully contained within the vma.
  1280. *
  1281. * Returns 0 if successful.
  1282. */
  1283. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1284. unsigned long size)
  1285. {
  1286. if (address < vma->vm_start || address + size > vma->vm_end ||
  1287. !(vma->vm_flags & VM_PFNMAP))
  1288. return -1;
  1289. zap_page_range_single(vma, address, size, NULL);
  1290. return 0;
  1291. }
  1292. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1293. /**
  1294. * follow_page - look up a page descriptor from a user-virtual address
  1295. * @vma: vm_area_struct mapping @address
  1296. * @address: virtual address to look up
  1297. * @flags: flags modifying lookup behaviour
  1298. *
  1299. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1300. *
  1301. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1302. * an error pointer if there is a mapping to something not represented
  1303. * by a page descriptor (see also vm_normal_page()).
  1304. */
  1305. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1306. unsigned int flags)
  1307. {
  1308. pgd_t *pgd;
  1309. pud_t *pud;
  1310. pmd_t *pmd;
  1311. pte_t *ptep, pte;
  1312. spinlock_t *ptl;
  1313. struct page *page;
  1314. struct mm_struct *mm = vma->vm_mm;
  1315. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1316. if (!IS_ERR(page)) {
  1317. BUG_ON(flags & FOLL_GET);
  1318. goto out;
  1319. }
  1320. page = NULL;
  1321. pgd = pgd_offset(mm, address);
  1322. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1323. goto no_page_table;
  1324. pud = pud_offset(pgd, address);
  1325. if (pud_none(*pud))
  1326. goto no_page_table;
  1327. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1328. BUG_ON(flags & FOLL_GET);
  1329. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1330. goto out;
  1331. }
  1332. if (unlikely(pud_bad(*pud)))
  1333. goto no_page_table;
  1334. pmd = pmd_offset(pud, address);
  1335. if (pmd_none(*pmd))
  1336. goto no_page_table;
  1337. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1338. BUG_ON(flags & FOLL_GET);
  1339. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1340. goto out;
  1341. }
  1342. if (pmd_trans_huge(*pmd)) {
  1343. if (flags & FOLL_SPLIT) {
  1344. split_huge_page_pmd(mm, pmd);
  1345. goto split_fallthrough;
  1346. }
  1347. spin_lock(&mm->page_table_lock);
  1348. if (likely(pmd_trans_huge(*pmd))) {
  1349. if (unlikely(pmd_trans_splitting(*pmd))) {
  1350. spin_unlock(&mm->page_table_lock);
  1351. wait_split_huge_page(vma->anon_vma, pmd);
  1352. } else {
  1353. page = follow_trans_huge_pmd(mm, address,
  1354. pmd, flags);
  1355. spin_unlock(&mm->page_table_lock);
  1356. goto out;
  1357. }
  1358. } else
  1359. spin_unlock(&mm->page_table_lock);
  1360. /* fall through */
  1361. }
  1362. split_fallthrough:
  1363. if (unlikely(pmd_bad(*pmd)))
  1364. goto no_page_table;
  1365. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1366. pte = *ptep;
  1367. if (!pte_present(pte))
  1368. goto no_page;
  1369. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1370. goto unlock;
  1371. page = vm_normal_page(vma, address, pte);
  1372. if (unlikely(!page)) {
  1373. if ((flags & FOLL_DUMP) ||
  1374. !is_zero_pfn(pte_pfn(pte)))
  1375. goto bad_page;
  1376. page = pte_page(pte);
  1377. }
  1378. if (flags & FOLL_GET)
  1379. get_page_foll(page);
  1380. if (flags & FOLL_TOUCH) {
  1381. if ((flags & FOLL_WRITE) &&
  1382. !pte_dirty(pte) && !PageDirty(page))
  1383. set_page_dirty(page);
  1384. /*
  1385. * pte_mkyoung() would be more correct here, but atomic care
  1386. * is needed to avoid losing the dirty bit: it is easier to use
  1387. * mark_page_accessed().
  1388. */
  1389. mark_page_accessed(page);
  1390. }
  1391. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1392. /*
  1393. * The preliminary mapping check is mainly to avoid the
  1394. * pointless overhead of lock_page on the ZERO_PAGE
  1395. * which might bounce very badly if there is contention.
  1396. *
  1397. * If the page is already locked, we don't need to
  1398. * handle it now - vmscan will handle it later if and
  1399. * when it attempts to reclaim the page.
  1400. */
  1401. if (page->mapping && trylock_page(page)) {
  1402. lru_add_drain(); /* push cached pages to LRU */
  1403. /*
  1404. * Because we lock page here and migration is
  1405. * blocked by the pte's page reference, we need
  1406. * only check for file-cache page truncation.
  1407. */
  1408. if (page->mapping)
  1409. mlock_vma_page(page);
  1410. unlock_page(page);
  1411. }
  1412. }
  1413. unlock:
  1414. pte_unmap_unlock(ptep, ptl);
  1415. out:
  1416. return page;
  1417. bad_page:
  1418. pte_unmap_unlock(ptep, ptl);
  1419. return ERR_PTR(-EFAULT);
  1420. no_page:
  1421. pte_unmap_unlock(ptep, ptl);
  1422. if (!pte_none(pte))
  1423. return page;
  1424. no_page_table:
  1425. /*
  1426. * When core dumping an enormous anonymous area that nobody
  1427. * has touched so far, we don't want to allocate unnecessary pages or
  1428. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1429. * then get_dump_page() will return NULL to leave a hole in the dump.
  1430. * But we can only make this optimization where a hole would surely
  1431. * be zero-filled if handle_mm_fault() actually did handle it.
  1432. */
  1433. if ((flags & FOLL_DUMP) &&
  1434. (!vma->vm_ops || !vma->vm_ops->fault))
  1435. return ERR_PTR(-EFAULT);
  1436. return page;
  1437. }
  1438. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1439. {
  1440. return stack_guard_page_start(vma, addr) ||
  1441. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1442. }
  1443. /**
  1444. * __get_user_pages() - pin user pages in memory
  1445. * @tsk: task_struct of target task
  1446. * @mm: mm_struct of target mm
  1447. * @start: starting user address
  1448. * @nr_pages: number of pages from start to pin
  1449. * @gup_flags: flags modifying pin behaviour
  1450. * @pages: array that receives pointers to the pages pinned.
  1451. * Should be at least nr_pages long. Or NULL, if caller
  1452. * only intends to ensure the pages are faulted in.
  1453. * @vmas: array of pointers to vmas corresponding to each page.
  1454. * Or NULL if the caller does not require them.
  1455. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1456. *
  1457. * Returns number of pages pinned. This may be fewer than the number
  1458. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1459. * were pinned, returns -errno. Each page returned must be released
  1460. * with a put_page() call when it is finished with. vmas will only
  1461. * remain valid while mmap_sem is held.
  1462. *
  1463. * Must be called with mmap_sem held for read or write.
  1464. *
  1465. * __get_user_pages walks a process's page tables and takes a reference to
  1466. * each struct page that each user address corresponds to at a given
  1467. * instant. That is, it takes the page that would be accessed if a user
  1468. * thread accesses the given user virtual address at that instant.
  1469. *
  1470. * This does not guarantee that the page exists in the user mappings when
  1471. * __get_user_pages returns, and there may even be a completely different
  1472. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1473. * and subsequently re faulted). However it does guarantee that the page
  1474. * won't be freed completely. And mostly callers simply care that the page
  1475. * contains data that was valid *at some point in time*. Typically, an IO
  1476. * or similar operation cannot guarantee anything stronger anyway because
  1477. * locks can't be held over the syscall boundary.
  1478. *
  1479. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1480. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1481. * appropriate) must be called after the page is finished with, and
  1482. * before put_page is called.
  1483. *
  1484. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1485. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1486. * *@nonblocking will be set to 0.
  1487. *
  1488. * In most cases, get_user_pages or get_user_pages_fast should be used
  1489. * instead of __get_user_pages. __get_user_pages should be used only if
  1490. * you need some special @gup_flags.
  1491. */
  1492. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1493. unsigned long start, int nr_pages, unsigned int gup_flags,
  1494. struct page **pages, struct vm_area_struct **vmas,
  1495. int *nonblocking)
  1496. {
  1497. int i;
  1498. unsigned long vm_flags;
  1499. if (nr_pages <= 0)
  1500. return 0;
  1501. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1502. /*
  1503. * Require read or write permissions.
  1504. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1505. */
  1506. vm_flags = (gup_flags & FOLL_WRITE) ?
  1507. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1508. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1509. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1510. i = 0;
  1511. do {
  1512. struct vm_area_struct *vma;
  1513. vma = find_extend_vma(mm, start);
  1514. if (!vma && in_gate_area(mm, start)) {
  1515. unsigned long pg = start & PAGE_MASK;
  1516. pgd_t *pgd;
  1517. pud_t *pud;
  1518. pmd_t *pmd;
  1519. pte_t *pte;
  1520. /* user gate pages are read-only */
  1521. if (gup_flags & FOLL_WRITE)
  1522. return i ? : -EFAULT;
  1523. if (pg > TASK_SIZE)
  1524. pgd = pgd_offset_k(pg);
  1525. else
  1526. pgd = pgd_offset_gate(mm, pg);
  1527. BUG_ON(pgd_none(*pgd));
  1528. pud = pud_offset(pgd, pg);
  1529. BUG_ON(pud_none(*pud));
  1530. pmd = pmd_offset(pud, pg);
  1531. if (pmd_none(*pmd))
  1532. return i ? : -EFAULT;
  1533. VM_BUG_ON(pmd_trans_huge(*pmd));
  1534. pte = pte_offset_map(pmd, pg);
  1535. if (pte_none(*pte)) {
  1536. pte_unmap(pte);
  1537. return i ? : -EFAULT;
  1538. }
  1539. vma = get_gate_vma(mm);
  1540. if (pages) {
  1541. struct page *page;
  1542. page = vm_normal_page(vma, start, *pte);
  1543. if (!page) {
  1544. if (!(gup_flags & FOLL_DUMP) &&
  1545. is_zero_pfn(pte_pfn(*pte)))
  1546. page = pte_page(*pte);
  1547. else {
  1548. pte_unmap(pte);
  1549. return i ? : -EFAULT;
  1550. }
  1551. }
  1552. pages[i] = page;
  1553. get_page(page);
  1554. }
  1555. pte_unmap(pte);
  1556. goto next_page;
  1557. }
  1558. if (!vma ||
  1559. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1560. !(vm_flags & vma->vm_flags))
  1561. return i ? : -EFAULT;
  1562. if (is_vm_hugetlb_page(vma)) {
  1563. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1564. &start, &nr_pages, i, gup_flags);
  1565. continue;
  1566. }
  1567. do {
  1568. struct page *page;
  1569. unsigned int foll_flags = gup_flags;
  1570. /*
  1571. * If we have a pending SIGKILL, don't keep faulting
  1572. * pages and potentially allocating memory.
  1573. */
  1574. if (unlikely(fatal_signal_pending(current)))
  1575. return i ? i : -ERESTARTSYS;
  1576. cond_resched();
  1577. while (!(page = follow_page(vma, start, foll_flags))) {
  1578. int ret;
  1579. unsigned int fault_flags = 0;
  1580. /* For mlock, just skip the stack guard page. */
  1581. if (foll_flags & FOLL_MLOCK) {
  1582. if (stack_guard_page(vma, start))
  1583. goto next_page;
  1584. }
  1585. if (foll_flags & FOLL_WRITE)
  1586. fault_flags |= FAULT_FLAG_WRITE;
  1587. if (nonblocking)
  1588. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1589. if (foll_flags & FOLL_NOWAIT)
  1590. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1591. ret = handle_mm_fault(mm, vma, start,
  1592. fault_flags);
  1593. if (ret & VM_FAULT_ERROR) {
  1594. if (ret & VM_FAULT_OOM)
  1595. return i ? i : -ENOMEM;
  1596. if (ret & (VM_FAULT_HWPOISON |
  1597. VM_FAULT_HWPOISON_LARGE)) {
  1598. if (i)
  1599. return i;
  1600. else if (gup_flags & FOLL_HWPOISON)
  1601. return -EHWPOISON;
  1602. else
  1603. return -EFAULT;
  1604. }
  1605. if (ret & VM_FAULT_SIGBUS)
  1606. return i ? i : -EFAULT;
  1607. BUG();
  1608. }
  1609. if (tsk) {
  1610. if (ret & VM_FAULT_MAJOR)
  1611. tsk->maj_flt++;
  1612. else
  1613. tsk->min_flt++;
  1614. }
  1615. if (ret & VM_FAULT_RETRY) {
  1616. if (nonblocking)
  1617. *nonblocking = 0;
  1618. return i;
  1619. }
  1620. /*
  1621. * The VM_FAULT_WRITE bit tells us that
  1622. * do_wp_page has broken COW when necessary,
  1623. * even if maybe_mkwrite decided not to set
  1624. * pte_write. We can thus safely do subsequent
  1625. * page lookups as if they were reads. But only
  1626. * do so when looping for pte_write is futile:
  1627. * in some cases userspace may also be wanting
  1628. * to write to the gotten user page, which a
  1629. * read fault here might prevent (a readonly
  1630. * page might get reCOWed by userspace write).
  1631. */
  1632. if ((ret & VM_FAULT_WRITE) &&
  1633. !(vma->vm_flags & VM_WRITE))
  1634. foll_flags &= ~FOLL_WRITE;
  1635. cond_resched();
  1636. }
  1637. if (IS_ERR(page))
  1638. return i ? i : PTR_ERR(page);
  1639. if (pages) {
  1640. pages[i] = page;
  1641. flush_anon_page(vma, page, start);
  1642. flush_dcache_page(page);
  1643. }
  1644. next_page:
  1645. if (vmas)
  1646. vmas[i] = vma;
  1647. i++;
  1648. start += PAGE_SIZE;
  1649. nr_pages--;
  1650. } while (nr_pages && start < vma->vm_end);
  1651. } while (nr_pages);
  1652. return i;
  1653. }
  1654. EXPORT_SYMBOL(__get_user_pages);
  1655. /*
  1656. * fixup_user_fault() - manually resolve a user page fault
  1657. * @tsk: the task_struct to use for page fault accounting, or
  1658. * NULL if faults are not to be recorded.
  1659. * @mm: mm_struct of target mm
  1660. * @address: user address
  1661. * @fault_flags:flags to pass down to handle_mm_fault()
  1662. *
  1663. * This is meant to be called in the specific scenario where for locking reasons
  1664. * we try to access user memory in atomic context (within a pagefault_disable()
  1665. * section), this returns -EFAULT, and we want to resolve the user fault before
  1666. * trying again.
  1667. *
  1668. * Typically this is meant to be used by the futex code.
  1669. *
  1670. * The main difference with get_user_pages() is that this function will
  1671. * unconditionally call handle_mm_fault() which will in turn perform all the
  1672. * necessary SW fixup of the dirty and young bits in the PTE, while
  1673. * handle_mm_fault() only guarantees to update these in the struct page.
  1674. *
  1675. * This is important for some architectures where those bits also gate the
  1676. * access permission to the page because they are maintained in software. On
  1677. * such architectures, gup() will not be enough to make a subsequent access
  1678. * succeed.
  1679. *
  1680. * This should be called with the mm_sem held for read.
  1681. */
  1682. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1683. unsigned long address, unsigned int fault_flags)
  1684. {
  1685. struct vm_area_struct *vma;
  1686. int ret;
  1687. vma = find_extend_vma(mm, address);
  1688. if (!vma || address < vma->vm_start)
  1689. return -EFAULT;
  1690. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1691. if (ret & VM_FAULT_ERROR) {
  1692. if (ret & VM_FAULT_OOM)
  1693. return -ENOMEM;
  1694. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1695. return -EHWPOISON;
  1696. if (ret & VM_FAULT_SIGBUS)
  1697. return -EFAULT;
  1698. BUG();
  1699. }
  1700. if (tsk) {
  1701. if (ret & VM_FAULT_MAJOR)
  1702. tsk->maj_flt++;
  1703. else
  1704. tsk->min_flt++;
  1705. }
  1706. return 0;
  1707. }
  1708. /*
  1709. * get_user_pages() - pin user pages in memory
  1710. * @tsk: the task_struct to use for page fault accounting, or
  1711. * NULL if faults are not to be recorded.
  1712. * @mm: mm_struct of target mm
  1713. * @start: starting user address
  1714. * @nr_pages: number of pages from start to pin
  1715. * @write: whether pages will be written to by the caller
  1716. * @force: whether to force write access even if user mapping is
  1717. * readonly. This will result in the page being COWed even
  1718. * in MAP_SHARED mappings. You do not want this.
  1719. * @pages: array that receives pointers to the pages pinned.
  1720. * Should be at least nr_pages long. Or NULL, if caller
  1721. * only intends to ensure the pages are faulted in.
  1722. * @vmas: array of pointers to vmas corresponding to each page.
  1723. * Or NULL if the caller does not require them.
  1724. *
  1725. * Returns number of pages pinned. This may be fewer than the number
  1726. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1727. * were pinned, returns -errno. Each page returned must be released
  1728. * with a put_page() call when it is finished with. vmas will only
  1729. * remain valid while mmap_sem is held.
  1730. *
  1731. * Must be called with mmap_sem held for read or write.
  1732. *
  1733. * get_user_pages walks a process's page tables and takes a reference to
  1734. * each struct page that each user address corresponds to at a given
  1735. * instant. That is, it takes the page that would be accessed if a user
  1736. * thread accesses the given user virtual address at that instant.
  1737. *
  1738. * This does not guarantee that the page exists in the user mappings when
  1739. * get_user_pages returns, and there may even be a completely different
  1740. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1741. * and subsequently re faulted). However it does guarantee that the page
  1742. * won't be freed completely. And mostly callers simply care that the page
  1743. * contains data that was valid *at some point in time*. Typically, an IO
  1744. * or similar operation cannot guarantee anything stronger anyway because
  1745. * locks can't be held over the syscall boundary.
  1746. *
  1747. * If write=0, the page must not be written to. If the page is written to,
  1748. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1749. * after the page is finished with, and before put_page is called.
  1750. *
  1751. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1752. * handle on the memory by some means other than accesses via the user virtual
  1753. * addresses. The pages may be submitted for DMA to devices or accessed via
  1754. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1755. * use the correct cache flushing APIs.
  1756. *
  1757. * See also get_user_pages_fast, for performance critical applications.
  1758. */
  1759. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1760. unsigned long start, int nr_pages, int write, int force,
  1761. struct page **pages, struct vm_area_struct **vmas)
  1762. {
  1763. int flags = FOLL_TOUCH;
  1764. if (pages)
  1765. flags |= FOLL_GET;
  1766. if (write)
  1767. flags |= FOLL_WRITE;
  1768. if (force)
  1769. flags |= FOLL_FORCE;
  1770. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1771. NULL);
  1772. }
  1773. EXPORT_SYMBOL(get_user_pages);
  1774. /**
  1775. * get_dump_page() - pin user page in memory while writing it to core dump
  1776. * @addr: user address
  1777. *
  1778. * Returns struct page pointer of user page pinned for dump,
  1779. * to be freed afterwards by page_cache_release() or put_page().
  1780. *
  1781. * Returns NULL on any kind of failure - a hole must then be inserted into
  1782. * the corefile, to preserve alignment with its headers; and also returns
  1783. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1784. * allowing a hole to be left in the corefile to save diskspace.
  1785. *
  1786. * Called without mmap_sem, but after all other threads have been killed.
  1787. */
  1788. #ifdef CONFIG_ELF_CORE
  1789. struct page *get_dump_page(unsigned long addr)
  1790. {
  1791. struct vm_area_struct *vma;
  1792. struct page *page;
  1793. if (__get_user_pages(current, current->mm, addr, 1,
  1794. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1795. NULL) < 1)
  1796. return NULL;
  1797. flush_cache_page(vma, addr, page_to_pfn(page));
  1798. return page;
  1799. }
  1800. #endif /* CONFIG_ELF_CORE */
  1801. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1802. spinlock_t **ptl)
  1803. {
  1804. pgd_t * pgd = pgd_offset(mm, addr);
  1805. pud_t * pud = pud_alloc(mm, pgd, addr);
  1806. if (pud) {
  1807. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1808. if (pmd) {
  1809. VM_BUG_ON(pmd_trans_huge(*pmd));
  1810. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1811. }
  1812. }
  1813. return NULL;
  1814. }
  1815. /*
  1816. * This is the old fallback for page remapping.
  1817. *
  1818. * For historical reasons, it only allows reserved pages. Only
  1819. * old drivers should use this, and they needed to mark their
  1820. * pages reserved for the old functions anyway.
  1821. */
  1822. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1823. struct page *page, pgprot_t prot)
  1824. {
  1825. struct mm_struct *mm = vma->vm_mm;
  1826. int retval;
  1827. pte_t *pte;
  1828. spinlock_t *ptl;
  1829. retval = -EINVAL;
  1830. if (PageAnon(page))
  1831. goto out;
  1832. retval = -ENOMEM;
  1833. flush_dcache_page(page);
  1834. pte = get_locked_pte(mm, addr, &ptl);
  1835. if (!pte)
  1836. goto out;
  1837. retval = -EBUSY;
  1838. if (!pte_none(*pte))
  1839. goto out_unlock;
  1840. /* Ok, finally just insert the thing.. */
  1841. get_page(page);
  1842. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1843. page_add_file_rmap(page);
  1844. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1845. retval = 0;
  1846. pte_unmap_unlock(pte, ptl);
  1847. return retval;
  1848. out_unlock:
  1849. pte_unmap_unlock(pte, ptl);
  1850. out:
  1851. return retval;
  1852. }
  1853. /**
  1854. * vm_insert_page - insert single page into user vma
  1855. * @vma: user vma to map to
  1856. * @addr: target user address of this page
  1857. * @page: source kernel page
  1858. *
  1859. * This allows drivers to insert individual pages they've allocated
  1860. * into a user vma.
  1861. *
  1862. * The page has to be a nice clean _individual_ kernel allocation.
  1863. * If you allocate a compound page, you need to have marked it as
  1864. * such (__GFP_COMP), or manually just split the page up yourself
  1865. * (see split_page()).
  1866. *
  1867. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1868. * took an arbitrary page protection parameter. This doesn't allow
  1869. * that. Your vma protection will have to be set up correctly, which
  1870. * means that if you want a shared writable mapping, you'd better
  1871. * ask for a shared writable mapping!
  1872. *
  1873. * The page does not need to be reserved.
  1874. *
  1875. * Usually this function is called from f_op->mmap() handler
  1876. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1877. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1878. * function from other places, for example from page-fault handler.
  1879. */
  1880. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1881. struct page *page)
  1882. {
  1883. if (addr < vma->vm_start || addr >= vma->vm_end)
  1884. return -EFAULT;
  1885. if (!page_count(page))
  1886. return -EINVAL;
  1887. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1888. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1889. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1890. vma->vm_flags |= VM_MIXEDMAP;
  1891. }
  1892. return insert_page(vma, addr, page, vma->vm_page_prot);
  1893. }
  1894. EXPORT_SYMBOL(vm_insert_page);
  1895. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1896. unsigned long pfn, pgprot_t prot)
  1897. {
  1898. struct mm_struct *mm = vma->vm_mm;
  1899. int retval;
  1900. pte_t *pte, entry;
  1901. spinlock_t *ptl;
  1902. retval = -ENOMEM;
  1903. pte = get_locked_pte(mm, addr, &ptl);
  1904. if (!pte)
  1905. goto out;
  1906. retval = -EBUSY;
  1907. if (!pte_none(*pte))
  1908. goto out_unlock;
  1909. /* Ok, finally just insert the thing.. */
  1910. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1911. set_pte_at(mm, addr, pte, entry);
  1912. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1913. retval = 0;
  1914. out_unlock:
  1915. pte_unmap_unlock(pte, ptl);
  1916. out:
  1917. return retval;
  1918. }
  1919. /**
  1920. * vm_insert_pfn - insert single pfn into user vma
  1921. * @vma: user vma to map to
  1922. * @addr: target user address of this page
  1923. * @pfn: source kernel pfn
  1924. *
  1925. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1926. * they've allocated into a user vma. Same comments apply.
  1927. *
  1928. * This function should only be called from a vm_ops->fault handler, and
  1929. * in that case the handler should return NULL.
  1930. *
  1931. * vma cannot be a COW mapping.
  1932. *
  1933. * As this is called only for pages that do not currently exist, we
  1934. * do not need to flush old virtual caches or the TLB.
  1935. */
  1936. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1937. unsigned long pfn)
  1938. {
  1939. int ret;
  1940. pgprot_t pgprot = vma->vm_page_prot;
  1941. /*
  1942. * Technically, architectures with pte_special can avoid all these
  1943. * restrictions (same for remap_pfn_range). However we would like
  1944. * consistency in testing and feature parity among all, so we should
  1945. * try to keep these invariants in place for everybody.
  1946. */
  1947. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1948. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1949. (VM_PFNMAP|VM_MIXEDMAP));
  1950. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1951. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1952. if (addr < vma->vm_start || addr >= vma->vm_end)
  1953. return -EFAULT;
  1954. if (track_pfn_insert(vma, &pgprot, pfn))
  1955. return -EINVAL;
  1956. ret = insert_pfn(vma, addr, pfn, pgprot);
  1957. return ret;
  1958. }
  1959. EXPORT_SYMBOL(vm_insert_pfn);
  1960. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1961. unsigned long pfn)
  1962. {
  1963. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1964. if (addr < vma->vm_start || addr >= vma->vm_end)
  1965. return -EFAULT;
  1966. /*
  1967. * If we don't have pte special, then we have to use the pfn_valid()
  1968. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1969. * refcount the page if pfn_valid is true (hence insert_page rather
  1970. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1971. * without pte special, it would there be refcounted as a normal page.
  1972. */
  1973. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1974. struct page *page;
  1975. page = pfn_to_page(pfn);
  1976. return insert_page(vma, addr, page, vma->vm_page_prot);
  1977. }
  1978. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1979. }
  1980. EXPORT_SYMBOL(vm_insert_mixed);
  1981. /*
  1982. * maps a range of physical memory into the requested pages. the old
  1983. * mappings are removed. any references to nonexistent pages results
  1984. * in null mappings (currently treated as "copy-on-access")
  1985. */
  1986. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1987. unsigned long addr, unsigned long end,
  1988. unsigned long pfn, pgprot_t prot)
  1989. {
  1990. pte_t *pte;
  1991. spinlock_t *ptl;
  1992. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1993. if (!pte)
  1994. return -ENOMEM;
  1995. arch_enter_lazy_mmu_mode();
  1996. do {
  1997. BUG_ON(!pte_none(*pte));
  1998. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1999. pfn++;
  2000. } while (pte++, addr += PAGE_SIZE, addr != end);
  2001. arch_leave_lazy_mmu_mode();
  2002. pte_unmap_unlock(pte - 1, ptl);
  2003. return 0;
  2004. }
  2005. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2006. unsigned long addr, unsigned long end,
  2007. unsigned long pfn, pgprot_t prot)
  2008. {
  2009. pmd_t *pmd;
  2010. unsigned long next;
  2011. pfn -= addr >> PAGE_SHIFT;
  2012. pmd = pmd_alloc(mm, pud, addr);
  2013. if (!pmd)
  2014. return -ENOMEM;
  2015. VM_BUG_ON(pmd_trans_huge(*pmd));
  2016. do {
  2017. next = pmd_addr_end(addr, end);
  2018. if (remap_pte_range(mm, pmd, addr, next,
  2019. pfn + (addr >> PAGE_SHIFT), prot))
  2020. return -ENOMEM;
  2021. } while (pmd++, addr = next, addr != end);
  2022. return 0;
  2023. }
  2024. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2025. unsigned long addr, unsigned long end,
  2026. unsigned long pfn, pgprot_t prot)
  2027. {
  2028. pud_t *pud;
  2029. unsigned long next;
  2030. pfn -= addr >> PAGE_SHIFT;
  2031. pud = pud_alloc(mm, pgd, addr);
  2032. if (!pud)
  2033. return -ENOMEM;
  2034. do {
  2035. next = pud_addr_end(addr, end);
  2036. if (remap_pmd_range(mm, pud, addr, next,
  2037. pfn + (addr >> PAGE_SHIFT), prot))
  2038. return -ENOMEM;
  2039. } while (pud++, addr = next, addr != end);
  2040. return 0;
  2041. }
  2042. /**
  2043. * remap_pfn_range - remap kernel memory to userspace
  2044. * @vma: user vma to map to
  2045. * @addr: target user address to start at
  2046. * @pfn: physical address of kernel memory
  2047. * @size: size of map area
  2048. * @prot: page protection flags for this mapping
  2049. *
  2050. * Note: this is only safe if the mm semaphore is held when called.
  2051. */
  2052. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2053. unsigned long pfn, unsigned long size, pgprot_t prot)
  2054. {
  2055. pgd_t *pgd;
  2056. unsigned long next;
  2057. unsigned long end = addr + PAGE_ALIGN(size);
  2058. struct mm_struct *mm = vma->vm_mm;
  2059. int err;
  2060. /*
  2061. * Physically remapped pages are special. Tell the
  2062. * rest of the world about it:
  2063. * VM_IO tells people not to look at these pages
  2064. * (accesses can have side effects).
  2065. * VM_PFNMAP tells the core MM that the base pages are just
  2066. * raw PFN mappings, and do not have a "struct page" associated
  2067. * with them.
  2068. * VM_DONTEXPAND
  2069. * Disable vma merging and expanding with mremap().
  2070. * VM_DONTDUMP
  2071. * Omit vma from core dump, even when VM_IO turned off.
  2072. *
  2073. * There's a horrible special case to handle copy-on-write
  2074. * behaviour that some programs depend on. We mark the "original"
  2075. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2076. * See vm_normal_page() for details.
  2077. */
  2078. if (is_cow_mapping(vma->vm_flags)) {
  2079. if (addr != vma->vm_start || end != vma->vm_end)
  2080. return -EINVAL;
  2081. vma->vm_pgoff = pfn;
  2082. }
  2083. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2084. if (err)
  2085. return -EINVAL;
  2086. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2087. BUG_ON(addr >= end);
  2088. pfn -= addr >> PAGE_SHIFT;
  2089. pgd = pgd_offset(mm, addr);
  2090. flush_cache_range(vma, addr, end);
  2091. do {
  2092. next = pgd_addr_end(addr, end);
  2093. err = remap_pud_range(mm, pgd, addr, next,
  2094. pfn + (addr >> PAGE_SHIFT), prot);
  2095. if (err)
  2096. break;
  2097. } while (pgd++, addr = next, addr != end);
  2098. if (err)
  2099. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2100. return err;
  2101. }
  2102. EXPORT_SYMBOL(remap_pfn_range);
  2103. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2104. unsigned long addr, unsigned long end,
  2105. pte_fn_t fn, void *data)
  2106. {
  2107. pte_t *pte;
  2108. int err;
  2109. pgtable_t token;
  2110. spinlock_t *uninitialized_var(ptl);
  2111. pte = (mm == &init_mm) ?
  2112. pte_alloc_kernel(pmd, addr) :
  2113. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2114. if (!pte)
  2115. return -ENOMEM;
  2116. BUG_ON(pmd_huge(*pmd));
  2117. arch_enter_lazy_mmu_mode();
  2118. token = pmd_pgtable(*pmd);
  2119. do {
  2120. err = fn(pte++, token, addr, data);
  2121. if (err)
  2122. break;
  2123. } while (addr += PAGE_SIZE, addr != end);
  2124. arch_leave_lazy_mmu_mode();
  2125. if (mm != &init_mm)
  2126. pte_unmap_unlock(pte-1, ptl);
  2127. return err;
  2128. }
  2129. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2130. unsigned long addr, unsigned long end,
  2131. pte_fn_t fn, void *data)
  2132. {
  2133. pmd_t *pmd;
  2134. unsigned long next;
  2135. int err;
  2136. BUG_ON(pud_huge(*pud));
  2137. pmd = pmd_alloc(mm, pud, addr);
  2138. if (!pmd)
  2139. return -ENOMEM;
  2140. do {
  2141. next = pmd_addr_end(addr, end);
  2142. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2143. if (err)
  2144. break;
  2145. } while (pmd++, addr = next, addr != end);
  2146. return err;
  2147. }
  2148. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2149. unsigned long addr, unsigned long end,
  2150. pte_fn_t fn, void *data)
  2151. {
  2152. pud_t *pud;
  2153. unsigned long next;
  2154. int err;
  2155. pud = pud_alloc(mm, pgd, addr);
  2156. if (!pud)
  2157. return -ENOMEM;
  2158. do {
  2159. next = pud_addr_end(addr, end);
  2160. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2161. if (err)
  2162. break;
  2163. } while (pud++, addr = next, addr != end);
  2164. return err;
  2165. }
  2166. /*
  2167. * Scan a region of virtual memory, filling in page tables as necessary
  2168. * and calling a provided function on each leaf page table.
  2169. */
  2170. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2171. unsigned long size, pte_fn_t fn, void *data)
  2172. {
  2173. pgd_t *pgd;
  2174. unsigned long next;
  2175. unsigned long end = addr + size;
  2176. int err;
  2177. BUG_ON(addr >= end);
  2178. pgd = pgd_offset(mm, addr);
  2179. do {
  2180. next = pgd_addr_end(addr, end);
  2181. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2182. if (err)
  2183. break;
  2184. } while (pgd++, addr = next, addr != end);
  2185. return err;
  2186. }
  2187. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2188. /*
  2189. * handle_pte_fault chooses page fault handler according to an entry
  2190. * which was read non-atomically. Before making any commitment, on
  2191. * those architectures or configurations (e.g. i386 with PAE) which
  2192. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2193. * must check under lock before unmapping the pte and proceeding
  2194. * (but do_wp_page is only called after already making such a check;
  2195. * and do_anonymous_page can safely check later on).
  2196. */
  2197. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2198. pte_t *page_table, pte_t orig_pte)
  2199. {
  2200. int same = 1;
  2201. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2202. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2203. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2204. spin_lock(ptl);
  2205. same = pte_same(*page_table, orig_pte);
  2206. spin_unlock(ptl);
  2207. }
  2208. #endif
  2209. pte_unmap(page_table);
  2210. return same;
  2211. }
  2212. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2213. {
  2214. /*
  2215. * If the source page was a PFN mapping, we don't have
  2216. * a "struct page" for it. We do a best-effort copy by
  2217. * just copying from the original user address. If that
  2218. * fails, we just zero-fill it. Live with it.
  2219. */
  2220. if (unlikely(!src)) {
  2221. void *kaddr = kmap_atomic(dst);
  2222. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2223. /*
  2224. * This really shouldn't fail, because the page is there
  2225. * in the page tables. But it might just be unreadable,
  2226. * in which case we just give up and fill the result with
  2227. * zeroes.
  2228. */
  2229. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2230. clear_page(kaddr);
  2231. kunmap_atomic(kaddr);
  2232. flush_dcache_page(dst);
  2233. } else
  2234. copy_user_highpage(dst, src, va, vma);
  2235. }
  2236. /*
  2237. * This routine handles present pages, when users try to write
  2238. * to a shared page. It is done by copying the page to a new address
  2239. * and decrementing the shared-page counter for the old page.
  2240. *
  2241. * Note that this routine assumes that the protection checks have been
  2242. * done by the caller (the low-level page fault routine in most cases).
  2243. * Thus we can safely just mark it writable once we've done any necessary
  2244. * COW.
  2245. *
  2246. * We also mark the page dirty at this point even though the page will
  2247. * change only once the write actually happens. This avoids a few races,
  2248. * and potentially makes it more efficient.
  2249. *
  2250. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2251. * but allow concurrent faults), with pte both mapped and locked.
  2252. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2253. */
  2254. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2255. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2256. spinlock_t *ptl, pte_t orig_pte)
  2257. __releases(ptl)
  2258. {
  2259. struct page *old_page, *new_page;
  2260. pte_t entry;
  2261. int ret = 0;
  2262. int page_mkwrite = 0;
  2263. struct page *dirty_page = NULL;
  2264. old_page = vm_normal_page(vma, address, orig_pte);
  2265. if (!old_page) {
  2266. /*
  2267. * VM_MIXEDMAP !pfn_valid() case
  2268. *
  2269. * We should not cow pages in a shared writeable mapping.
  2270. * Just mark the pages writable as we can't do any dirty
  2271. * accounting on raw pfn maps.
  2272. */
  2273. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2274. (VM_WRITE|VM_SHARED))
  2275. goto reuse;
  2276. goto gotten;
  2277. }
  2278. /*
  2279. * Take out anonymous pages first, anonymous shared vmas are
  2280. * not dirty accountable.
  2281. */
  2282. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2283. if (!trylock_page(old_page)) {
  2284. page_cache_get(old_page);
  2285. pte_unmap_unlock(page_table, ptl);
  2286. lock_page(old_page);
  2287. page_table = pte_offset_map_lock(mm, pmd, address,
  2288. &ptl);
  2289. if (!pte_same(*page_table, orig_pte)) {
  2290. unlock_page(old_page);
  2291. goto unlock;
  2292. }
  2293. page_cache_release(old_page);
  2294. }
  2295. if (reuse_swap_page(old_page)) {
  2296. /*
  2297. * The page is all ours. Move it to our anon_vma so
  2298. * the rmap code will not search our parent or siblings.
  2299. * Protected against the rmap code by the page lock.
  2300. */
  2301. page_move_anon_rmap(old_page, vma, address);
  2302. unlock_page(old_page);
  2303. goto reuse;
  2304. }
  2305. unlock_page(old_page);
  2306. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2307. (VM_WRITE|VM_SHARED))) {
  2308. /*
  2309. * Only catch write-faults on shared writable pages,
  2310. * read-only shared pages can get COWed by
  2311. * get_user_pages(.write=1, .force=1).
  2312. */
  2313. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2314. struct vm_fault vmf;
  2315. int tmp;
  2316. vmf.virtual_address = (void __user *)(address &
  2317. PAGE_MASK);
  2318. vmf.pgoff = old_page->index;
  2319. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2320. vmf.page = old_page;
  2321. /*
  2322. * Notify the address space that the page is about to
  2323. * become writable so that it can prohibit this or wait
  2324. * for the page to get into an appropriate state.
  2325. *
  2326. * We do this without the lock held, so that it can
  2327. * sleep if it needs to.
  2328. */
  2329. page_cache_get(old_page);
  2330. pte_unmap_unlock(page_table, ptl);
  2331. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2332. if (unlikely(tmp &
  2333. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2334. ret = tmp;
  2335. goto unwritable_page;
  2336. }
  2337. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2338. lock_page(old_page);
  2339. if (!old_page->mapping) {
  2340. ret = 0; /* retry the fault */
  2341. unlock_page(old_page);
  2342. goto unwritable_page;
  2343. }
  2344. } else
  2345. VM_BUG_ON(!PageLocked(old_page));
  2346. /*
  2347. * Since we dropped the lock we need to revalidate
  2348. * the PTE as someone else may have changed it. If
  2349. * they did, we just return, as we can count on the
  2350. * MMU to tell us if they didn't also make it writable.
  2351. */
  2352. page_table = pte_offset_map_lock(mm, pmd, address,
  2353. &ptl);
  2354. if (!pte_same(*page_table, orig_pte)) {
  2355. unlock_page(old_page);
  2356. goto unlock;
  2357. }
  2358. page_mkwrite = 1;
  2359. }
  2360. dirty_page = old_page;
  2361. get_page(dirty_page);
  2362. reuse:
  2363. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2364. entry = pte_mkyoung(orig_pte);
  2365. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2366. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2367. update_mmu_cache(vma, address, page_table);
  2368. pte_unmap_unlock(page_table, ptl);
  2369. ret |= VM_FAULT_WRITE;
  2370. if (!dirty_page)
  2371. return ret;
  2372. /*
  2373. * Yes, Virginia, this is actually required to prevent a race
  2374. * with clear_page_dirty_for_io() from clearing the page dirty
  2375. * bit after it clear all dirty ptes, but before a racing
  2376. * do_wp_page installs a dirty pte.
  2377. *
  2378. * __do_fault is protected similarly.
  2379. */
  2380. if (!page_mkwrite) {
  2381. wait_on_page_locked(dirty_page);
  2382. set_page_dirty_balance(dirty_page, page_mkwrite);
  2383. /* file_update_time outside page_lock */
  2384. if (vma->vm_file)
  2385. file_update_time(vma->vm_file);
  2386. }
  2387. put_page(dirty_page);
  2388. if (page_mkwrite) {
  2389. struct address_space *mapping = dirty_page->mapping;
  2390. set_page_dirty(dirty_page);
  2391. unlock_page(dirty_page);
  2392. page_cache_release(dirty_page);
  2393. if (mapping) {
  2394. /*
  2395. * Some device drivers do not set page.mapping
  2396. * but still dirty their pages
  2397. */
  2398. balance_dirty_pages_ratelimited(mapping);
  2399. }
  2400. }
  2401. return ret;
  2402. }
  2403. /*
  2404. * Ok, we need to copy. Oh, well..
  2405. */
  2406. page_cache_get(old_page);
  2407. gotten:
  2408. pte_unmap_unlock(page_table, ptl);
  2409. if (unlikely(anon_vma_prepare(vma)))
  2410. goto oom;
  2411. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2412. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2413. if (!new_page)
  2414. goto oom;
  2415. } else {
  2416. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2417. if (!new_page)
  2418. goto oom;
  2419. cow_user_page(new_page, old_page, address, vma);
  2420. }
  2421. __SetPageUptodate(new_page);
  2422. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2423. goto oom_free_new;
  2424. /*
  2425. * Re-check the pte - we dropped the lock
  2426. */
  2427. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2428. if (likely(pte_same(*page_table, orig_pte))) {
  2429. if (old_page) {
  2430. if (!PageAnon(old_page)) {
  2431. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2432. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2433. }
  2434. } else
  2435. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2436. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2437. entry = mk_pte(new_page, vma->vm_page_prot);
  2438. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2439. /*
  2440. * Clear the pte entry and flush it first, before updating the
  2441. * pte with the new entry. This will avoid a race condition
  2442. * seen in the presence of one thread doing SMC and another
  2443. * thread doing COW.
  2444. */
  2445. ptep_clear_flush(vma, address, page_table);
  2446. page_add_new_anon_rmap(new_page, vma, address);
  2447. /*
  2448. * We call the notify macro here because, when using secondary
  2449. * mmu page tables (such as kvm shadow page tables), we want the
  2450. * new page to be mapped directly into the secondary page table.
  2451. */
  2452. set_pte_at_notify(mm, address, page_table, entry);
  2453. update_mmu_cache(vma, address, page_table);
  2454. if (old_page) {
  2455. /*
  2456. * Only after switching the pte to the new page may
  2457. * we remove the mapcount here. Otherwise another
  2458. * process may come and find the rmap count decremented
  2459. * before the pte is switched to the new page, and
  2460. * "reuse" the old page writing into it while our pte
  2461. * here still points into it and can be read by other
  2462. * threads.
  2463. *
  2464. * The critical issue is to order this
  2465. * page_remove_rmap with the ptp_clear_flush above.
  2466. * Those stores are ordered by (if nothing else,)
  2467. * the barrier present in the atomic_add_negative
  2468. * in page_remove_rmap.
  2469. *
  2470. * Then the TLB flush in ptep_clear_flush ensures that
  2471. * no process can access the old page before the
  2472. * decremented mapcount is visible. And the old page
  2473. * cannot be reused until after the decremented
  2474. * mapcount is visible. So transitively, TLBs to
  2475. * old page will be flushed before it can be reused.
  2476. */
  2477. page_remove_rmap(old_page);
  2478. }
  2479. /* Free the old page.. */
  2480. new_page = old_page;
  2481. ret |= VM_FAULT_WRITE;
  2482. } else
  2483. mem_cgroup_uncharge_page(new_page);
  2484. if (new_page)
  2485. page_cache_release(new_page);
  2486. unlock:
  2487. pte_unmap_unlock(page_table, ptl);
  2488. if (old_page) {
  2489. /*
  2490. * Don't let another task, with possibly unlocked vma,
  2491. * keep the mlocked page.
  2492. */
  2493. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2494. lock_page(old_page); /* LRU manipulation */
  2495. munlock_vma_page(old_page);
  2496. unlock_page(old_page);
  2497. }
  2498. page_cache_release(old_page);
  2499. }
  2500. return ret;
  2501. oom_free_new:
  2502. page_cache_release(new_page);
  2503. oom:
  2504. if (old_page) {
  2505. if (page_mkwrite) {
  2506. unlock_page(old_page);
  2507. page_cache_release(old_page);
  2508. }
  2509. page_cache_release(old_page);
  2510. }
  2511. return VM_FAULT_OOM;
  2512. unwritable_page:
  2513. page_cache_release(old_page);
  2514. return ret;
  2515. }
  2516. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2517. unsigned long start_addr, unsigned long end_addr,
  2518. struct zap_details *details)
  2519. {
  2520. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2521. }
  2522. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2523. struct zap_details *details)
  2524. {
  2525. struct vm_area_struct *vma;
  2526. pgoff_t vba, vea, zba, zea;
  2527. vma_interval_tree_foreach(vma, root,
  2528. details->first_index, details->last_index) {
  2529. vba = vma->vm_pgoff;
  2530. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2531. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2532. zba = details->first_index;
  2533. if (zba < vba)
  2534. zba = vba;
  2535. zea = details->last_index;
  2536. if (zea > vea)
  2537. zea = vea;
  2538. unmap_mapping_range_vma(vma,
  2539. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2540. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2541. details);
  2542. }
  2543. }
  2544. static inline void unmap_mapping_range_list(struct list_head *head,
  2545. struct zap_details *details)
  2546. {
  2547. struct vm_area_struct *vma;
  2548. /*
  2549. * In nonlinear VMAs there is no correspondence between virtual address
  2550. * offset and file offset. So we must perform an exhaustive search
  2551. * across *all* the pages in each nonlinear VMA, not just the pages
  2552. * whose virtual address lies outside the file truncation point.
  2553. */
  2554. list_for_each_entry(vma, head, shared.nonlinear) {
  2555. details->nonlinear_vma = vma;
  2556. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2557. }
  2558. }
  2559. /**
  2560. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2561. * @mapping: the address space containing mmaps to be unmapped.
  2562. * @holebegin: byte in first page to unmap, relative to the start of
  2563. * the underlying file. This will be rounded down to a PAGE_SIZE
  2564. * boundary. Note that this is different from truncate_pagecache(), which
  2565. * must keep the partial page. In contrast, we must get rid of
  2566. * partial pages.
  2567. * @holelen: size of prospective hole in bytes. This will be rounded
  2568. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2569. * end of the file.
  2570. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2571. * but 0 when invalidating pagecache, don't throw away private data.
  2572. */
  2573. void unmap_mapping_range(struct address_space *mapping,
  2574. loff_t const holebegin, loff_t const holelen, int even_cows)
  2575. {
  2576. struct zap_details details;
  2577. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2578. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2579. /* Check for overflow. */
  2580. if (sizeof(holelen) > sizeof(hlen)) {
  2581. long long holeend =
  2582. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2583. if (holeend & ~(long long)ULONG_MAX)
  2584. hlen = ULONG_MAX - hba + 1;
  2585. }
  2586. details.check_mapping = even_cows? NULL: mapping;
  2587. details.nonlinear_vma = NULL;
  2588. details.first_index = hba;
  2589. details.last_index = hba + hlen - 1;
  2590. if (details.last_index < details.first_index)
  2591. details.last_index = ULONG_MAX;
  2592. mutex_lock(&mapping->i_mmap_mutex);
  2593. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2594. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2595. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2596. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2597. mutex_unlock(&mapping->i_mmap_mutex);
  2598. }
  2599. EXPORT_SYMBOL(unmap_mapping_range);
  2600. /*
  2601. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2602. * but allow concurrent faults), and pte mapped but not yet locked.
  2603. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2604. */
  2605. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2606. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2607. unsigned int flags, pte_t orig_pte)
  2608. {
  2609. spinlock_t *ptl;
  2610. struct page *page, *swapcache = NULL;
  2611. swp_entry_t entry;
  2612. pte_t pte;
  2613. int locked;
  2614. struct mem_cgroup *ptr;
  2615. int exclusive = 0;
  2616. int ret = 0;
  2617. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2618. goto out;
  2619. entry = pte_to_swp_entry(orig_pte);
  2620. if (unlikely(non_swap_entry(entry))) {
  2621. if (is_migration_entry(entry)) {
  2622. migration_entry_wait(mm, pmd, address);
  2623. } else if (is_hwpoison_entry(entry)) {
  2624. ret = VM_FAULT_HWPOISON;
  2625. } else {
  2626. print_bad_pte(vma, address, orig_pte, NULL);
  2627. ret = VM_FAULT_SIGBUS;
  2628. }
  2629. goto out;
  2630. }
  2631. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2632. page = lookup_swap_cache(entry);
  2633. if (!page) {
  2634. page = swapin_readahead(entry,
  2635. GFP_HIGHUSER_MOVABLE, vma, address);
  2636. if (!page) {
  2637. /*
  2638. * Back out if somebody else faulted in this pte
  2639. * while we released the pte lock.
  2640. */
  2641. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2642. if (likely(pte_same(*page_table, orig_pte)))
  2643. ret = VM_FAULT_OOM;
  2644. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2645. goto unlock;
  2646. }
  2647. /* Had to read the page from swap area: Major fault */
  2648. ret = VM_FAULT_MAJOR;
  2649. count_vm_event(PGMAJFAULT);
  2650. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2651. } else if (PageHWPoison(page)) {
  2652. /*
  2653. * hwpoisoned dirty swapcache pages are kept for killing
  2654. * owner processes (which may be unknown at hwpoison time)
  2655. */
  2656. ret = VM_FAULT_HWPOISON;
  2657. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2658. goto out_release;
  2659. }
  2660. locked = lock_page_or_retry(page, mm, flags);
  2661. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2662. if (!locked) {
  2663. ret |= VM_FAULT_RETRY;
  2664. goto out_release;
  2665. }
  2666. /*
  2667. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2668. * release the swapcache from under us. The page pin, and pte_same
  2669. * test below, are not enough to exclude that. Even if it is still
  2670. * swapcache, we need to check that the page's swap has not changed.
  2671. */
  2672. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2673. goto out_page;
  2674. if (ksm_might_need_to_copy(page, vma, address)) {
  2675. swapcache = page;
  2676. page = ksm_does_need_to_copy(page, vma, address);
  2677. if (unlikely(!page)) {
  2678. ret = VM_FAULT_OOM;
  2679. page = swapcache;
  2680. swapcache = NULL;
  2681. goto out_page;
  2682. }
  2683. }
  2684. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2685. ret = VM_FAULT_OOM;
  2686. goto out_page;
  2687. }
  2688. /*
  2689. * Back out if somebody else already faulted in this pte.
  2690. */
  2691. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2692. if (unlikely(!pte_same(*page_table, orig_pte)))
  2693. goto out_nomap;
  2694. if (unlikely(!PageUptodate(page))) {
  2695. ret = VM_FAULT_SIGBUS;
  2696. goto out_nomap;
  2697. }
  2698. /*
  2699. * The page isn't present yet, go ahead with the fault.
  2700. *
  2701. * Be careful about the sequence of operations here.
  2702. * To get its accounting right, reuse_swap_page() must be called
  2703. * while the page is counted on swap but not yet in mapcount i.e.
  2704. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2705. * must be called after the swap_free(), or it will never succeed.
  2706. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2707. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2708. * in page->private. In this case, a record in swap_cgroup is silently
  2709. * discarded at swap_free().
  2710. */
  2711. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2712. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2713. pte = mk_pte(page, vma->vm_page_prot);
  2714. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2715. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2716. flags &= ~FAULT_FLAG_WRITE;
  2717. ret |= VM_FAULT_WRITE;
  2718. exclusive = 1;
  2719. }
  2720. flush_icache_page(vma, page);
  2721. set_pte_at(mm, address, page_table, pte);
  2722. do_page_add_anon_rmap(page, vma, address, exclusive);
  2723. /* It's better to call commit-charge after rmap is established */
  2724. mem_cgroup_commit_charge_swapin(page, ptr);
  2725. swap_free(entry);
  2726. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2727. try_to_free_swap(page);
  2728. unlock_page(page);
  2729. if (swapcache) {
  2730. /*
  2731. * Hold the lock to avoid the swap entry to be reused
  2732. * until we take the PT lock for the pte_same() check
  2733. * (to avoid false positives from pte_same). For
  2734. * further safety release the lock after the swap_free
  2735. * so that the swap count won't change under a
  2736. * parallel locked swapcache.
  2737. */
  2738. unlock_page(swapcache);
  2739. page_cache_release(swapcache);
  2740. }
  2741. if (flags & FAULT_FLAG_WRITE) {
  2742. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2743. if (ret & VM_FAULT_ERROR)
  2744. ret &= VM_FAULT_ERROR;
  2745. goto out;
  2746. }
  2747. /* No need to invalidate - it was non-present before */
  2748. update_mmu_cache(vma, address, page_table);
  2749. unlock:
  2750. pte_unmap_unlock(page_table, ptl);
  2751. out:
  2752. return ret;
  2753. out_nomap:
  2754. mem_cgroup_cancel_charge_swapin(ptr);
  2755. pte_unmap_unlock(page_table, ptl);
  2756. out_page:
  2757. unlock_page(page);
  2758. out_release:
  2759. page_cache_release(page);
  2760. if (swapcache) {
  2761. unlock_page(swapcache);
  2762. page_cache_release(swapcache);
  2763. }
  2764. return ret;
  2765. }
  2766. /*
  2767. * This is like a special single-page "expand_{down|up}wards()",
  2768. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2769. * doesn't hit another vma.
  2770. */
  2771. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2772. {
  2773. address &= PAGE_MASK;
  2774. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2775. struct vm_area_struct *prev = vma->vm_prev;
  2776. /*
  2777. * Is there a mapping abutting this one below?
  2778. *
  2779. * That's only ok if it's the same stack mapping
  2780. * that has gotten split..
  2781. */
  2782. if (prev && prev->vm_end == address)
  2783. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2784. expand_downwards(vma, address - PAGE_SIZE);
  2785. }
  2786. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2787. struct vm_area_struct *next = vma->vm_next;
  2788. /* As VM_GROWSDOWN but s/below/above/ */
  2789. if (next && next->vm_start == address + PAGE_SIZE)
  2790. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2791. expand_upwards(vma, address + PAGE_SIZE);
  2792. }
  2793. return 0;
  2794. }
  2795. /*
  2796. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2797. * but allow concurrent faults), and pte mapped but not yet locked.
  2798. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2799. */
  2800. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2801. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2802. unsigned int flags)
  2803. {
  2804. struct page *page;
  2805. spinlock_t *ptl;
  2806. pte_t entry;
  2807. pte_unmap(page_table);
  2808. /* Check if we need to add a guard page to the stack */
  2809. if (check_stack_guard_page(vma, address) < 0)
  2810. return VM_FAULT_SIGBUS;
  2811. /* Use the zero-page for reads */
  2812. if (!(flags & FAULT_FLAG_WRITE)) {
  2813. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2814. vma->vm_page_prot));
  2815. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2816. if (!pte_none(*page_table))
  2817. goto unlock;
  2818. goto setpte;
  2819. }
  2820. /* Allocate our own private page. */
  2821. if (unlikely(anon_vma_prepare(vma)))
  2822. goto oom;
  2823. page = alloc_zeroed_user_highpage_movable(vma, address);
  2824. if (!page)
  2825. goto oom;
  2826. __SetPageUptodate(page);
  2827. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2828. goto oom_free_page;
  2829. entry = mk_pte(page, vma->vm_page_prot);
  2830. if (vma->vm_flags & VM_WRITE)
  2831. entry = pte_mkwrite(pte_mkdirty(entry));
  2832. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2833. if (!pte_none(*page_table))
  2834. goto release;
  2835. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2836. page_add_new_anon_rmap(page, vma, address);
  2837. setpte:
  2838. set_pte_at(mm, address, page_table, entry);
  2839. /* No need to invalidate - it was non-present before */
  2840. update_mmu_cache(vma, address, page_table);
  2841. unlock:
  2842. pte_unmap_unlock(page_table, ptl);
  2843. return 0;
  2844. release:
  2845. mem_cgroup_uncharge_page(page);
  2846. page_cache_release(page);
  2847. goto unlock;
  2848. oom_free_page:
  2849. page_cache_release(page);
  2850. oom:
  2851. return VM_FAULT_OOM;
  2852. }
  2853. /*
  2854. * __do_fault() tries to create a new page mapping. It aggressively
  2855. * tries to share with existing pages, but makes a separate copy if
  2856. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2857. * the next page fault.
  2858. *
  2859. * As this is called only for pages that do not currently exist, we
  2860. * do not need to flush old virtual caches or the TLB.
  2861. *
  2862. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2863. * but allow concurrent faults), and pte neither mapped nor locked.
  2864. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2865. */
  2866. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2867. unsigned long address, pmd_t *pmd,
  2868. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2869. {
  2870. pte_t *page_table;
  2871. spinlock_t *ptl;
  2872. struct page *page;
  2873. struct page *cow_page;
  2874. pte_t entry;
  2875. int anon = 0;
  2876. struct page *dirty_page = NULL;
  2877. struct vm_fault vmf;
  2878. int ret;
  2879. int page_mkwrite = 0;
  2880. /*
  2881. * If we do COW later, allocate page befor taking lock_page()
  2882. * on the file cache page. This will reduce lock holding time.
  2883. */
  2884. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2885. if (unlikely(anon_vma_prepare(vma)))
  2886. return VM_FAULT_OOM;
  2887. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2888. if (!cow_page)
  2889. return VM_FAULT_OOM;
  2890. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2891. page_cache_release(cow_page);
  2892. return VM_FAULT_OOM;
  2893. }
  2894. } else
  2895. cow_page = NULL;
  2896. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2897. vmf.pgoff = pgoff;
  2898. vmf.flags = flags;
  2899. vmf.page = NULL;
  2900. ret = vma->vm_ops->fault(vma, &vmf);
  2901. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2902. VM_FAULT_RETRY)))
  2903. goto uncharge_out;
  2904. if (unlikely(PageHWPoison(vmf.page))) {
  2905. if (ret & VM_FAULT_LOCKED)
  2906. unlock_page(vmf.page);
  2907. ret = VM_FAULT_HWPOISON;
  2908. goto uncharge_out;
  2909. }
  2910. /*
  2911. * For consistency in subsequent calls, make the faulted page always
  2912. * locked.
  2913. */
  2914. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2915. lock_page(vmf.page);
  2916. else
  2917. VM_BUG_ON(!PageLocked(vmf.page));
  2918. /*
  2919. * Should we do an early C-O-W break?
  2920. */
  2921. page = vmf.page;
  2922. if (flags & FAULT_FLAG_WRITE) {
  2923. if (!(vma->vm_flags & VM_SHARED)) {
  2924. page = cow_page;
  2925. anon = 1;
  2926. copy_user_highpage(page, vmf.page, address, vma);
  2927. __SetPageUptodate(page);
  2928. } else {
  2929. /*
  2930. * If the page will be shareable, see if the backing
  2931. * address space wants to know that the page is about
  2932. * to become writable
  2933. */
  2934. if (vma->vm_ops->page_mkwrite) {
  2935. int tmp;
  2936. unlock_page(page);
  2937. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2938. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2939. if (unlikely(tmp &
  2940. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2941. ret = tmp;
  2942. goto unwritable_page;
  2943. }
  2944. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2945. lock_page(page);
  2946. if (!page->mapping) {
  2947. ret = 0; /* retry the fault */
  2948. unlock_page(page);
  2949. goto unwritable_page;
  2950. }
  2951. } else
  2952. VM_BUG_ON(!PageLocked(page));
  2953. page_mkwrite = 1;
  2954. }
  2955. }
  2956. }
  2957. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2958. /*
  2959. * This silly early PAGE_DIRTY setting removes a race
  2960. * due to the bad i386 page protection. But it's valid
  2961. * for other architectures too.
  2962. *
  2963. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2964. * an exclusive copy of the page, or this is a shared mapping,
  2965. * so we can make it writable and dirty to avoid having to
  2966. * handle that later.
  2967. */
  2968. /* Only go through if we didn't race with anybody else... */
  2969. if (likely(pte_same(*page_table, orig_pte))) {
  2970. flush_icache_page(vma, page);
  2971. entry = mk_pte(page, vma->vm_page_prot);
  2972. if (flags & FAULT_FLAG_WRITE)
  2973. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2974. if (anon) {
  2975. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2976. page_add_new_anon_rmap(page, vma, address);
  2977. } else {
  2978. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2979. page_add_file_rmap(page);
  2980. if (flags & FAULT_FLAG_WRITE) {
  2981. dirty_page = page;
  2982. get_page(dirty_page);
  2983. }
  2984. }
  2985. set_pte_at(mm, address, page_table, entry);
  2986. /* no need to invalidate: a not-present page won't be cached */
  2987. update_mmu_cache(vma, address, page_table);
  2988. } else {
  2989. if (cow_page)
  2990. mem_cgroup_uncharge_page(cow_page);
  2991. if (anon)
  2992. page_cache_release(page);
  2993. else
  2994. anon = 1; /* no anon but release faulted_page */
  2995. }
  2996. pte_unmap_unlock(page_table, ptl);
  2997. if (dirty_page) {
  2998. struct address_space *mapping = page->mapping;
  2999. int dirtied = 0;
  3000. if (set_page_dirty(dirty_page))
  3001. dirtied = 1;
  3002. unlock_page(dirty_page);
  3003. put_page(dirty_page);
  3004. if ((dirtied || page_mkwrite) && mapping) {
  3005. /*
  3006. * Some device drivers do not set page.mapping but still
  3007. * dirty their pages
  3008. */
  3009. balance_dirty_pages_ratelimited(mapping);
  3010. }
  3011. /* file_update_time outside page_lock */
  3012. if (vma->vm_file && !page_mkwrite)
  3013. file_update_time(vma->vm_file);
  3014. } else {
  3015. unlock_page(vmf.page);
  3016. if (anon)
  3017. page_cache_release(vmf.page);
  3018. }
  3019. return ret;
  3020. unwritable_page:
  3021. page_cache_release(page);
  3022. return ret;
  3023. uncharge_out:
  3024. /* fs's fault handler get error */
  3025. if (cow_page) {
  3026. mem_cgroup_uncharge_page(cow_page);
  3027. page_cache_release(cow_page);
  3028. }
  3029. return ret;
  3030. }
  3031. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3032. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3033. unsigned int flags, pte_t orig_pte)
  3034. {
  3035. pgoff_t pgoff = (((address & PAGE_MASK)
  3036. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3037. pte_unmap(page_table);
  3038. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3039. }
  3040. /*
  3041. * Fault of a previously existing named mapping. Repopulate the pte
  3042. * from the encoded file_pte if possible. This enables swappable
  3043. * nonlinear vmas.
  3044. *
  3045. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3046. * but allow concurrent faults), and pte mapped but not yet locked.
  3047. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3048. */
  3049. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3050. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3051. unsigned int flags, pte_t orig_pte)
  3052. {
  3053. pgoff_t pgoff;
  3054. flags |= FAULT_FLAG_NONLINEAR;
  3055. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3056. return 0;
  3057. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3058. /*
  3059. * Page table corrupted: show pte and kill process.
  3060. */
  3061. print_bad_pte(vma, address, orig_pte, NULL);
  3062. return VM_FAULT_SIGBUS;
  3063. }
  3064. pgoff = pte_to_pgoff(orig_pte);
  3065. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3066. }
  3067. /*
  3068. * These routines also need to handle stuff like marking pages dirty
  3069. * and/or accessed for architectures that don't do it in hardware (most
  3070. * RISC architectures). The early dirtying is also good on the i386.
  3071. *
  3072. * There is also a hook called "update_mmu_cache()" that architectures
  3073. * with external mmu caches can use to update those (ie the Sparc or
  3074. * PowerPC hashed page tables that act as extended TLBs).
  3075. *
  3076. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3077. * but allow concurrent faults), and pte mapped but not yet locked.
  3078. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3079. */
  3080. int handle_pte_fault(struct mm_struct *mm,
  3081. struct vm_area_struct *vma, unsigned long address,
  3082. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3083. {
  3084. pte_t entry;
  3085. spinlock_t *ptl;
  3086. entry = *pte;
  3087. if (!pte_present(entry)) {
  3088. if (pte_none(entry)) {
  3089. if (vma->vm_ops) {
  3090. if (likely(vma->vm_ops->fault))
  3091. return do_linear_fault(mm, vma, address,
  3092. pte, pmd, flags, entry);
  3093. }
  3094. return do_anonymous_page(mm, vma, address,
  3095. pte, pmd, flags);
  3096. }
  3097. if (pte_file(entry))
  3098. return do_nonlinear_fault(mm, vma, address,
  3099. pte, pmd, flags, entry);
  3100. return do_swap_page(mm, vma, address,
  3101. pte, pmd, flags, entry);
  3102. }
  3103. ptl = pte_lockptr(mm, pmd);
  3104. spin_lock(ptl);
  3105. if (unlikely(!pte_same(*pte, entry)))
  3106. goto unlock;
  3107. if (flags & FAULT_FLAG_WRITE) {
  3108. if (!pte_write(entry))
  3109. return do_wp_page(mm, vma, address,
  3110. pte, pmd, ptl, entry);
  3111. entry = pte_mkdirty(entry);
  3112. }
  3113. entry = pte_mkyoung(entry);
  3114. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3115. update_mmu_cache(vma, address, pte);
  3116. } else {
  3117. /*
  3118. * This is needed only for protection faults but the arch code
  3119. * is not yet telling us if this is a protection fault or not.
  3120. * This still avoids useless tlb flushes for .text page faults
  3121. * with threads.
  3122. */
  3123. if (flags & FAULT_FLAG_WRITE)
  3124. flush_tlb_fix_spurious_fault(vma, address);
  3125. }
  3126. unlock:
  3127. pte_unmap_unlock(pte, ptl);
  3128. return 0;
  3129. }
  3130. /*
  3131. * By the time we get here, we already hold the mm semaphore
  3132. */
  3133. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3134. unsigned long address, unsigned int flags)
  3135. {
  3136. pgd_t *pgd;
  3137. pud_t *pud;
  3138. pmd_t *pmd;
  3139. pte_t *pte;
  3140. __set_current_state(TASK_RUNNING);
  3141. count_vm_event(PGFAULT);
  3142. mem_cgroup_count_vm_event(mm, PGFAULT);
  3143. /* do counter updates before entering really critical section. */
  3144. check_sync_rss_stat(current);
  3145. if (unlikely(is_vm_hugetlb_page(vma)))
  3146. return hugetlb_fault(mm, vma, address, flags);
  3147. retry:
  3148. pgd = pgd_offset(mm, address);
  3149. pud = pud_alloc(mm, pgd, address);
  3150. if (!pud)
  3151. return VM_FAULT_OOM;
  3152. pmd = pmd_alloc(mm, pud, address);
  3153. if (!pmd)
  3154. return VM_FAULT_OOM;
  3155. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3156. if (!vma->vm_ops)
  3157. return do_huge_pmd_anonymous_page(mm, vma, address,
  3158. pmd, flags);
  3159. } else {
  3160. pmd_t orig_pmd = *pmd;
  3161. int ret;
  3162. barrier();
  3163. if (pmd_trans_huge(orig_pmd)) {
  3164. if (flags & FAULT_FLAG_WRITE &&
  3165. !pmd_write(orig_pmd) &&
  3166. !pmd_trans_splitting(orig_pmd)) {
  3167. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3168. orig_pmd);
  3169. /*
  3170. * If COW results in an oom, the huge pmd will
  3171. * have been split, so retry the fault on the
  3172. * pte for a smaller charge.
  3173. */
  3174. if (unlikely(ret & VM_FAULT_OOM))
  3175. goto retry;
  3176. return ret;
  3177. }
  3178. return 0;
  3179. }
  3180. }
  3181. /*
  3182. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3183. * run pte_offset_map on the pmd, if an huge pmd could
  3184. * materialize from under us from a different thread.
  3185. */
  3186. if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
  3187. return VM_FAULT_OOM;
  3188. /* if an huge pmd materialized from under us just retry later */
  3189. if (unlikely(pmd_trans_huge(*pmd)))
  3190. return 0;
  3191. /*
  3192. * A regular pmd is established and it can't morph into a huge pmd
  3193. * from under us anymore at this point because we hold the mmap_sem
  3194. * read mode and khugepaged takes it in write mode. So now it's
  3195. * safe to run pte_offset_map().
  3196. */
  3197. pte = pte_offset_map(pmd, address);
  3198. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3199. }
  3200. #ifndef __PAGETABLE_PUD_FOLDED
  3201. /*
  3202. * Allocate page upper directory.
  3203. * We've already handled the fast-path in-line.
  3204. */
  3205. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3206. {
  3207. pud_t *new = pud_alloc_one(mm, address);
  3208. if (!new)
  3209. return -ENOMEM;
  3210. smp_wmb(); /* See comment in __pte_alloc */
  3211. spin_lock(&mm->page_table_lock);
  3212. if (pgd_present(*pgd)) /* Another has populated it */
  3213. pud_free(mm, new);
  3214. else
  3215. pgd_populate(mm, pgd, new);
  3216. spin_unlock(&mm->page_table_lock);
  3217. return 0;
  3218. }
  3219. #endif /* __PAGETABLE_PUD_FOLDED */
  3220. #ifndef __PAGETABLE_PMD_FOLDED
  3221. /*
  3222. * Allocate page middle directory.
  3223. * We've already handled the fast-path in-line.
  3224. */
  3225. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3226. {
  3227. pmd_t *new = pmd_alloc_one(mm, address);
  3228. if (!new)
  3229. return -ENOMEM;
  3230. smp_wmb(); /* See comment in __pte_alloc */
  3231. spin_lock(&mm->page_table_lock);
  3232. #ifndef __ARCH_HAS_4LEVEL_HACK
  3233. if (pud_present(*pud)) /* Another has populated it */
  3234. pmd_free(mm, new);
  3235. else
  3236. pud_populate(mm, pud, new);
  3237. #else
  3238. if (pgd_present(*pud)) /* Another has populated it */
  3239. pmd_free(mm, new);
  3240. else
  3241. pgd_populate(mm, pud, new);
  3242. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3243. spin_unlock(&mm->page_table_lock);
  3244. return 0;
  3245. }
  3246. #endif /* __PAGETABLE_PMD_FOLDED */
  3247. int make_pages_present(unsigned long addr, unsigned long end)
  3248. {
  3249. int ret, len, write;
  3250. struct vm_area_struct * vma;
  3251. vma = find_vma(current->mm, addr);
  3252. if (!vma)
  3253. return -ENOMEM;
  3254. /*
  3255. * We want to touch writable mappings with a write fault in order
  3256. * to break COW, except for shared mappings because these don't COW
  3257. * and we would not want to dirty them for nothing.
  3258. */
  3259. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3260. BUG_ON(addr >= end);
  3261. BUG_ON(end > vma->vm_end);
  3262. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3263. ret = get_user_pages(current, current->mm, addr,
  3264. len, write, 0, NULL, NULL);
  3265. if (ret < 0)
  3266. return ret;
  3267. return ret == len ? 0 : -EFAULT;
  3268. }
  3269. #if !defined(__HAVE_ARCH_GATE_AREA)
  3270. #if defined(AT_SYSINFO_EHDR)
  3271. static struct vm_area_struct gate_vma;
  3272. static int __init gate_vma_init(void)
  3273. {
  3274. gate_vma.vm_mm = NULL;
  3275. gate_vma.vm_start = FIXADDR_USER_START;
  3276. gate_vma.vm_end = FIXADDR_USER_END;
  3277. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3278. gate_vma.vm_page_prot = __P101;
  3279. return 0;
  3280. }
  3281. __initcall(gate_vma_init);
  3282. #endif
  3283. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3284. {
  3285. #ifdef AT_SYSINFO_EHDR
  3286. return &gate_vma;
  3287. #else
  3288. return NULL;
  3289. #endif
  3290. }
  3291. int in_gate_area_no_mm(unsigned long addr)
  3292. {
  3293. #ifdef AT_SYSINFO_EHDR
  3294. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3295. return 1;
  3296. #endif
  3297. return 0;
  3298. }
  3299. #endif /* __HAVE_ARCH_GATE_AREA */
  3300. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3301. pte_t **ptepp, spinlock_t **ptlp)
  3302. {
  3303. pgd_t *pgd;
  3304. pud_t *pud;
  3305. pmd_t *pmd;
  3306. pte_t *ptep;
  3307. pgd = pgd_offset(mm, address);
  3308. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3309. goto out;
  3310. pud = pud_offset(pgd, address);
  3311. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3312. goto out;
  3313. pmd = pmd_offset(pud, address);
  3314. VM_BUG_ON(pmd_trans_huge(*pmd));
  3315. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3316. goto out;
  3317. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3318. if (pmd_huge(*pmd))
  3319. goto out;
  3320. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3321. if (!ptep)
  3322. goto out;
  3323. if (!pte_present(*ptep))
  3324. goto unlock;
  3325. *ptepp = ptep;
  3326. return 0;
  3327. unlock:
  3328. pte_unmap_unlock(ptep, *ptlp);
  3329. out:
  3330. return -EINVAL;
  3331. }
  3332. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3333. pte_t **ptepp, spinlock_t **ptlp)
  3334. {
  3335. int res;
  3336. /* (void) is needed to make gcc happy */
  3337. (void) __cond_lock(*ptlp,
  3338. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3339. return res;
  3340. }
  3341. /**
  3342. * follow_pfn - look up PFN at a user virtual address
  3343. * @vma: memory mapping
  3344. * @address: user virtual address
  3345. * @pfn: location to store found PFN
  3346. *
  3347. * Only IO mappings and raw PFN mappings are allowed.
  3348. *
  3349. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3350. */
  3351. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3352. unsigned long *pfn)
  3353. {
  3354. int ret = -EINVAL;
  3355. spinlock_t *ptl;
  3356. pte_t *ptep;
  3357. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3358. return ret;
  3359. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3360. if (ret)
  3361. return ret;
  3362. *pfn = pte_pfn(*ptep);
  3363. pte_unmap_unlock(ptep, ptl);
  3364. return 0;
  3365. }
  3366. EXPORT_SYMBOL(follow_pfn);
  3367. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3368. int follow_phys(struct vm_area_struct *vma,
  3369. unsigned long address, unsigned int flags,
  3370. unsigned long *prot, resource_size_t *phys)
  3371. {
  3372. int ret = -EINVAL;
  3373. pte_t *ptep, pte;
  3374. spinlock_t *ptl;
  3375. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3376. goto out;
  3377. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3378. goto out;
  3379. pte = *ptep;
  3380. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3381. goto unlock;
  3382. *prot = pgprot_val(pte_pgprot(pte));
  3383. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3384. ret = 0;
  3385. unlock:
  3386. pte_unmap_unlock(ptep, ptl);
  3387. out:
  3388. return ret;
  3389. }
  3390. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3391. void *buf, int len, int write)
  3392. {
  3393. resource_size_t phys_addr;
  3394. unsigned long prot = 0;
  3395. void __iomem *maddr;
  3396. int offset = addr & (PAGE_SIZE-1);
  3397. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3398. return -EINVAL;
  3399. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3400. if (write)
  3401. memcpy_toio(maddr + offset, buf, len);
  3402. else
  3403. memcpy_fromio(buf, maddr + offset, len);
  3404. iounmap(maddr);
  3405. return len;
  3406. }
  3407. #endif
  3408. /*
  3409. * Access another process' address space as given in mm. If non-NULL, use the
  3410. * given task for page fault accounting.
  3411. */
  3412. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3413. unsigned long addr, void *buf, int len, int write)
  3414. {
  3415. struct vm_area_struct *vma;
  3416. void *old_buf = buf;
  3417. down_read(&mm->mmap_sem);
  3418. /* ignore errors, just check how much was successfully transferred */
  3419. while (len) {
  3420. int bytes, ret, offset;
  3421. void *maddr;
  3422. struct page *page = NULL;
  3423. ret = get_user_pages(tsk, mm, addr, 1,
  3424. write, 1, &page, &vma);
  3425. if (ret <= 0) {
  3426. /*
  3427. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3428. * we can access using slightly different code.
  3429. */
  3430. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3431. vma = find_vma(mm, addr);
  3432. if (!vma || vma->vm_start > addr)
  3433. break;
  3434. if (vma->vm_ops && vma->vm_ops->access)
  3435. ret = vma->vm_ops->access(vma, addr, buf,
  3436. len, write);
  3437. if (ret <= 0)
  3438. #endif
  3439. break;
  3440. bytes = ret;
  3441. } else {
  3442. bytes = len;
  3443. offset = addr & (PAGE_SIZE-1);
  3444. if (bytes > PAGE_SIZE-offset)
  3445. bytes = PAGE_SIZE-offset;
  3446. maddr = kmap(page);
  3447. if (write) {
  3448. copy_to_user_page(vma, page, addr,
  3449. maddr + offset, buf, bytes);
  3450. set_page_dirty_lock(page);
  3451. } else {
  3452. copy_from_user_page(vma, page, addr,
  3453. buf, maddr + offset, bytes);
  3454. }
  3455. kunmap(page);
  3456. page_cache_release(page);
  3457. }
  3458. len -= bytes;
  3459. buf += bytes;
  3460. addr += bytes;
  3461. }
  3462. up_read(&mm->mmap_sem);
  3463. return buf - old_buf;
  3464. }
  3465. /**
  3466. * access_remote_vm - access another process' address space
  3467. * @mm: the mm_struct of the target address space
  3468. * @addr: start address to access
  3469. * @buf: source or destination buffer
  3470. * @len: number of bytes to transfer
  3471. * @write: whether the access is a write
  3472. *
  3473. * The caller must hold a reference on @mm.
  3474. */
  3475. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3476. void *buf, int len, int write)
  3477. {
  3478. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3479. }
  3480. /*
  3481. * Access another process' address space.
  3482. * Source/target buffer must be kernel space,
  3483. * Do not walk the page table directly, use get_user_pages
  3484. */
  3485. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3486. void *buf, int len, int write)
  3487. {
  3488. struct mm_struct *mm;
  3489. int ret;
  3490. mm = get_task_mm(tsk);
  3491. if (!mm)
  3492. return 0;
  3493. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3494. mmput(mm);
  3495. return ret;
  3496. }
  3497. /*
  3498. * Print the name of a VMA.
  3499. */
  3500. void print_vma_addr(char *prefix, unsigned long ip)
  3501. {
  3502. struct mm_struct *mm = current->mm;
  3503. struct vm_area_struct *vma;
  3504. /*
  3505. * Do not print if we are in atomic
  3506. * contexts (in exception stacks, etc.):
  3507. */
  3508. if (preempt_count())
  3509. return;
  3510. down_read(&mm->mmap_sem);
  3511. vma = find_vma(mm, ip);
  3512. if (vma && vma->vm_file) {
  3513. struct file *f = vma->vm_file;
  3514. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3515. if (buf) {
  3516. char *p, *s;
  3517. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3518. if (IS_ERR(p))
  3519. p = "?";
  3520. s = strrchr(p, '/');
  3521. if (s)
  3522. p = s+1;
  3523. printk("%s%s[%lx+%lx]", prefix, p,
  3524. vma->vm_start,
  3525. vma->vm_end - vma->vm_start);
  3526. free_page((unsigned long)buf);
  3527. }
  3528. }
  3529. up_read(&mm->mmap_sem);
  3530. }
  3531. #ifdef CONFIG_PROVE_LOCKING
  3532. void might_fault(void)
  3533. {
  3534. /*
  3535. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3536. * holding the mmap_sem, this is safe because kernel memory doesn't
  3537. * get paged out, therefore we'll never actually fault, and the
  3538. * below annotations will generate false positives.
  3539. */
  3540. if (segment_eq(get_fs(), KERNEL_DS))
  3541. return;
  3542. might_sleep();
  3543. /*
  3544. * it would be nicer only to annotate paths which are not under
  3545. * pagefault_disable, however that requires a larger audit and
  3546. * providing helpers like get_user_atomic.
  3547. */
  3548. if (!in_atomic() && current->mm)
  3549. might_lock_read(&current->mm->mmap_sem);
  3550. }
  3551. EXPORT_SYMBOL(might_fault);
  3552. #endif
  3553. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3554. static void clear_gigantic_page(struct page *page,
  3555. unsigned long addr,
  3556. unsigned int pages_per_huge_page)
  3557. {
  3558. int i;
  3559. struct page *p = page;
  3560. might_sleep();
  3561. for (i = 0; i < pages_per_huge_page;
  3562. i++, p = mem_map_next(p, page, i)) {
  3563. cond_resched();
  3564. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3565. }
  3566. }
  3567. void clear_huge_page(struct page *page,
  3568. unsigned long addr, unsigned int pages_per_huge_page)
  3569. {
  3570. int i;
  3571. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3572. clear_gigantic_page(page, addr, pages_per_huge_page);
  3573. return;
  3574. }
  3575. might_sleep();
  3576. for (i = 0; i < pages_per_huge_page; i++) {
  3577. cond_resched();
  3578. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3579. }
  3580. }
  3581. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3582. unsigned long addr,
  3583. struct vm_area_struct *vma,
  3584. unsigned int pages_per_huge_page)
  3585. {
  3586. int i;
  3587. struct page *dst_base = dst;
  3588. struct page *src_base = src;
  3589. for (i = 0; i < pages_per_huge_page; ) {
  3590. cond_resched();
  3591. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3592. i++;
  3593. dst = mem_map_next(dst, dst_base, i);
  3594. src = mem_map_next(src, src_base, i);
  3595. }
  3596. }
  3597. void copy_user_huge_page(struct page *dst, struct page *src,
  3598. unsigned long addr, struct vm_area_struct *vma,
  3599. unsigned int pages_per_huge_page)
  3600. {
  3601. int i;
  3602. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3603. copy_user_gigantic_page(dst, src, addr, vma,
  3604. pages_per_huge_page);
  3605. return;
  3606. }
  3607. might_sleep();
  3608. for (i = 0; i < pages_per_huge_page; i++) {
  3609. cond_resched();
  3610. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3611. }
  3612. }
  3613. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */