mm.h 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/bug.h>
  7. #include <linux/list.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/atomic.h>
  11. #include <linux/debug_locks.h>
  12. #include <linux/mm_types.h>
  13. #include <linux/range.h>
  14. #include <linux/pfn.h>
  15. #include <linux/bit_spinlock.h>
  16. #include <linux/shrinker.h>
  17. struct mempolicy;
  18. struct anon_vma;
  19. struct file_ra_state;
  20. struct user_struct;
  21. struct writeback_control;
  22. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  23. extern unsigned long max_mapnr;
  24. #endif
  25. extern unsigned long num_physpages;
  26. extern unsigned long totalram_pages;
  27. extern void * high_memory;
  28. extern int page_cluster;
  29. #ifdef CONFIG_SYSCTL
  30. extern int sysctl_legacy_va_layout;
  31. #else
  32. #define sysctl_legacy_va_layout 0
  33. #endif
  34. #include <asm/page.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/processor.h>
  37. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  38. /* to align the pointer to the (next) page boundary */
  39. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  40. /*
  41. * Linux kernel virtual memory manager primitives.
  42. * The idea being to have a "virtual" mm in the same way
  43. * we have a virtual fs - giving a cleaner interface to the
  44. * mm details, and allowing different kinds of memory mappings
  45. * (from shared memory to executable loading to arbitrary
  46. * mmap() functions).
  47. */
  48. extern struct kmem_cache *vm_area_cachep;
  49. #ifndef CONFIG_MMU
  50. extern struct rb_root nommu_region_tree;
  51. extern struct rw_semaphore nommu_region_sem;
  52. extern unsigned int kobjsize(const void *objp);
  53. #endif
  54. /*
  55. * vm_flags in vm_area_struct, see mm_types.h.
  56. */
  57. #define VM_NONE 0x00000000
  58. #define VM_READ 0x00000001 /* currently active flags */
  59. #define VM_WRITE 0x00000002
  60. #define VM_EXEC 0x00000004
  61. #define VM_SHARED 0x00000008
  62. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  63. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  64. #define VM_MAYWRITE 0x00000020
  65. #define VM_MAYEXEC 0x00000040
  66. #define VM_MAYSHARE 0x00000080
  67. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  68. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  69. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  70. #define VM_LOCKED 0x00002000
  71. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  72. /* Used by sys_madvise() */
  73. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  74. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  75. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  76. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  77. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  78. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  79. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  80. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  81. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  82. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  83. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  84. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  85. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  86. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  87. #if defined(CONFIG_X86)
  88. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  89. #elif defined(CONFIG_PPC)
  90. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  91. #elif defined(CONFIG_PARISC)
  92. # define VM_GROWSUP VM_ARCH_1
  93. #elif defined(CONFIG_IA64)
  94. # define VM_GROWSUP VM_ARCH_1
  95. #elif !defined(CONFIG_MMU)
  96. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  97. #endif
  98. #ifndef VM_GROWSUP
  99. # define VM_GROWSUP VM_NONE
  100. #endif
  101. /* Bits set in the VMA until the stack is in its final location */
  102. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  103. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  104. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  105. #endif
  106. #ifdef CONFIG_STACK_GROWSUP
  107. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  108. #else
  109. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  110. #endif
  111. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  112. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  113. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  114. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  115. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  116. /*
  117. * Special vmas that are non-mergable, non-mlock()able.
  118. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  119. */
  120. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
  121. /*
  122. * mapping from the currently active vm_flags protection bits (the
  123. * low four bits) to a page protection mask..
  124. */
  125. extern pgprot_t protection_map[16];
  126. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  127. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  128. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  129. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  130. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  131. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  132. /*
  133. * vm_fault is filled by the the pagefault handler and passed to the vma's
  134. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  135. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  136. *
  137. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  138. * is used, one may implement ->remap_pages to get nonlinear mapping support.
  139. */
  140. struct vm_fault {
  141. unsigned int flags; /* FAULT_FLAG_xxx flags */
  142. pgoff_t pgoff; /* Logical page offset based on vma */
  143. void __user *virtual_address; /* Faulting virtual address */
  144. struct page *page; /* ->fault handlers should return a
  145. * page here, unless VM_FAULT_NOPAGE
  146. * is set (which is also implied by
  147. * VM_FAULT_ERROR).
  148. */
  149. };
  150. /*
  151. * These are the virtual MM functions - opening of an area, closing and
  152. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  153. * to the functions called when a no-page or a wp-page exception occurs.
  154. */
  155. struct vm_operations_struct {
  156. void (*open)(struct vm_area_struct * area);
  157. void (*close)(struct vm_area_struct * area);
  158. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  159. /* notification that a previously read-only page is about to become
  160. * writable, if an error is returned it will cause a SIGBUS */
  161. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  162. /* called by access_process_vm when get_user_pages() fails, typically
  163. * for use by special VMAs that can switch between memory and hardware
  164. */
  165. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  166. void *buf, int len, int write);
  167. #ifdef CONFIG_NUMA
  168. /*
  169. * set_policy() op must add a reference to any non-NULL @new mempolicy
  170. * to hold the policy upon return. Caller should pass NULL @new to
  171. * remove a policy and fall back to surrounding context--i.e. do not
  172. * install a MPOL_DEFAULT policy, nor the task or system default
  173. * mempolicy.
  174. */
  175. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  176. /*
  177. * get_policy() op must add reference [mpol_get()] to any policy at
  178. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  179. * in mm/mempolicy.c will do this automatically.
  180. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  181. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  182. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  183. * must return NULL--i.e., do not "fallback" to task or system default
  184. * policy.
  185. */
  186. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  187. unsigned long addr);
  188. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  189. const nodemask_t *to, unsigned long flags);
  190. #endif
  191. /* called by sys_remap_file_pages() to populate non-linear mapping */
  192. int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
  193. unsigned long size, pgoff_t pgoff);
  194. };
  195. struct mmu_gather;
  196. struct inode;
  197. #define page_private(page) ((page)->private)
  198. #define set_page_private(page, v) ((page)->private = (v))
  199. /*
  200. * FIXME: take this include out, include page-flags.h in
  201. * files which need it (119 of them)
  202. */
  203. #include <linux/page-flags.h>
  204. #include <linux/huge_mm.h>
  205. /*
  206. * Methods to modify the page usage count.
  207. *
  208. * What counts for a page usage:
  209. * - cache mapping (page->mapping)
  210. * - private data (page->private)
  211. * - page mapped in a task's page tables, each mapping
  212. * is counted separately
  213. *
  214. * Also, many kernel routines increase the page count before a critical
  215. * routine so they can be sure the page doesn't go away from under them.
  216. */
  217. /*
  218. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  219. */
  220. static inline int put_page_testzero(struct page *page)
  221. {
  222. VM_BUG_ON(atomic_read(&page->_count) == 0);
  223. return atomic_dec_and_test(&page->_count);
  224. }
  225. /*
  226. * Try to grab a ref unless the page has a refcount of zero, return false if
  227. * that is the case.
  228. */
  229. static inline int get_page_unless_zero(struct page *page)
  230. {
  231. return atomic_inc_not_zero(&page->_count);
  232. }
  233. extern int page_is_ram(unsigned long pfn);
  234. /* Support for virtually mapped pages */
  235. struct page *vmalloc_to_page(const void *addr);
  236. unsigned long vmalloc_to_pfn(const void *addr);
  237. /*
  238. * Determine if an address is within the vmalloc range
  239. *
  240. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  241. * is no special casing required.
  242. */
  243. static inline int is_vmalloc_addr(const void *x)
  244. {
  245. #ifdef CONFIG_MMU
  246. unsigned long addr = (unsigned long)x;
  247. return addr >= VMALLOC_START && addr < VMALLOC_END;
  248. #else
  249. return 0;
  250. #endif
  251. }
  252. #ifdef CONFIG_MMU
  253. extern int is_vmalloc_or_module_addr(const void *x);
  254. #else
  255. static inline int is_vmalloc_or_module_addr(const void *x)
  256. {
  257. return 0;
  258. }
  259. #endif
  260. static inline void compound_lock(struct page *page)
  261. {
  262. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  263. VM_BUG_ON(PageSlab(page));
  264. bit_spin_lock(PG_compound_lock, &page->flags);
  265. #endif
  266. }
  267. static inline void compound_unlock(struct page *page)
  268. {
  269. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  270. VM_BUG_ON(PageSlab(page));
  271. bit_spin_unlock(PG_compound_lock, &page->flags);
  272. #endif
  273. }
  274. static inline unsigned long compound_lock_irqsave(struct page *page)
  275. {
  276. unsigned long uninitialized_var(flags);
  277. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  278. local_irq_save(flags);
  279. compound_lock(page);
  280. #endif
  281. return flags;
  282. }
  283. static inline void compound_unlock_irqrestore(struct page *page,
  284. unsigned long flags)
  285. {
  286. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  287. compound_unlock(page);
  288. local_irq_restore(flags);
  289. #endif
  290. }
  291. static inline struct page *compound_head(struct page *page)
  292. {
  293. if (unlikely(PageTail(page)))
  294. return page->first_page;
  295. return page;
  296. }
  297. /*
  298. * The atomic page->_mapcount, starts from -1: so that transitions
  299. * both from it and to it can be tracked, using atomic_inc_and_test
  300. * and atomic_add_negative(-1).
  301. */
  302. static inline void reset_page_mapcount(struct page *page)
  303. {
  304. atomic_set(&(page)->_mapcount, -1);
  305. }
  306. static inline int page_mapcount(struct page *page)
  307. {
  308. return atomic_read(&(page)->_mapcount) + 1;
  309. }
  310. static inline int page_count(struct page *page)
  311. {
  312. return atomic_read(&compound_head(page)->_count);
  313. }
  314. static inline void get_huge_page_tail(struct page *page)
  315. {
  316. /*
  317. * __split_huge_page_refcount() cannot run
  318. * from under us.
  319. */
  320. VM_BUG_ON(page_mapcount(page) < 0);
  321. VM_BUG_ON(atomic_read(&page->_count) != 0);
  322. atomic_inc(&page->_mapcount);
  323. }
  324. extern bool __get_page_tail(struct page *page);
  325. static inline void get_page(struct page *page)
  326. {
  327. if (unlikely(PageTail(page)))
  328. if (likely(__get_page_tail(page)))
  329. return;
  330. /*
  331. * Getting a normal page or the head of a compound page
  332. * requires to already have an elevated page->_count.
  333. */
  334. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  335. atomic_inc(&page->_count);
  336. }
  337. static inline struct page *virt_to_head_page(const void *x)
  338. {
  339. struct page *page = virt_to_page(x);
  340. return compound_head(page);
  341. }
  342. /*
  343. * Setup the page count before being freed into the page allocator for
  344. * the first time (boot or memory hotplug)
  345. */
  346. static inline void init_page_count(struct page *page)
  347. {
  348. atomic_set(&page->_count, 1);
  349. }
  350. /*
  351. * PageBuddy() indicate that the page is free and in the buddy system
  352. * (see mm/page_alloc.c).
  353. *
  354. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  355. * -2 so that an underflow of the page_mapcount() won't be mistaken
  356. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  357. * efficiently by most CPU architectures.
  358. */
  359. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  360. static inline int PageBuddy(struct page *page)
  361. {
  362. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  363. }
  364. static inline void __SetPageBuddy(struct page *page)
  365. {
  366. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  367. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  368. }
  369. static inline void __ClearPageBuddy(struct page *page)
  370. {
  371. VM_BUG_ON(!PageBuddy(page));
  372. atomic_set(&page->_mapcount, -1);
  373. }
  374. void put_page(struct page *page);
  375. void put_pages_list(struct list_head *pages);
  376. void split_page(struct page *page, unsigned int order);
  377. int split_free_page(struct page *page);
  378. int capture_free_page(struct page *page, int alloc_order, int migratetype);
  379. /*
  380. * Compound pages have a destructor function. Provide a
  381. * prototype for that function and accessor functions.
  382. * These are _only_ valid on the head of a PG_compound page.
  383. */
  384. typedef void compound_page_dtor(struct page *);
  385. static inline void set_compound_page_dtor(struct page *page,
  386. compound_page_dtor *dtor)
  387. {
  388. page[1].lru.next = (void *)dtor;
  389. }
  390. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  391. {
  392. return (compound_page_dtor *)page[1].lru.next;
  393. }
  394. static inline int compound_order(struct page *page)
  395. {
  396. if (!PageHead(page))
  397. return 0;
  398. return (unsigned long)page[1].lru.prev;
  399. }
  400. static inline int compound_trans_order(struct page *page)
  401. {
  402. int order;
  403. unsigned long flags;
  404. if (!PageHead(page))
  405. return 0;
  406. flags = compound_lock_irqsave(page);
  407. order = compound_order(page);
  408. compound_unlock_irqrestore(page, flags);
  409. return order;
  410. }
  411. static inline void set_compound_order(struct page *page, unsigned long order)
  412. {
  413. page[1].lru.prev = (void *)order;
  414. }
  415. #ifdef CONFIG_MMU
  416. /*
  417. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  418. * servicing faults for write access. In the normal case, do always want
  419. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  420. * that do not have writing enabled, when used by access_process_vm.
  421. */
  422. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  423. {
  424. if (likely(vma->vm_flags & VM_WRITE))
  425. pte = pte_mkwrite(pte);
  426. return pte;
  427. }
  428. #endif
  429. /*
  430. * Multiple processes may "see" the same page. E.g. for untouched
  431. * mappings of /dev/null, all processes see the same page full of
  432. * zeroes, and text pages of executables and shared libraries have
  433. * only one copy in memory, at most, normally.
  434. *
  435. * For the non-reserved pages, page_count(page) denotes a reference count.
  436. * page_count() == 0 means the page is free. page->lru is then used for
  437. * freelist management in the buddy allocator.
  438. * page_count() > 0 means the page has been allocated.
  439. *
  440. * Pages are allocated by the slab allocator in order to provide memory
  441. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  442. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  443. * unless a particular usage is carefully commented. (the responsibility of
  444. * freeing the kmalloc memory is the caller's, of course).
  445. *
  446. * A page may be used by anyone else who does a __get_free_page().
  447. * In this case, page_count still tracks the references, and should only
  448. * be used through the normal accessor functions. The top bits of page->flags
  449. * and page->virtual store page management information, but all other fields
  450. * are unused and could be used privately, carefully. The management of this
  451. * page is the responsibility of the one who allocated it, and those who have
  452. * subsequently been given references to it.
  453. *
  454. * The other pages (we may call them "pagecache pages") are completely
  455. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  456. * The following discussion applies only to them.
  457. *
  458. * A pagecache page contains an opaque `private' member, which belongs to the
  459. * page's address_space. Usually, this is the address of a circular list of
  460. * the page's disk buffers. PG_private must be set to tell the VM to call
  461. * into the filesystem to release these pages.
  462. *
  463. * A page may belong to an inode's memory mapping. In this case, page->mapping
  464. * is the pointer to the inode, and page->index is the file offset of the page,
  465. * in units of PAGE_CACHE_SIZE.
  466. *
  467. * If pagecache pages are not associated with an inode, they are said to be
  468. * anonymous pages. These may become associated with the swapcache, and in that
  469. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  470. *
  471. * In either case (swapcache or inode backed), the pagecache itself holds one
  472. * reference to the page. Setting PG_private should also increment the
  473. * refcount. The each user mapping also has a reference to the page.
  474. *
  475. * The pagecache pages are stored in a per-mapping radix tree, which is
  476. * rooted at mapping->page_tree, and indexed by offset.
  477. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  478. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  479. *
  480. * All pagecache pages may be subject to I/O:
  481. * - inode pages may need to be read from disk,
  482. * - inode pages which have been modified and are MAP_SHARED may need
  483. * to be written back to the inode on disk,
  484. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  485. * modified may need to be swapped out to swap space and (later) to be read
  486. * back into memory.
  487. */
  488. /*
  489. * The zone field is never updated after free_area_init_core()
  490. * sets it, so none of the operations on it need to be atomic.
  491. */
  492. /*
  493. * page->flags layout:
  494. *
  495. * There are three possibilities for how page->flags get
  496. * laid out. The first is for the normal case, without
  497. * sparsemem. The second is for sparsemem when there is
  498. * plenty of space for node and section. The last is when
  499. * we have run out of space and have to fall back to an
  500. * alternate (slower) way of determining the node.
  501. *
  502. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  503. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  504. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  505. */
  506. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  507. #define SECTIONS_WIDTH SECTIONS_SHIFT
  508. #else
  509. #define SECTIONS_WIDTH 0
  510. #endif
  511. #define ZONES_WIDTH ZONES_SHIFT
  512. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  513. #define NODES_WIDTH NODES_SHIFT
  514. #else
  515. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  516. #error "Vmemmap: No space for nodes field in page flags"
  517. #endif
  518. #define NODES_WIDTH 0
  519. #endif
  520. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  521. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  522. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  523. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  524. /*
  525. * We are going to use the flags for the page to node mapping if its in
  526. * there. This includes the case where there is no node, so it is implicit.
  527. */
  528. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  529. #define NODE_NOT_IN_PAGE_FLAGS
  530. #endif
  531. /*
  532. * Define the bit shifts to access each section. For non-existent
  533. * sections we define the shift as 0; that plus a 0 mask ensures
  534. * the compiler will optimise away reference to them.
  535. */
  536. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  537. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  538. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  539. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  540. #ifdef NODE_NOT_IN_PAGE_FLAGS
  541. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  542. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  543. SECTIONS_PGOFF : ZONES_PGOFF)
  544. #else
  545. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  546. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  547. NODES_PGOFF : ZONES_PGOFF)
  548. #endif
  549. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  550. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  551. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  552. #endif
  553. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  554. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  555. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  556. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  557. static inline enum zone_type page_zonenum(const struct page *page)
  558. {
  559. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  560. }
  561. /*
  562. * The identification function is only used by the buddy allocator for
  563. * determining if two pages could be buddies. We are not really
  564. * identifying a zone since we could be using a the section number
  565. * id if we have not node id available in page flags.
  566. * We guarantee only that it will return the same value for two
  567. * combinable pages in a zone.
  568. */
  569. static inline int page_zone_id(struct page *page)
  570. {
  571. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  572. }
  573. static inline int zone_to_nid(struct zone *zone)
  574. {
  575. #ifdef CONFIG_NUMA
  576. return zone->node;
  577. #else
  578. return 0;
  579. #endif
  580. }
  581. #ifdef NODE_NOT_IN_PAGE_FLAGS
  582. extern int page_to_nid(const struct page *page);
  583. #else
  584. static inline int page_to_nid(const struct page *page)
  585. {
  586. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  587. }
  588. #endif
  589. static inline struct zone *page_zone(const struct page *page)
  590. {
  591. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  592. }
  593. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  594. static inline void set_page_section(struct page *page, unsigned long section)
  595. {
  596. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  597. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  598. }
  599. static inline unsigned long page_to_section(const struct page *page)
  600. {
  601. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  602. }
  603. #endif
  604. static inline void set_page_zone(struct page *page, enum zone_type zone)
  605. {
  606. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  607. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  608. }
  609. static inline void set_page_node(struct page *page, unsigned long node)
  610. {
  611. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  612. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  613. }
  614. static inline void set_page_links(struct page *page, enum zone_type zone,
  615. unsigned long node, unsigned long pfn)
  616. {
  617. set_page_zone(page, zone);
  618. set_page_node(page, node);
  619. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  620. set_page_section(page, pfn_to_section_nr(pfn));
  621. #endif
  622. }
  623. /*
  624. * Some inline functions in vmstat.h depend on page_zone()
  625. */
  626. #include <linux/vmstat.h>
  627. static __always_inline void *lowmem_page_address(const struct page *page)
  628. {
  629. return __va(PFN_PHYS(page_to_pfn(page)));
  630. }
  631. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  632. #define HASHED_PAGE_VIRTUAL
  633. #endif
  634. #if defined(WANT_PAGE_VIRTUAL)
  635. #define page_address(page) ((page)->virtual)
  636. #define set_page_address(page, address) \
  637. do { \
  638. (page)->virtual = (address); \
  639. } while(0)
  640. #define page_address_init() do { } while(0)
  641. #endif
  642. #if defined(HASHED_PAGE_VIRTUAL)
  643. void *page_address(const struct page *page);
  644. void set_page_address(struct page *page, void *virtual);
  645. void page_address_init(void);
  646. #endif
  647. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  648. #define page_address(page) lowmem_page_address(page)
  649. #define set_page_address(page, address) do { } while(0)
  650. #define page_address_init() do { } while(0)
  651. #endif
  652. /*
  653. * On an anonymous page mapped into a user virtual memory area,
  654. * page->mapping points to its anon_vma, not to a struct address_space;
  655. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  656. *
  657. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  658. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  659. * and then page->mapping points, not to an anon_vma, but to a private
  660. * structure which KSM associates with that merged page. See ksm.h.
  661. *
  662. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  663. *
  664. * Please note that, confusingly, "page_mapping" refers to the inode
  665. * address_space which maps the page from disk; whereas "page_mapped"
  666. * refers to user virtual address space into which the page is mapped.
  667. */
  668. #define PAGE_MAPPING_ANON 1
  669. #define PAGE_MAPPING_KSM 2
  670. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  671. extern struct address_space swapper_space;
  672. static inline struct address_space *page_mapping(struct page *page)
  673. {
  674. struct address_space *mapping = page->mapping;
  675. VM_BUG_ON(PageSlab(page));
  676. if (unlikely(PageSwapCache(page)))
  677. mapping = &swapper_space;
  678. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  679. mapping = NULL;
  680. return mapping;
  681. }
  682. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  683. static inline void *page_rmapping(struct page *page)
  684. {
  685. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  686. }
  687. extern struct address_space *__page_file_mapping(struct page *);
  688. static inline
  689. struct address_space *page_file_mapping(struct page *page)
  690. {
  691. if (unlikely(PageSwapCache(page)))
  692. return __page_file_mapping(page);
  693. return page->mapping;
  694. }
  695. static inline int PageAnon(struct page *page)
  696. {
  697. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  698. }
  699. /*
  700. * Return the pagecache index of the passed page. Regular pagecache pages
  701. * use ->index whereas swapcache pages use ->private
  702. */
  703. static inline pgoff_t page_index(struct page *page)
  704. {
  705. if (unlikely(PageSwapCache(page)))
  706. return page_private(page);
  707. return page->index;
  708. }
  709. extern pgoff_t __page_file_index(struct page *page);
  710. /*
  711. * Return the file index of the page. Regular pagecache pages use ->index
  712. * whereas swapcache pages use swp_offset(->private)
  713. */
  714. static inline pgoff_t page_file_index(struct page *page)
  715. {
  716. if (unlikely(PageSwapCache(page)))
  717. return __page_file_index(page);
  718. return page->index;
  719. }
  720. /*
  721. * Return true if this page is mapped into pagetables.
  722. */
  723. static inline int page_mapped(struct page *page)
  724. {
  725. return atomic_read(&(page)->_mapcount) >= 0;
  726. }
  727. /*
  728. * Different kinds of faults, as returned by handle_mm_fault().
  729. * Used to decide whether a process gets delivered SIGBUS or
  730. * just gets major/minor fault counters bumped up.
  731. */
  732. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  733. #define VM_FAULT_OOM 0x0001
  734. #define VM_FAULT_SIGBUS 0x0002
  735. #define VM_FAULT_MAJOR 0x0004
  736. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  737. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  738. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  739. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  740. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  741. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  742. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  743. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  744. VM_FAULT_HWPOISON_LARGE)
  745. /* Encode hstate index for a hwpoisoned large page */
  746. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  747. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  748. /*
  749. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  750. */
  751. extern void pagefault_out_of_memory(void);
  752. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  753. /*
  754. * Flags passed to show_mem() and show_free_areas() to suppress output in
  755. * various contexts.
  756. */
  757. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  758. extern void show_free_areas(unsigned int flags);
  759. extern bool skip_free_areas_node(unsigned int flags, int nid);
  760. int shmem_zero_setup(struct vm_area_struct *);
  761. extern int can_do_mlock(void);
  762. extern int user_shm_lock(size_t, struct user_struct *);
  763. extern void user_shm_unlock(size_t, struct user_struct *);
  764. /*
  765. * Parameter block passed down to zap_pte_range in exceptional cases.
  766. */
  767. struct zap_details {
  768. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  769. struct address_space *check_mapping; /* Check page->mapping if set */
  770. pgoff_t first_index; /* Lowest page->index to unmap */
  771. pgoff_t last_index; /* Highest page->index to unmap */
  772. };
  773. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  774. pte_t pte);
  775. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  776. unsigned long size);
  777. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  778. unsigned long size, struct zap_details *);
  779. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  780. unsigned long start, unsigned long end);
  781. /**
  782. * mm_walk - callbacks for walk_page_range
  783. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  784. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  785. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  786. * this handler is required to be able to handle
  787. * pmd_trans_huge() pmds. They may simply choose to
  788. * split_huge_page() instead of handling it explicitly.
  789. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  790. * @pte_hole: if set, called for each hole at all levels
  791. * @hugetlb_entry: if set, called for each hugetlb entry
  792. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  793. * is used.
  794. *
  795. * (see walk_page_range for more details)
  796. */
  797. struct mm_walk {
  798. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  799. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  800. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  801. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  802. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  803. int (*hugetlb_entry)(pte_t *, unsigned long,
  804. unsigned long, unsigned long, struct mm_walk *);
  805. struct mm_struct *mm;
  806. void *private;
  807. };
  808. int walk_page_range(unsigned long addr, unsigned long end,
  809. struct mm_walk *walk);
  810. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  811. unsigned long end, unsigned long floor, unsigned long ceiling);
  812. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  813. struct vm_area_struct *vma);
  814. void unmap_mapping_range(struct address_space *mapping,
  815. loff_t const holebegin, loff_t const holelen, int even_cows);
  816. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  817. unsigned long *pfn);
  818. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  819. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  820. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  821. void *buf, int len, int write);
  822. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  823. loff_t const holebegin, loff_t const holelen)
  824. {
  825. unmap_mapping_range(mapping, holebegin, holelen, 0);
  826. }
  827. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  828. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  829. extern int vmtruncate(struct inode *inode, loff_t offset);
  830. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  831. int truncate_inode_page(struct address_space *mapping, struct page *page);
  832. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  833. int invalidate_inode_page(struct page *page);
  834. #ifdef CONFIG_MMU
  835. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  836. unsigned long address, unsigned int flags);
  837. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  838. unsigned long address, unsigned int fault_flags);
  839. #else
  840. static inline int handle_mm_fault(struct mm_struct *mm,
  841. struct vm_area_struct *vma, unsigned long address,
  842. unsigned int flags)
  843. {
  844. /* should never happen if there's no MMU */
  845. BUG();
  846. return VM_FAULT_SIGBUS;
  847. }
  848. static inline int fixup_user_fault(struct task_struct *tsk,
  849. struct mm_struct *mm, unsigned long address,
  850. unsigned int fault_flags)
  851. {
  852. /* should never happen if there's no MMU */
  853. BUG();
  854. return -EFAULT;
  855. }
  856. #endif
  857. extern int make_pages_present(unsigned long addr, unsigned long end);
  858. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  859. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  860. void *buf, int len, int write);
  861. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  862. unsigned long start, int len, unsigned int foll_flags,
  863. struct page **pages, struct vm_area_struct **vmas,
  864. int *nonblocking);
  865. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  866. unsigned long start, int nr_pages, int write, int force,
  867. struct page **pages, struct vm_area_struct **vmas);
  868. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  869. struct page **pages);
  870. struct kvec;
  871. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  872. struct page **pages);
  873. int get_kernel_page(unsigned long start, int write, struct page **pages);
  874. struct page *get_dump_page(unsigned long addr);
  875. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  876. extern void do_invalidatepage(struct page *page, unsigned long offset);
  877. int __set_page_dirty_nobuffers(struct page *page);
  878. int __set_page_dirty_no_writeback(struct page *page);
  879. int redirty_page_for_writepage(struct writeback_control *wbc,
  880. struct page *page);
  881. void account_page_dirtied(struct page *page, struct address_space *mapping);
  882. void account_page_writeback(struct page *page);
  883. int set_page_dirty(struct page *page);
  884. int set_page_dirty_lock(struct page *page);
  885. int clear_page_dirty_for_io(struct page *page);
  886. /* Is the vma a continuation of the stack vma above it? */
  887. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  888. {
  889. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  890. }
  891. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  892. unsigned long addr)
  893. {
  894. return (vma->vm_flags & VM_GROWSDOWN) &&
  895. (vma->vm_start == addr) &&
  896. !vma_growsdown(vma->vm_prev, addr);
  897. }
  898. /* Is the vma a continuation of the stack vma below it? */
  899. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  900. {
  901. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  902. }
  903. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  904. unsigned long addr)
  905. {
  906. return (vma->vm_flags & VM_GROWSUP) &&
  907. (vma->vm_end == addr) &&
  908. !vma_growsup(vma->vm_next, addr);
  909. }
  910. extern pid_t
  911. vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
  912. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  913. unsigned long old_addr, struct vm_area_struct *new_vma,
  914. unsigned long new_addr, unsigned long len);
  915. extern unsigned long do_mremap(unsigned long addr,
  916. unsigned long old_len, unsigned long new_len,
  917. unsigned long flags, unsigned long new_addr);
  918. extern int mprotect_fixup(struct vm_area_struct *vma,
  919. struct vm_area_struct **pprev, unsigned long start,
  920. unsigned long end, unsigned long newflags);
  921. /*
  922. * doesn't attempt to fault and will return short.
  923. */
  924. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  925. struct page **pages);
  926. /*
  927. * per-process(per-mm_struct) statistics.
  928. */
  929. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  930. {
  931. long val = atomic_long_read(&mm->rss_stat.count[member]);
  932. #ifdef SPLIT_RSS_COUNTING
  933. /*
  934. * counter is updated in asynchronous manner and may go to minus.
  935. * But it's never be expected number for users.
  936. */
  937. if (val < 0)
  938. val = 0;
  939. #endif
  940. return (unsigned long)val;
  941. }
  942. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  943. {
  944. atomic_long_add(value, &mm->rss_stat.count[member]);
  945. }
  946. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  947. {
  948. atomic_long_inc(&mm->rss_stat.count[member]);
  949. }
  950. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  951. {
  952. atomic_long_dec(&mm->rss_stat.count[member]);
  953. }
  954. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  955. {
  956. return get_mm_counter(mm, MM_FILEPAGES) +
  957. get_mm_counter(mm, MM_ANONPAGES);
  958. }
  959. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  960. {
  961. return max(mm->hiwater_rss, get_mm_rss(mm));
  962. }
  963. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  964. {
  965. return max(mm->hiwater_vm, mm->total_vm);
  966. }
  967. static inline void update_hiwater_rss(struct mm_struct *mm)
  968. {
  969. unsigned long _rss = get_mm_rss(mm);
  970. if ((mm)->hiwater_rss < _rss)
  971. (mm)->hiwater_rss = _rss;
  972. }
  973. static inline void update_hiwater_vm(struct mm_struct *mm)
  974. {
  975. if (mm->hiwater_vm < mm->total_vm)
  976. mm->hiwater_vm = mm->total_vm;
  977. }
  978. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  979. struct mm_struct *mm)
  980. {
  981. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  982. if (*maxrss < hiwater_rss)
  983. *maxrss = hiwater_rss;
  984. }
  985. #if defined(SPLIT_RSS_COUNTING)
  986. void sync_mm_rss(struct mm_struct *mm);
  987. #else
  988. static inline void sync_mm_rss(struct mm_struct *mm)
  989. {
  990. }
  991. #endif
  992. int vma_wants_writenotify(struct vm_area_struct *vma);
  993. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  994. spinlock_t **ptl);
  995. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  996. spinlock_t **ptl)
  997. {
  998. pte_t *ptep;
  999. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1000. return ptep;
  1001. }
  1002. #ifdef __PAGETABLE_PUD_FOLDED
  1003. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1004. unsigned long address)
  1005. {
  1006. return 0;
  1007. }
  1008. #else
  1009. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1010. #endif
  1011. #ifdef __PAGETABLE_PMD_FOLDED
  1012. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1013. unsigned long address)
  1014. {
  1015. return 0;
  1016. }
  1017. #else
  1018. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1019. #endif
  1020. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1021. pmd_t *pmd, unsigned long address);
  1022. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1023. /*
  1024. * The following ifdef needed to get the 4level-fixup.h header to work.
  1025. * Remove it when 4level-fixup.h has been removed.
  1026. */
  1027. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1028. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1029. {
  1030. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1031. NULL: pud_offset(pgd, address);
  1032. }
  1033. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1034. {
  1035. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1036. NULL: pmd_offset(pud, address);
  1037. }
  1038. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1039. #if USE_SPLIT_PTLOCKS
  1040. /*
  1041. * We tuck a spinlock to guard each pagetable page into its struct page,
  1042. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1043. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1044. * When freeing, reset page->mapping so free_pages_check won't complain.
  1045. */
  1046. #define __pte_lockptr(page) &((page)->ptl)
  1047. #define pte_lock_init(_page) do { \
  1048. spin_lock_init(__pte_lockptr(_page)); \
  1049. } while (0)
  1050. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1051. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1052. #else /* !USE_SPLIT_PTLOCKS */
  1053. /*
  1054. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1055. */
  1056. #define pte_lock_init(page) do {} while (0)
  1057. #define pte_lock_deinit(page) do {} while (0)
  1058. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1059. #endif /* USE_SPLIT_PTLOCKS */
  1060. static inline void pgtable_page_ctor(struct page *page)
  1061. {
  1062. pte_lock_init(page);
  1063. inc_zone_page_state(page, NR_PAGETABLE);
  1064. }
  1065. static inline void pgtable_page_dtor(struct page *page)
  1066. {
  1067. pte_lock_deinit(page);
  1068. dec_zone_page_state(page, NR_PAGETABLE);
  1069. }
  1070. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1071. ({ \
  1072. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1073. pte_t *__pte = pte_offset_map(pmd, address); \
  1074. *(ptlp) = __ptl; \
  1075. spin_lock(__ptl); \
  1076. __pte; \
  1077. })
  1078. #define pte_unmap_unlock(pte, ptl) do { \
  1079. spin_unlock(ptl); \
  1080. pte_unmap(pte); \
  1081. } while (0)
  1082. #define pte_alloc_map(mm, vma, pmd, address) \
  1083. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1084. pmd, address))? \
  1085. NULL: pte_offset_map(pmd, address))
  1086. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1087. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1088. pmd, address))? \
  1089. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1090. #define pte_alloc_kernel(pmd, address) \
  1091. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1092. NULL: pte_offset_kernel(pmd, address))
  1093. extern void free_area_init(unsigned long * zones_size);
  1094. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1095. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1096. extern void free_initmem(void);
  1097. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1098. /*
  1099. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1100. * zones, allocate the backing mem_map and account for memory holes in a more
  1101. * architecture independent manner. This is a substitute for creating the
  1102. * zone_sizes[] and zholes_size[] arrays and passing them to
  1103. * free_area_init_node()
  1104. *
  1105. * An architecture is expected to register range of page frames backed by
  1106. * physical memory with memblock_add[_node]() before calling
  1107. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1108. * usage, an architecture is expected to do something like
  1109. *
  1110. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1111. * max_highmem_pfn};
  1112. * for_each_valid_physical_page_range()
  1113. * memblock_add_node(base, size, nid)
  1114. * free_area_init_nodes(max_zone_pfns);
  1115. *
  1116. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1117. * registered physical page range. Similarly
  1118. * sparse_memory_present_with_active_regions() calls memory_present() for
  1119. * each range when SPARSEMEM is enabled.
  1120. *
  1121. * See mm/page_alloc.c for more information on each function exposed by
  1122. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1123. */
  1124. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1125. unsigned long node_map_pfn_alignment(void);
  1126. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1127. unsigned long end_pfn);
  1128. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1129. unsigned long end_pfn);
  1130. extern void get_pfn_range_for_nid(unsigned int nid,
  1131. unsigned long *start_pfn, unsigned long *end_pfn);
  1132. extern unsigned long find_min_pfn_with_active_regions(void);
  1133. extern void free_bootmem_with_active_regions(int nid,
  1134. unsigned long max_low_pfn);
  1135. extern void sparse_memory_present_with_active_regions(int nid);
  1136. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1137. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1138. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1139. static inline int __early_pfn_to_nid(unsigned long pfn)
  1140. {
  1141. return 0;
  1142. }
  1143. #else
  1144. /* please see mm/page_alloc.c */
  1145. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1146. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1147. /* there is a per-arch backend function. */
  1148. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1149. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1150. #endif
  1151. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1152. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1153. unsigned long, enum memmap_context);
  1154. extern void setup_per_zone_wmarks(void);
  1155. extern int __meminit init_per_zone_wmark_min(void);
  1156. extern void mem_init(void);
  1157. extern void __init mmap_init(void);
  1158. extern void show_mem(unsigned int flags);
  1159. extern void si_meminfo(struct sysinfo * val);
  1160. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1161. extern int after_bootmem;
  1162. extern __printf(3, 4)
  1163. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1164. extern void setup_per_cpu_pageset(void);
  1165. extern void zone_pcp_update(struct zone *zone);
  1166. extern void zone_pcp_reset(struct zone *zone);
  1167. /* nommu.c */
  1168. extern atomic_long_t mmap_pages_allocated;
  1169. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1170. /* interval_tree.c */
  1171. void vma_interval_tree_add(struct vm_area_struct *vma,
  1172. struct vm_area_struct *old,
  1173. struct address_space *mapping);
  1174. void vma_interval_tree_insert(struct vm_area_struct *node,
  1175. struct rb_root *root);
  1176. void vma_interval_tree_remove(struct vm_area_struct *node,
  1177. struct rb_root *root);
  1178. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1179. unsigned long start, unsigned long last);
  1180. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1181. unsigned long start, unsigned long last);
  1182. #define vma_interval_tree_foreach(vma, root, start, last) \
  1183. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1184. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1185. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1186. struct list_head *list)
  1187. {
  1188. list_add_tail(&vma->shared.nonlinear, list);
  1189. }
  1190. /* mmap.c */
  1191. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1192. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1193. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1194. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1195. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1196. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1197. struct mempolicy *);
  1198. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1199. extern int split_vma(struct mm_struct *,
  1200. struct vm_area_struct *, unsigned long addr, int new_below);
  1201. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1202. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1203. struct rb_node **, struct rb_node *);
  1204. extern void unlink_file_vma(struct vm_area_struct *);
  1205. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1206. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1207. extern void exit_mmap(struct mm_struct *);
  1208. extern int mm_take_all_locks(struct mm_struct *mm);
  1209. extern void mm_drop_all_locks(struct mm_struct *mm);
  1210. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1211. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1212. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1213. extern int install_special_mapping(struct mm_struct *mm,
  1214. unsigned long addr, unsigned long len,
  1215. unsigned long flags, struct page **pages);
  1216. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1217. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1218. unsigned long len, unsigned long flags,
  1219. vm_flags_t vm_flags, unsigned long pgoff);
  1220. extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
  1221. unsigned long, unsigned long,
  1222. unsigned long, unsigned long);
  1223. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1224. /* These take the mm semaphore themselves */
  1225. extern unsigned long vm_brk(unsigned long, unsigned long);
  1226. extern int vm_munmap(unsigned long, size_t);
  1227. extern unsigned long vm_mmap(struct file *, unsigned long,
  1228. unsigned long, unsigned long,
  1229. unsigned long, unsigned long);
  1230. /* truncate.c */
  1231. extern void truncate_inode_pages(struct address_space *, loff_t);
  1232. extern void truncate_inode_pages_range(struct address_space *,
  1233. loff_t lstart, loff_t lend);
  1234. /* generic vm_area_ops exported for stackable file systems */
  1235. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1236. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1237. /* mm/page-writeback.c */
  1238. int write_one_page(struct page *page, int wait);
  1239. void task_dirty_inc(struct task_struct *tsk);
  1240. /* readahead.c */
  1241. #define VM_MAX_READAHEAD 128 /* kbytes */
  1242. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1243. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1244. pgoff_t offset, unsigned long nr_to_read);
  1245. void page_cache_sync_readahead(struct address_space *mapping,
  1246. struct file_ra_state *ra,
  1247. struct file *filp,
  1248. pgoff_t offset,
  1249. unsigned long size);
  1250. void page_cache_async_readahead(struct address_space *mapping,
  1251. struct file_ra_state *ra,
  1252. struct file *filp,
  1253. struct page *pg,
  1254. pgoff_t offset,
  1255. unsigned long size);
  1256. unsigned long max_sane_readahead(unsigned long nr);
  1257. unsigned long ra_submit(struct file_ra_state *ra,
  1258. struct address_space *mapping,
  1259. struct file *filp);
  1260. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1261. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1262. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1263. extern int expand_downwards(struct vm_area_struct *vma,
  1264. unsigned long address);
  1265. #if VM_GROWSUP
  1266. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1267. #else
  1268. #define expand_upwards(vma, address) do { } while (0)
  1269. #endif
  1270. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1271. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1272. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1273. struct vm_area_struct **pprev);
  1274. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1275. NULL if none. Assume start_addr < end_addr. */
  1276. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1277. {
  1278. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1279. if (vma && end_addr <= vma->vm_start)
  1280. vma = NULL;
  1281. return vma;
  1282. }
  1283. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1284. {
  1285. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1286. }
  1287. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1288. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1289. unsigned long vm_start, unsigned long vm_end)
  1290. {
  1291. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1292. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1293. vma = NULL;
  1294. return vma;
  1295. }
  1296. #ifdef CONFIG_MMU
  1297. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1298. #else
  1299. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1300. {
  1301. return __pgprot(0);
  1302. }
  1303. #endif
  1304. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1305. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1306. unsigned long pfn, unsigned long size, pgprot_t);
  1307. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1308. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1309. unsigned long pfn);
  1310. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1311. unsigned long pfn);
  1312. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1313. unsigned int foll_flags);
  1314. #define FOLL_WRITE 0x01 /* check pte is writable */
  1315. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1316. #define FOLL_GET 0x04 /* do get_page on page */
  1317. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1318. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1319. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1320. * and return without waiting upon it */
  1321. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1322. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1323. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1324. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1325. void *data);
  1326. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1327. unsigned long size, pte_fn_t fn, void *data);
  1328. #ifdef CONFIG_PROC_FS
  1329. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1330. #else
  1331. static inline void vm_stat_account(struct mm_struct *mm,
  1332. unsigned long flags, struct file *file, long pages)
  1333. {
  1334. mm->total_vm += pages;
  1335. }
  1336. #endif /* CONFIG_PROC_FS */
  1337. #ifdef CONFIG_DEBUG_PAGEALLOC
  1338. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1339. #ifdef CONFIG_HIBERNATION
  1340. extern bool kernel_page_present(struct page *page);
  1341. #endif /* CONFIG_HIBERNATION */
  1342. #else
  1343. static inline void
  1344. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1345. #ifdef CONFIG_HIBERNATION
  1346. static inline bool kernel_page_present(struct page *page) { return true; }
  1347. #endif /* CONFIG_HIBERNATION */
  1348. #endif
  1349. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1350. #ifdef __HAVE_ARCH_GATE_AREA
  1351. int in_gate_area_no_mm(unsigned long addr);
  1352. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1353. #else
  1354. int in_gate_area_no_mm(unsigned long addr);
  1355. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1356. #endif /* __HAVE_ARCH_GATE_AREA */
  1357. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1358. void __user *, size_t *, loff_t *);
  1359. unsigned long shrink_slab(struct shrink_control *shrink,
  1360. unsigned long nr_pages_scanned,
  1361. unsigned long lru_pages);
  1362. #ifndef CONFIG_MMU
  1363. #define randomize_va_space 0
  1364. #else
  1365. extern int randomize_va_space;
  1366. #endif
  1367. const char * arch_vma_name(struct vm_area_struct *vma);
  1368. void print_vma_addr(char *prefix, unsigned long rip);
  1369. void sparse_mem_maps_populate_node(struct page **map_map,
  1370. unsigned long pnum_begin,
  1371. unsigned long pnum_end,
  1372. unsigned long map_count,
  1373. int nodeid);
  1374. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1375. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1376. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1377. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1378. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1379. void *vmemmap_alloc_block(unsigned long size, int node);
  1380. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1381. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1382. int vmemmap_populate_basepages(struct page *start_page,
  1383. unsigned long pages, int node);
  1384. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1385. void vmemmap_populate_print_last(void);
  1386. enum mf_flags {
  1387. MF_COUNT_INCREASED = 1 << 0,
  1388. MF_ACTION_REQUIRED = 1 << 1,
  1389. MF_MUST_KILL = 1 << 2,
  1390. };
  1391. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1392. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1393. extern int unpoison_memory(unsigned long pfn);
  1394. extern int sysctl_memory_failure_early_kill;
  1395. extern int sysctl_memory_failure_recovery;
  1396. extern void shake_page(struct page *p, int access);
  1397. extern atomic_long_t mce_bad_pages;
  1398. extern int soft_offline_page(struct page *page, int flags);
  1399. extern void dump_page(struct page *page);
  1400. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1401. extern void clear_huge_page(struct page *page,
  1402. unsigned long addr,
  1403. unsigned int pages_per_huge_page);
  1404. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1405. unsigned long addr, struct vm_area_struct *vma,
  1406. unsigned int pages_per_huge_page);
  1407. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1408. #ifdef CONFIG_DEBUG_PAGEALLOC
  1409. extern unsigned int _debug_guardpage_minorder;
  1410. static inline unsigned int debug_guardpage_minorder(void)
  1411. {
  1412. return _debug_guardpage_minorder;
  1413. }
  1414. static inline bool page_is_guard(struct page *page)
  1415. {
  1416. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1417. }
  1418. #else
  1419. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1420. static inline bool page_is_guard(struct page *page) { return false; }
  1421. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1422. #endif /* __KERNEL__ */
  1423. #endif /* _LINUX_MM_H */