amba-pl08x.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211
  1. /*
  2. * Copyright (c) 2006 ARM Ltd.
  3. * Copyright (c) 2010 ST-Ericsson SA
  4. *
  5. * Author: Peter Pearse <peter.pearse@arm.com>
  6. * Author: Linus Walleij <linus.walleij@stericsson.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. *
  22. * The full GNU General Public License is in this distribution in the file
  23. * called COPYING.
  24. *
  25. * Documentation: ARM DDI 0196G == PL080
  26. * Documentation: ARM DDI 0218E == PL081
  27. *
  28. * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  29. * channel.
  30. *
  31. * The PL080 has 8 channels available for simultaneous use, and the PL081
  32. * has only two channels. So on these DMA controllers the number of channels
  33. * and the number of incoming DMA signals are two totally different things.
  34. * It is usually not possible to theoretically handle all physical signals,
  35. * so a multiplexing scheme with possible denial of use is necessary.
  36. *
  37. * The PL080 has a dual bus master, PL081 has a single master.
  38. *
  39. * Memory to peripheral transfer may be visualized as
  40. * Get data from memory to DMAC
  41. * Until no data left
  42. * On burst request from peripheral
  43. * Destination burst from DMAC to peripheral
  44. * Clear burst request
  45. * Raise terminal count interrupt
  46. *
  47. * For peripherals with a FIFO:
  48. * Source burst size == half the depth of the peripheral FIFO
  49. * Destination burst size == the depth of the peripheral FIFO
  50. *
  51. * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52. * signals, the DMA controller will simply facilitate its AHB master.)
  53. *
  54. * ASSUMES default (little) endianness for DMA transfers
  55. *
  56. * The PL08x has two flow control settings:
  57. * - DMAC flow control: the transfer size defines the number of transfers
  58. * which occur for the current LLI entry, and the DMAC raises TC at the
  59. * end of every LLI entry. Observed behaviour shows the DMAC listening
  60. * to both the BREQ and SREQ signals (contrary to documented),
  61. * transferring data if either is active. The LBREQ and LSREQ signals
  62. * are ignored.
  63. *
  64. * - Peripheral flow control: the transfer size is ignored (and should be
  65. * zero). The data is transferred from the current LLI entry, until
  66. * after the final transfer signalled by LBREQ or LSREQ. The DMAC
  67. * will then move to the next LLI entry.
  68. *
  69. * Global TODO:
  70. * - Break out common code from arch/arm/mach-s3c64xx and share
  71. */
  72. #include <linux/amba/bus.h>
  73. #include <linux/amba/pl08x.h>
  74. #include <linux/debugfs.h>
  75. #include <linux/delay.h>
  76. #include <linux/device.h>
  77. #include <linux/dmaengine.h>
  78. #include <linux/dmapool.h>
  79. #include <linux/dma-mapping.h>
  80. #include <linux/init.h>
  81. #include <linux/interrupt.h>
  82. #include <linux/module.h>
  83. #include <linux/pm_runtime.h>
  84. #include <linux/seq_file.h>
  85. #include <linux/slab.h>
  86. #include <asm/hardware/pl080.h>
  87. #include "dmaengine.h"
  88. #define DRIVER_NAME "pl08xdmac"
  89. static struct amba_driver pl08x_amba_driver;
  90. struct pl08x_driver_data;
  91. /**
  92. * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  93. * @channels: the number of channels available in this variant
  94. * @dualmaster: whether this version supports dual AHB masters or not.
  95. * @nomadik: whether the channels have Nomadik security extension bits
  96. * that need to be checked for permission before use and some registers are
  97. * missing
  98. */
  99. struct vendor_data {
  100. u8 channels;
  101. bool dualmaster;
  102. bool nomadik;
  103. };
  104. /*
  105. * PL08X private data structures
  106. * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
  107. * start & end do not - their bus bit info is in cctl. Also note that these
  108. * are fixed 32-bit quantities.
  109. */
  110. struct pl08x_lli {
  111. u32 src;
  112. u32 dst;
  113. u32 lli;
  114. u32 cctl;
  115. };
  116. /**
  117. * struct pl08x_bus_data - information of source or destination
  118. * busses for a transfer
  119. * @addr: current address
  120. * @maxwidth: the maximum width of a transfer on this bus
  121. * @buswidth: the width of this bus in bytes: 1, 2 or 4
  122. */
  123. struct pl08x_bus_data {
  124. dma_addr_t addr;
  125. u8 maxwidth;
  126. u8 buswidth;
  127. };
  128. /**
  129. * struct pl08x_phy_chan - holder for the physical channels
  130. * @id: physical index to this channel
  131. * @lock: a lock to use when altering an instance of this struct
  132. * @signal: the physical signal (aka channel) serving this physical channel
  133. * right now
  134. * @serving: the virtual channel currently being served by this physical
  135. * channel
  136. */
  137. struct pl08x_phy_chan {
  138. unsigned int id;
  139. void __iomem *base;
  140. spinlock_t lock;
  141. int signal;
  142. struct pl08x_dma_chan *serving;
  143. };
  144. /**
  145. * struct pl08x_sg - structure containing data per sg
  146. * @src_addr: src address of sg
  147. * @dst_addr: dst address of sg
  148. * @len: transfer len in bytes
  149. * @node: node for txd's dsg_list
  150. */
  151. struct pl08x_sg {
  152. dma_addr_t src_addr;
  153. dma_addr_t dst_addr;
  154. size_t len;
  155. struct list_head node;
  156. };
  157. /**
  158. * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
  159. * @tx: async tx descriptor
  160. * @node: node for txd list for channels
  161. * @dsg_list: list of children sg's
  162. * @direction: direction of transfer
  163. * @llis_bus: DMA memory address (physical) start for the LLIs
  164. * @llis_va: virtual memory address start for the LLIs
  165. * @cctl: control reg values for current txd
  166. * @ccfg: config reg values for current txd
  167. */
  168. struct pl08x_txd {
  169. struct dma_async_tx_descriptor tx;
  170. struct list_head node;
  171. struct list_head dsg_list;
  172. enum dma_transfer_direction direction;
  173. dma_addr_t llis_bus;
  174. struct pl08x_lli *llis_va;
  175. /* Default cctl value for LLIs */
  176. u32 cctl;
  177. /*
  178. * Settings to be put into the physical channel when we
  179. * trigger this txd. Other registers are in llis_va[0].
  180. */
  181. u32 ccfg;
  182. };
  183. /**
  184. * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
  185. * states
  186. * @PL08X_CHAN_IDLE: the channel is idle
  187. * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
  188. * channel and is running a transfer on it
  189. * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
  190. * channel, but the transfer is currently paused
  191. * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
  192. * channel to become available (only pertains to memcpy channels)
  193. */
  194. enum pl08x_dma_chan_state {
  195. PL08X_CHAN_IDLE,
  196. PL08X_CHAN_RUNNING,
  197. PL08X_CHAN_PAUSED,
  198. PL08X_CHAN_WAITING,
  199. };
  200. /**
  201. * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
  202. * @chan: wrappped abstract channel
  203. * @phychan: the physical channel utilized by this channel, if there is one
  204. * @phychan_hold: if non-zero, hold on to the physical channel even if we
  205. * have no pending entries
  206. * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
  207. * @name: name of channel
  208. * @cd: channel platform data
  209. * @runtime_addr: address for RX/TX according to the runtime config
  210. * @pend_list: queued transactions pending on this channel
  211. * @at: active transaction on this channel
  212. * @lock: a lock for this channel data
  213. * @host: a pointer to the host (internal use)
  214. * @state: whether the channel is idle, paused, running etc
  215. * @slave: whether this channel is a device (slave) or for memcpy
  216. * @waiting: a TX descriptor on this channel which is waiting for a physical
  217. * channel to become available
  218. */
  219. struct pl08x_dma_chan {
  220. struct dma_chan chan;
  221. struct pl08x_phy_chan *phychan;
  222. int phychan_hold;
  223. struct tasklet_struct tasklet;
  224. const char *name;
  225. const struct pl08x_channel_data *cd;
  226. struct dma_slave_config cfg;
  227. struct list_head pend_list;
  228. struct pl08x_txd *at;
  229. spinlock_t lock;
  230. struct pl08x_driver_data *host;
  231. enum pl08x_dma_chan_state state;
  232. bool slave;
  233. struct pl08x_txd *waiting;
  234. };
  235. /**
  236. * struct pl08x_driver_data - the local state holder for the PL08x
  237. * @slave: slave engine for this instance
  238. * @memcpy: memcpy engine for this instance
  239. * @base: virtual memory base (remapped) for the PL08x
  240. * @adev: the corresponding AMBA (PrimeCell) bus entry
  241. * @vd: vendor data for this PL08x variant
  242. * @pd: platform data passed in from the platform/machine
  243. * @phy_chans: array of data for the physical channels
  244. * @pool: a pool for the LLI descriptors
  245. * @pool_ctr: counter of LLIs in the pool
  246. * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
  247. * fetches
  248. * @mem_buses: set to indicate memory transfers on AHB2.
  249. * @lock: a spinlock for this struct
  250. */
  251. struct pl08x_driver_data {
  252. struct dma_device slave;
  253. struct dma_device memcpy;
  254. void __iomem *base;
  255. struct amba_device *adev;
  256. const struct vendor_data *vd;
  257. struct pl08x_platform_data *pd;
  258. struct pl08x_phy_chan *phy_chans;
  259. struct dma_pool *pool;
  260. int pool_ctr;
  261. u8 lli_buses;
  262. u8 mem_buses;
  263. };
  264. /*
  265. * PL08X specific defines
  266. */
  267. /* Size (bytes) of each LLI buffer allocated for one transfer */
  268. # define PL08X_LLI_TSFR_SIZE 0x2000
  269. /* Maximum times we call dma_pool_alloc on this pool without freeing */
  270. #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
  271. #define PL08X_ALIGN 8
  272. static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
  273. {
  274. return container_of(chan, struct pl08x_dma_chan, chan);
  275. }
  276. static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
  277. {
  278. return container_of(tx, struct pl08x_txd, tx);
  279. }
  280. /*
  281. * Mux handling.
  282. *
  283. * This gives us the DMA request input to the PL08x primecell which the
  284. * peripheral described by the channel data will be routed to, possibly
  285. * via a board/SoC specific external MUX. One important point to note
  286. * here is that this does not depend on the physical channel.
  287. */
  288. static int pl08x_request_mux(struct pl08x_dma_chan *plchan, struct pl08x_phy_chan *ch)
  289. {
  290. const struct pl08x_platform_data *pd = plchan->host->pd;
  291. int ret;
  292. if (pd->get_signal) {
  293. ret = pd->get_signal(plchan->cd);
  294. if (ret < 0)
  295. return ret;
  296. ch->signal = ret;
  297. }
  298. return 0;
  299. }
  300. static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
  301. {
  302. const struct pl08x_platform_data *pd = plchan->host->pd;
  303. if (plchan->phychan->signal >= 0 && pd->put_signal) {
  304. pd->put_signal(plchan->cd, plchan->phychan->signal);
  305. plchan->phychan->signal = -1;
  306. }
  307. }
  308. /*
  309. * Physical channel handling
  310. */
  311. /* Whether a certain channel is busy or not */
  312. static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
  313. {
  314. unsigned int val;
  315. val = readl(ch->base + PL080_CH_CONFIG);
  316. return val & PL080_CONFIG_ACTIVE;
  317. }
  318. /*
  319. * Set the initial DMA register values i.e. those for the first LLI
  320. * The next LLI pointer and the configuration interrupt bit have
  321. * been set when the LLIs were constructed. Poke them into the hardware
  322. * and start the transfer.
  323. */
  324. static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
  325. struct pl08x_txd *txd)
  326. {
  327. struct pl08x_driver_data *pl08x = plchan->host;
  328. struct pl08x_phy_chan *phychan = plchan->phychan;
  329. struct pl08x_lli *lli = &txd->llis_va[0];
  330. u32 val;
  331. plchan->at = txd;
  332. /* Wait for channel inactive */
  333. while (pl08x_phy_channel_busy(phychan))
  334. cpu_relax();
  335. dev_vdbg(&pl08x->adev->dev,
  336. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  337. "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
  338. phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
  339. txd->ccfg);
  340. writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
  341. writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
  342. writel(lli->lli, phychan->base + PL080_CH_LLI);
  343. writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
  344. writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
  345. /* Enable the DMA channel */
  346. /* Do not access config register until channel shows as disabled */
  347. while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
  348. cpu_relax();
  349. /* Do not access config register until channel shows as inactive */
  350. val = readl(phychan->base + PL080_CH_CONFIG);
  351. while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
  352. val = readl(phychan->base + PL080_CH_CONFIG);
  353. writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
  354. }
  355. /*
  356. * Pause the channel by setting the HALT bit.
  357. *
  358. * For M->P transfers, pause the DMAC first and then stop the peripheral -
  359. * the FIFO can only drain if the peripheral is still requesting data.
  360. * (note: this can still timeout if the DMAC FIFO never drains of data.)
  361. *
  362. * For P->M transfers, disable the peripheral first to stop it filling
  363. * the DMAC FIFO, and then pause the DMAC.
  364. */
  365. static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
  366. {
  367. u32 val;
  368. int timeout;
  369. /* Set the HALT bit and wait for the FIFO to drain */
  370. val = readl(ch->base + PL080_CH_CONFIG);
  371. val |= PL080_CONFIG_HALT;
  372. writel(val, ch->base + PL080_CH_CONFIG);
  373. /* Wait for channel inactive */
  374. for (timeout = 1000; timeout; timeout--) {
  375. if (!pl08x_phy_channel_busy(ch))
  376. break;
  377. udelay(1);
  378. }
  379. if (pl08x_phy_channel_busy(ch))
  380. pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
  381. }
  382. static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
  383. {
  384. u32 val;
  385. /* Clear the HALT bit */
  386. val = readl(ch->base + PL080_CH_CONFIG);
  387. val &= ~PL080_CONFIG_HALT;
  388. writel(val, ch->base + PL080_CH_CONFIG);
  389. }
  390. /*
  391. * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
  392. * clears any pending interrupt status. This should not be used for
  393. * an on-going transfer, but as a method of shutting down a channel
  394. * (eg, when it's no longer used) or terminating a transfer.
  395. */
  396. static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
  397. struct pl08x_phy_chan *ch)
  398. {
  399. u32 val = readl(ch->base + PL080_CH_CONFIG);
  400. val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
  401. PL080_CONFIG_TC_IRQ_MASK);
  402. writel(val, ch->base + PL080_CH_CONFIG);
  403. writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
  404. writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
  405. }
  406. static inline u32 get_bytes_in_cctl(u32 cctl)
  407. {
  408. /* The source width defines the number of bytes */
  409. u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
  410. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  411. case PL080_WIDTH_8BIT:
  412. break;
  413. case PL080_WIDTH_16BIT:
  414. bytes *= 2;
  415. break;
  416. case PL080_WIDTH_32BIT:
  417. bytes *= 4;
  418. break;
  419. }
  420. return bytes;
  421. }
  422. /* The channel should be paused when calling this */
  423. static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
  424. {
  425. struct pl08x_phy_chan *ch;
  426. struct pl08x_txd *txd;
  427. unsigned long flags;
  428. size_t bytes = 0;
  429. spin_lock_irqsave(&plchan->lock, flags);
  430. ch = plchan->phychan;
  431. txd = plchan->at;
  432. /*
  433. * Follow the LLIs to get the number of remaining
  434. * bytes in the currently active transaction.
  435. */
  436. if (ch && txd) {
  437. u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
  438. /* First get the remaining bytes in the active transfer */
  439. bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
  440. if (clli) {
  441. struct pl08x_lli *llis_va = txd->llis_va;
  442. dma_addr_t llis_bus = txd->llis_bus;
  443. int index;
  444. BUG_ON(clli < llis_bus || clli >= llis_bus +
  445. sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
  446. /*
  447. * Locate the next LLI - as this is an array,
  448. * it's simple maths to find.
  449. */
  450. index = (clli - llis_bus) / sizeof(struct pl08x_lli);
  451. for (; index < MAX_NUM_TSFR_LLIS; index++) {
  452. bytes += get_bytes_in_cctl(llis_va[index].cctl);
  453. /*
  454. * A LLI pointer of 0 terminates the LLI list
  455. */
  456. if (!llis_va[index].lli)
  457. break;
  458. }
  459. }
  460. }
  461. /* Sum up all queued transactions */
  462. if (!list_empty(&plchan->pend_list)) {
  463. struct pl08x_txd *txdi;
  464. list_for_each_entry(txdi, &plchan->pend_list, node) {
  465. struct pl08x_sg *dsg;
  466. list_for_each_entry(dsg, &txd->dsg_list, node)
  467. bytes += dsg->len;
  468. }
  469. }
  470. spin_unlock_irqrestore(&plchan->lock, flags);
  471. return bytes;
  472. }
  473. /*
  474. * Allocate a physical channel for a virtual channel
  475. *
  476. * Try to locate a physical channel to be used for this transfer. If all
  477. * are taken return NULL and the requester will have to cope by using
  478. * some fallback PIO mode or retrying later.
  479. */
  480. static struct pl08x_phy_chan *
  481. pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
  482. struct pl08x_dma_chan *virt_chan)
  483. {
  484. struct pl08x_phy_chan *ch = NULL;
  485. unsigned long flags;
  486. int i;
  487. for (i = 0; i < pl08x->vd->channels; i++) {
  488. ch = &pl08x->phy_chans[i];
  489. spin_lock_irqsave(&ch->lock, flags);
  490. if (!ch->locked && !ch->serving) {
  491. ch->serving = virt_chan;
  492. ch->signal = -1;
  493. spin_unlock_irqrestore(&ch->lock, flags);
  494. break;
  495. }
  496. spin_unlock_irqrestore(&ch->lock, flags);
  497. }
  498. if (i == pl08x->vd->channels) {
  499. /* No physical channel available, cope with it */
  500. return NULL;
  501. }
  502. return ch;
  503. }
  504. static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
  505. struct pl08x_phy_chan *ch)
  506. {
  507. unsigned long flags;
  508. spin_lock_irqsave(&ch->lock, flags);
  509. /* Stop the channel and clear its interrupts */
  510. pl08x_terminate_phy_chan(pl08x, ch);
  511. /* Mark it as free */
  512. ch->serving = NULL;
  513. spin_unlock_irqrestore(&ch->lock, flags);
  514. }
  515. /*
  516. * LLI handling
  517. */
  518. static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
  519. {
  520. switch (coded) {
  521. case PL080_WIDTH_8BIT:
  522. return 1;
  523. case PL080_WIDTH_16BIT:
  524. return 2;
  525. case PL080_WIDTH_32BIT:
  526. return 4;
  527. default:
  528. break;
  529. }
  530. BUG();
  531. return 0;
  532. }
  533. static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
  534. size_t tsize)
  535. {
  536. u32 retbits = cctl;
  537. /* Remove all src, dst and transfer size bits */
  538. retbits &= ~PL080_CONTROL_DWIDTH_MASK;
  539. retbits &= ~PL080_CONTROL_SWIDTH_MASK;
  540. retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
  541. /* Then set the bits according to the parameters */
  542. switch (srcwidth) {
  543. case 1:
  544. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
  545. break;
  546. case 2:
  547. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
  548. break;
  549. case 4:
  550. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
  551. break;
  552. default:
  553. BUG();
  554. break;
  555. }
  556. switch (dstwidth) {
  557. case 1:
  558. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
  559. break;
  560. case 2:
  561. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
  562. break;
  563. case 4:
  564. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
  565. break;
  566. default:
  567. BUG();
  568. break;
  569. }
  570. retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
  571. return retbits;
  572. }
  573. struct pl08x_lli_build_data {
  574. struct pl08x_txd *txd;
  575. struct pl08x_bus_data srcbus;
  576. struct pl08x_bus_data dstbus;
  577. size_t remainder;
  578. u32 lli_bus;
  579. };
  580. /*
  581. * Autoselect a master bus to use for the transfer. Slave will be the chosen as
  582. * victim in case src & dest are not similarly aligned. i.e. If after aligning
  583. * masters address with width requirements of transfer (by sending few byte by
  584. * byte data), slave is still not aligned, then its width will be reduced to
  585. * BYTE.
  586. * - prefers the destination bus if both available
  587. * - prefers bus with fixed address (i.e. peripheral)
  588. */
  589. static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
  590. struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
  591. {
  592. if (!(cctl & PL080_CONTROL_DST_INCR)) {
  593. *mbus = &bd->dstbus;
  594. *sbus = &bd->srcbus;
  595. } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
  596. *mbus = &bd->srcbus;
  597. *sbus = &bd->dstbus;
  598. } else {
  599. if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
  600. *mbus = &bd->dstbus;
  601. *sbus = &bd->srcbus;
  602. } else {
  603. *mbus = &bd->srcbus;
  604. *sbus = &bd->dstbus;
  605. }
  606. }
  607. }
  608. /*
  609. * Fills in one LLI for a certain transfer descriptor and advance the counter
  610. */
  611. static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
  612. int num_llis, int len, u32 cctl)
  613. {
  614. struct pl08x_lli *llis_va = bd->txd->llis_va;
  615. dma_addr_t llis_bus = bd->txd->llis_bus;
  616. BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
  617. llis_va[num_llis].cctl = cctl;
  618. llis_va[num_llis].src = bd->srcbus.addr;
  619. llis_va[num_llis].dst = bd->dstbus.addr;
  620. llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
  621. sizeof(struct pl08x_lli);
  622. llis_va[num_llis].lli |= bd->lli_bus;
  623. if (cctl & PL080_CONTROL_SRC_INCR)
  624. bd->srcbus.addr += len;
  625. if (cctl & PL080_CONTROL_DST_INCR)
  626. bd->dstbus.addr += len;
  627. BUG_ON(bd->remainder < len);
  628. bd->remainder -= len;
  629. }
  630. static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
  631. u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
  632. {
  633. *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
  634. pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
  635. (*total_bytes) += len;
  636. }
  637. /*
  638. * This fills in the table of LLIs for the transfer descriptor
  639. * Note that we assume we never have to change the burst sizes
  640. * Return 0 for error
  641. */
  642. static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
  643. struct pl08x_txd *txd)
  644. {
  645. struct pl08x_bus_data *mbus, *sbus;
  646. struct pl08x_lli_build_data bd;
  647. int num_llis = 0;
  648. u32 cctl, early_bytes = 0;
  649. size_t max_bytes_per_lli, total_bytes;
  650. struct pl08x_lli *llis_va;
  651. struct pl08x_sg *dsg;
  652. txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
  653. if (!txd->llis_va) {
  654. dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
  655. return 0;
  656. }
  657. pl08x->pool_ctr++;
  658. bd.txd = txd;
  659. bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
  660. cctl = txd->cctl;
  661. /* Find maximum width of the source bus */
  662. bd.srcbus.maxwidth =
  663. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
  664. PL080_CONTROL_SWIDTH_SHIFT);
  665. /* Find maximum width of the destination bus */
  666. bd.dstbus.maxwidth =
  667. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
  668. PL080_CONTROL_DWIDTH_SHIFT);
  669. list_for_each_entry(dsg, &txd->dsg_list, node) {
  670. total_bytes = 0;
  671. cctl = txd->cctl;
  672. bd.srcbus.addr = dsg->src_addr;
  673. bd.dstbus.addr = dsg->dst_addr;
  674. bd.remainder = dsg->len;
  675. bd.srcbus.buswidth = bd.srcbus.maxwidth;
  676. bd.dstbus.buswidth = bd.dstbus.maxwidth;
  677. pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
  678. dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
  679. bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
  680. bd.srcbus.buswidth,
  681. bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
  682. bd.dstbus.buswidth,
  683. bd.remainder);
  684. dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
  685. mbus == &bd.srcbus ? "src" : "dst",
  686. sbus == &bd.srcbus ? "src" : "dst");
  687. /*
  688. * Zero length is only allowed if all these requirements are
  689. * met:
  690. * - flow controller is peripheral.
  691. * - src.addr is aligned to src.width
  692. * - dst.addr is aligned to dst.width
  693. *
  694. * sg_len == 1 should be true, as there can be two cases here:
  695. *
  696. * - Memory addresses are contiguous and are not scattered.
  697. * Here, Only one sg will be passed by user driver, with
  698. * memory address and zero length. We pass this to controller
  699. * and after the transfer it will receive the last burst
  700. * request from peripheral and so transfer finishes.
  701. *
  702. * - Memory addresses are scattered and are not contiguous.
  703. * Here, Obviously as DMA controller doesn't know when a lli's
  704. * transfer gets over, it can't load next lli. So in this
  705. * case, there has to be an assumption that only one lli is
  706. * supported. Thus, we can't have scattered addresses.
  707. */
  708. if (!bd.remainder) {
  709. u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
  710. PL080_CONFIG_FLOW_CONTROL_SHIFT;
  711. if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
  712. (fc <= PL080_FLOW_SRC2DST_SRC))) {
  713. dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
  714. __func__);
  715. return 0;
  716. }
  717. if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
  718. (bd.dstbus.addr % bd.dstbus.buswidth)) {
  719. dev_err(&pl08x->adev->dev,
  720. "%s src & dst address must be aligned to src"
  721. " & dst width if peripheral is flow controller",
  722. __func__);
  723. return 0;
  724. }
  725. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  726. bd.dstbus.buswidth, 0);
  727. pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
  728. break;
  729. }
  730. /*
  731. * Send byte by byte for following cases
  732. * - Less than a bus width available
  733. * - until master bus is aligned
  734. */
  735. if (bd.remainder < mbus->buswidth)
  736. early_bytes = bd.remainder;
  737. else if ((mbus->addr) % (mbus->buswidth)) {
  738. early_bytes = mbus->buswidth - (mbus->addr) %
  739. (mbus->buswidth);
  740. if ((bd.remainder - early_bytes) < mbus->buswidth)
  741. early_bytes = bd.remainder;
  742. }
  743. if (early_bytes) {
  744. dev_vdbg(&pl08x->adev->dev,
  745. "%s byte width LLIs (remain 0x%08x)\n",
  746. __func__, bd.remainder);
  747. prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
  748. &total_bytes);
  749. }
  750. if (bd.remainder) {
  751. /*
  752. * Master now aligned
  753. * - if slave is not then we must set its width down
  754. */
  755. if (sbus->addr % sbus->buswidth) {
  756. dev_dbg(&pl08x->adev->dev,
  757. "%s set down bus width to one byte\n",
  758. __func__);
  759. sbus->buswidth = 1;
  760. }
  761. /*
  762. * Bytes transferred = tsize * src width, not
  763. * MIN(buswidths)
  764. */
  765. max_bytes_per_lli = bd.srcbus.buswidth *
  766. PL080_CONTROL_TRANSFER_SIZE_MASK;
  767. dev_vdbg(&pl08x->adev->dev,
  768. "%s max bytes per lli = %zu\n",
  769. __func__, max_bytes_per_lli);
  770. /*
  771. * Make largest possible LLIs until less than one bus
  772. * width left
  773. */
  774. while (bd.remainder > (mbus->buswidth - 1)) {
  775. size_t lli_len, tsize, width;
  776. /*
  777. * If enough left try to send max possible,
  778. * otherwise try to send the remainder
  779. */
  780. lli_len = min(bd.remainder, max_bytes_per_lli);
  781. /*
  782. * Check against maximum bus alignment:
  783. * Calculate actual transfer size in relation to
  784. * bus width an get a maximum remainder of the
  785. * highest bus width - 1
  786. */
  787. width = max(mbus->buswidth, sbus->buswidth);
  788. lli_len = (lli_len / width) * width;
  789. tsize = lli_len / bd.srcbus.buswidth;
  790. dev_vdbg(&pl08x->adev->dev,
  791. "%s fill lli with single lli chunk of "
  792. "size 0x%08zx (remainder 0x%08zx)\n",
  793. __func__, lli_len, bd.remainder);
  794. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  795. bd.dstbus.buswidth, tsize);
  796. pl08x_fill_lli_for_desc(&bd, num_llis++,
  797. lli_len, cctl);
  798. total_bytes += lli_len;
  799. }
  800. /*
  801. * Send any odd bytes
  802. */
  803. if (bd.remainder) {
  804. dev_vdbg(&pl08x->adev->dev,
  805. "%s align with boundary, send odd bytes (remain %zu)\n",
  806. __func__, bd.remainder);
  807. prep_byte_width_lli(&bd, &cctl, bd.remainder,
  808. num_llis++, &total_bytes);
  809. }
  810. }
  811. if (total_bytes != dsg->len) {
  812. dev_err(&pl08x->adev->dev,
  813. "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
  814. __func__, total_bytes, dsg->len);
  815. return 0;
  816. }
  817. if (num_llis >= MAX_NUM_TSFR_LLIS) {
  818. dev_err(&pl08x->adev->dev,
  819. "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
  820. __func__, (u32) MAX_NUM_TSFR_LLIS);
  821. return 0;
  822. }
  823. }
  824. llis_va = txd->llis_va;
  825. /* The final LLI terminates the LLI. */
  826. llis_va[num_llis - 1].lli = 0;
  827. /* The final LLI element shall also fire an interrupt. */
  828. llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
  829. #ifdef VERBOSE_DEBUG
  830. {
  831. int i;
  832. dev_vdbg(&pl08x->adev->dev,
  833. "%-3s %-9s %-10s %-10s %-10s %s\n",
  834. "lli", "", "csrc", "cdst", "clli", "cctl");
  835. for (i = 0; i < num_llis; i++) {
  836. dev_vdbg(&pl08x->adev->dev,
  837. "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  838. i, &llis_va[i], llis_va[i].src,
  839. llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
  840. );
  841. }
  842. }
  843. #endif
  844. return num_llis;
  845. }
  846. /* You should call this with the struct pl08x lock held */
  847. static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
  848. struct pl08x_txd *txd)
  849. {
  850. struct pl08x_sg *dsg, *_dsg;
  851. /* Free the LLI */
  852. if (txd->llis_va)
  853. dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
  854. pl08x->pool_ctr--;
  855. list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
  856. list_del(&dsg->node);
  857. kfree(dsg);
  858. }
  859. kfree(txd);
  860. }
  861. static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
  862. struct pl08x_dma_chan *plchan)
  863. {
  864. struct pl08x_txd *txdi = NULL;
  865. struct pl08x_txd *next;
  866. if (!list_empty(&plchan->pend_list)) {
  867. list_for_each_entry_safe(txdi,
  868. next, &plchan->pend_list, node) {
  869. list_del(&txdi->node);
  870. pl08x_free_txd(pl08x, txdi);
  871. }
  872. }
  873. }
  874. /*
  875. * The DMA ENGINE API
  876. */
  877. static int pl08x_alloc_chan_resources(struct dma_chan *chan)
  878. {
  879. return 0;
  880. }
  881. static void pl08x_free_chan_resources(struct dma_chan *chan)
  882. {
  883. }
  884. /*
  885. * This should be called with the channel plchan->lock held
  886. */
  887. static int prep_phy_channel(struct pl08x_dma_chan *plchan,
  888. struct pl08x_txd *txd)
  889. {
  890. struct pl08x_driver_data *pl08x = plchan->host;
  891. struct pl08x_phy_chan *ch;
  892. int ret;
  893. /* Check if we already have a channel */
  894. if (plchan->phychan) {
  895. ch = plchan->phychan;
  896. goto got_channel;
  897. }
  898. ch = pl08x_get_phy_channel(pl08x, plchan);
  899. if (!ch) {
  900. /* No physical channel available, cope with it */
  901. dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
  902. return -EBUSY;
  903. }
  904. /*
  905. * OK we have a physical channel: for memcpy() this is all we
  906. * need, but for slaves the physical signals may be muxed!
  907. * Can the platform allow us to use this channel?
  908. */
  909. if (plchan->slave) {
  910. ret = pl08x_request_mux(plchan, ch);
  911. if (ret < 0) {
  912. dev_dbg(&pl08x->adev->dev,
  913. "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
  914. ch->id, plchan->name);
  915. /* Release physical channel & return */
  916. pl08x_put_phy_channel(pl08x, ch);
  917. return -EBUSY;
  918. }
  919. }
  920. plchan->phychan = ch;
  921. dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
  922. ch->id,
  923. ch->signal,
  924. plchan->name);
  925. got_channel:
  926. /* Assign the flow control signal to this channel */
  927. if (txd->direction == DMA_MEM_TO_DEV)
  928. txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
  929. else if (txd->direction == DMA_DEV_TO_MEM)
  930. txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
  931. plchan->phychan_hold++;
  932. return 0;
  933. }
  934. static void release_phy_channel(struct pl08x_dma_chan *plchan)
  935. {
  936. struct pl08x_driver_data *pl08x = plchan->host;
  937. pl08x_release_mux(plchan);
  938. pl08x_put_phy_channel(pl08x, plchan->phychan);
  939. plchan->phychan = NULL;
  940. }
  941. static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
  942. {
  943. struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
  944. struct pl08x_txd *txd = to_pl08x_txd(tx);
  945. unsigned long flags;
  946. dma_cookie_t cookie;
  947. spin_lock_irqsave(&plchan->lock, flags);
  948. cookie = dma_cookie_assign(tx);
  949. /* Put this onto the pending list */
  950. list_add_tail(&txd->node, &plchan->pend_list);
  951. /*
  952. * If there was no physical channel available for this memcpy,
  953. * stack the request up and indicate that the channel is waiting
  954. * for a free physical channel.
  955. */
  956. if (!plchan->slave && !plchan->phychan) {
  957. /* Do this memcpy whenever there is a channel ready */
  958. plchan->state = PL08X_CHAN_WAITING;
  959. plchan->waiting = txd;
  960. } else {
  961. plchan->phychan_hold--;
  962. }
  963. spin_unlock_irqrestore(&plchan->lock, flags);
  964. return cookie;
  965. }
  966. static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
  967. struct dma_chan *chan, unsigned long flags)
  968. {
  969. struct dma_async_tx_descriptor *retval = NULL;
  970. return retval;
  971. }
  972. /*
  973. * Code accessing dma_async_is_complete() in a tight loop may give problems.
  974. * If slaves are relying on interrupts to signal completion this function
  975. * must not be called with interrupts disabled.
  976. */
  977. static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
  978. dma_cookie_t cookie, struct dma_tx_state *txstate)
  979. {
  980. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  981. enum dma_status ret;
  982. ret = dma_cookie_status(chan, cookie, txstate);
  983. if (ret == DMA_SUCCESS)
  984. return ret;
  985. /*
  986. * This cookie not complete yet
  987. * Get number of bytes left in the active transactions and queue
  988. */
  989. dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
  990. if (plchan->state == PL08X_CHAN_PAUSED)
  991. return DMA_PAUSED;
  992. /* Whether waiting or running, we're in progress */
  993. return DMA_IN_PROGRESS;
  994. }
  995. /* PrimeCell DMA extension */
  996. struct burst_table {
  997. u32 burstwords;
  998. u32 reg;
  999. };
  1000. static const struct burst_table burst_sizes[] = {
  1001. {
  1002. .burstwords = 256,
  1003. .reg = PL080_BSIZE_256,
  1004. },
  1005. {
  1006. .burstwords = 128,
  1007. .reg = PL080_BSIZE_128,
  1008. },
  1009. {
  1010. .burstwords = 64,
  1011. .reg = PL080_BSIZE_64,
  1012. },
  1013. {
  1014. .burstwords = 32,
  1015. .reg = PL080_BSIZE_32,
  1016. },
  1017. {
  1018. .burstwords = 16,
  1019. .reg = PL080_BSIZE_16,
  1020. },
  1021. {
  1022. .burstwords = 8,
  1023. .reg = PL080_BSIZE_8,
  1024. },
  1025. {
  1026. .burstwords = 4,
  1027. .reg = PL080_BSIZE_4,
  1028. },
  1029. {
  1030. .burstwords = 0,
  1031. .reg = PL080_BSIZE_1,
  1032. },
  1033. };
  1034. /*
  1035. * Given the source and destination available bus masks, select which
  1036. * will be routed to each port. We try to have source and destination
  1037. * on separate ports, but always respect the allowable settings.
  1038. */
  1039. static u32 pl08x_select_bus(u8 src, u8 dst)
  1040. {
  1041. u32 cctl = 0;
  1042. if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
  1043. cctl |= PL080_CONTROL_DST_AHB2;
  1044. if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
  1045. cctl |= PL080_CONTROL_SRC_AHB2;
  1046. return cctl;
  1047. }
  1048. static u32 pl08x_cctl(u32 cctl)
  1049. {
  1050. cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
  1051. PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
  1052. PL080_CONTROL_PROT_MASK);
  1053. /* Access the cell in privileged mode, non-bufferable, non-cacheable */
  1054. return cctl | PL080_CONTROL_PROT_SYS;
  1055. }
  1056. static u32 pl08x_width(enum dma_slave_buswidth width)
  1057. {
  1058. switch (width) {
  1059. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1060. return PL080_WIDTH_8BIT;
  1061. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1062. return PL080_WIDTH_16BIT;
  1063. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1064. return PL080_WIDTH_32BIT;
  1065. default:
  1066. return ~0;
  1067. }
  1068. }
  1069. static u32 pl08x_burst(u32 maxburst)
  1070. {
  1071. int i;
  1072. for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
  1073. if (burst_sizes[i].burstwords <= maxburst)
  1074. break;
  1075. return burst_sizes[i].reg;
  1076. }
  1077. static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
  1078. enum dma_slave_buswidth addr_width, u32 maxburst)
  1079. {
  1080. u32 width, burst, cctl = 0;
  1081. width = pl08x_width(addr_width);
  1082. if (width == ~0)
  1083. return ~0;
  1084. cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
  1085. cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
  1086. /*
  1087. * If this channel will only request single transfers, set this
  1088. * down to ONE element. Also select one element if no maxburst
  1089. * is specified.
  1090. */
  1091. if (plchan->cd->single)
  1092. maxburst = 1;
  1093. burst = pl08x_burst(maxburst);
  1094. cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
  1095. cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
  1096. return pl08x_cctl(cctl);
  1097. }
  1098. static int dma_set_runtime_config(struct dma_chan *chan,
  1099. struct dma_slave_config *config)
  1100. {
  1101. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1102. if (!plchan->slave)
  1103. return -EINVAL;
  1104. /* Reject definitely invalid configurations */
  1105. if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  1106. config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  1107. return -EINVAL;
  1108. plchan->cfg = *config;
  1109. return 0;
  1110. }
  1111. /*
  1112. * Slave transactions callback to the slave device to allow
  1113. * synchronization of slave DMA signals with the DMAC enable
  1114. */
  1115. static void pl08x_issue_pending(struct dma_chan *chan)
  1116. {
  1117. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1118. unsigned long flags;
  1119. spin_lock_irqsave(&plchan->lock, flags);
  1120. /* Something is already active, or we're waiting for a channel... */
  1121. if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
  1122. spin_unlock_irqrestore(&plchan->lock, flags);
  1123. return;
  1124. }
  1125. /* Take the first element in the queue and execute it */
  1126. if (!list_empty(&plchan->pend_list)) {
  1127. struct pl08x_txd *next;
  1128. next = list_first_entry(&plchan->pend_list,
  1129. struct pl08x_txd,
  1130. node);
  1131. list_del(&next->node);
  1132. plchan->state = PL08X_CHAN_RUNNING;
  1133. pl08x_start_txd(plchan, next);
  1134. }
  1135. spin_unlock_irqrestore(&plchan->lock, flags);
  1136. }
  1137. static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
  1138. struct pl08x_txd *txd)
  1139. {
  1140. struct pl08x_driver_data *pl08x = plchan->host;
  1141. unsigned long flags;
  1142. int num_llis, ret;
  1143. num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
  1144. if (!num_llis) {
  1145. spin_lock_irqsave(&plchan->lock, flags);
  1146. pl08x_free_txd(pl08x, txd);
  1147. spin_unlock_irqrestore(&plchan->lock, flags);
  1148. return -EINVAL;
  1149. }
  1150. spin_lock_irqsave(&plchan->lock, flags);
  1151. /*
  1152. * See if we already have a physical channel allocated,
  1153. * else this is the time to try to get one.
  1154. */
  1155. ret = prep_phy_channel(plchan, txd);
  1156. if (ret) {
  1157. /*
  1158. * No physical channel was available.
  1159. *
  1160. * memcpy transfers can be sorted out at submission time.
  1161. *
  1162. * Slave transfers may have been denied due to platform
  1163. * channel muxing restrictions. Since there is no guarantee
  1164. * that this will ever be resolved, and the signal must be
  1165. * acquired AFTER acquiring the physical channel, we will let
  1166. * them be NACK:ed with -EBUSY here. The drivers can retry
  1167. * the prep() call if they are eager on doing this using DMA.
  1168. */
  1169. if (plchan->slave) {
  1170. pl08x_free_txd_list(pl08x, plchan);
  1171. pl08x_free_txd(pl08x, txd);
  1172. spin_unlock_irqrestore(&plchan->lock, flags);
  1173. return -EBUSY;
  1174. }
  1175. } else
  1176. /*
  1177. * Else we're all set, paused and ready to roll, status
  1178. * will switch to PL08X_CHAN_RUNNING when we call
  1179. * issue_pending(). If there is something running on the
  1180. * channel already we don't change its state.
  1181. */
  1182. if (plchan->state == PL08X_CHAN_IDLE)
  1183. plchan->state = PL08X_CHAN_PAUSED;
  1184. spin_unlock_irqrestore(&plchan->lock, flags);
  1185. return 0;
  1186. }
  1187. static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
  1188. unsigned long flags)
  1189. {
  1190. struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
  1191. if (txd) {
  1192. dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
  1193. txd->tx.flags = flags;
  1194. txd->tx.tx_submit = pl08x_tx_submit;
  1195. INIT_LIST_HEAD(&txd->node);
  1196. INIT_LIST_HEAD(&txd->dsg_list);
  1197. /* Always enable error and terminal interrupts */
  1198. txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
  1199. PL080_CONFIG_TC_IRQ_MASK;
  1200. }
  1201. return txd;
  1202. }
  1203. /*
  1204. * Initialize a descriptor to be used by memcpy submit
  1205. */
  1206. static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
  1207. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1208. size_t len, unsigned long flags)
  1209. {
  1210. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1211. struct pl08x_driver_data *pl08x = plchan->host;
  1212. struct pl08x_txd *txd;
  1213. struct pl08x_sg *dsg;
  1214. int ret;
  1215. txd = pl08x_get_txd(plchan, flags);
  1216. if (!txd) {
  1217. dev_err(&pl08x->adev->dev,
  1218. "%s no memory for descriptor\n", __func__);
  1219. return NULL;
  1220. }
  1221. dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
  1222. if (!dsg) {
  1223. pl08x_free_txd(pl08x, txd);
  1224. dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
  1225. __func__);
  1226. return NULL;
  1227. }
  1228. list_add_tail(&dsg->node, &txd->dsg_list);
  1229. txd->direction = DMA_MEM_TO_MEM;
  1230. dsg->src_addr = src;
  1231. dsg->dst_addr = dest;
  1232. dsg->len = len;
  1233. /* Set platform data for m2m */
  1234. txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1235. txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
  1236. ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
  1237. /* Both to be incremented or the code will break */
  1238. txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
  1239. if (pl08x->vd->dualmaster)
  1240. txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
  1241. pl08x->mem_buses);
  1242. ret = pl08x_prep_channel_resources(plchan, txd);
  1243. if (ret)
  1244. return NULL;
  1245. return &txd->tx;
  1246. }
  1247. static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
  1248. struct dma_chan *chan, struct scatterlist *sgl,
  1249. unsigned int sg_len, enum dma_transfer_direction direction,
  1250. unsigned long flags, void *context)
  1251. {
  1252. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1253. struct pl08x_driver_data *pl08x = plchan->host;
  1254. struct pl08x_txd *txd;
  1255. struct pl08x_sg *dsg;
  1256. struct scatterlist *sg;
  1257. enum dma_slave_buswidth addr_width;
  1258. dma_addr_t slave_addr;
  1259. int ret, tmp;
  1260. u8 src_buses, dst_buses;
  1261. u32 maxburst, cctl;
  1262. dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
  1263. __func__, sg_dma_len(sgl), plchan->name);
  1264. txd = pl08x_get_txd(plchan, flags);
  1265. if (!txd) {
  1266. dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
  1267. return NULL;
  1268. }
  1269. /*
  1270. * Set up addresses, the PrimeCell configured address
  1271. * will take precedence since this may configure the
  1272. * channel target address dynamically at runtime.
  1273. */
  1274. txd->direction = direction;
  1275. if (direction == DMA_MEM_TO_DEV) {
  1276. cctl = PL080_CONTROL_SRC_INCR;
  1277. slave_addr = plchan->cfg.dst_addr;
  1278. addr_width = plchan->cfg.dst_addr_width;
  1279. maxburst = plchan->cfg.dst_maxburst;
  1280. src_buses = pl08x->mem_buses;
  1281. dst_buses = plchan->cd->periph_buses;
  1282. } else if (direction == DMA_DEV_TO_MEM) {
  1283. cctl = PL080_CONTROL_DST_INCR;
  1284. slave_addr = plchan->cfg.src_addr;
  1285. addr_width = plchan->cfg.src_addr_width;
  1286. maxburst = plchan->cfg.src_maxburst;
  1287. src_buses = plchan->cd->periph_buses;
  1288. dst_buses = pl08x->mem_buses;
  1289. } else {
  1290. pl08x_free_txd(pl08x, txd);
  1291. dev_err(&pl08x->adev->dev,
  1292. "%s direction unsupported\n", __func__);
  1293. return NULL;
  1294. }
  1295. cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
  1296. if (cctl == ~0) {
  1297. pl08x_free_txd(pl08x, txd);
  1298. dev_err(&pl08x->adev->dev,
  1299. "DMA slave configuration botched?\n");
  1300. return NULL;
  1301. }
  1302. txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
  1303. if (plchan->cfg.device_fc)
  1304. tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
  1305. PL080_FLOW_PER2MEM_PER;
  1306. else
  1307. tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
  1308. PL080_FLOW_PER2MEM;
  1309. txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1310. for_each_sg(sgl, sg, sg_len, tmp) {
  1311. dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
  1312. if (!dsg) {
  1313. pl08x_free_txd(pl08x, txd);
  1314. dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
  1315. __func__);
  1316. return NULL;
  1317. }
  1318. list_add_tail(&dsg->node, &txd->dsg_list);
  1319. dsg->len = sg_dma_len(sg);
  1320. if (direction == DMA_MEM_TO_DEV) {
  1321. dsg->src_addr = sg_dma_address(sg);
  1322. dsg->dst_addr = slave_addr;
  1323. } else {
  1324. dsg->src_addr = slave_addr;
  1325. dsg->dst_addr = sg_dma_address(sg);
  1326. }
  1327. }
  1328. ret = pl08x_prep_channel_resources(plchan, txd);
  1329. if (ret)
  1330. return NULL;
  1331. return &txd->tx;
  1332. }
  1333. static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1334. unsigned long arg)
  1335. {
  1336. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1337. struct pl08x_driver_data *pl08x = plchan->host;
  1338. unsigned long flags;
  1339. int ret = 0;
  1340. /* Controls applicable to inactive channels */
  1341. if (cmd == DMA_SLAVE_CONFIG) {
  1342. return dma_set_runtime_config(chan,
  1343. (struct dma_slave_config *)arg);
  1344. }
  1345. /*
  1346. * Anything succeeds on channels with no physical allocation and
  1347. * no queued transfers.
  1348. */
  1349. spin_lock_irqsave(&plchan->lock, flags);
  1350. if (!plchan->phychan && !plchan->at) {
  1351. spin_unlock_irqrestore(&plchan->lock, flags);
  1352. return 0;
  1353. }
  1354. switch (cmd) {
  1355. case DMA_TERMINATE_ALL:
  1356. plchan->state = PL08X_CHAN_IDLE;
  1357. if (plchan->phychan) {
  1358. pl08x_terminate_phy_chan(pl08x, plchan->phychan);
  1359. /*
  1360. * Mark physical channel as free and free any slave
  1361. * signal
  1362. */
  1363. release_phy_channel(plchan);
  1364. plchan->phychan_hold = 0;
  1365. }
  1366. /* Dequeue jobs and free LLIs */
  1367. if (plchan->at) {
  1368. pl08x_free_txd(pl08x, plchan->at);
  1369. plchan->at = NULL;
  1370. }
  1371. /* Dequeue jobs not yet fired as well */
  1372. pl08x_free_txd_list(pl08x, plchan);
  1373. break;
  1374. case DMA_PAUSE:
  1375. pl08x_pause_phy_chan(plchan->phychan);
  1376. plchan->state = PL08X_CHAN_PAUSED;
  1377. break;
  1378. case DMA_RESUME:
  1379. pl08x_resume_phy_chan(plchan->phychan);
  1380. plchan->state = PL08X_CHAN_RUNNING;
  1381. break;
  1382. default:
  1383. /* Unknown command */
  1384. ret = -ENXIO;
  1385. break;
  1386. }
  1387. spin_unlock_irqrestore(&plchan->lock, flags);
  1388. return ret;
  1389. }
  1390. bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
  1391. {
  1392. struct pl08x_dma_chan *plchan;
  1393. char *name = chan_id;
  1394. /* Reject channels for devices not bound to this driver */
  1395. if (chan->device->dev->driver != &pl08x_amba_driver.drv)
  1396. return false;
  1397. plchan = to_pl08x_chan(chan);
  1398. /* Check that the channel is not taken! */
  1399. if (!strcmp(plchan->name, name))
  1400. return true;
  1401. return false;
  1402. }
  1403. /*
  1404. * Just check that the device is there and active
  1405. * TODO: turn this bit on/off depending on the number of physical channels
  1406. * actually used, if it is zero... well shut it off. That will save some
  1407. * power. Cut the clock at the same time.
  1408. */
  1409. static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
  1410. {
  1411. /* The Nomadik variant does not have the config register */
  1412. if (pl08x->vd->nomadik)
  1413. return;
  1414. writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
  1415. }
  1416. static void pl08x_unmap_buffers(struct pl08x_txd *txd)
  1417. {
  1418. struct device *dev = txd->tx.chan->device->dev;
  1419. struct pl08x_sg *dsg;
  1420. if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  1421. if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  1422. list_for_each_entry(dsg, &txd->dsg_list, node)
  1423. dma_unmap_single(dev, dsg->src_addr, dsg->len,
  1424. DMA_TO_DEVICE);
  1425. else {
  1426. list_for_each_entry(dsg, &txd->dsg_list, node)
  1427. dma_unmap_page(dev, dsg->src_addr, dsg->len,
  1428. DMA_TO_DEVICE);
  1429. }
  1430. }
  1431. if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  1432. if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  1433. list_for_each_entry(dsg, &txd->dsg_list, node)
  1434. dma_unmap_single(dev, dsg->dst_addr, dsg->len,
  1435. DMA_FROM_DEVICE);
  1436. else
  1437. list_for_each_entry(dsg, &txd->dsg_list, node)
  1438. dma_unmap_page(dev, dsg->dst_addr, dsg->len,
  1439. DMA_FROM_DEVICE);
  1440. }
  1441. }
  1442. static void pl08x_tasklet(unsigned long data)
  1443. {
  1444. struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
  1445. struct pl08x_driver_data *pl08x = plchan->host;
  1446. struct pl08x_txd *txd;
  1447. unsigned long flags;
  1448. spin_lock_irqsave(&plchan->lock, flags);
  1449. txd = plchan->at;
  1450. plchan->at = NULL;
  1451. if (txd) {
  1452. /* Update last completed */
  1453. dma_cookie_complete(&txd->tx);
  1454. }
  1455. /* If a new descriptor is queued, set it up plchan->at is NULL here */
  1456. if (!list_empty(&plchan->pend_list)) {
  1457. struct pl08x_txd *next;
  1458. next = list_first_entry(&plchan->pend_list,
  1459. struct pl08x_txd,
  1460. node);
  1461. list_del(&next->node);
  1462. pl08x_start_txd(plchan, next);
  1463. } else if (plchan->phychan_hold) {
  1464. /*
  1465. * This channel is still in use - we have a new txd being
  1466. * prepared and will soon be queued. Don't give up the
  1467. * physical channel.
  1468. */
  1469. } else {
  1470. struct pl08x_dma_chan *waiting = NULL;
  1471. /*
  1472. * No more jobs, so free up the physical channel
  1473. * Free any allocated signal on slave transfers too
  1474. */
  1475. release_phy_channel(plchan);
  1476. plchan->state = PL08X_CHAN_IDLE;
  1477. /*
  1478. * And NOW before anyone else can grab that free:d up
  1479. * physical channel, see if there is some memcpy pending
  1480. * that seriously needs to start because of being stacked
  1481. * up while we were choking the physical channels with data.
  1482. */
  1483. list_for_each_entry(waiting, &pl08x->memcpy.channels,
  1484. chan.device_node) {
  1485. if (waiting->state == PL08X_CHAN_WAITING &&
  1486. waiting->waiting != NULL) {
  1487. int ret;
  1488. /* This should REALLY not fail now */
  1489. ret = prep_phy_channel(waiting,
  1490. waiting->waiting);
  1491. BUG_ON(ret);
  1492. waiting->phychan_hold--;
  1493. waiting->state = PL08X_CHAN_RUNNING;
  1494. waiting->waiting = NULL;
  1495. pl08x_issue_pending(&waiting->chan);
  1496. break;
  1497. }
  1498. }
  1499. }
  1500. spin_unlock_irqrestore(&plchan->lock, flags);
  1501. if (txd) {
  1502. dma_async_tx_callback callback = txd->tx.callback;
  1503. void *callback_param = txd->tx.callback_param;
  1504. /* Don't try to unmap buffers on slave channels */
  1505. if (!plchan->slave)
  1506. pl08x_unmap_buffers(txd);
  1507. /* Free the descriptor */
  1508. spin_lock_irqsave(&plchan->lock, flags);
  1509. pl08x_free_txd(pl08x, txd);
  1510. spin_unlock_irqrestore(&plchan->lock, flags);
  1511. /* Callback to signal completion */
  1512. if (callback)
  1513. callback(callback_param);
  1514. }
  1515. }
  1516. static irqreturn_t pl08x_irq(int irq, void *dev)
  1517. {
  1518. struct pl08x_driver_data *pl08x = dev;
  1519. u32 mask = 0, err, tc, i;
  1520. /* check & clear - ERR & TC interrupts */
  1521. err = readl(pl08x->base + PL080_ERR_STATUS);
  1522. if (err) {
  1523. dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
  1524. __func__, err);
  1525. writel(err, pl08x->base + PL080_ERR_CLEAR);
  1526. }
  1527. tc = readl(pl08x->base + PL080_TC_STATUS);
  1528. if (tc)
  1529. writel(tc, pl08x->base + PL080_TC_CLEAR);
  1530. if (!err && !tc)
  1531. return IRQ_NONE;
  1532. for (i = 0; i < pl08x->vd->channels; i++) {
  1533. if (((1 << i) & err) || ((1 << i) & tc)) {
  1534. /* Locate physical channel */
  1535. struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
  1536. struct pl08x_dma_chan *plchan = phychan->serving;
  1537. if (!plchan) {
  1538. dev_err(&pl08x->adev->dev,
  1539. "%s Error TC interrupt on unused channel: 0x%08x\n",
  1540. __func__, i);
  1541. continue;
  1542. }
  1543. /* Schedule tasklet on this channel */
  1544. tasklet_schedule(&plchan->tasklet);
  1545. mask |= (1 << i);
  1546. }
  1547. }
  1548. return mask ? IRQ_HANDLED : IRQ_NONE;
  1549. }
  1550. static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
  1551. {
  1552. chan->slave = true;
  1553. chan->name = chan->cd->bus_id;
  1554. chan->cfg.src_addr = chan->cd->addr;
  1555. chan->cfg.dst_addr = chan->cd->addr;
  1556. }
  1557. /*
  1558. * Initialise the DMAC memcpy/slave channels.
  1559. * Make a local wrapper to hold required data
  1560. */
  1561. static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
  1562. struct dma_device *dmadev, unsigned int channels, bool slave)
  1563. {
  1564. struct pl08x_dma_chan *chan;
  1565. int i;
  1566. INIT_LIST_HEAD(&dmadev->channels);
  1567. /*
  1568. * Register as many many memcpy as we have physical channels,
  1569. * we won't always be able to use all but the code will have
  1570. * to cope with that situation.
  1571. */
  1572. for (i = 0; i < channels; i++) {
  1573. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  1574. if (!chan) {
  1575. dev_err(&pl08x->adev->dev,
  1576. "%s no memory for channel\n", __func__);
  1577. return -ENOMEM;
  1578. }
  1579. chan->host = pl08x;
  1580. chan->state = PL08X_CHAN_IDLE;
  1581. if (slave) {
  1582. chan->cd = &pl08x->pd->slave_channels[i];
  1583. pl08x_dma_slave_init(chan);
  1584. } else {
  1585. chan->cd = &pl08x->pd->memcpy_channel;
  1586. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  1587. if (!chan->name) {
  1588. kfree(chan);
  1589. return -ENOMEM;
  1590. }
  1591. }
  1592. dev_dbg(&pl08x->adev->dev,
  1593. "initialize virtual channel \"%s\"\n",
  1594. chan->name);
  1595. chan->chan.device = dmadev;
  1596. dma_cookie_init(&chan->chan);
  1597. spin_lock_init(&chan->lock);
  1598. INIT_LIST_HEAD(&chan->pend_list);
  1599. tasklet_init(&chan->tasklet, pl08x_tasklet,
  1600. (unsigned long) chan);
  1601. list_add_tail(&chan->chan.device_node, &dmadev->channels);
  1602. }
  1603. dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
  1604. i, slave ? "slave" : "memcpy");
  1605. return i;
  1606. }
  1607. static void pl08x_free_virtual_channels(struct dma_device *dmadev)
  1608. {
  1609. struct pl08x_dma_chan *chan = NULL;
  1610. struct pl08x_dma_chan *next;
  1611. list_for_each_entry_safe(chan,
  1612. next, &dmadev->channels, chan.device_node) {
  1613. list_del(&chan->chan.device_node);
  1614. kfree(chan);
  1615. }
  1616. }
  1617. #ifdef CONFIG_DEBUG_FS
  1618. static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
  1619. {
  1620. switch (state) {
  1621. case PL08X_CHAN_IDLE:
  1622. return "idle";
  1623. case PL08X_CHAN_RUNNING:
  1624. return "running";
  1625. case PL08X_CHAN_PAUSED:
  1626. return "paused";
  1627. case PL08X_CHAN_WAITING:
  1628. return "waiting";
  1629. default:
  1630. break;
  1631. }
  1632. return "UNKNOWN STATE";
  1633. }
  1634. static int pl08x_debugfs_show(struct seq_file *s, void *data)
  1635. {
  1636. struct pl08x_driver_data *pl08x = s->private;
  1637. struct pl08x_dma_chan *chan;
  1638. struct pl08x_phy_chan *ch;
  1639. unsigned long flags;
  1640. int i;
  1641. seq_printf(s, "PL08x physical channels:\n");
  1642. seq_printf(s, "CHANNEL:\tUSER:\n");
  1643. seq_printf(s, "--------\t-----\n");
  1644. for (i = 0; i < pl08x->vd->channels; i++) {
  1645. struct pl08x_dma_chan *virt_chan;
  1646. ch = &pl08x->phy_chans[i];
  1647. spin_lock_irqsave(&ch->lock, flags);
  1648. virt_chan = ch->serving;
  1649. seq_printf(s, "%d\t\t%s%s\n",
  1650. ch->id,
  1651. virt_chan ? virt_chan->name : "(none)",
  1652. ch->locked ? " LOCKED" : "");
  1653. spin_unlock_irqrestore(&ch->lock, flags);
  1654. }
  1655. seq_printf(s, "\nPL08x virtual memcpy channels:\n");
  1656. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1657. seq_printf(s, "--------\t------\n");
  1658. list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
  1659. seq_printf(s, "%s\t\t%s\n", chan->name,
  1660. pl08x_state_str(chan->state));
  1661. }
  1662. seq_printf(s, "\nPL08x virtual slave channels:\n");
  1663. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1664. seq_printf(s, "--------\t------\n");
  1665. list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
  1666. seq_printf(s, "%s\t\t%s\n", chan->name,
  1667. pl08x_state_str(chan->state));
  1668. }
  1669. return 0;
  1670. }
  1671. static int pl08x_debugfs_open(struct inode *inode, struct file *file)
  1672. {
  1673. return single_open(file, pl08x_debugfs_show, inode->i_private);
  1674. }
  1675. static const struct file_operations pl08x_debugfs_operations = {
  1676. .open = pl08x_debugfs_open,
  1677. .read = seq_read,
  1678. .llseek = seq_lseek,
  1679. .release = single_release,
  1680. };
  1681. static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1682. {
  1683. /* Expose a simple debugfs interface to view all clocks */
  1684. (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
  1685. S_IFREG | S_IRUGO, NULL, pl08x,
  1686. &pl08x_debugfs_operations);
  1687. }
  1688. #else
  1689. static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1690. {
  1691. }
  1692. #endif
  1693. static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
  1694. {
  1695. struct pl08x_driver_data *pl08x;
  1696. const struct vendor_data *vd = id->data;
  1697. int ret = 0;
  1698. int i;
  1699. ret = amba_request_regions(adev, NULL);
  1700. if (ret)
  1701. return ret;
  1702. /* Create the driver state holder */
  1703. pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
  1704. if (!pl08x) {
  1705. ret = -ENOMEM;
  1706. goto out_no_pl08x;
  1707. }
  1708. /* Initialize memcpy engine */
  1709. dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
  1710. pl08x->memcpy.dev = &adev->dev;
  1711. pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1712. pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
  1713. pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
  1714. pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1715. pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
  1716. pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
  1717. pl08x->memcpy.device_control = pl08x_control;
  1718. /* Initialize slave engine */
  1719. dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
  1720. pl08x->slave.dev = &adev->dev;
  1721. pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1722. pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
  1723. pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1724. pl08x->slave.device_tx_status = pl08x_dma_tx_status;
  1725. pl08x->slave.device_issue_pending = pl08x_issue_pending;
  1726. pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
  1727. pl08x->slave.device_control = pl08x_control;
  1728. /* Get the platform data */
  1729. pl08x->pd = dev_get_platdata(&adev->dev);
  1730. if (!pl08x->pd) {
  1731. dev_err(&adev->dev, "no platform data supplied\n");
  1732. goto out_no_platdata;
  1733. }
  1734. /* Assign useful pointers to the driver state */
  1735. pl08x->adev = adev;
  1736. pl08x->vd = vd;
  1737. /* By default, AHB1 only. If dualmaster, from platform */
  1738. pl08x->lli_buses = PL08X_AHB1;
  1739. pl08x->mem_buses = PL08X_AHB1;
  1740. if (pl08x->vd->dualmaster) {
  1741. pl08x->lli_buses = pl08x->pd->lli_buses;
  1742. pl08x->mem_buses = pl08x->pd->mem_buses;
  1743. }
  1744. /* A DMA memory pool for LLIs, align on 1-byte boundary */
  1745. pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
  1746. PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
  1747. if (!pl08x->pool) {
  1748. ret = -ENOMEM;
  1749. goto out_no_lli_pool;
  1750. }
  1751. pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
  1752. if (!pl08x->base) {
  1753. ret = -ENOMEM;
  1754. goto out_no_ioremap;
  1755. }
  1756. /* Turn on the PL08x */
  1757. pl08x_ensure_on(pl08x);
  1758. /* Attach the interrupt handler */
  1759. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1760. writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
  1761. ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
  1762. DRIVER_NAME, pl08x);
  1763. if (ret) {
  1764. dev_err(&adev->dev, "%s failed to request interrupt %d\n",
  1765. __func__, adev->irq[0]);
  1766. goto out_no_irq;
  1767. }
  1768. /* Initialize physical channels */
  1769. pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
  1770. GFP_KERNEL);
  1771. if (!pl08x->phy_chans) {
  1772. dev_err(&adev->dev, "%s failed to allocate "
  1773. "physical channel holders\n",
  1774. __func__);
  1775. goto out_no_phychans;
  1776. }
  1777. for (i = 0; i < vd->channels; i++) {
  1778. struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
  1779. ch->id = i;
  1780. ch->base = pl08x->base + PL080_Cx_BASE(i);
  1781. spin_lock_init(&ch->lock);
  1782. ch->signal = -1;
  1783. /*
  1784. * Nomadik variants can have channels that are locked
  1785. * down for the secure world only. Lock up these channels
  1786. * by perpetually serving a dummy virtual channel.
  1787. */
  1788. if (vd->nomadik) {
  1789. u32 val;
  1790. val = readl(ch->base + PL080_CH_CONFIG);
  1791. if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
  1792. dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
  1793. ch->locked = true;
  1794. }
  1795. }
  1796. dev_dbg(&adev->dev, "physical channel %d is %s\n",
  1797. i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
  1798. }
  1799. /* Register as many memcpy channels as there are physical channels */
  1800. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
  1801. pl08x->vd->channels, false);
  1802. if (ret <= 0) {
  1803. dev_warn(&pl08x->adev->dev,
  1804. "%s failed to enumerate memcpy channels - %d\n",
  1805. __func__, ret);
  1806. goto out_no_memcpy;
  1807. }
  1808. pl08x->memcpy.chancnt = ret;
  1809. /* Register slave channels */
  1810. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
  1811. pl08x->pd->num_slave_channels, true);
  1812. if (ret <= 0) {
  1813. dev_warn(&pl08x->adev->dev,
  1814. "%s failed to enumerate slave channels - %d\n",
  1815. __func__, ret);
  1816. goto out_no_slave;
  1817. }
  1818. pl08x->slave.chancnt = ret;
  1819. ret = dma_async_device_register(&pl08x->memcpy);
  1820. if (ret) {
  1821. dev_warn(&pl08x->adev->dev,
  1822. "%s failed to register memcpy as an async device - %d\n",
  1823. __func__, ret);
  1824. goto out_no_memcpy_reg;
  1825. }
  1826. ret = dma_async_device_register(&pl08x->slave);
  1827. if (ret) {
  1828. dev_warn(&pl08x->adev->dev,
  1829. "%s failed to register slave as an async device - %d\n",
  1830. __func__, ret);
  1831. goto out_no_slave_reg;
  1832. }
  1833. amba_set_drvdata(adev, pl08x);
  1834. init_pl08x_debugfs(pl08x);
  1835. dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
  1836. amba_part(adev), amba_rev(adev),
  1837. (unsigned long long)adev->res.start, adev->irq[0]);
  1838. return 0;
  1839. out_no_slave_reg:
  1840. dma_async_device_unregister(&pl08x->memcpy);
  1841. out_no_memcpy_reg:
  1842. pl08x_free_virtual_channels(&pl08x->slave);
  1843. out_no_slave:
  1844. pl08x_free_virtual_channels(&pl08x->memcpy);
  1845. out_no_memcpy:
  1846. kfree(pl08x->phy_chans);
  1847. out_no_phychans:
  1848. free_irq(adev->irq[0], pl08x);
  1849. out_no_irq:
  1850. iounmap(pl08x->base);
  1851. out_no_ioremap:
  1852. dma_pool_destroy(pl08x->pool);
  1853. out_no_lli_pool:
  1854. out_no_platdata:
  1855. kfree(pl08x);
  1856. out_no_pl08x:
  1857. amba_release_regions(adev);
  1858. return ret;
  1859. }
  1860. /* PL080 has 8 channels and the PL080 have just 2 */
  1861. static struct vendor_data vendor_pl080 = {
  1862. .channels = 8,
  1863. .dualmaster = true,
  1864. };
  1865. static struct vendor_data vendor_nomadik = {
  1866. .channels = 8,
  1867. .dualmaster = true,
  1868. .nomadik = true,
  1869. };
  1870. static struct vendor_data vendor_pl081 = {
  1871. .channels = 2,
  1872. .dualmaster = false,
  1873. };
  1874. static struct amba_id pl08x_ids[] = {
  1875. /* PL080 */
  1876. {
  1877. .id = 0x00041080,
  1878. .mask = 0x000fffff,
  1879. .data = &vendor_pl080,
  1880. },
  1881. /* PL081 */
  1882. {
  1883. .id = 0x00041081,
  1884. .mask = 0x000fffff,
  1885. .data = &vendor_pl081,
  1886. },
  1887. /* Nomadik 8815 PL080 variant */
  1888. {
  1889. .id = 0x00280080,
  1890. .mask = 0x00ffffff,
  1891. .data = &vendor_nomadik,
  1892. },
  1893. { 0, 0 },
  1894. };
  1895. MODULE_DEVICE_TABLE(amba, pl08x_ids);
  1896. static struct amba_driver pl08x_amba_driver = {
  1897. .drv.name = DRIVER_NAME,
  1898. .id_table = pl08x_ids,
  1899. .probe = pl08x_probe,
  1900. };
  1901. static int __init pl08x_init(void)
  1902. {
  1903. int retval;
  1904. retval = amba_driver_register(&pl08x_amba_driver);
  1905. if (retval)
  1906. printk(KERN_WARNING DRIVER_NAME
  1907. "failed to register as an AMBA device (%d)\n",
  1908. retval);
  1909. return retval;
  1910. }
  1911. subsys_initcall(pl08x_init);