discontig_32.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/mmzone.h>
  27. #include <linux/highmem.h>
  28. #include <linux/initrd.h>
  29. #include <linux/nodemask.h>
  30. #include <linux/module.h>
  31. #include <linux/kexec.h>
  32. #include <linux/pfn.h>
  33. #include <linux/swap.h>
  34. #include <linux/acpi.h>
  35. #include <asm/e820.h>
  36. #include <asm/setup.h>
  37. #include <asm/mmzone.h>
  38. #include <asm/bios_ebda.h>
  39. #include <asm/proto.h>
  40. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  41. EXPORT_SYMBOL(node_data);
  42. static bootmem_data_t node0_bdata;
  43. /*
  44. * numa interface - we expect the numa architecture specific code to have
  45. * populated the following initialisation.
  46. *
  47. * 1) node_online_map - the map of all nodes configured (online) in the system
  48. * 2) node_start_pfn - the starting page frame number for a node
  49. * 3) node_end_pfn - the ending page fram number for a node
  50. */
  51. unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  52. unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  53. #ifdef CONFIG_DISCONTIGMEM
  54. /*
  55. * 4) physnode_map - the mapping between a pfn and owning node
  56. * physnode_map keeps track of the physical memory layout of a generic
  57. * numa node on a 64Mb break (each element of the array will
  58. * represent 64Mb of memory and will be marked by the node id. so,
  59. * if the first gig is on node 0, and the second gig is on node 1
  60. * physnode_map will contain:
  61. *
  62. * physnode_map[0-15] = 0;
  63. * physnode_map[16-31] = 1;
  64. * physnode_map[32- ] = -1;
  65. */
  66. s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  67. EXPORT_SYMBOL(physnode_map);
  68. void memory_present(int nid, unsigned long start, unsigned long end)
  69. {
  70. unsigned long pfn;
  71. printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
  72. nid, start, end);
  73. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  74. printk(KERN_DEBUG " ");
  75. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  76. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  77. printk(KERN_CONT "%ld ", pfn);
  78. }
  79. printk(KERN_CONT "\n");
  80. }
  81. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  82. unsigned long end_pfn)
  83. {
  84. unsigned long nr_pages = end_pfn - start_pfn;
  85. if (!nr_pages)
  86. return 0;
  87. return (nr_pages + 1) * sizeof(struct page);
  88. }
  89. #endif
  90. extern unsigned long find_max_low_pfn(void);
  91. extern void add_one_highpage_init(struct page *, int, int);
  92. extern unsigned long highend_pfn, highstart_pfn;
  93. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  94. unsigned long node_remap_size[MAX_NUMNODES];
  95. static void *node_remap_start_vaddr[MAX_NUMNODES];
  96. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  97. static unsigned long kva_start_pfn;
  98. static unsigned long kva_pages;
  99. /*
  100. * FLAT - support for basic PC memory model with discontig enabled, essentially
  101. * a single node with all available processors in it with a flat
  102. * memory map.
  103. */
  104. int __init get_memcfg_numa_flat(void)
  105. {
  106. printk("NUMA - single node, flat memory mode\n");
  107. /* Run the memory configuration and find the top of memory. */
  108. find_max_pfn();
  109. node_start_pfn[0] = 0;
  110. node_end_pfn[0] = max_pfn;
  111. memory_present(0, 0, max_pfn);
  112. node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);
  113. /* Indicate there is one node available. */
  114. nodes_clear(node_online_map);
  115. node_set_online(0);
  116. return 1;
  117. }
  118. /*
  119. * Find the highest page frame number we have available for the node
  120. */
  121. static void __init propagate_e820_map_node(int nid)
  122. {
  123. if (node_end_pfn[nid] > max_pfn)
  124. node_end_pfn[nid] = max_pfn;
  125. /*
  126. * if a user has given mem=XXXX, then we need to make sure
  127. * that the node _starts_ before that, too, not just ends
  128. */
  129. if (node_start_pfn[nid] > max_pfn)
  130. node_start_pfn[nid] = max_pfn;
  131. BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
  132. }
  133. /*
  134. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  135. * method. For node zero take this from the bottom of memory, for
  136. * subsequent nodes place them at node_remap_start_vaddr which contains
  137. * node local data in physically node local memory. See setup_memory()
  138. * for details.
  139. */
  140. static void __init allocate_pgdat(int nid)
  141. {
  142. if (nid && node_has_online_mem(nid))
  143. NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
  144. else {
  145. unsigned long pgdat_phys;
  146. pgdat_phys = find_e820_area(min_low_pfn<<PAGE_SHIFT,
  147. (nid ? max_low_pfn:max_pfn_mapped)<<PAGE_SHIFT,
  148. sizeof(pg_data_t),
  149. PAGE_SIZE);
  150. NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
  151. reserve_early(pgdat_phys, pgdat_phys + sizeof(pg_data_t),
  152. "NODE_DATA");
  153. }
  154. printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
  155. nid, (unsigned long)NODE_DATA(nid));
  156. }
  157. #ifdef CONFIG_DISCONTIGMEM
  158. /*
  159. * In the discontig memory model, a portion of the kernel virtual area (KVA)
  160. * is reserved and portions of nodes are mapped using it. This is to allow
  161. * node-local memory to be allocated for structures that would normally require
  162. * ZONE_NORMAL. The memory is allocated with alloc_remap() and callers
  163. * should be prepared to allocate from the bootmem allocator instead. This KVA
  164. * mechanism is incompatible with SPARSEMEM as it makes assumptions about the
  165. * layout of memory that are broken if alloc_remap() succeeds for some of the
  166. * map and fails for others
  167. */
  168. static unsigned long node_remap_start_pfn[MAX_NUMNODES];
  169. static void *node_remap_end_vaddr[MAX_NUMNODES];
  170. static void *node_remap_alloc_vaddr[MAX_NUMNODES];
  171. static unsigned long node_remap_offset[MAX_NUMNODES];
  172. void *alloc_remap(int nid, unsigned long size)
  173. {
  174. void *allocation = node_remap_alloc_vaddr[nid];
  175. size = ALIGN(size, L1_CACHE_BYTES);
  176. if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
  177. return 0;
  178. node_remap_alloc_vaddr[nid] += size;
  179. memset(allocation, 0, size);
  180. return allocation;
  181. }
  182. void __init remap_numa_kva(void)
  183. {
  184. void *vaddr;
  185. unsigned long pfn;
  186. int node;
  187. for_each_online_node(node) {
  188. printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
  189. for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
  190. vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
  191. printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
  192. (unsigned long)vaddr,
  193. node_remap_start_pfn[node] + pfn);
  194. set_pmd_pfn((ulong) vaddr,
  195. node_remap_start_pfn[node] + pfn,
  196. PAGE_KERNEL_LARGE);
  197. }
  198. }
  199. }
  200. static unsigned long calculate_numa_remap_pages(void)
  201. {
  202. int nid;
  203. unsigned long size, reserve_pages = 0;
  204. unsigned long pfn;
  205. for_each_online_node(nid) {
  206. unsigned old_end_pfn = node_end_pfn[nid];
  207. /*
  208. * The acpi/srat node info can show hot-add memroy zones
  209. * where memory could be added but not currently present.
  210. */
  211. if (node_start_pfn[nid] > max_pfn)
  212. continue;
  213. if (node_end_pfn[nid] > max_pfn)
  214. node_end_pfn[nid] = max_pfn;
  215. /* ensure the remap includes space for the pgdat. */
  216. size = node_remap_size[nid] + sizeof(pg_data_t);
  217. /* convert size to large (pmd size) pages, rounding up */
  218. size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
  219. /* now the roundup is correct, convert to PAGE_SIZE pages */
  220. size = size * PTRS_PER_PTE;
  221. /*
  222. * Validate the region we are allocating only contains valid
  223. * pages.
  224. */
  225. for (pfn = node_end_pfn[nid] - size;
  226. pfn < node_end_pfn[nid]; pfn++)
  227. if (!page_is_ram(pfn))
  228. break;
  229. if (pfn != node_end_pfn[nid])
  230. size = 0;
  231. printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
  232. size, nid);
  233. node_remap_size[nid] = size;
  234. node_remap_offset[nid] = reserve_pages;
  235. reserve_pages += size;
  236. printk("Shrinking node %d from %ld pages to %ld pages\n",
  237. nid, node_end_pfn[nid], node_end_pfn[nid] - size);
  238. if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
  239. /*
  240. * Align node_end_pfn[] and node_remap_start_pfn[] to
  241. * pmd boundary. remap_numa_kva will barf otherwise.
  242. */
  243. printk("Shrinking node %d further by %ld pages for proper alignment\n",
  244. nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
  245. size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
  246. }
  247. node_end_pfn[nid] -= size;
  248. node_remap_start_pfn[nid] = node_end_pfn[nid];
  249. shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);
  250. }
  251. printk("Reserving total of %ld pages for numa KVA remap\n",
  252. reserve_pages);
  253. return reserve_pages;
  254. }
  255. static void init_remap_allocator(int nid)
  256. {
  257. node_remap_start_vaddr[nid] = pfn_to_kaddr(
  258. kva_start_pfn + node_remap_offset[nid]);
  259. node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
  260. (node_remap_size[nid] * PAGE_SIZE);
  261. node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
  262. ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  263. printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
  264. (ulong) node_remap_start_vaddr[nid],
  265. (ulong) node_remap_end_vaddr[nid]);
  266. }
  267. #else
  268. void *alloc_remap(int nid, unsigned long size)
  269. {
  270. return NULL;
  271. }
  272. static unsigned long calculate_numa_remap_pages(void)
  273. {
  274. return 0;
  275. }
  276. static void init_remap_allocator(int nid)
  277. {
  278. }
  279. void __init remap_numa_kva(void)
  280. {
  281. }
  282. #endif /* CONFIG_DISCONTIGMEM */
  283. extern void setup_bootmem_allocator(void);
  284. unsigned long __init setup_memory(void)
  285. {
  286. int nid;
  287. unsigned long system_start_pfn, system_max_low_pfn;
  288. /*
  289. * When mapping a NUMA machine we allocate the node_mem_map arrays
  290. * from node local memory. They are then mapped directly into KVA
  291. * between zone normal and vmalloc space. Calculate the size of
  292. * this space and use it to adjust the boundary between ZONE_NORMAL
  293. * and ZONE_HIGHMEM.
  294. */
  295. get_memcfg_numa();
  296. kva_pages = round_up(calculate_numa_remap_pages(), PTRS_PER_PTE);
  297. /* partially used pages are not usable - thus round upwards */
  298. system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
  299. system_max_low_pfn = max_low_pfn = find_max_low_pfn();
  300. kva_start_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE);
  301. kva_start_pfn = find_e820_area(kva_start_pfn<<PAGE_SHIFT,
  302. max_low_pfn<<PAGE_SHIFT,
  303. kva_pages<<PAGE_SHIFT,
  304. PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT;
  305. printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
  306. kva_start_pfn, max_low_pfn);
  307. printk("max_pfn = %ld\n", max_pfn);
  308. /* avoid clash with initrd */
  309. reserve_early(kva_start_pfn<<PAGE_SHIFT,
  310. (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
  311. "KVA PG");
  312. #ifdef CONFIG_HIGHMEM
  313. highstart_pfn = highend_pfn = max_pfn;
  314. if (max_pfn > system_max_low_pfn)
  315. highstart_pfn = system_max_low_pfn;
  316. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  317. pages_to_mb(highend_pfn - highstart_pfn));
  318. num_physpages = highend_pfn;
  319. high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
  320. #else
  321. num_physpages = system_max_low_pfn;
  322. high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;
  323. #endif
  324. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  325. pages_to_mb(system_max_low_pfn));
  326. printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
  327. min_low_pfn, max_low_pfn, highstart_pfn);
  328. printk("Low memory ends at vaddr %08lx\n",
  329. (ulong) pfn_to_kaddr(max_low_pfn));
  330. for_each_online_node(nid) {
  331. init_remap_allocator(nid);
  332. allocate_pgdat(nid);
  333. }
  334. printk("High memory starts at vaddr %08lx\n",
  335. (ulong) pfn_to_kaddr(highstart_pfn));
  336. for_each_online_node(nid)
  337. propagate_e820_map_node(nid);
  338. memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
  339. NODE_DATA(0)->bdata = &node0_bdata;
  340. setup_bootmem_allocator();
  341. return max_low_pfn;
  342. }
  343. void __init zone_sizes_init(void)
  344. {
  345. int nid;
  346. unsigned long max_zone_pfns[MAX_NR_ZONES];
  347. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  348. max_zone_pfns[ZONE_DMA] =
  349. virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  350. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  351. #ifdef CONFIG_HIGHMEM
  352. max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
  353. #endif
  354. /* If SRAT has not registered memory, register it now */
  355. if (find_max_pfn_with_active_regions() == 0) {
  356. for_each_online_node(nid) {
  357. if (node_has_online_mem(nid))
  358. add_active_range(nid, node_start_pfn[nid],
  359. node_end_pfn[nid]);
  360. }
  361. }
  362. free_area_init_nodes(max_zone_pfns);
  363. return;
  364. }
  365. void __init set_highmem_pages_init(int bad_ppro)
  366. {
  367. #ifdef CONFIG_HIGHMEM
  368. struct zone *zone;
  369. struct page *page;
  370. for_each_zone(zone) {
  371. unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
  372. if (!is_highmem(zone))
  373. continue;
  374. zone_start_pfn = zone->zone_start_pfn;
  375. zone_end_pfn = zone_start_pfn + zone->spanned_pages;
  376. printk("Initializing %s for node %d (%08lx:%08lx)\n",
  377. zone->name, zone_to_nid(zone),
  378. zone_start_pfn, zone_end_pfn);
  379. for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
  380. if (!pfn_valid(node_pfn))
  381. continue;
  382. page = pfn_to_page(node_pfn);
  383. add_one_highpage_init(page, node_pfn, bad_ppro);
  384. }
  385. }
  386. totalram_pages += totalhigh_pages;
  387. #endif
  388. }
  389. #ifdef CONFIG_MEMORY_HOTPLUG
  390. static int paddr_to_nid(u64 addr)
  391. {
  392. int nid;
  393. unsigned long pfn = PFN_DOWN(addr);
  394. for_each_node(nid)
  395. if (node_start_pfn[nid] <= pfn &&
  396. pfn < node_end_pfn[nid])
  397. return nid;
  398. return -1;
  399. }
  400. /*
  401. * This function is used to ask node id BEFORE memmap and mem_section's
  402. * initialization (pfn_to_nid() can't be used yet).
  403. * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
  404. */
  405. int memory_add_physaddr_to_nid(u64 addr)
  406. {
  407. int nid = paddr_to_nid(addr);
  408. return (nid >= 0) ? nid : 0;
  409. }
  410. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  411. #endif