aead.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /*
  2. * AEAD: Authenticated Encryption with Associated Data
  3. *
  4. * This file provides API support for AEAD algorithms.
  5. *
  6. * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. */
  14. #include <crypto/internal/aead.h>
  15. #include <linux/err.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/rtnetlink.h>
  20. #include <linux/sched.h>
  21. #include <linux/slab.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/cryptouser.h>
  24. #include <net/netlink.h>
  25. #include "internal.h"
  26. static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key,
  27. unsigned int keylen)
  28. {
  29. struct aead_alg *aead = crypto_aead_alg(tfm);
  30. unsigned long alignmask = crypto_aead_alignmask(tfm);
  31. int ret;
  32. u8 *buffer, *alignbuffer;
  33. unsigned long absize;
  34. absize = keylen + alignmask;
  35. buffer = kmalloc(absize, GFP_ATOMIC);
  36. if (!buffer)
  37. return -ENOMEM;
  38. alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
  39. memcpy(alignbuffer, key, keylen);
  40. ret = aead->setkey(tfm, alignbuffer, keylen);
  41. memset(alignbuffer, 0, keylen);
  42. kfree(buffer);
  43. return ret;
  44. }
  45. static int setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen)
  46. {
  47. struct aead_alg *aead = crypto_aead_alg(tfm);
  48. unsigned long alignmask = crypto_aead_alignmask(tfm);
  49. if ((unsigned long)key & alignmask)
  50. return setkey_unaligned(tfm, key, keylen);
  51. return aead->setkey(tfm, key, keylen);
  52. }
  53. int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
  54. {
  55. struct aead_tfm *crt = crypto_aead_crt(tfm);
  56. int err;
  57. if (authsize > crypto_aead_alg(tfm)->maxauthsize)
  58. return -EINVAL;
  59. if (crypto_aead_alg(tfm)->setauthsize) {
  60. err = crypto_aead_alg(tfm)->setauthsize(crt->base, authsize);
  61. if (err)
  62. return err;
  63. }
  64. crypto_aead_crt(crt->base)->authsize = authsize;
  65. crt->authsize = authsize;
  66. return 0;
  67. }
  68. EXPORT_SYMBOL_GPL(crypto_aead_setauthsize);
  69. static unsigned int crypto_aead_ctxsize(struct crypto_alg *alg, u32 type,
  70. u32 mask)
  71. {
  72. return alg->cra_ctxsize;
  73. }
  74. static int no_givcrypt(struct aead_givcrypt_request *req)
  75. {
  76. return -ENOSYS;
  77. }
  78. static int crypto_init_aead_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
  79. {
  80. struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
  81. struct aead_tfm *crt = &tfm->crt_aead;
  82. if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
  83. return -EINVAL;
  84. crt->setkey = tfm->__crt_alg->cra_flags & CRYPTO_ALG_GENIV ?
  85. alg->setkey : setkey;
  86. crt->encrypt = alg->encrypt;
  87. crt->decrypt = alg->decrypt;
  88. crt->givencrypt = alg->givencrypt ?: no_givcrypt;
  89. crt->givdecrypt = alg->givdecrypt ?: no_givcrypt;
  90. crt->base = __crypto_aead_cast(tfm);
  91. crt->ivsize = alg->ivsize;
  92. crt->authsize = alg->maxauthsize;
  93. return 0;
  94. }
  95. static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
  96. {
  97. struct crypto_report_aead raead;
  98. struct aead_alg *aead = &alg->cra_aead;
  99. snprintf(raead.type, CRYPTO_MAX_ALG_NAME, "%s", "aead");
  100. snprintf(raead.geniv, CRYPTO_MAX_ALG_NAME, "%s",
  101. aead->geniv ?: "<built-in>");
  102. raead.blocksize = alg->cra_blocksize;
  103. raead.maxauthsize = aead->maxauthsize;
  104. raead.ivsize = aead->ivsize;
  105. NLA_PUT(skb, CRYPTOCFGA_REPORT_AEAD,
  106. sizeof(struct crypto_report_aead), &raead);
  107. return 0;
  108. nla_put_failure:
  109. return -EMSGSIZE;
  110. }
  111. static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
  112. __attribute__ ((unused));
  113. static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
  114. {
  115. struct aead_alg *aead = &alg->cra_aead;
  116. seq_printf(m, "type : aead\n");
  117. seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
  118. "yes" : "no");
  119. seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
  120. seq_printf(m, "ivsize : %u\n", aead->ivsize);
  121. seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
  122. seq_printf(m, "geniv : %s\n", aead->geniv ?: "<built-in>");
  123. }
  124. const struct crypto_type crypto_aead_type = {
  125. .ctxsize = crypto_aead_ctxsize,
  126. .init = crypto_init_aead_ops,
  127. #ifdef CONFIG_PROC_FS
  128. .show = crypto_aead_show,
  129. #endif
  130. .report = crypto_aead_report,
  131. };
  132. EXPORT_SYMBOL_GPL(crypto_aead_type);
  133. static int aead_null_givencrypt(struct aead_givcrypt_request *req)
  134. {
  135. return crypto_aead_encrypt(&req->areq);
  136. }
  137. static int aead_null_givdecrypt(struct aead_givcrypt_request *req)
  138. {
  139. return crypto_aead_decrypt(&req->areq);
  140. }
  141. static int crypto_init_nivaead_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
  142. {
  143. struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
  144. struct aead_tfm *crt = &tfm->crt_aead;
  145. if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
  146. return -EINVAL;
  147. crt->setkey = setkey;
  148. crt->encrypt = alg->encrypt;
  149. crt->decrypt = alg->decrypt;
  150. if (!alg->ivsize) {
  151. crt->givencrypt = aead_null_givencrypt;
  152. crt->givdecrypt = aead_null_givdecrypt;
  153. }
  154. crt->base = __crypto_aead_cast(tfm);
  155. crt->ivsize = alg->ivsize;
  156. crt->authsize = alg->maxauthsize;
  157. return 0;
  158. }
  159. static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
  160. __attribute__ ((unused));
  161. static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
  162. {
  163. struct aead_alg *aead = &alg->cra_aead;
  164. seq_printf(m, "type : nivaead\n");
  165. seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
  166. "yes" : "no");
  167. seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
  168. seq_printf(m, "ivsize : %u\n", aead->ivsize);
  169. seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
  170. seq_printf(m, "geniv : %s\n", aead->geniv);
  171. }
  172. const struct crypto_type crypto_nivaead_type = {
  173. .ctxsize = crypto_aead_ctxsize,
  174. .init = crypto_init_nivaead_ops,
  175. #ifdef CONFIG_PROC_FS
  176. .show = crypto_nivaead_show,
  177. #endif
  178. };
  179. EXPORT_SYMBOL_GPL(crypto_nivaead_type);
  180. static int crypto_grab_nivaead(struct crypto_aead_spawn *spawn,
  181. const char *name, u32 type, u32 mask)
  182. {
  183. struct crypto_alg *alg;
  184. int err;
  185. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  186. type |= CRYPTO_ALG_TYPE_AEAD;
  187. mask |= CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV;
  188. alg = crypto_alg_mod_lookup(name, type, mask);
  189. if (IS_ERR(alg))
  190. return PTR_ERR(alg);
  191. err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
  192. crypto_mod_put(alg);
  193. return err;
  194. }
  195. struct crypto_instance *aead_geniv_alloc(struct crypto_template *tmpl,
  196. struct rtattr **tb, u32 type,
  197. u32 mask)
  198. {
  199. const char *name;
  200. struct crypto_aead_spawn *spawn;
  201. struct crypto_attr_type *algt;
  202. struct crypto_instance *inst;
  203. struct crypto_alg *alg;
  204. int err;
  205. algt = crypto_get_attr_type(tb);
  206. err = PTR_ERR(algt);
  207. if (IS_ERR(algt))
  208. return ERR_PTR(err);
  209. if ((algt->type ^ (CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV)) &
  210. algt->mask)
  211. return ERR_PTR(-EINVAL);
  212. name = crypto_attr_alg_name(tb[1]);
  213. err = PTR_ERR(name);
  214. if (IS_ERR(name))
  215. return ERR_PTR(err);
  216. inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
  217. if (!inst)
  218. return ERR_PTR(-ENOMEM);
  219. spawn = crypto_instance_ctx(inst);
  220. /* Ignore async algorithms if necessary. */
  221. mask |= crypto_requires_sync(algt->type, algt->mask);
  222. crypto_set_aead_spawn(spawn, inst);
  223. err = crypto_grab_nivaead(spawn, name, type, mask);
  224. if (err)
  225. goto err_free_inst;
  226. alg = crypto_aead_spawn_alg(spawn);
  227. err = -EINVAL;
  228. if (!alg->cra_aead.ivsize)
  229. goto err_drop_alg;
  230. /*
  231. * This is only true if we're constructing an algorithm with its
  232. * default IV generator. For the default generator we elide the
  233. * template name and double-check the IV generator.
  234. */
  235. if (algt->mask & CRYPTO_ALG_GENIV) {
  236. if (strcmp(tmpl->name, alg->cra_aead.geniv))
  237. goto err_drop_alg;
  238. memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
  239. memcpy(inst->alg.cra_driver_name, alg->cra_driver_name,
  240. CRYPTO_MAX_ALG_NAME);
  241. } else {
  242. err = -ENAMETOOLONG;
  243. if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
  244. "%s(%s)", tmpl->name, alg->cra_name) >=
  245. CRYPTO_MAX_ALG_NAME)
  246. goto err_drop_alg;
  247. if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
  248. "%s(%s)", tmpl->name, alg->cra_driver_name) >=
  249. CRYPTO_MAX_ALG_NAME)
  250. goto err_drop_alg;
  251. }
  252. inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV;
  253. inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC;
  254. inst->alg.cra_priority = alg->cra_priority;
  255. inst->alg.cra_blocksize = alg->cra_blocksize;
  256. inst->alg.cra_alignmask = alg->cra_alignmask;
  257. inst->alg.cra_type = &crypto_aead_type;
  258. inst->alg.cra_aead.ivsize = alg->cra_aead.ivsize;
  259. inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize;
  260. inst->alg.cra_aead.geniv = alg->cra_aead.geniv;
  261. inst->alg.cra_aead.setkey = alg->cra_aead.setkey;
  262. inst->alg.cra_aead.setauthsize = alg->cra_aead.setauthsize;
  263. inst->alg.cra_aead.encrypt = alg->cra_aead.encrypt;
  264. inst->alg.cra_aead.decrypt = alg->cra_aead.decrypt;
  265. out:
  266. return inst;
  267. err_drop_alg:
  268. crypto_drop_aead(spawn);
  269. err_free_inst:
  270. kfree(inst);
  271. inst = ERR_PTR(err);
  272. goto out;
  273. }
  274. EXPORT_SYMBOL_GPL(aead_geniv_alloc);
  275. void aead_geniv_free(struct crypto_instance *inst)
  276. {
  277. crypto_drop_aead(crypto_instance_ctx(inst));
  278. kfree(inst);
  279. }
  280. EXPORT_SYMBOL_GPL(aead_geniv_free);
  281. int aead_geniv_init(struct crypto_tfm *tfm)
  282. {
  283. struct crypto_instance *inst = (void *)tfm->__crt_alg;
  284. struct crypto_aead *aead;
  285. aead = crypto_spawn_aead(crypto_instance_ctx(inst));
  286. if (IS_ERR(aead))
  287. return PTR_ERR(aead);
  288. tfm->crt_aead.base = aead;
  289. tfm->crt_aead.reqsize += crypto_aead_reqsize(aead);
  290. return 0;
  291. }
  292. EXPORT_SYMBOL_GPL(aead_geniv_init);
  293. void aead_geniv_exit(struct crypto_tfm *tfm)
  294. {
  295. crypto_free_aead(tfm->crt_aead.base);
  296. }
  297. EXPORT_SYMBOL_GPL(aead_geniv_exit);
  298. static int crypto_nivaead_default(struct crypto_alg *alg, u32 type, u32 mask)
  299. {
  300. struct rtattr *tb[3];
  301. struct {
  302. struct rtattr attr;
  303. struct crypto_attr_type data;
  304. } ptype;
  305. struct {
  306. struct rtattr attr;
  307. struct crypto_attr_alg data;
  308. } palg;
  309. struct crypto_template *tmpl;
  310. struct crypto_instance *inst;
  311. struct crypto_alg *larval;
  312. const char *geniv;
  313. int err;
  314. larval = crypto_larval_lookup(alg->cra_driver_name,
  315. CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV,
  316. CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  317. err = PTR_ERR(larval);
  318. if (IS_ERR(larval))
  319. goto out;
  320. err = -EAGAIN;
  321. if (!crypto_is_larval(larval))
  322. goto drop_larval;
  323. ptype.attr.rta_len = sizeof(ptype);
  324. ptype.attr.rta_type = CRYPTOA_TYPE;
  325. ptype.data.type = type | CRYPTO_ALG_GENIV;
  326. /* GENIV tells the template that we're making a default geniv. */
  327. ptype.data.mask = mask | CRYPTO_ALG_GENIV;
  328. tb[0] = &ptype.attr;
  329. palg.attr.rta_len = sizeof(palg);
  330. palg.attr.rta_type = CRYPTOA_ALG;
  331. /* Must use the exact name to locate ourselves. */
  332. memcpy(palg.data.name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME);
  333. tb[1] = &palg.attr;
  334. tb[2] = NULL;
  335. geniv = alg->cra_aead.geniv;
  336. tmpl = crypto_lookup_template(geniv);
  337. err = -ENOENT;
  338. if (!tmpl)
  339. goto kill_larval;
  340. inst = tmpl->alloc(tb);
  341. err = PTR_ERR(inst);
  342. if (IS_ERR(inst))
  343. goto put_tmpl;
  344. if ((err = crypto_register_instance(tmpl, inst))) {
  345. tmpl->free(inst);
  346. goto put_tmpl;
  347. }
  348. /* Redo the lookup to use the instance we just registered. */
  349. err = -EAGAIN;
  350. put_tmpl:
  351. crypto_tmpl_put(tmpl);
  352. kill_larval:
  353. crypto_larval_kill(larval);
  354. drop_larval:
  355. crypto_mod_put(larval);
  356. out:
  357. crypto_mod_put(alg);
  358. return err;
  359. }
  360. static struct crypto_alg *crypto_lookup_aead(const char *name, u32 type,
  361. u32 mask)
  362. {
  363. struct crypto_alg *alg;
  364. alg = crypto_alg_mod_lookup(name, type, mask);
  365. if (IS_ERR(alg))
  366. return alg;
  367. if (alg->cra_type == &crypto_aead_type)
  368. return alg;
  369. if (!alg->cra_aead.ivsize)
  370. return alg;
  371. crypto_mod_put(alg);
  372. alg = crypto_alg_mod_lookup(name, type | CRYPTO_ALG_TESTED,
  373. mask & ~CRYPTO_ALG_TESTED);
  374. if (IS_ERR(alg))
  375. return alg;
  376. if (alg->cra_type == &crypto_aead_type) {
  377. if ((alg->cra_flags ^ type ^ ~mask) & CRYPTO_ALG_TESTED) {
  378. crypto_mod_put(alg);
  379. alg = ERR_PTR(-ENOENT);
  380. }
  381. return alg;
  382. }
  383. BUG_ON(!alg->cra_aead.ivsize);
  384. return ERR_PTR(crypto_nivaead_default(alg, type, mask));
  385. }
  386. int crypto_grab_aead(struct crypto_aead_spawn *spawn, const char *name,
  387. u32 type, u32 mask)
  388. {
  389. struct crypto_alg *alg;
  390. int err;
  391. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  392. type |= CRYPTO_ALG_TYPE_AEAD;
  393. mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  394. mask |= CRYPTO_ALG_TYPE_MASK;
  395. alg = crypto_lookup_aead(name, type, mask);
  396. if (IS_ERR(alg))
  397. return PTR_ERR(alg);
  398. err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
  399. crypto_mod_put(alg);
  400. return err;
  401. }
  402. EXPORT_SYMBOL_GPL(crypto_grab_aead);
  403. struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask)
  404. {
  405. struct crypto_tfm *tfm;
  406. int err;
  407. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  408. type |= CRYPTO_ALG_TYPE_AEAD;
  409. mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  410. mask |= CRYPTO_ALG_TYPE_MASK;
  411. for (;;) {
  412. struct crypto_alg *alg;
  413. alg = crypto_lookup_aead(alg_name, type, mask);
  414. if (IS_ERR(alg)) {
  415. err = PTR_ERR(alg);
  416. goto err;
  417. }
  418. tfm = __crypto_alloc_tfm(alg, type, mask);
  419. if (!IS_ERR(tfm))
  420. return __crypto_aead_cast(tfm);
  421. crypto_mod_put(alg);
  422. err = PTR_ERR(tfm);
  423. err:
  424. if (err != -EAGAIN)
  425. break;
  426. if (signal_pending(current)) {
  427. err = -EINTR;
  428. break;
  429. }
  430. }
  431. return ERR_PTR(err);
  432. }
  433. EXPORT_SYMBOL_GPL(crypto_alloc_aead);
  434. MODULE_LICENSE("GPL");
  435. MODULE_DESCRIPTION("Authenticated Encryption with Associated Data (AEAD)");