vmscan.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/gfp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/file.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/buffer_head.h> /* for try_to_release_page(),
  26. buffer_heads_over_limit */
  27. #include <linux/mm_inline.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/rmap.h>
  31. #include <linux/topology.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/compaction.h>
  35. #include <linux/notifier.h>
  36. #include <linux/rwsem.h>
  37. #include <linux/delay.h>
  38. #include <linux/kthread.h>
  39. #include <linux/freezer.h>
  40. #include <linux/memcontrol.h>
  41. #include <linux/delayacct.h>
  42. #include <linux/sysctl.h>
  43. #include <linux/oom.h>
  44. #include <linux/prefetch.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/div64.h>
  47. #include <linux/swapops.h>
  48. #include "internal.h"
  49. #define CREATE_TRACE_POINTS
  50. #include <trace/events/vmscan.h>
  51. /*
  52. * reclaim_mode determines how the inactive list is shrunk
  53. * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  54. * RECLAIM_MODE_ASYNC: Do not block
  55. * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
  56. * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  57. * page from the LRU and reclaim all pages within a
  58. * naturally aligned range
  59. * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  60. * order-0 pages and then compact the zone
  61. */
  62. typedef unsigned __bitwise__ reclaim_mode_t;
  63. #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
  64. #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
  65. #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
  66. #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
  67. #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
  68. struct scan_control {
  69. /* Incremented by the number of inactive pages that were scanned */
  70. unsigned long nr_scanned;
  71. /* Number of pages freed so far during a call to shrink_zones() */
  72. unsigned long nr_reclaimed;
  73. /* How many pages shrink_list() should reclaim */
  74. unsigned long nr_to_reclaim;
  75. unsigned long hibernation_mode;
  76. /* This context's GFP mask */
  77. gfp_t gfp_mask;
  78. int may_writepage;
  79. /* Can mapped pages be reclaimed? */
  80. int may_unmap;
  81. /* Can pages be swapped as part of reclaim? */
  82. int may_swap;
  83. int order;
  84. /*
  85. * Intend to reclaim enough continuous memory rather than reclaim
  86. * enough amount of memory. i.e, mode for high order allocation.
  87. */
  88. reclaim_mode_t reclaim_mode;
  89. /* Which cgroup do we reclaim from */
  90. struct mem_cgroup *mem_cgroup;
  91. /*
  92. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  93. * are scanned.
  94. */
  95. nodemask_t *nodemask;
  96. };
  97. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  98. #ifdef ARCH_HAS_PREFETCH
  99. #define prefetch_prev_lru_page(_page, _base, _field) \
  100. do { \
  101. if ((_page)->lru.prev != _base) { \
  102. struct page *prev; \
  103. \
  104. prev = lru_to_page(&(_page->lru)); \
  105. prefetch(&prev->_field); \
  106. } \
  107. } while (0)
  108. #else
  109. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  110. #endif
  111. #ifdef ARCH_HAS_PREFETCHW
  112. #define prefetchw_prev_lru_page(_page, _base, _field) \
  113. do { \
  114. if ((_page)->lru.prev != _base) { \
  115. struct page *prev; \
  116. \
  117. prev = lru_to_page(&(_page->lru)); \
  118. prefetchw(&prev->_field); \
  119. } \
  120. } while (0)
  121. #else
  122. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  123. #endif
  124. /*
  125. * From 0 .. 100. Higher means more swappy.
  126. */
  127. int vm_swappiness = 60;
  128. long vm_total_pages; /* The total number of pages which the VM controls */
  129. static LIST_HEAD(shrinker_list);
  130. static DECLARE_RWSEM(shrinker_rwsem);
  131. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  132. #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
  133. #else
  134. #define scanning_global_lru(sc) (1)
  135. #endif
  136. static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
  137. struct scan_control *sc)
  138. {
  139. if (!scanning_global_lru(sc))
  140. return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
  141. return &zone->reclaim_stat;
  142. }
  143. static unsigned long zone_nr_lru_pages(struct zone *zone,
  144. struct scan_control *sc, enum lru_list lru)
  145. {
  146. if (!scanning_global_lru(sc))
  147. return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
  148. zone_to_nid(zone), zone_idx(zone), BIT(lru));
  149. return zone_page_state(zone, NR_LRU_BASE + lru);
  150. }
  151. /*
  152. * Add a shrinker callback to be called from the vm
  153. */
  154. void register_shrinker(struct shrinker *shrinker)
  155. {
  156. shrinker->nr = 0;
  157. down_write(&shrinker_rwsem);
  158. list_add_tail(&shrinker->list, &shrinker_list);
  159. up_write(&shrinker_rwsem);
  160. }
  161. EXPORT_SYMBOL(register_shrinker);
  162. /*
  163. * Remove one
  164. */
  165. void unregister_shrinker(struct shrinker *shrinker)
  166. {
  167. down_write(&shrinker_rwsem);
  168. list_del(&shrinker->list);
  169. up_write(&shrinker_rwsem);
  170. }
  171. EXPORT_SYMBOL(unregister_shrinker);
  172. static inline int do_shrinker_shrink(struct shrinker *shrinker,
  173. struct shrink_control *sc,
  174. unsigned long nr_to_scan)
  175. {
  176. sc->nr_to_scan = nr_to_scan;
  177. return (*shrinker->shrink)(shrinker, sc);
  178. }
  179. #define SHRINK_BATCH 128
  180. /*
  181. * Call the shrink functions to age shrinkable caches
  182. *
  183. * Here we assume it costs one seek to replace a lru page and that it also
  184. * takes a seek to recreate a cache object. With this in mind we age equal
  185. * percentages of the lru and ageable caches. This should balance the seeks
  186. * generated by these structures.
  187. *
  188. * If the vm encountered mapped pages on the LRU it increase the pressure on
  189. * slab to avoid swapping.
  190. *
  191. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  192. *
  193. * `lru_pages' represents the number of on-LRU pages in all the zones which
  194. * are eligible for the caller's allocation attempt. It is used for balancing
  195. * slab reclaim versus page reclaim.
  196. *
  197. * Returns the number of slab objects which we shrunk.
  198. */
  199. unsigned long shrink_slab(struct shrink_control *shrink,
  200. unsigned long nr_pages_scanned,
  201. unsigned long lru_pages)
  202. {
  203. struct shrinker *shrinker;
  204. unsigned long ret = 0;
  205. if (nr_pages_scanned == 0)
  206. nr_pages_scanned = SWAP_CLUSTER_MAX;
  207. if (!down_read_trylock(&shrinker_rwsem)) {
  208. /* Assume we'll be able to shrink next time */
  209. ret = 1;
  210. goto out;
  211. }
  212. list_for_each_entry(shrinker, &shrinker_list, list) {
  213. unsigned long long delta;
  214. unsigned long total_scan;
  215. unsigned long max_pass;
  216. int shrink_ret = 0;
  217. long nr;
  218. long new_nr;
  219. long batch_size = shrinker->batch ? shrinker->batch
  220. : SHRINK_BATCH;
  221. /*
  222. * copy the current shrinker scan count into a local variable
  223. * and zero it so that other concurrent shrinker invocations
  224. * don't also do this scanning work.
  225. */
  226. do {
  227. nr = shrinker->nr;
  228. } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
  229. total_scan = nr;
  230. max_pass = do_shrinker_shrink(shrinker, shrink, 0);
  231. delta = (4 * nr_pages_scanned) / shrinker->seeks;
  232. delta *= max_pass;
  233. do_div(delta, lru_pages + 1);
  234. total_scan += delta;
  235. if (total_scan < 0) {
  236. printk(KERN_ERR "shrink_slab: %pF negative objects to "
  237. "delete nr=%ld\n",
  238. shrinker->shrink, total_scan);
  239. total_scan = max_pass;
  240. }
  241. /*
  242. * We need to avoid excessive windup on filesystem shrinkers
  243. * due to large numbers of GFP_NOFS allocations causing the
  244. * shrinkers to return -1 all the time. This results in a large
  245. * nr being built up so when a shrink that can do some work
  246. * comes along it empties the entire cache due to nr >>>
  247. * max_pass. This is bad for sustaining a working set in
  248. * memory.
  249. *
  250. * Hence only allow the shrinker to scan the entire cache when
  251. * a large delta change is calculated directly.
  252. */
  253. if (delta < max_pass / 4)
  254. total_scan = min(total_scan, max_pass / 2);
  255. /*
  256. * Avoid risking looping forever due to too large nr value:
  257. * never try to free more than twice the estimate number of
  258. * freeable entries.
  259. */
  260. if (total_scan > max_pass * 2)
  261. total_scan = max_pass * 2;
  262. trace_mm_shrink_slab_start(shrinker, shrink, nr,
  263. nr_pages_scanned, lru_pages,
  264. max_pass, delta, total_scan);
  265. while (total_scan >= batch_size) {
  266. int nr_before;
  267. nr_before = do_shrinker_shrink(shrinker, shrink, 0);
  268. shrink_ret = do_shrinker_shrink(shrinker, shrink,
  269. batch_size);
  270. if (shrink_ret == -1)
  271. break;
  272. if (shrink_ret < nr_before)
  273. ret += nr_before - shrink_ret;
  274. count_vm_events(SLABS_SCANNED, batch_size);
  275. total_scan -= batch_size;
  276. cond_resched();
  277. }
  278. /*
  279. * move the unused scan count back into the shrinker in a
  280. * manner that handles concurrent updates. If we exhausted the
  281. * scan, there is no need to do an update.
  282. */
  283. do {
  284. nr = shrinker->nr;
  285. new_nr = total_scan + nr;
  286. if (total_scan <= 0)
  287. break;
  288. } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
  289. trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
  290. }
  291. up_read(&shrinker_rwsem);
  292. out:
  293. cond_resched();
  294. return ret;
  295. }
  296. static void set_reclaim_mode(int priority, struct scan_control *sc,
  297. bool sync)
  298. {
  299. reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
  300. /*
  301. * Initially assume we are entering either lumpy reclaim or
  302. * reclaim/compaction.Depending on the order, we will either set the
  303. * sync mode or just reclaim order-0 pages later.
  304. */
  305. if (COMPACTION_BUILD)
  306. sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
  307. else
  308. sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
  309. /*
  310. * Avoid using lumpy reclaim or reclaim/compaction if possible by
  311. * restricting when its set to either costly allocations or when
  312. * under memory pressure
  313. */
  314. if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
  315. sc->reclaim_mode |= syncmode;
  316. else if (sc->order && priority < DEF_PRIORITY - 2)
  317. sc->reclaim_mode |= syncmode;
  318. else
  319. sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
  320. }
  321. static void reset_reclaim_mode(struct scan_control *sc)
  322. {
  323. sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
  324. }
  325. static inline int is_page_cache_freeable(struct page *page)
  326. {
  327. /*
  328. * A freeable page cache page is referenced only by the caller
  329. * that isolated the page, the page cache radix tree and
  330. * optional buffer heads at page->private.
  331. */
  332. return page_count(page) - page_has_private(page) == 2;
  333. }
  334. static int may_write_to_queue(struct backing_dev_info *bdi,
  335. struct scan_control *sc)
  336. {
  337. if (current->flags & PF_SWAPWRITE)
  338. return 1;
  339. if (!bdi_write_congested(bdi))
  340. return 1;
  341. if (bdi == current->backing_dev_info)
  342. return 1;
  343. /* lumpy reclaim for hugepage often need a lot of write */
  344. if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
  345. return 1;
  346. return 0;
  347. }
  348. /*
  349. * We detected a synchronous write error writing a page out. Probably
  350. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  351. * fsync(), msync() or close().
  352. *
  353. * The tricky part is that after writepage we cannot touch the mapping: nothing
  354. * prevents it from being freed up. But we have a ref on the page and once
  355. * that page is locked, the mapping is pinned.
  356. *
  357. * We're allowed to run sleeping lock_page() here because we know the caller has
  358. * __GFP_FS.
  359. */
  360. static void handle_write_error(struct address_space *mapping,
  361. struct page *page, int error)
  362. {
  363. lock_page(page);
  364. if (page_mapping(page) == mapping)
  365. mapping_set_error(mapping, error);
  366. unlock_page(page);
  367. }
  368. /* possible outcome of pageout() */
  369. typedef enum {
  370. /* failed to write page out, page is locked */
  371. PAGE_KEEP,
  372. /* move page to the active list, page is locked */
  373. PAGE_ACTIVATE,
  374. /* page has been sent to the disk successfully, page is unlocked */
  375. PAGE_SUCCESS,
  376. /* page is clean and locked */
  377. PAGE_CLEAN,
  378. } pageout_t;
  379. /*
  380. * pageout is called by shrink_page_list() for each dirty page.
  381. * Calls ->writepage().
  382. */
  383. static pageout_t pageout(struct page *page, struct address_space *mapping,
  384. struct scan_control *sc)
  385. {
  386. /*
  387. * If the page is dirty, only perform writeback if that write
  388. * will be non-blocking. To prevent this allocation from being
  389. * stalled by pagecache activity. But note that there may be
  390. * stalls if we need to run get_block(). We could test
  391. * PagePrivate for that.
  392. *
  393. * If this process is currently in __generic_file_aio_write() against
  394. * this page's queue, we can perform writeback even if that
  395. * will block.
  396. *
  397. * If the page is swapcache, write it back even if that would
  398. * block, for some throttling. This happens by accident, because
  399. * swap_backing_dev_info is bust: it doesn't reflect the
  400. * congestion state of the swapdevs. Easy to fix, if needed.
  401. */
  402. if (!is_page_cache_freeable(page))
  403. return PAGE_KEEP;
  404. if (!mapping) {
  405. /*
  406. * Some data journaling orphaned pages can have
  407. * page->mapping == NULL while being dirty with clean buffers.
  408. */
  409. if (page_has_private(page)) {
  410. if (try_to_free_buffers(page)) {
  411. ClearPageDirty(page);
  412. printk("%s: orphaned page\n", __func__);
  413. return PAGE_CLEAN;
  414. }
  415. }
  416. return PAGE_KEEP;
  417. }
  418. if (mapping->a_ops->writepage == NULL)
  419. return PAGE_ACTIVATE;
  420. if (!may_write_to_queue(mapping->backing_dev_info, sc))
  421. return PAGE_KEEP;
  422. if (clear_page_dirty_for_io(page)) {
  423. int res;
  424. struct writeback_control wbc = {
  425. .sync_mode = WB_SYNC_NONE,
  426. .nr_to_write = SWAP_CLUSTER_MAX,
  427. .range_start = 0,
  428. .range_end = LLONG_MAX,
  429. .for_reclaim = 1,
  430. };
  431. SetPageReclaim(page);
  432. res = mapping->a_ops->writepage(page, &wbc);
  433. if (res < 0)
  434. handle_write_error(mapping, page, res);
  435. if (res == AOP_WRITEPAGE_ACTIVATE) {
  436. ClearPageReclaim(page);
  437. return PAGE_ACTIVATE;
  438. }
  439. /*
  440. * Wait on writeback if requested to. This happens when
  441. * direct reclaiming a large contiguous area and the
  442. * first attempt to free a range of pages fails.
  443. */
  444. if (PageWriteback(page) &&
  445. (sc->reclaim_mode & RECLAIM_MODE_SYNC))
  446. wait_on_page_writeback(page);
  447. if (!PageWriteback(page)) {
  448. /* synchronous write or broken a_ops? */
  449. ClearPageReclaim(page);
  450. }
  451. trace_mm_vmscan_writepage(page,
  452. trace_reclaim_flags(page, sc->reclaim_mode));
  453. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  454. return PAGE_SUCCESS;
  455. }
  456. return PAGE_CLEAN;
  457. }
  458. /*
  459. * Same as remove_mapping, but if the page is removed from the mapping, it
  460. * gets returned with a refcount of 0.
  461. */
  462. static int __remove_mapping(struct address_space *mapping, struct page *page)
  463. {
  464. BUG_ON(!PageLocked(page));
  465. BUG_ON(mapping != page_mapping(page));
  466. spin_lock_irq(&mapping->tree_lock);
  467. /*
  468. * The non racy check for a busy page.
  469. *
  470. * Must be careful with the order of the tests. When someone has
  471. * a ref to the page, it may be possible that they dirty it then
  472. * drop the reference. So if PageDirty is tested before page_count
  473. * here, then the following race may occur:
  474. *
  475. * get_user_pages(&page);
  476. * [user mapping goes away]
  477. * write_to(page);
  478. * !PageDirty(page) [good]
  479. * SetPageDirty(page);
  480. * put_page(page);
  481. * !page_count(page) [good, discard it]
  482. *
  483. * [oops, our write_to data is lost]
  484. *
  485. * Reversing the order of the tests ensures such a situation cannot
  486. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  487. * load is not satisfied before that of page->_count.
  488. *
  489. * Note that if SetPageDirty is always performed via set_page_dirty,
  490. * and thus under tree_lock, then this ordering is not required.
  491. */
  492. if (!page_freeze_refs(page, 2))
  493. goto cannot_free;
  494. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  495. if (unlikely(PageDirty(page))) {
  496. page_unfreeze_refs(page, 2);
  497. goto cannot_free;
  498. }
  499. if (PageSwapCache(page)) {
  500. swp_entry_t swap = { .val = page_private(page) };
  501. __delete_from_swap_cache(page);
  502. spin_unlock_irq(&mapping->tree_lock);
  503. swapcache_free(swap, page);
  504. } else {
  505. void (*freepage)(struct page *);
  506. freepage = mapping->a_ops->freepage;
  507. __delete_from_page_cache(page);
  508. spin_unlock_irq(&mapping->tree_lock);
  509. mem_cgroup_uncharge_cache_page(page);
  510. if (freepage != NULL)
  511. freepage(page);
  512. }
  513. return 1;
  514. cannot_free:
  515. spin_unlock_irq(&mapping->tree_lock);
  516. return 0;
  517. }
  518. /*
  519. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  520. * someone else has a ref on the page, abort and return 0. If it was
  521. * successfully detached, return 1. Assumes the caller has a single ref on
  522. * this page.
  523. */
  524. int remove_mapping(struct address_space *mapping, struct page *page)
  525. {
  526. if (__remove_mapping(mapping, page)) {
  527. /*
  528. * Unfreezing the refcount with 1 rather than 2 effectively
  529. * drops the pagecache ref for us without requiring another
  530. * atomic operation.
  531. */
  532. page_unfreeze_refs(page, 1);
  533. return 1;
  534. }
  535. return 0;
  536. }
  537. /**
  538. * putback_lru_page - put previously isolated page onto appropriate LRU list
  539. * @page: page to be put back to appropriate lru list
  540. *
  541. * Add previously isolated @page to appropriate LRU list.
  542. * Page may still be unevictable for other reasons.
  543. *
  544. * lru_lock must not be held, interrupts must be enabled.
  545. */
  546. void putback_lru_page(struct page *page)
  547. {
  548. int lru;
  549. int active = !!TestClearPageActive(page);
  550. int was_unevictable = PageUnevictable(page);
  551. VM_BUG_ON(PageLRU(page));
  552. redo:
  553. ClearPageUnevictable(page);
  554. if (page_evictable(page, NULL)) {
  555. /*
  556. * For evictable pages, we can use the cache.
  557. * In event of a race, worst case is we end up with an
  558. * unevictable page on [in]active list.
  559. * We know how to handle that.
  560. */
  561. lru = active + page_lru_base_type(page);
  562. lru_cache_add_lru(page, lru);
  563. } else {
  564. /*
  565. * Put unevictable pages directly on zone's unevictable
  566. * list.
  567. */
  568. lru = LRU_UNEVICTABLE;
  569. add_page_to_unevictable_list(page);
  570. /*
  571. * When racing with an mlock clearing (page is
  572. * unlocked), make sure that if the other thread does
  573. * not observe our setting of PG_lru and fails
  574. * isolation, we see PG_mlocked cleared below and move
  575. * the page back to the evictable list.
  576. *
  577. * The other side is TestClearPageMlocked().
  578. */
  579. smp_mb();
  580. }
  581. /*
  582. * page's status can change while we move it among lru. If an evictable
  583. * page is on unevictable list, it never be freed. To avoid that,
  584. * check after we added it to the list, again.
  585. */
  586. if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
  587. if (!isolate_lru_page(page)) {
  588. put_page(page);
  589. goto redo;
  590. }
  591. /* This means someone else dropped this page from LRU
  592. * So, it will be freed or putback to LRU again. There is
  593. * nothing to do here.
  594. */
  595. }
  596. if (was_unevictable && lru != LRU_UNEVICTABLE)
  597. count_vm_event(UNEVICTABLE_PGRESCUED);
  598. else if (!was_unevictable && lru == LRU_UNEVICTABLE)
  599. count_vm_event(UNEVICTABLE_PGCULLED);
  600. put_page(page); /* drop ref from isolate */
  601. }
  602. enum page_references {
  603. PAGEREF_RECLAIM,
  604. PAGEREF_RECLAIM_CLEAN,
  605. PAGEREF_KEEP,
  606. PAGEREF_ACTIVATE,
  607. };
  608. static enum page_references page_check_references(struct page *page,
  609. struct scan_control *sc)
  610. {
  611. int referenced_ptes, referenced_page;
  612. unsigned long vm_flags;
  613. referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
  614. referenced_page = TestClearPageReferenced(page);
  615. /* Lumpy reclaim - ignore references */
  616. if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
  617. return PAGEREF_RECLAIM;
  618. /*
  619. * Mlock lost the isolation race with us. Let try_to_unmap()
  620. * move the page to the unevictable list.
  621. */
  622. if (vm_flags & VM_LOCKED)
  623. return PAGEREF_RECLAIM;
  624. if (referenced_ptes) {
  625. if (PageAnon(page))
  626. return PAGEREF_ACTIVATE;
  627. /*
  628. * All mapped pages start out with page table
  629. * references from the instantiating fault, so we need
  630. * to look twice if a mapped file page is used more
  631. * than once.
  632. *
  633. * Mark it and spare it for another trip around the
  634. * inactive list. Another page table reference will
  635. * lead to its activation.
  636. *
  637. * Note: the mark is set for activated pages as well
  638. * so that recently deactivated but used pages are
  639. * quickly recovered.
  640. */
  641. SetPageReferenced(page);
  642. if (referenced_page)
  643. return PAGEREF_ACTIVATE;
  644. return PAGEREF_KEEP;
  645. }
  646. /* Reclaim if clean, defer dirty pages to writeback */
  647. if (referenced_page && !PageSwapBacked(page))
  648. return PAGEREF_RECLAIM_CLEAN;
  649. return PAGEREF_RECLAIM;
  650. }
  651. static noinline_for_stack void free_page_list(struct list_head *free_pages)
  652. {
  653. struct pagevec freed_pvec;
  654. struct page *page, *tmp;
  655. pagevec_init(&freed_pvec, 1);
  656. list_for_each_entry_safe(page, tmp, free_pages, lru) {
  657. list_del(&page->lru);
  658. if (!pagevec_add(&freed_pvec, page)) {
  659. __pagevec_free(&freed_pvec);
  660. pagevec_reinit(&freed_pvec);
  661. }
  662. }
  663. pagevec_free(&freed_pvec);
  664. }
  665. /*
  666. * shrink_page_list() returns the number of reclaimed pages
  667. */
  668. static unsigned long shrink_page_list(struct list_head *page_list,
  669. struct zone *zone,
  670. struct scan_control *sc)
  671. {
  672. LIST_HEAD(ret_pages);
  673. LIST_HEAD(free_pages);
  674. int pgactivate = 0;
  675. unsigned long nr_dirty = 0;
  676. unsigned long nr_congested = 0;
  677. unsigned long nr_reclaimed = 0;
  678. cond_resched();
  679. while (!list_empty(page_list)) {
  680. enum page_references references;
  681. struct address_space *mapping;
  682. struct page *page;
  683. int may_enter_fs;
  684. cond_resched();
  685. page = lru_to_page(page_list);
  686. list_del(&page->lru);
  687. if (!trylock_page(page))
  688. goto keep;
  689. VM_BUG_ON(PageActive(page));
  690. VM_BUG_ON(page_zone(page) != zone);
  691. sc->nr_scanned++;
  692. if (unlikely(!page_evictable(page, NULL)))
  693. goto cull_mlocked;
  694. if (!sc->may_unmap && page_mapped(page))
  695. goto keep_locked;
  696. /* Double the slab pressure for mapped and swapcache pages */
  697. if (page_mapped(page) || PageSwapCache(page))
  698. sc->nr_scanned++;
  699. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  700. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  701. if (PageWriteback(page)) {
  702. /*
  703. * Synchronous reclaim is performed in two passes,
  704. * first an asynchronous pass over the list to
  705. * start parallel writeback, and a second synchronous
  706. * pass to wait for the IO to complete. Wait here
  707. * for any page for which writeback has already
  708. * started.
  709. */
  710. if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
  711. may_enter_fs)
  712. wait_on_page_writeback(page);
  713. else {
  714. unlock_page(page);
  715. goto keep_lumpy;
  716. }
  717. }
  718. references = page_check_references(page, sc);
  719. switch (references) {
  720. case PAGEREF_ACTIVATE:
  721. goto activate_locked;
  722. case PAGEREF_KEEP:
  723. goto keep_locked;
  724. case PAGEREF_RECLAIM:
  725. case PAGEREF_RECLAIM_CLEAN:
  726. ; /* try to reclaim the page below */
  727. }
  728. /*
  729. * Anonymous process memory has backing store?
  730. * Try to allocate it some swap space here.
  731. */
  732. if (PageAnon(page) && !PageSwapCache(page)) {
  733. if (!(sc->gfp_mask & __GFP_IO))
  734. goto keep_locked;
  735. if (!add_to_swap(page))
  736. goto activate_locked;
  737. may_enter_fs = 1;
  738. }
  739. mapping = page_mapping(page);
  740. /*
  741. * The page is mapped into the page tables of one or more
  742. * processes. Try to unmap it here.
  743. */
  744. if (page_mapped(page) && mapping) {
  745. switch (try_to_unmap(page, TTU_UNMAP)) {
  746. case SWAP_FAIL:
  747. goto activate_locked;
  748. case SWAP_AGAIN:
  749. goto keep_locked;
  750. case SWAP_MLOCK:
  751. goto cull_mlocked;
  752. case SWAP_SUCCESS:
  753. ; /* try to free the page below */
  754. }
  755. }
  756. if (PageDirty(page)) {
  757. nr_dirty++;
  758. if (references == PAGEREF_RECLAIM_CLEAN)
  759. goto keep_locked;
  760. if (!may_enter_fs)
  761. goto keep_locked;
  762. if (!sc->may_writepage)
  763. goto keep_locked;
  764. /* Page is dirty, try to write it out here */
  765. switch (pageout(page, mapping, sc)) {
  766. case PAGE_KEEP:
  767. nr_congested++;
  768. goto keep_locked;
  769. case PAGE_ACTIVATE:
  770. goto activate_locked;
  771. case PAGE_SUCCESS:
  772. if (PageWriteback(page))
  773. goto keep_lumpy;
  774. if (PageDirty(page))
  775. goto keep;
  776. /*
  777. * A synchronous write - probably a ramdisk. Go
  778. * ahead and try to reclaim the page.
  779. */
  780. if (!trylock_page(page))
  781. goto keep;
  782. if (PageDirty(page) || PageWriteback(page))
  783. goto keep_locked;
  784. mapping = page_mapping(page);
  785. case PAGE_CLEAN:
  786. ; /* try to free the page below */
  787. }
  788. }
  789. /*
  790. * If the page has buffers, try to free the buffer mappings
  791. * associated with this page. If we succeed we try to free
  792. * the page as well.
  793. *
  794. * We do this even if the page is PageDirty().
  795. * try_to_release_page() does not perform I/O, but it is
  796. * possible for a page to have PageDirty set, but it is actually
  797. * clean (all its buffers are clean). This happens if the
  798. * buffers were written out directly, with submit_bh(). ext3
  799. * will do this, as well as the blockdev mapping.
  800. * try_to_release_page() will discover that cleanness and will
  801. * drop the buffers and mark the page clean - it can be freed.
  802. *
  803. * Rarely, pages can have buffers and no ->mapping. These are
  804. * the pages which were not successfully invalidated in
  805. * truncate_complete_page(). We try to drop those buffers here
  806. * and if that worked, and the page is no longer mapped into
  807. * process address space (page_count == 1) it can be freed.
  808. * Otherwise, leave the page on the LRU so it is swappable.
  809. */
  810. if (page_has_private(page)) {
  811. if (!try_to_release_page(page, sc->gfp_mask))
  812. goto activate_locked;
  813. if (!mapping && page_count(page) == 1) {
  814. unlock_page(page);
  815. if (put_page_testzero(page))
  816. goto free_it;
  817. else {
  818. /*
  819. * rare race with speculative reference.
  820. * the speculative reference will free
  821. * this page shortly, so we may
  822. * increment nr_reclaimed here (and
  823. * leave it off the LRU).
  824. */
  825. nr_reclaimed++;
  826. continue;
  827. }
  828. }
  829. }
  830. if (!mapping || !__remove_mapping(mapping, page))
  831. goto keep_locked;
  832. /*
  833. * At this point, we have no other references and there is
  834. * no way to pick any more up (removed from LRU, removed
  835. * from pagecache). Can use non-atomic bitops now (and
  836. * we obviously don't have to worry about waking up a process
  837. * waiting on the page lock, because there are no references.
  838. */
  839. __clear_page_locked(page);
  840. free_it:
  841. nr_reclaimed++;
  842. /*
  843. * Is there need to periodically free_page_list? It would
  844. * appear not as the counts should be low
  845. */
  846. list_add(&page->lru, &free_pages);
  847. continue;
  848. cull_mlocked:
  849. if (PageSwapCache(page))
  850. try_to_free_swap(page);
  851. unlock_page(page);
  852. putback_lru_page(page);
  853. reset_reclaim_mode(sc);
  854. continue;
  855. activate_locked:
  856. /* Not a candidate for swapping, so reclaim swap space. */
  857. if (PageSwapCache(page) && vm_swap_full())
  858. try_to_free_swap(page);
  859. VM_BUG_ON(PageActive(page));
  860. SetPageActive(page);
  861. pgactivate++;
  862. keep_locked:
  863. unlock_page(page);
  864. keep:
  865. reset_reclaim_mode(sc);
  866. keep_lumpy:
  867. list_add(&page->lru, &ret_pages);
  868. VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
  869. }
  870. /*
  871. * Tag a zone as congested if all the dirty pages encountered were
  872. * backed by a congested BDI. In this case, reclaimers should just
  873. * back off and wait for congestion to clear because further reclaim
  874. * will encounter the same problem
  875. */
  876. if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
  877. zone_set_flag(zone, ZONE_CONGESTED);
  878. free_page_list(&free_pages);
  879. list_splice(&ret_pages, page_list);
  880. count_vm_events(PGACTIVATE, pgactivate);
  881. return nr_reclaimed;
  882. }
  883. /*
  884. * Attempt to remove the specified page from its LRU. Only take this page
  885. * if it is of the appropriate PageActive status. Pages which are being
  886. * freed elsewhere are also ignored.
  887. *
  888. * page: page to consider
  889. * mode: one of the LRU isolation modes defined above
  890. *
  891. * returns 0 on success, -ve errno on failure.
  892. */
  893. int __isolate_lru_page(struct page *page, int mode, int file)
  894. {
  895. int ret = -EINVAL;
  896. /* Only take pages on the LRU. */
  897. if (!PageLRU(page))
  898. return ret;
  899. /*
  900. * When checking the active state, we need to be sure we are
  901. * dealing with comparible boolean values. Take the logical not
  902. * of each.
  903. */
  904. if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
  905. return ret;
  906. if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
  907. return ret;
  908. /*
  909. * When this function is being called for lumpy reclaim, we
  910. * initially look into all LRU pages, active, inactive and
  911. * unevictable; only give shrink_page_list evictable pages.
  912. */
  913. if (PageUnevictable(page))
  914. return ret;
  915. ret = -EBUSY;
  916. if (likely(get_page_unless_zero(page))) {
  917. /*
  918. * Be careful not to clear PageLRU until after we're
  919. * sure the page is not being freed elsewhere -- the
  920. * page release code relies on it.
  921. */
  922. ClearPageLRU(page);
  923. ret = 0;
  924. }
  925. return ret;
  926. }
  927. /*
  928. * zone->lru_lock is heavily contended. Some of the functions that
  929. * shrink the lists perform better by taking out a batch of pages
  930. * and working on them outside the LRU lock.
  931. *
  932. * For pagecache intensive workloads, this function is the hottest
  933. * spot in the kernel (apart from copy_*_user functions).
  934. *
  935. * Appropriate locks must be held before calling this function.
  936. *
  937. * @nr_to_scan: The number of pages to look through on the list.
  938. * @src: The LRU list to pull pages off.
  939. * @dst: The temp list to put pages on to.
  940. * @scanned: The number of pages that were scanned.
  941. * @order: The caller's attempted allocation order
  942. * @mode: One of the LRU isolation modes
  943. * @file: True [1] if isolating file [!anon] pages
  944. *
  945. * returns how many pages were moved onto *@dst.
  946. */
  947. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  948. struct list_head *src, struct list_head *dst,
  949. unsigned long *scanned, int order, int mode, int file)
  950. {
  951. unsigned long nr_taken = 0;
  952. unsigned long nr_lumpy_taken = 0;
  953. unsigned long nr_lumpy_dirty = 0;
  954. unsigned long nr_lumpy_failed = 0;
  955. unsigned long scan;
  956. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  957. struct page *page;
  958. unsigned long pfn;
  959. unsigned long end_pfn;
  960. unsigned long page_pfn;
  961. int zone_id;
  962. page = lru_to_page(src);
  963. prefetchw_prev_lru_page(page, src, flags);
  964. VM_BUG_ON(!PageLRU(page));
  965. switch (__isolate_lru_page(page, mode, file)) {
  966. case 0:
  967. list_move(&page->lru, dst);
  968. mem_cgroup_del_lru(page);
  969. nr_taken += hpage_nr_pages(page);
  970. break;
  971. case -EBUSY:
  972. /* else it is being freed elsewhere */
  973. list_move(&page->lru, src);
  974. mem_cgroup_rotate_lru_list(page, page_lru(page));
  975. continue;
  976. default:
  977. BUG();
  978. }
  979. if (!order)
  980. continue;
  981. /*
  982. * Attempt to take all pages in the order aligned region
  983. * surrounding the tag page. Only take those pages of
  984. * the same active state as that tag page. We may safely
  985. * round the target page pfn down to the requested order
  986. * as the mem_map is guaranteed valid out to MAX_ORDER,
  987. * where that page is in a different zone we will detect
  988. * it from its zone id and abort this block scan.
  989. */
  990. zone_id = page_zone_id(page);
  991. page_pfn = page_to_pfn(page);
  992. pfn = page_pfn & ~((1 << order) - 1);
  993. end_pfn = pfn + (1 << order);
  994. for (; pfn < end_pfn; pfn++) {
  995. struct page *cursor_page;
  996. /* The target page is in the block, ignore it. */
  997. if (unlikely(pfn == page_pfn))
  998. continue;
  999. /* Avoid holes within the zone. */
  1000. if (unlikely(!pfn_valid_within(pfn)))
  1001. break;
  1002. cursor_page = pfn_to_page(pfn);
  1003. /* Check that we have not crossed a zone boundary. */
  1004. if (unlikely(page_zone_id(cursor_page) != zone_id))
  1005. break;
  1006. /*
  1007. * If we don't have enough swap space, reclaiming of
  1008. * anon page which don't already have a swap slot is
  1009. * pointless.
  1010. */
  1011. if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
  1012. !PageSwapCache(cursor_page))
  1013. break;
  1014. if (__isolate_lru_page(cursor_page, mode, file) == 0) {
  1015. list_move(&cursor_page->lru, dst);
  1016. mem_cgroup_del_lru(cursor_page);
  1017. nr_taken += hpage_nr_pages(page);
  1018. nr_lumpy_taken++;
  1019. if (PageDirty(cursor_page))
  1020. nr_lumpy_dirty++;
  1021. scan++;
  1022. } else {
  1023. /*
  1024. * Check if the page is freed already.
  1025. *
  1026. * We can't use page_count() as that
  1027. * requires compound_head and we don't
  1028. * have a pin on the page here. If a
  1029. * page is tail, we may or may not
  1030. * have isolated the head, so assume
  1031. * it's not free, it'd be tricky to
  1032. * track the head status without a
  1033. * page pin.
  1034. */
  1035. if (!PageTail(cursor_page) &&
  1036. !atomic_read(&cursor_page->_count))
  1037. continue;
  1038. break;
  1039. }
  1040. }
  1041. /* If we break out of the loop above, lumpy reclaim failed */
  1042. if (pfn < end_pfn)
  1043. nr_lumpy_failed++;
  1044. }
  1045. *scanned = scan;
  1046. trace_mm_vmscan_lru_isolate(order,
  1047. nr_to_scan, scan,
  1048. nr_taken,
  1049. nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
  1050. mode);
  1051. return nr_taken;
  1052. }
  1053. static unsigned long isolate_pages_global(unsigned long nr,
  1054. struct list_head *dst,
  1055. unsigned long *scanned, int order,
  1056. int mode, struct zone *z,
  1057. int active, int file)
  1058. {
  1059. int lru = LRU_BASE;
  1060. if (active)
  1061. lru += LRU_ACTIVE;
  1062. if (file)
  1063. lru += LRU_FILE;
  1064. return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
  1065. mode, file);
  1066. }
  1067. /*
  1068. * clear_active_flags() is a helper for shrink_active_list(), clearing
  1069. * any active bits from the pages in the list.
  1070. */
  1071. static unsigned long clear_active_flags(struct list_head *page_list,
  1072. unsigned int *count)
  1073. {
  1074. int nr_active = 0;
  1075. int lru;
  1076. struct page *page;
  1077. list_for_each_entry(page, page_list, lru) {
  1078. int numpages = hpage_nr_pages(page);
  1079. lru = page_lru_base_type(page);
  1080. if (PageActive(page)) {
  1081. lru += LRU_ACTIVE;
  1082. ClearPageActive(page);
  1083. nr_active += numpages;
  1084. }
  1085. if (count)
  1086. count[lru] += numpages;
  1087. }
  1088. return nr_active;
  1089. }
  1090. /**
  1091. * isolate_lru_page - tries to isolate a page from its LRU list
  1092. * @page: page to isolate from its LRU list
  1093. *
  1094. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  1095. * vmstat statistic corresponding to whatever LRU list the page was on.
  1096. *
  1097. * Returns 0 if the page was removed from an LRU list.
  1098. * Returns -EBUSY if the page was not on an LRU list.
  1099. *
  1100. * The returned page will have PageLRU() cleared. If it was found on
  1101. * the active list, it will have PageActive set. If it was found on
  1102. * the unevictable list, it will have the PageUnevictable bit set. That flag
  1103. * may need to be cleared by the caller before letting the page go.
  1104. *
  1105. * The vmstat statistic corresponding to the list on which the page was
  1106. * found will be decremented.
  1107. *
  1108. * Restrictions:
  1109. * (1) Must be called with an elevated refcount on the page. This is a
  1110. * fundamentnal difference from isolate_lru_pages (which is called
  1111. * without a stable reference).
  1112. * (2) the lru_lock must not be held.
  1113. * (3) interrupts must be enabled.
  1114. */
  1115. int isolate_lru_page(struct page *page)
  1116. {
  1117. int ret = -EBUSY;
  1118. VM_BUG_ON(!page_count(page));
  1119. if (PageLRU(page)) {
  1120. struct zone *zone = page_zone(page);
  1121. spin_lock_irq(&zone->lru_lock);
  1122. if (PageLRU(page)) {
  1123. int lru = page_lru(page);
  1124. ret = 0;
  1125. get_page(page);
  1126. ClearPageLRU(page);
  1127. del_page_from_lru_list(zone, page, lru);
  1128. }
  1129. spin_unlock_irq(&zone->lru_lock);
  1130. }
  1131. return ret;
  1132. }
  1133. /*
  1134. * Are there way too many processes in the direct reclaim path already?
  1135. */
  1136. static int too_many_isolated(struct zone *zone, int file,
  1137. struct scan_control *sc)
  1138. {
  1139. unsigned long inactive, isolated;
  1140. if (current_is_kswapd())
  1141. return 0;
  1142. if (!scanning_global_lru(sc))
  1143. return 0;
  1144. if (file) {
  1145. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1146. isolated = zone_page_state(zone, NR_ISOLATED_FILE);
  1147. } else {
  1148. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1149. isolated = zone_page_state(zone, NR_ISOLATED_ANON);
  1150. }
  1151. return isolated > inactive;
  1152. }
  1153. /*
  1154. * TODO: Try merging with migrations version of putback_lru_pages
  1155. */
  1156. static noinline_for_stack void
  1157. putback_lru_pages(struct zone *zone, struct scan_control *sc,
  1158. unsigned long nr_anon, unsigned long nr_file,
  1159. struct list_head *page_list)
  1160. {
  1161. struct page *page;
  1162. struct pagevec pvec;
  1163. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1164. pagevec_init(&pvec, 1);
  1165. /*
  1166. * Put back any unfreeable pages.
  1167. */
  1168. spin_lock(&zone->lru_lock);
  1169. while (!list_empty(page_list)) {
  1170. int lru;
  1171. page = lru_to_page(page_list);
  1172. VM_BUG_ON(PageLRU(page));
  1173. list_del(&page->lru);
  1174. if (unlikely(!page_evictable(page, NULL))) {
  1175. spin_unlock_irq(&zone->lru_lock);
  1176. putback_lru_page(page);
  1177. spin_lock_irq(&zone->lru_lock);
  1178. continue;
  1179. }
  1180. SetPageLRU(page);
  1181. lru = page_lru(page);
  1182. add_page_to_lru_list(zone, page, lru);
  1183. if (is_active_lru(lru)) {
  1184. int file = is_file_lru(lru);
  1185. int numpages = hpage_nr_pages(page);
  1186. reclaim_stat->recent_rotated[file] += numpages;
  1187. }
  1188. if (!pagevec_add(&pvec, page)) {
  1189. spin_unlock_irq(&zone->lru_lock);
  1190. __pagevec_release(&pvec);
  1191. spin_lock_irq(&zone->lru_lock);
  1192. }
  1193. }
  1194. __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
  1195. __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
  1196. spin_unlock_irq(&zone->lru_lock);
  1197. pagevec_release(&pvec);
  1198. }
  1199. static noinline_for_stack void update_isolated_counts(struct zone *zone,
  1200. struct scan_control *sc,
  1201. unsigned long *nr_anon,
  1202. unsigned long *nr_file,
  1203. struct list_head *isolated_list)
  1204. {
  1205. unsigned long nr_active;
  1206. unsigned int count[NR_LRU_LISTS] = { 0, };
  1207. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1208. nr_active = clear_active_flags(isolated_list, count);
  1209. __count_vm_events(PGDEACTIVATE, nr_active);
  1210. __mod_zone_page_state(zone, NR_ACTIVE_FILE,
  1211. -count[LRU_ACTIVE_FILE]);
  1212. __mod_zone_page_state(zone, NR_INACTIVE_FILE,
  1213. -count[LRU_INACTIVE_FILE]);
  1214. __mod_zone_page_state(zone, NR_ACTIVE_ANON,
  1215. -count[LRU_ACTIVE_ANON]);
  1216. __mod_zone_page_state(zone, NR_INACTIVE_ANON,
  1217. -count[LRU_INACTIVE_ANON]);
  1218. *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
  1219. *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
  1220. __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
  1221. __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
  1222. reclaim_stat->recent_scanned[0] += *nr_anon;
  1223. reclaim_stat->recent_scanned[1] += *nr_file;
  1224. }
  1225. /*
  1226. * Returns true if the caller should wait to clean dirty/writeback pages.
  1227. *
  1228. * If we are direct reclaiming for contiguous pages and we do not reclaim
  1229. * everything in the list, try again and wait for writeback IO to complete.
  1230. * This will stall high-order allocations noticeably. Only do that when really
  1231. * need to free the pages under high memory pressure.
  1232. */
  1233. static inline bool should_reclaim_stall(unsigned long nr_taken,
  1234. unsigned long nr_freed,
  1235. int priority,
  1236. struct scan_control *sc)
  1237. {
  1238. int lumpy_stall_priority;
  1239. /* kswapd should not stall on sync IO */
  1240. if (current_is_kswapd())
  1241. return false;
  1242. /* Only stall on lumpy reclaim */
  1243. if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
  1244. return false;
  1245. /* If we have reclaimed everything on the isolated list, no stall */
  1246. if (nr_freed == nr_taken)
  1247. return false;
  1248. /*
  1249. * For high-order allocations, there are two stall thresholds.
  1250. * High-cost allocations stall immediately where as lower
  1251. * order allocations such as stacks require the scanning
  1252. * priority to be much higher before stalling.
  1253. */
  1254. if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
  1255. lumpy_stall_priority = DEF_PRIORITY;
  1256. else
  1257. lumpy_stall_priority = DEF_PRIORITY / 3;
  1258. return priority <= lumpy_stall_priority;
  1259. }
  1260. /*
  1261. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  1262. * of reclaimed pages
  1263. */
  1264. static noinline_for_stack unsigned long
  1265. shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
  1266. struct scan_control *sc, int priority, int file)
  1267. {
  1268. LIST_HEAD(page_list);
  1269. unsigned long nr_scanned;
  1270. unsigned long nr_reclaimed = 0;
  1271. unsigned long nr_taken;
  1272. unsigned long nr_anon;
  1273. unsigned long nr_file;
  1274. while (unlikely(too_many_isolated(zone, file, sc))) {
  1275. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1276. /* We are about to die and free our memory. Return now. */
  1277. if (fatal_signal_pending(current))
  1278. return SWAP_CLUSTER_MAX;
  1279. }
  1280. set_reclaim_mode(priority, sc, false);
  1281. lru_add_drain();
  1282. spin_lock_irq(&zone->lru_lock);
  1283. if (scanning_global_lru(sc)) {
  1284. nr_taken = isolate_pages_global(nr_to_scan,
  1285. &page_list, &nr_scanned, sc->order,
  1286. sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
  1287. ISOLATE_BOTH : ISOLATE_INACTIVE,
  1288. zone, 0, file);
  1289. zone->pages_scanned += nr_scanned;
  1290. if (current_is_kswapd())
  1291. __count_zone_vm_events(PGSCAN_KSWAPD, zone,
  1292. nr_scanned);
  1293. else
  1294. __count_zone_vm_events(PGSCAN_DIRECT, zone,
  1295. nr_scanned);
  1296. } else {
  1297. nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
  1298. &page_list, &nr_scanned, sc->order,
  1299. sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
  1300. ISOLATE_BOTH : ISOLATE_INACTIVE,
  1301. zone, sc->mem_cgroup,
  1302. 0, file);
  1303. /*
  1304. * mem_cgroup_isolate_pages() keeps track of
  1305. * scanned pages on its own.
  1306. */
  1307. }
  1308. if (nr_taken == 0) {
  1309. spin_unlock_irq(&zone->lru_lock);
  1310. return 0;
  1311. }
  1312. update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
  1313. spin_unlock_irq(&zone->lru_lock);
  1314. nr_reclaimed = shrink_page_list(&page_list, zone, sc);
  1315. /* Check if we should syncronously wait for writeback */
  1316. if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
  1317. set_reclaim_mode(priority, sc, true);
  1318. nr_reclaimed += shrink_page_list(&page_list, zone, sc);
  1319. }
  1320. local_irq_disable();
  1321. if (current_is_kswapd())
  1322. __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
  1323. __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
  1324. putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
  1325. trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
  1326. zone_idx(zone),
  1327. nr_scanned, nr_reclaimed,
  1328. priority,
  1329. trace_shrink_flags(file, sc->reclaim_mode));
  1330. return nr_reclaimed;
  1331. }
  1332. /*
  1333. * This moves pages from the active list to the inactive list.
  1334. *
  1335. * We move them the other way if the page is referenced by one or more
  1336. * processes, from rmap.
  1337. *
  1338. * If the pages are mostly unmapped, the processing is fast and it is
  1339. * appropriate to hold zone->lru_lock across the whole operation. But if
  1340. * the pages are mapped, the processing is slow (page_referenced()) so we
  1341. * should drop zone->lru_lock around each page. It's impossible to balance
  1342. * this, so instead we remove the pages from the LRU while processing them.
  1343. * It is safe to rely on PG_active against the non-LRU pages in here because
  1344. * nobody will play with that bit on a non-LRU page.
  1345. *
  1346. * The downside is that we have to touch page->_count against each page.
  1347. * But we had to alter page->flags anyway.
  1348. */
  1349. static void move_active_pages_to_lru(struct zone *zone,
  1350. struct list_head *list,
  1351. enum lru_list lru)
  1352. {
  1353. unsigned long pgmoved = 0;
  1354. struct pagevec pvec;
  1355. struct page *page;
  1356. pagevec_init(&pvec, 1);
  1357. while (!list_empty(list)) {
  1358. page = lru_to_page(list);
  1359. VM_BUG_ON(PageLRU(page));
  1360. SetPageLRU(page);
  1361. list_move(&page->lru, &zone->lru[lru].list);
  1362. mem_cgroup_add_lru_list(page, lru);
  1363. pgmoved += hpage_nr_pages(page);
  1364. if (!pagevec_add(&pvec, page) || list_empty(list)) {
  1365. spin_unlock_irq(&zone->lru_lock);
  1366. if (buffer_heads_over_limit)
  1367. pagevec_strip(&pvec);
  1368. __pagevec_release(&pvec);
  1369. spin_lock_irq(&zone->lru_lock);
  1370. }
  1371. }
  1372. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1373. if (!is_active_lru(lru))
  1374. __count_vm_events(PGDEACTIVATE, pgmoved);
  1375. }
  1376. static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
  1377. struct scan_control *sc, int priority, int file)
  1378. {
  1379. unsigned long nr_taken;
  1380. unsigned long pgscanned;
  1381. unsigned long vm_flags;
  1382. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1383. LIST_HEAD(l_active);
  1384. LIST_HEAD(l_inactive);
  1385. struct page *page;
  1386. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1387. unsigned long nr_rotated = 0;
  1388. lru_add_drain();
  1389. spin_lock_irq(&zone->lru_lock);
  1390. if (scanning_global_lru(sc)) {
  1391. nr_taken = isolate_pages_global(nr_pages, &l_hold,
  1392. &pgscanned, sc->order,
  1393. ISOLATE_ACTIVE, zone,
  1394. 1, file);
  1395. zone->pages_scanned += pgscanned;
  1396. } else {
  1397. nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
  1398. &pgscanned, sc->order,
  1399. ISOLATE_ACTIVE, zone,
  1400. sc->mem_cgroup, 1, file);
  1401. /*
  1402. * mem_cgroup_isolate_pages() keeps track of
  1403. * scanned pages on its own.
  1404. */
  1405. }
  1406. reclaim_stat->recent_scanned[file] += nr_taken;
  1407. __count_zone_vm_events(PGREFILL, zone, pgscanned);
  1408. if (file)
  1409. __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
  1410. else
  1411. __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
  1412. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1413. spin_unlock_irq(&zone->lru_lock);
  1414. while (!list_empty(&l_hold)) {
  1415. cond_resched();
  1416. page = lru_to_page(&l_hold);
  1417. list_del(&page->lru);
  1418. if (unlikely(!page_evictable(page, NULL))) {
  1419. putback_lru_page(page);
  1420. continue;
  1421. }
  1422. if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
  1423. nr_rotated += hpage_nr_pages(page);
  1424. /*
  1425. * Identify referenced, file-backed active pages and
  1426. * give them one more trip around the active list. So
  1427. * that executable code get better chances to stay in
  1428. * memory under moderate memory pressure. Anon pages
  1429. * are not likely to be evicted by use-once streaming
  1430. * IO, plus JVM can create lots of anon VM_EXEC pages,
  1431. * so we ignore them here.
  1432. */
  1433. if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
  1434. list_add(&page->lru, &l_active);
  1435. continue;
  1436. }
  1437. }
  1438. ClearPageActive(page); /* we are de-activating */
  1439. list_add(&page->lru, &l_inactive);
  1440. }
  1441. /*
  1442. * Move pages back to the lru list.
  1443. */
  1444. spin_lock_irq(&zone->lru_lock);
  1445. /*
  1446. * Count referenced pages from currently used mappings as rotated,
  1447. * even though only some of them are actually re-activated. This
  1448. * helps balance scan pressure between file and anonymous pages in
  1449. * get_scan_ratio.
  1450. */
  1451. reclaim_stat->recent_rotated[file] += nr_rotated;
  1452. move_active_pages_to_lru(zone, &l_active,
  1453. LRU_ACTIVE + file * LRU_FILE);
  1454. move_active_pages_to_lru(zone, &l_inactive,
  1455. LRU_BASE + file * LRU_FILE);
  1456. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1457. spin_unlock_irq(&zone->lru_lock);
  1458. }
  1459. #ifdef CONFIG_SWAP
  1460. static int inactive_anon_is_low_global(struct zone *zone)
  1461. {
  1462. unsigned long active, inactive;
  1463. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1464. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1465. if (inactive * zone->inactive_ratio < active)
  1466. return 1;
  1467. return 0;
  1468. }
  1469. /**
  1470. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1471. * @zone: zone to check
  1472. * @sc: scan control of this context
  1473. *
  1474. * Returns true if the zone does not have enough inactive anon pages,
  1475. * meaning some active anon pages need to be deactivated.
  1476. */
  1477. static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
  1478. {
  1479. int low;
  1480. /*
  1481. * If we don't have swap space, anonymous page deactivation
  1482. * is pointless.
  1483. */
  1484. if (!total_swap_pages)
  1485. return 0;
  1486. if (scanning_global_lru(sc))
  1487. low = inactive_anon_is_low_global(zone);
  1488. else
  1489. low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
  1490. return low;
  1491. }
  1492. #else
  1493. static inline int inactive_anon_is_low(struct zone *zone,
  1494. struct scan_control *sc)
  1495. {
  1496. return 0;
  1497. }
  1498. #endif
  1499. static int inactive_file_is_low_global(struct zone *zone)
  1500. {
  1501. unsigned long active, inactive;
  1502. active = zone_page_state(zone, NR_ACTIVE_FILE);
  1503. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1504. return (active > inactive);
  1505. }
  1506. /**
  1507. * inactive_file_is_low - check if file pages need to be deactivated
  1508. * @zone: zone to check
  1509. * @sc: scan control of this context
  1510. *
  1511. * When the system is doing streaming IO, memory pressure here
  1512. * ensures that active file pages get deactivated, until more
  1513. * than half of the file pages are on the inactive list.
  1514. *
  1515. * Once we get to that situation, protect the system's working
  1516. * set from being evicted by disabling active file page aging.
  1517. *
  1518. * This uses a different ratio than the anonymous pages, because
  1519. * the page cache uses a use-once replacement algorithm.
  1520. */
  1521. static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
  1522. {
  1523. int low;
  1524. if (scanning_global_lru(sc))
  1525. low = inactive_file_is_low_global(zone);
  1526. else
  1527. low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
  1528. return low;
  1529. }
  1530. static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
  1531. int file)
  1532. {
  1533. if (file)
  1534. return inactive_file_is_low(zone, sc);
  1535. else
  1536. return inactive_anon_is_low(zone, sc);
  1537. }
  1538. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1539. struct zone *zone, struct scan_control *sc, int priority)
  1540. {
  1541. int file = is_file_lru(lru);
  1542. if (is_active_lru(lru)) {
  1543. if (inactive_list_is_low(zone, sc, file))
  1544. shrink_active_list(nr_to_scan, zone, sc, priority, file);
  1545. return 0;
  1546. }
  1547. return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
  1548. }
  1549. static int vmscan_swappiness(struct scan_control *sc)
  1550. {
  1551. if (scanning_global_lru(sc))
  1552. return vm_swappiness;
  1553. return mem_cgroup_swappiness(sc->mem_cgroup);
  1554. }
  1555. /*
  1556. * Determine how aggressively the anon and file LRU lists should be
  1557. * scanned. The relative value of each set of LRU lists is determined
  1558. * by looking at the fraction of the pages scanned we did rotate back
  1559. * onto the active list instead of evict.
  1560. *
  1561. * nr[0] = anon pages to scan; nr[1] = file pages to scan
  1562. */
  1563. static void get_scan_count(struct zone *zone, struct scan_control *sc,
  1564. unsigned long *nr, int priority)
  1565. {
  1566. unsigned long anon, file, free;
  1567. unsigned long anon_prio, file_prio;
  1568. unsigned long ap, fp;
  1569. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1570. u64 fraction[2], denominator;
  1571. enum lru_list l;
  1572. int noswap = 0;
  1573. bool force_scan = false;
  1574. unsigned long nr_force_scan[2];
  1575. /* kswapd does zone balancing and needs to scan this zone */
  1576. if (scanning_global_lru(sc) && current_is_kswapd())
  1577. force_scan = true;
  1578. /* memcg may have small limit and need to avoid priority drop */
  1579. if (!scanning_global_lru(sc))
  1580. force_scan = true;
  1581. /* If we have no swap space, do not bother scanning anon pages. */
  1582. if (!sc->may_swap || (nr_swap_pages <= 0)) {
  1583. noswap = 1;
  1584. fraction[0] = 0;
  1585. fraction[1] = 1;
  1586. denominator = 1;
  1587. nr_force_scan[0] = 0;
  1588. nr_force_scan[1] = SWAP_CLUSTER_MAX;
  1589. goto out;
  1590. }
  1591. anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
  1592. zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
  1593. file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
  1594. zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
  1595. if (scanning_global_lru(sc)) {
  1596. free = zone_page_state(zone, NR_FREE_PAGES);
  1597. /* If we have very few page cache pages,
  1598. force-scan anon pages. */
  1599. if (unlikely(file + free <= high_wmark_pages(zone))) {
  1600. fraction[0] = 1;
  1601. fraction[1] = 0;
  1602. denominator = 1;
  1603. nr_force_scan[0] = SWAP_CLUSTER_MAX;
  1604. nr_force_scan[1] = 0;
  1605. goto out;
  1606. }
  1607. }
  1608. /*
  1609. * With swappiness at 100, anonymous and file have the same priority.
  1610. * This scanning priority is essentially the inverse of IO cost.
  1611. */
  1612. anon_prio = vmscan_swappiness(sc);
  1613. file_prio = 200 - vmscan_swappiness(sc);
  1614. /*
  1615. * OK, so we have swap space and a fair amount of page cache
  1616. * pages. We use the recently rotated / recently scanned
  1617. * ratios to determine how valuable each cache is.
  1618. *
  1619. * Because workloads change over time (and to avoid overflow)
  1620. * we keep these statistics as a floating average, which ends
  1621. * up weighing recent references more than old ones.
  1622. *
  1623. * anon in [0], file in [1]
  1624. */
  1625. spin_lock_irq(&zone->lru_lock);
  1626. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1627. reclaim_stat->recent_scanned[0] /= 2;
  1628. reclaim_stat->recent_rotated[0] /= 2;
  1629. }
  1630. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1631. reclaim_stat->recent_scanned[1] /= 2;
  1632. reclaim_stat->recent_rotated[1] /= 2;
  1633. }
  1634. /*
  1635. * The amount of pressure on anon vs file pages is inversely
  1636. * proportional to the fraction of recently scanned pages on
  1637. * each list that were recently referenced and in active use.
  1638. */
  1639. ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
  1640. ap /= reclaim_stat->recent_rotated[0] + 1;
  1641. fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
  1642. fp /= reclaim_stat->recent_rotated[1] + 1;
  1643. spin_unlock_irq(&zone->lru_lock);
  1644. fraction[0] = ap;
  1645. fraction[1] = fp;
  1646. denominator = ap + fp + 1;
  1647. if (force_scan) {
  1648. unsigned long scan = SWAP_CLUSTER_MAX;
  1649. nr_force_scan[0] = div64_u64(scan * ap, denominator);
  1650. nr_force_scan[1] = div64_u64(scan * fp, denominator);
  1651. }
  1652. out:
  1653. for_each_evictable_lru(l) {
  1654. int file = is_file_lru(l);
  1655. unsigned long scan;
  1656. scan = zone_nr_lru_pages(zone, sc, l);
  1657. if (priority || noswap) {
  1658. scan >>= priority;
  1659. scan = div64_u64(scan * fraction[file], denominator);
  1660. }
  1661. /*
  1662. * If zone is small or memcg is small, nr[l] can be 0.
  1663. * This results no-scan on this priority and priority drop down.
  1664. * For global direct reclaim, it can visit next zone and tend
  1665. * not to have problems. For global kswapd, it's for zone
  1666. * balancing and it need to scan a small amounts. When using
  1667. * memcg, priority drop can cause big latency. So, it's better
  1668. * to scan small amount. See may_noscan above.
  1669. */
  1670. if (!scan && force_scan)
  1671. scan = nr_force_scan[file];
  1672. nr[l] = scan;
  1673. }
  1674. }
  1675. /*
  1676. * Reclaim/compaction depends on a number of pages being freed. To avoid
  1677. * disruption to the system, a small number of order-0 pages continue to be
  1678. * rotated and reclaimed in the normal fashion. However, by the time we get
  1679. * back to the allocator and call try_to_compact_zone(), we ensure that
  1680. * there are enough free pages for it to be likely successful
  1681. */
  1682. static inline bool should_continue_reclaim(struct zone *zone,
  1683. unsigned long nr_reclaimed,
  1684. unsigned long nr_scanned,
  1685. struct scan_control *sc)
  1686. {
  1687. unsigned long pages_for_compaction;
  1688. unsigned long inactive_lru_pages;
  1689. /* If not in reclaim/compaction mode, stop */
  1690. if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
  1691. return false;
  1692. /* Consider stopping depending on scan and reclaim activity */
  1693. if (sc->gfp_mask & __GFP_REPEAT) {
  1694. /*
  1695. * For __GFP_REPEAT allocations, stop reclaiming if the
  1696. * full LRU list has been scanned and we are still failing
  1697. * to reclaim pages. This full LRU scan is potentially
  1698. * expensive but a __GFP_REPEAT caller really wants to succeed
  1699. */
  1700. if (!nr_reclaimed && !nr_scanned)
  1701. return false;
  1702. } else {
  1703. /*
  1704. * For non-__GFP_REPEAT allocations which can presumably
  1705. * fail without consequence, stop if we failed to reclaim
  1706. * any pages from the last SWAP_CLUSTER_MAX number of
  1707. * pages that were scanned. This will return to the
  1708. * caller faster at the risk reclaim/compaction and
  1709. * the resulting allocation attempt fails
  1710. */
  1711. if (!nr_reclaimed)
  1712. return false;
  1713. }
  1714. /*
  1715. * If we have not reclaimed enough pages for compaction and the
  1716. * inactive lists are large enough, continue reclaiming
  1717. */
  1718. pages_for_compaction = (2UL << sc->order);
  1719. inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
  1720. zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
  1721. if (sc->nr_reclaimed < pages_for_compaction &&
  1722. inactive_lru_pages > pages_for_compaction)
  1723. return true;
  1724. /* If compaction would go ahead or the allocation would succeed, stop */
  1725. switch (compaction_suitable(zone, sc->order)) {
  1726. case COMPACT_PARTIAL:
  1727. case COMPACT_CONTINUE:
  1728. return false;
  1729. default:
  1730. return true;
  1731. }
  1732. }
  1733. /*
  1734. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1735. */
  1736. static void shrink_zone(int priority, struct zone *zone,
  1737. struct scan_control *sc)
  1738. {
  1739. unsigned long nr[NR_LRU_LISTS];
  1740. unsigned long nr_to_scan;
  1741. enum lru_list l;
  1742. unsigned long nr_reclaimed, nr_scanned;
  1743. unsigned long nr_to_reclaim = sc->nr_to_reclaim;
  1744. restart:
  1745. nr_reclaimed = 0;
  1746. nr_scanned = sc->nr_scanned;
  1747. get_scan_count(zone, sc, nr, priority);
  1748. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1749. nr[LRU_INACTIVE_FILE]) {
  1750. for_each_evictable_lru(l) {
  1751. if (nr[l]) {
  1752. nr_to_scan = min_t(unsigned long,
  1753. nr[l], SWAP_CLUSTER_MAX);
  1754. nr[l] -= nr_to_scan;
  1755. nr_reclaimed += shrink_list(l, nr_to_scan,
  1756. zone, sc, priority);
  1757. }
  1758. }
  1759. /*
  1760. * On large memory systems, scan >> priority can become
  1761. * really large. This is fine for the starting priority;
  1762. * we want to put equal scanning pressure on each zone.
  1763. * However, if the VM has a harder time of freeing pages,
  1764. * with multiple processes reclaiming pages, the total
  1765. * freeing target can get unreasonably large.
  1766. */
  1767. if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
  1768. break;
  1769. }
  1770. sc->nr_reclaimed += nr_reclaimed;
  1771. /*
  1772. * Even if we did not try to evict anon pages at all, we want to
  1773. * rebalance the anon lru active/inactive ratio.
  1774. */
  1775. if (inactive_anon_is_low(zone, sc))
  1776. shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
  1777. /* reclaim/compaction might need reclaim to continue */
  1778. if (should_continue_reclaim(zone, nr_reclaimed,
  1779. sc->nr_scanned - nr_scanned, sc))
  1780. goto restart;
  1781. throttle_vm_writeout(sc->gfp_mask);
  1782. }
  1783. /*
  1784. * This is the direct reclaim path, for page-allocating processes. We only
  1785. * try to reclaim pages from zones which will satisfy the caller's allocation
  1786. * request.
  1787. *
  1788. * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
  1789. * Because:
  1790. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  1791. * allocation or
  1792. * b) The target zone may be at high_wmark_pages(zone) but the lower zones
  1793. * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
  1794. * zone defense algorithm.
  1795. *
  1796. * If a zone is deemed to be full of pinned pages then just give it a light
  1797. * scan then give up on it.
  1798. */
  1799. static void shrink_zones(int priority, struct zonelist *zonelist,
  1800. struct scan_control *sc)
  1801. {
  1802. struct zoneref *z;
  1803. struct zone *zone;
  1804. unsigned long nr_soft_reclaimed;
  1805. unsigned long nr_soft_scanned;
  1806. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1807. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1808. if (!populated_zone(zone))
  1809. continue;
  1810. /*
  1811. * Take care memory controller reclaiming has small influence
  1812. * to global LRU.
  1813. */
  1814. if (scanning_global_lru(sc)) {
  1815. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1816. continue;
  1817. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  1818. continue; /* Let kswapd poll it */
  1819. /*
  1820. * This steals pages from memory cgroups over softlimit
  1821. * and returns the number of reclaimed pages and
  1822. * scanned pages. This works for global memory pressure
  1823. * and balancing, not for a memcg's limit.
  1824. */
  1825. nr_soft_scanned = 0;
  1826. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  1827. sc->order, sc->gfp_mask,
  1828. &nr_soft_scanned);
  1829. sc->nr_reclaimed += nr_soft_reclaimed;
  1830. sc->nr_scanned += nr_soft_scanned;
  1831. /* need some check for avoid more shrink_zone() */
  1832. }
  1833. shrink_zone(priority, zone, sc);
  1834. }
  1835. }
  1836. static bool zone_reclaimable(struct zone *zone)
  1837. {
  1838. return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
  1839. }
  1840. /* All zones in zonelist are unreclaimable? */
  1841. static bool all_unreclaimable(struct zonelist *zonelist,
  1842. struct scan_control *sc)
  1843. {
  1844. struct zoneref *z;
  1845. struct zone *zone;
  1846. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1847. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1848. if (!populated_zone(zone))
  1849. continue;
  1850. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1851. continue;
  1852. if (!zone->all_unreclaimable)
  1853. return false;
  1854. }
  1855. return true;
  1856. }
  1857. /*
  1858. * This is the main entry point to direct page reclaim.
  1859. *
  1860. * If a full scan of the inactive list fails to free enough memory then we
  1861. * are "out of memory" and something needs to be killed.
  1862. *
  1863. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  1864. * high - the zone may be full of dirty or under-writeback pages, which this
  1865. * caller can't do much about. We kick the writeback threads and take explicit
  1866. * naps in the hope that some of these pages can be written. But if the
  1867. * allocating task holds filesystem locks which prevent writeout this might not
  1868. * work, and the allocation attempt will fail.
  1869. *
  1870. * returns: 0, if no pages reclaimed
  1871. * else, the number of pages reclaimed
  1872. */
  1873. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  1874. struct scan_control *sc,
  1875. struct shrink_control *shrink)
  1876. {
  1877. int priority;
  1878. unsigned long total_scanned = 0;
  1879. struct reclaim_state *reclaim_state = current->reclaim_state;
  1880. struct zoneref *z;
  1881. struct zone *zone;
  1882. unsigned long writeback_threshold;
  1883. get_mems_allowed();
  1884. delayacct_freepages_start();
  1885. if (scanning_global_lru(sc))
  1886. count_vm_event(ALLOCSTALL);
  1887. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  1888. sc->nr_scanned = 0;
  1889. if (!priority)
  1890. disable_swap_token(sc->mem_cgroup);
  1891. shrink_zones(priority, zonelist, sc);
  1892. /*
  1893. * Don't shrink slabs when reclaiming memory from
  1894. * over limit cgroups
  1895. */
  1896. if (scanning_global_lru(sc)) {
  1897. unsigned long lru_pages = 0;
  1898. for_each_zone_zonelist(zone, z, zonelist,
  1899. gfp_zone(sc->gfp_mask)) {
  1900. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1901. continue;
  1902. lru_pages += zone_reclaimable_pages(zone);
  1903. }
  1904. shrink_slab(shrink, sc->nr_scanned, lru_pages);
  1905. if (reclaim_state) {
  1906. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  1907. reclaim_state->reclaimed_slab = 0;
  1908. }
  1909. }
  1910. total_scanned += sc->nr_scanned;
  1911. if (sc->nr_reclaimed >= sc->nr_to_reclaim)
  1912. goto out;
  1913. /*
  1914. * Try to write back as many pages as we just scanned. This
  1915. * tends to cause slow streaming writers to write data to the
  1916. * disk smoothly, at the dirtying rate, which is nice. But
  1917. * that's undesirable in laptop mode, where we *want* lumpy
  1918. * writeout. So in laptop mode, write out the whole world.
  1919. */
  1920. writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
  1921. if (total_scanned > writeback_threshold) {
  1922. wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
  1923. sc->may_writepage = 1;
  1924. }
  1925. /* Take a nap, wait for some writeback to complete */
  1926. if (!sc->hibernation_mode && sc->nr_scanned &&
  1927. priority < DEF_PRIORITY - 2) {
  1928. struct zone *preferred_zone;
  1929. first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
  1930. &cpuset_current_mems_allowed,
  1931. &preferred_zone);
  1932. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
  1933. }
  1934. }
  1935. out:
  1936. delayacct_freepages_end();
  1937. put_mems_allowed();
  1938. if (sc->nr_reclaimed)
  1939. return sc->nr_reclaimed;
  1940. /*
  1941. * As hibernation is going on, kswapd is freezed so that it can't mark
  1942. * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
  1943. * check.
  1944. */
  1945. if (oom_killer_disabled)
  1946. return 0;
  1947. /* top priority shrink_zones still had more to do? don't OOM, then */
  1948. if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
  1949. return 1;
  1950. return 0;
  1951. }
  1952. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  1953. gfp_t gfp_mask, nodemask_t *nodemask)
  1954. {
  1955. unsigned long nr_reclaimed;
  1956. struct scan_control sc = {
  1957. .gfp_mask = gfp_mask,
  1958. .may_writepage = !laptop_mode,
  1959. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  1960. .may_unmap = 1,
  1961. .may_swap = 1,
  1962. .order = order,
  1963. .mem_cgroup = NULL,
  1964. .nodemask = nodemask,
  1965. };
  1966. struct shrink_control shrink = {
  1967. .gfp_mask = sc.gfp_mask,
  1968. };
  1969. trace_mm_vmscan_direct_reclaim_begin(order,
  1970. sc.may_writepage,
  1971. gfp_mask);
  1972. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  1973. trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
  1974. return nr_reclaimed;
  1975. }
  1976. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1977. unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
  1978. gfp_t gfp_mask, bool noswap,
  1979. struct zone *zone,
  1980. unsigned long *nr_scanned)
  1981. {
  1982. struct scan_control sc = {
  1983. .nr_scanned = 0,
  1984. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  1985. .may_writepage = !laptop_mode,
  1986. .may_unmap = 1,
  1987. .may_swap = !noswap,
  1988. .order = 0,
  1989. .mem_cgroup = mem,
  1990. };
  1991. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  1992. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  1993. trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
  1994. sc.may_writepage,
  1995. sc.gfp_mask);
  1996. /*
  1997. * NOTE: Although we can get the priority field, using it
  1998. * here is not a good idea, since it limits the pages we can scan.
  1999. * if we don't reclaim here, the shrink_zone from balance_pgdat
  2000. * will pick up pages from other mem cgroup's as well. We hack
  2001. * the priority and make it zero.
  2002. */
  2003. shrink_zone(0, zone, &sc);
  2004. trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
  2005. *nr_scanned = sc.nr_scanned;
  2006. return sc.nr_reclaimed;
  2007. }
  2008. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
  2009. gfp_t gfp_mask,
  2010. bool noswap)
  2011. {
  2012. struct zonelist *zonelist;
  2013. unsigned long nr_reclaimed;
  2014. int nid;
  2015. struct scan_control sc = {
  2016. .may_writepage = !laptop_mode,
  2017. .may_unmap = 1,
  2018. .may_swap = !noswap,
  2019. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2020. .order = 0,
  2021. .mem_cgroup = mem_cont,
  2022. .nodemask = NULL, /* we don't care the placement */
  2023. .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2024. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
  2025. };
  2026. struct shrink_control shrink = {
  2027. .gfp_mask = sc.gfp_mask,
  2028. };
  2029. /*
  2030. * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
  2031. * take care of from where we get pages. So the node where we start the
  2032. * scan does not need to be the current node.
  2033. */
  2034. nid = mem_cgroup_select_victim_node(mem_cont);
  2035. zonelist = NODE_DATA(nid)->node_zonelists;
  2036. trace_mm_vmscan_memcg_reclaim_begin(0,
  2037. sc.may_writepage,
  2038. sc.gfp_mask);
  2039. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2040. trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
  2041. return nr_reclaimed;
  2042. }
  2043. #endif
  2044. /*
  2045. * pgdat_balanced is used when checking if a node is balanced for high-order
  2046. * allocations. Only zones that meet watermarks and are in a zone allowed
  2047. * by the callers classzone_idx are added to balanced_pages. The total of
  2048. * balanced pages must be at least 25% of the zones allowed by classzone_idx
  2049. * for the node to be considered balanced. Forcing all zones to be balanced
  2050. * for high orders can cause excessive reclaim when there are imbalanced zones.
  2051. * The choice of 25% is due to
  2052. * o a 16M DMA zone that is balanced will not balance a zone on any
  2053. * reasonable sized machine
  2054. * o On all other machines, the top zone must be at least a reasonable
  2055. * percentage of the middle zones. For example, on 32-bit x86, highmem
  2056. * would need to be at least 256M for it to be balance a whole node.
  2057. * Similarly, on x86-64 the Normal zone would need to be at least 1G
  2058. * to balance a node on its own. These seemed like reasonable ratios.
  2059. */
  2060. static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
  2061. int classzone_idx)
  2062. {
  2063. unsigned long present_pages = 0;
  2064. int i;
  2065. for (i = 0; i <= classzone_idx; i++)
  2066. present_pages += pgdat->node_zones[i].present_pages;
  2067. /* A special case here: if zone has no page, we think it's balanced */
  2068. return balanced_pages >= (present_pages >> 2);
  2069. }
  2070. /* is kswapd sleeping prematurely? */
  2071. static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
  2072. int classzone_idx)
  2073. {
  2074. int i;
  2075. unsigned long balanced = 0;
  2076. bool all_zones_ok = true;
  2077. /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
  2078. if (remaining)
  2079. return true;
  2080. /* Check the watermark levels */
  2081. for (i = 0; i <= classzone_idx; i++) {
  2082. struct zone *zone = pgdat->node_zones + i;
  2083. if (!populated_zone(zone))
  2084. continue;
  2085. /*
  2086. * balance_pgdat() skips over all_unreclaimable after
  2087. * DEF_PRIORITY. Effectively, it considers them balanced so
  2088. * they must be considered balanced here as well if kswapd
  2089. * is to sleep
  2090. */
  2091. if (zone->all_unreclaimable) {
  2092. balanced += zone->present_pages;
  2093. continue;
  2094. }
  2095. if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
  2096. i, 0))
  2097. all_zones_ok = false;
  2098. else
  2099. balanced += zone->present_pages;
  2100. }
  2101. /*
  2102. * For high-order requests, the balanced zones must contain at least
  2103. * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
  2104. * must be balanced
  2105. */
  2106. if (order)
  2107. return !pgdat_balanced(pgdat, balanced, classzone_idx);
  2108. else
  2109. return !all_zones_ok;
  2110. }
  2111. /*
  2112. * For kswapd, balance_pgdat() will work across all this node's zones until
  2113. * they are all at high_wmark_pages(zone).
  2114. *
  2115. * Returns the final order kswapd was reclaiming at
  2116. *
  2117. * There is special handling here for zones which are full of pinned pages.
  2118. * This can happen if the pages are all mlocked, or if they are all used by
  2119. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  2120. * What we do is to detect the case where all pages in the zone have been
  2121. * scanned twice and there has been zero successful reclaim. Mark the zone as
  2122. * dead and from now on, only perform a short scan. Basically we're polling
  2123. * the zone for when the problem goes away.
  2124. *
  2125. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  2126. * zones which have free_pages > high_wmark_pages(zone), but once a zone is
  2127. * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
  2128. * lower zones regardless of the number of free pages in the lower zones. This
  2129. * interoperates with the page allocator fallback scheme to ensure that aging
  2130. * of pages is balanced across the zones.
  2131. */
  2132. static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
  2133. int *classzone_idx)
  2134. {
  2135. int all_zones_ok;
  2136. unsigned long balanced;
  2137. int priority;
  2138. int i;
  2139. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  2140. unsigned long total_scanned;
  2141. struct reclaim_state *reclaim_state = current->reclaim_state;
  2142. unsigned long nr_soft_reclaimed;
  2143. unsigned long nr_soft_scanned;
  2144. struct scan_control sc = {
  2145. .gfp_mask = GFP_KERNEL,
  2146. .may_unmap = 1,
  2147. .may_swap = 1,
  2148. /*
  2149. * kswapd doesn't want to be bailed out while reclaim. because
  2150. * we want to put equal scanning pressure on each zone.
  2151. */
  2152. .nr_to_reclaim = ULONG_MAX,
  2153. .order = order,
  2154. .mem_cgroup = NULL,
  2155. };
  2156. struct shrink_control shrink = {
  2157. .gfp_mask = sc.gfp_mask,
  2158. };
  2159. loop_again:
  2160. total_scanned = 0;
  2161. sc.nr_reclaimed = 0;
  2162. sc.may_writepage = !laptop_mode;
  2163. count_vm_event(PAGEOUTRUN);
  2164. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  2165. unsigned long lru_pages = 0;
  2166. int has_under_min_watermark_zone = 0;
  2167. /* The swap token gets in the way of swapout... */
  2168. if (!priority)
  2169. disable_swap_token(NULL);
  2170. all_zones_ok = 1;
  2171. balanced = 0;
  2172. /*
  2173. * Scan in the highmem->dma direction for the highest
  2174. * zone which needs scanning
  2175. */
  2176. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  2177. struct zone *zone = pgdat->node_zones + i;
  2178. if (!populated_zone(zone))
  2179. continue;
  2180. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  2181. continue;
  2182. /*
  2183. * Do some background aging of the anon list, to give
  2184. * pages a chance to be referenced before reclaiming.
  2185. */
  2186. if (inactive_anon_is_low(zone, &sc))
  2187. shrink_active_list(SWAP_CLUSTER_MAX, zone,
  2188. &sc, priority, 0);
  2189. if (!zone_watermark_ok_safe(zone, order,
  2190. high_wmark_pages(zone), 0, 0)) {
  2191. end_zone = i;
  2192. break;
  2193. } else {
  2194. /* If balanced, clear the congested flag */
  2195. zone_clear_flag(zone, ZONE_CONGESTED);
  2196. }
  2197. }
  2198. if (i < 0)
  2199. goto out;
  2200. for (i = 0; i <= end_zone; i++) {
  2201. struct zone *zone = pgdat->node_zones + i;
  2202. lru_pages += zone_reclaimable_pages(zone);
  2203. }
  2204. /*
  2205. * Now scan the zone in the dma->highmem direction, stopping
  2206. * at the last zone which needs scanning.
  2207. *
  2208. * We do this because the page allocator works in the opposite
  2209. * direction. This prevents the page allocator from allocating
  2210. * pages behind kswapd's direction of progress, which would
  2211. * cause too much scanning of the lower zones.
  2212. */
  2213. for (i = 0; i <= end_zone; i++) {
  2214. struct zone *zone = pgdat->node_zones + i;
  2215. int nr_slab;
  2216. unsigned long balance_gap;
  2217. if (!populated_zone(zone))
  2218. continue;
  2219. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  2220. continue;
  2221. sc.nr_scanned = 0;
  2222. nr_soft_scanned = 0;
  2223. /*
  2224. * Call soft limit reclaim before calling shrink_zone.
  2225. */
  2226. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2227. order, sc.gfp_mask,
  2228. &nr_soft_scanned);
  2229. sc.nr_reclaimed += nr_soft_reclaimed;
  2230. total_scanned += nr_soft_scanned;
  2231. /*
  2232. * We put equal pressure on every zone, unless
  2233. * one zone has way too many pages free
  2234. * already. The "too many pages" is defined
  2235. * as the high wmark plus a "gap" where the
  2236. * gap is either the low watermark or 1%
  2237. * of the zone, whichever is smaller.
  2238. */
  2239. balance_gap = min(low_wmark_pages(zone),
  2240. (zone->present_pages +
  2241. KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  2242. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  2243. if (!zone_watermark_ok_safe(zone, order,
  2244. high_wmark_pages(zone) + balance_gap,
  2245. end_zone, 0)) {
  2246. shrink_zone(priority, zone, &sc);
  2247. reclaim_state->reclaimed_slab = 0;
  2248. nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
  2249. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  2250. total_scanned += sc.nr_scanned;
  2251. if (nr_slab == 0 && !zone_reclaimable(zone))
  2252. zone->all_unreclaimable = 1;
  2253. }
  2254. /*
  2255. * If we've done a decent amount of scanning and
  2256. * the reclaim ratio is low, start doing writepage
  2257. * even in laptop mode
  2258. */
  2259. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  2260. total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
  2261. sc.may_writepage = 1;
  2262. if (zone->all_unreclaimable) {
  2263. if (end_zone && end_zone == i)
  2264. end_zone--;
  2265. continue;
  2266. }
  2267. if (!zone_watermark_ok_safe(zone, order,
  2268. high_wmark_pages(zone), end_zone, 0)) {
  2269. all_zones_ok = 0;
  2270. /*
  2271. * We are still under min water mark. This
  2272. * means that we have a GFP_ATOMIC allocation
  2273. * failure risk. Hurry up!
  2274. */
  2275. if (!zone_watermark_ok_safe(zone, order,
  2276. min_wmark_pages(zone), end_zone, 0))
  2277. has_under_min_watermark_zone = 1;
  2278. } else {
  2279. /*
  2280. * If a zone reaches its high watermark,
  2281. * consider it to be no longer congested. It's
  2282. * possible there are dirty pages backed by
  2283. * congested BDIs but as pressure is relieved,
  2284. * spectulatively avoid congestion waits
  2285. */
  2286. zone_clear_flag(zone, ZONE_CONGESTED);
  2287. if (i <= *classzone_idx)
  2288. balanced += zone->present_pages;
  2289. }
  2290. }
  2291. if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
  2292. break; /* kswapd: all done */
  2293. /*
  2294. * OK, kswapd is getting into trouble. Take a nap, then take
  2295. * another pass across the zones.
  2296. */
  2297. if (total_scanned && (priority < DEF_PRIORITY - 2)) {
  2298. if (has_under_min_watermark_zone)
  2299. count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
  2300. else
  2301. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2302. }
  2303. /*
  2304. * We do this so kswapd doesn't build up large priorities for
  2305. * example when it is freeing in parallel with allocators. It
  2306. * matches the direct reclaim path behaviour in terms of impact
  2307. * on zone->*_priority.
  2308. */
  2309. if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
  2310. break;
  2311. }
  2312. out:
  2313. /*
  2314. * order-0: All zones must meet high watermark for a balanced node
  2315. * high-order: Balanced zones must make up at least 25% of the node
  2316. * for the node to be balanced
  2317. */
  2318. if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
  2319. cond_resched();
  2320. try_to_freeze();
  2321. /*
  2322. * Fragmentation may mean that the system cannot be
  2323. * rebalanced for high-order allocations in all zones.
  2324. * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
  2325. * it means the zones have been fully scanned and are still
  2326. * not balanced. For high-order allocations, there is
  2327. * little point trying all over again as kswapd may
  2328. * infinite loop.
  2329. *
  2330. * Instead, recheck all watermarks at order-0 as they
  2331. * are the most important. If watermarks are ok, kswapd will go
  2332. * back to sleep. High-order users can still perform direct
  2333. * reclaim if they wish.
  2334. */
  2335. if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
  2336. order = sc.order = 0;
  2337. goto loop_again;
  2338. }
  2339. /*
  2340. * If kswapd was reclaiming at a higher order, it has the option of
  2341. * sleeping without all zones being balanced. Before it does, it must
  2342. * ensure that the watermarks for order-0 on *all* zones are met and
  2343. * that the congestion flags are cleared. The congestion flag must
  2344. * be cleared as kswapd is the only mechanism that clears the flag
  2345. * and it is potentially going to sleep here.
  2346. */
  2347. if (order) {
  2348. for (i = 0; i <= end_zone; i++) {
  2349. struct zone *zone = pgdat->node_zones + i;
  2350. if (!populated_zone(zone))
  2351. continue;
  2352. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  2353. continue;
  2354. /* Confirm the zone is balanced for order-0 */
  2355. if (!zone_watermark_ok(zone, 0,
  2356. high_wmark_pages(zone), 0, 0)) {
  2357. order = sc.order = 0;
  2358. goto loop_again;
  2359. }
  2360. /* If balanced, clear the congested flag */
  2361. zone_clear_flag(zone, ZONE_CONGESTED);
  2362. }
  2363. }
  2364. /*
  2365. * Return the order we were reclaiming at so sleeping_prematurely()
  2366. * makes a decision on the order we were last reclaiming at. However,
  2367. * if another caller entered the allocator slow path while kswapd
  2368. * was awake, order will remain at the higher level
  2369. */
  2370. *classzone_idx = end_zone;
  2371. return order;
  2372. }
  2373. static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
  2374. {
  2375. long remaining = 0;
  2376. DEFINE_WAIT(wait);
  2377. if (freezing(current) || kthread_should_stop())
  2378. return;
  2379. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2380. /* Try to sleep for a short interval */
  2381. if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
  2382. remaining = schedule_timeout(HZ/10);
  2383. finish_wait(&pgdat->kswapd_wait, &wait);
  2384. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2385. }
  2386. /*
  2387. * After a short sleep, check if it was a premature sleep. If not, then
  2388. * go fully to sleep until explicitly woken up.
  2389. */
  2390. if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
  2391. trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
  2392. /*
  2393. * vmstat counters are not perfectly accurate and the estimated
  2394. * value for counters such as NR_FREE_PAGES can deviate from the
  2395. * true value by nr_online_cpus * threshold. To avoid the zone
  2396. * watermarks being breached while under pressure, we reduce the
  2397. * per-cpu vmstat threshold while kswapd is awake and restore
  2398. * them before going back to sleep.
  2399. */
  2400. set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
  2401. schedule();
  2402. set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
  2403. } else {
  2404. if (remaining)
  2405. count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
  2406. else
  2407. count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
  2408. }
  2409. finish_wait(&pgdat->kswapd_wait, &wait);
  2410. }
  2411. /*
  2412. * The background pageout daemon, started as a kernel thread
  2413. * from the init process.
  2414. *
  2415. * This basically trickles out pages so that we have _some_
  2416. * free memory available even if there is no other activity
  2417. * that frees anything up. This is needed for things like routing
  2418. * etc, where we otherwise might have all activity going on in
  2419. * asynchronous contexts that cannot page things out.
  2420. *
  2421. * If there are applications that are active memory-allocators
  2422. * (most normal use), this basically shouldn't matter.
  2423. */
  2424. static int kswapd(void *p)
  2425. {
  2426. unsigned long order, new_order;
  2427. int classzone_idx, new_classzone_idx;
  2428. pg_data_t *pgdat = (pg_data_t*)p;
  2429. struct task_struct *tsk = current;
  2430. struct reclaim_state reclaim_state = {
  2431. .reclaimed_slab = 0,
  2432. };
  2433. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  2434. lockdep_set_current_reclaim_state(GFP_KERNEL);
  2435. if (!cpumask_empty(cpumask))
  2436. set_cpus_allowed_ptr(tsk, cpumask);
  2437. current->reclaim_state = &reclaim_state;
  2438. /*
  2439. * Tell the memory management that we're a "memory allocator",
  2440. * and that if we need more memory we should get access to it
  2441. * regardless (see "__alloc_pages()"). "kswapd" should
  2442. * never get caught in the normal page freeing logic.
  2443. *
  2444. * (Kswapd normally doesn't need memory anyway, but sometimes
  2445. * you need a small amount of memory in order to be able to
  2446. * page out something else, and this flag essentially protects
  2447. * us from recursively trying to free more memory as we're
  2448. * trying to free the first piece of memory in the first place).
  2449. */
  2450. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  2451. set_freezable();
  2452. order = new_order = 0;
  2453. classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
  2454. for ( ; ; ) {
  2455. int ret;
  2456. /*
  2457. * If the last balance_pgdat was unsuccessful it's unlikely a
  2458. * new request of a similar or harder type will succeed soon
  2459. * so consider going to sleep on the basis we reclaimed at
  2460. */
  2461. if (classzone_idx >= new_classzone_idx && order == new_order) {
  2462. new_order = pgdat->kswapd_max_order;
  2463. new_classzone_idx = pgdat->classzone_idx;
  2464. pgdat->kswapd_max_order = 0;
  2465. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2466. }
  2467. if (order < new_order || classzone_idx > new_classzone_idx) {
  2468. /*
  2469. * Don't sleep if someone wants a larger 'order'
  2470. * allocation or has tigher zone constraints
  2471. */
  2472. order = new_order;
  2473. classzone_idx = new_classzone_idx;
  2474. } else {
  2475. kswapd_try_to_sleep(pgdat, order, classzone_idx);
  2476. order = pgdat->kswapd_max_order;
  2477. classzone_idx = pgdat->classzone_idx;
  2478. pgdat->kswapd_max_order = 0;
  2479. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2480. }
  2481. ret = try_to_freeze();
  2482. if (kthread_should_stop())
  2483. break;
  2484. /*
  2485. * We can speed up thawing tasks if we don't call balance_pgdat
  2486. * after returning from the refrigerator
  2487. */
  2488. if (!ret) {
  2489. trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
  2490. order = balance_pgdat(pgdat, order, &classzone_idx);
  2491. }
  2492. }
  2493. return 0;
  2494. }
  2495. /*
  2496. * A zone is low on free memory, so wake its kswapd task to service it.
  2497. */
  2498. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
  2499. {
  2500. pg_data_t *pgdat;
  2501. if (!populated_zone(zone))
  2502. return;
  2503. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2504. return;
  2505. pgdat = zone->zone_pgdat;
  2506. if (pgdat->kswapd_max_order < order) {
  2507. pgdat->kswapd_max_order = order;
  2508. pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
  2509. }
  2510. if (!waitqueue_active(&pgdat->kswapd_wait))
  2511. return;
  2512. if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
  2513. return;
  2514. trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
  2515. wake_up_interruptible(&pgdat->kswapd_wait);
  2516. }
  2517. /*
  2518. * The reclaimable count would be mostly accurate.
  2519. * The less reclaimable pages may be
  2520. * - mlocked pages, which will be moved to unevictable list when encountered
  2521. * - mapped pages, which may require several travels to be reclaimed
  2522. * - dirty pages, which is not "instantly" reclaimable
  2523. */
  2524. unsigned long global_reclaimable_pages(void)
  2525. {
  2526. int nr;
  2527. nr = global_page_state(NR_ACTIVE_FILE) +
  2528. global_page_state(NR_INACTIVE_FILE);
  2529. if (nr_swap_pages > 0)
  2530. nr += global_page_state(NR_ACTIVE_ANON) +
  2531. global_page_state(NR_INACTIVE_ANON);
  2532. return nr;
  2533. }
  2534. unsigned long zone_reclaimable_pages(struct zone *zone)
  2535. {
  2536. int nr;
  2537. nr = zone_page_state(zone, NR_ACTIVE_FILE) +
  2538. zone_page_state(zone, NR_INACTIVE_FILE);
  2539. if (nr_swap_pages > 0)
  2540. nr += zone_page_state(zone, NR_ACTIVE_ANON) +
  2541. zone_page_state(zone, NR_INACTIVE_ANON);
  2542. return nr;
  2543. }
  2544. #ifdef CONFIG_HIBERNATION
  2545. /*
  2546. * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
  2547. * freed pages.
  2548. *
  2549. * Rather than trying to age LRUs the aim is to preserve the overall
  2550. * LRU order by reclaiming preferentially
  2551. * inactive > active > active referenced > active mapped
  2552. */
  2553. unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
  2554. {
  2555. struct reclaim_state reclaim_state;
  2556. struct scan_control sc = {
  2557. .gfp_mask = GFP_HIGHUSER_MOVABLE,
  2558. .may_swap = 1,
  2559. .may_unmap = 1,
  2560. .may_writepage = 1,
  2561. .nr_to_reclaim = nr_to_reclaim,
  2562. .hibernation_mode = 1,
  2563. .order = 0,
  2564. };
  2565. struct shrink_control shrink = {
  2566. .gfp_mask = sc.gfp_mask,
  2567. };
  2568. struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
  2569. struct task_struct *p = current;
  2570. unsigned long nr_reclaimed;
  2571. p->flags |= PF_MEMALLOC;
  2572. lockdep_set_current_reclaim_state(sc.gfp_mask);
  2573. reclaim_state.reclaimed_slab = 0;
  2574. p->reclaim_state = &reclaim_state;
  2575. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2576. p->reclaim_state = NULL;
  2577. lockdep_clear_current_reclaim_state();
  2578. p->flags &= ~PF_MEMALLOC;
  2579. return nr_reclaimed;
  2580. }
  2581. #endif /* CONFIG_HIBERNATION */
  2582. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  2583. not required for correctness. So if the last cpu in a node goes
  2584. away, we get changed to run anywhere: as the first one comes back,
  2585. restore their cpu bindings. */
  2586. static int __devinit cpu_callback(struct notifier_block *nfb,
  2587. unsigned long action, void *hcpu)
  2588. {
  2589. int nid;
  2590. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  2591. for_each_node_state(nid, N_HIGH_MEMORY) {
  2592. pg_data_t *pgdat = NODE_DATA(nid);
  2593. const struct cpumask *mask;
  2594. mask = cpumask_of_node(pgdat->node_id);
  2595. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  2596. /* One of our CPUs online: restore mask */
  2597. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  2598. }
  2599. }
  2600. return NOTIFY_OK;
  2601. }
  2602. /*
  2603. * This kswapd start function will be called by init and node-hot-add.
  2604. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  2605. */
  2606. int kswapd_run(int nid)
  2607. {
  2608. pg_data_t *pgdat = NODE_DATA(nid);
  2609. int ret = 0;
  2610. if (pgdat->kswapd)
  2611. return 0;
  2612. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  2613. if (IS_ERR(pgdat->kswapd)) {
  2614. /* failure at boot is fatal */
  2615. BUG_ON(system_state == SYSTEM_BOOTING);
  2616. printk("Failed to start kswapd on node %d\n",nid);
  2617. ret = -1;
  2618. }
  2619. return ret;
  2620. }
  2621. /*
  2622. * Called by memory hotplug when all memory in a node is offlined.
  2623. */
  2624. void kswapd_stop(int nid)
  2625. {
  2626. struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
  2627. if (kswapd)
  2628. kthread_stop(kswapd);
  2629. }
  2630. static int __init kswapd_init(void)
  2631. {
  2632. int nid;
  2633. swap_setup();
  2634. for_each_node_state(nid, N_HIGH_MEMORY)
  2635. kswapd_run(nid);
  2636. hotcpu_notifier(cpu_callback, 0);
  2637. return 0;
  2638. }
  2639. module_init(kswapd_init)
  2640. #ifdef CONFIG_NUMA
  2641. /*
  2642. * Zone reclaim mode
  2643. *
  2644. * If non-zero call zone_reclaim when the number of free pages falls below
  2645. * the watermarks.
  2646. */
  2647. int zone_reclaim_mode __read_mostly;
  2648. #define RECLAIM_OFF 0
  2649. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  2650. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  2651. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  2652. /*
  2653. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  2654. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  2655. * a zone.
  2656. */
  2657. #define ZONE_RECLAIM_PRIORITY 4
  2658. /*
  2659. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  2660. * occur.
  2661. */
  2662. int sysctl_min_unmapped_ratio = 1;
  2663. /*
  2664. * If the number of slab pages in a zone grows beyond this percentage then
  2665. * slab reclaim needs to occur.
  2666. */
  2667. int sysctl_min_slab_ratio = 5;
  2668. static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
  2669. {
  2670. unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
  2671. unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
  2672. zone_page_state(zone, NR_ACTIVE_FILE);
  2673. /*
  2674. * It's possible for there to be more file mapped pages than
  2675. * accounted for by the pages on the file LRU lists because
  2676. * tmpfs pages accounted for as ANON can also be FILE_MAPPED
  2677. */
  2678. return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
  2679. }
  2680. /* Work out how many page cache pages we can reclaim in this reclaim_mode */
  2681. static long zone_pagecache_reclaimable(struct zone *zone)
  2682. {
  2683. long nr_pagecache_reclaimable;
  2684. long delta = 0;
  2685. /*
  2686. * If RECLAIM_SWAP is set, then all file pages are considered
  2687. * potentially reclaimable. Otherwise, we have to worry about
  2688. * pages like swapcache and zone_unmapped_file_pages() provides
  2689. * a better estimate
  2690. */
  2691. if (zone_reclaim_mode & RECLAIM_SWAP)
  2692. nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
  2693. else
  2694. nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
  2695. /* If we can't clean pages, remove dirty pages from consideration */
  2696. if (!(zone_reclaim_mode & RECLAIM_WRITE))
  2697. delta += zone_page_state(zone, NR_FILE_DIRTY);
  2698. /* Watch for any possible underflows due to delta */
  2699. if (unlikely(delta > nr_pagecache_reclaimable))
  2700. delta = nr_pagecache_reclaimable;
  2701. return nr_pagecache_reclaimable - delta;
  2702. }
  2703. /*
  2704. * Try to free up some pages from this zone through reclaim.
  2705. */
  2706. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2707. {
  2708. /* Minimum pages needed in order to stay on node */
  2709. const unsigned long nr_pages = 1 << order;
  2710. struct task_struct *p = current;
  2711. struct reclaim_state reclaim_state;
  2712. int priority;
  2713. struct scan_control sc = {
  2714. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  2715. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  2716. .may_swap = 1,
  2717. .nr_to_reclaim = max_t(unsigned long, nr_pages,
  2718. SWAP_CLUSTER_MAX),
  2719. .gfp_mask = gfp_mask,
  2720. .order = order,
  2721. };
  2722. struct shrink_control shrink = {
  2723. .gfp_mask = sc.gfp_mask,
  2724. };
  2725. unsigned long nr_slab_pages0, nr_slab_pages1;
  2726. cond_resched();
  2727. /*
  2728. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  2729. * and we also need to be able to write out pages for RECLAIM_WRITE
  2730. * and RECLAIM_SWAP.
  2731. */
  2732. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  2733. lockdep_set_current_reclaim_state(gfp_mask);
  2734. reclaim_state.reclaimed_slab = 0;
  2735. p->reclaim_state = &reclaim_state;
  2736. if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
  2737. /*
  2738. * Free memory by calling shrink zone with increasing
  2739. * priorities until we have enough memory freed.
  2740. */
  2741. priority = ZONE_RECLAIM_PRIORITY;
  2742. do {
  2743. shrink_zone(priority, zone, &sc);
  2744. priority--;
  2745. } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
  2746. }
  2747. nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2748. if (nr_slab_pages0 > zone->min_slab_pages) {
  2749. /*
  2750. * shrink_slab() does not currently allow us to determine how
  2751. * many pages were freed in this zone. So we take the current
  2752. * number of slab pages and shake the slab until it is reduced
  2753. * by the same nr_pages that we used for reclaiming unmapped
  2754. * pages.
  2755. *
  2756. * Note that shrink_slab will free memory on all zones and may
  2757. * take a long time.
  2758. */
  2759. for (;;) {
  2760. unsigned long lru_pages = zone_reclaimable_pages(zone);
  2761. /* No reclaimable slab or very low memory pressure */
  2762. if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
  2763. break;
  2764. /* Freed enough memory */
  2765. nr_slab_pages1 = zone_page_state(zone,
  2766. NR_SLAB_RECLAIMABLE);
  2767. if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
  2768. break;
  2769. }
  2770. /*
  2771. * Update nr_reclaimed by the number of slab pages we
  2772. * reclaimed from this zone.
  2773. */
  2774. nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2775. if (nr_slab_pages1 < nr_slab_pages0)
  2776. sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
  2777. }
  2778. p->reclaim_state = NULL;
  2779. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  2780. lockdep_clear_current_reclaim_state();
  2781. return sc.nr_reclaimed >= nr_pages;
  2782. }
  2783. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2784. {
  2785. int node_id;
  2786. int ret;
  2787. /*
  2788. * Zone reclaim reclaims unmapped file backed pages and
  2789. * slab pages if we are over the defined limits.
  2790. *
  2791. * A small portion of unmapped file backed pages is needed for
  2792. * file I/O otherwise pages read by file I/O will be immediately
  2793. * thrown out if the zone is overallocated. So we do not reclaim
  2794. * if less than a specified percentage of the zone is used by
  2795. * unmapped file backed pages.
  2796. */
  2797. if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
  2798. zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
  2799. return ZONE_RECLAIM_FULL;
  2800. if (zone->all_unreclaimable)
  2801. return ZONE_RECLAIM_FULL;
  2802. /*
  2803. * Do not scan if the allocation should not be delayed.
  2804. */
  2805. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  2806. return ZONE_RECLAIM_NOSCAN;
  2807. /*
  2808. * Only run zone reclaim on the local zone or on zones that do not
  2809. * have associated processors. This will favor the local processor
  2810. * over remote processors and spread off node memory allocations
  2811. * as wide as possible.
  2812. */
  2813. node_id = zone_to_nid(zone);
  2814. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  2815. return ZONE_RECLAIM_NOSCAN;
  2816. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  2817. return ZONE_RECLAIM_NOSCAN;
  2818. ret = __zone_reclaim(zone, gfp_mask, order);
  2819. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  2820. if (!ret)
  2821. count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
  2822. return ret;
  2823. }
  2824. #endif
  2825. /*
  2826. * page_evictable - test whether a page is evictable
  2827. * @page: the page to test
  2828. * @vma: the VMA in which the page is or will be mapped, may be NULL
  2829. *
  2830. * Test whether page is evictable--i.e., should be placed on active/inactive
  2831. * lists vs unevictable list. The vma argument is !NULL when called from the
  2832. * fault path to determine how to instantate a new page.
  2833. *
  2834. * Reasons page might not be evictable:
  2835. * (1) page's mapping marked unevictable
  2836. * (2) page is part of an mlocked VMA
  2837. *
  2838. */
  2839. int page_evictable(struct page *page, struct vm_area_struct *vma)
  2840. {
  2841. if (mapping_unevictable(page_mapping(page)))
  2842. return 0;
  2843. if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
  2844. return 0;
  2845. return 1;
  2846. }
  2847. /**
  2848. * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
  2849. * @page: page to check evictability and move to appropriate lru list
  2850. * @zone: zone page is in
  2851. *
  2852. * Checks a page for evictability and moves the page to the appropriate
  2853. * zone lru list.
  2854. *
  2855. * Restrictions: zone->lru_lock must be held, page must be on LRU and must
  2856. * have PageUnevictable set.
  2857. */
  2858. static void check_move_unevictable_page(struct page *page, struct zone *zone)
  2859. {
  2860. VM_BUG_ON(PageActive(page));
  2861. retry:
  2862. ClearPageUnevictable(page);
  2863. if (page_evictable(page, NULL)) {
  2864. enum lru_list l = page_lru_base_type(page);
  2865. __dec_zone_state(zone, NR_UNEVICTABLE);
  2866. list_move(&page->lru, &zone->lru[l].list);
  2867. mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
  2868. __inc_zone_state(zone, NR_INACTIVE_ANON + l);
  2869. __count_vm_event(UNEVICTABLE_PGRESCUED);
  2870. } else {
  2871. /*
  2872. * rotate unevictable list
  2873. */
  2874. SetPageUnevictable(page);
  2875. list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
  2876. mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
  2877. if (page_evictable(page, NULL))
  2878. goto retry;
  2879. }
  2880. }
  2881. /**
  2882. * scan_mapping_unevictable_pages - scan an address space for evictable pages
  2883. * @mapping: struct address_space to scan for evictable pages
  2884. *
  2885. * Scan all pages in mapping. Check unevictable pages for
  2886. * evictability and move them to the appropriate zone lru list.
  2887. */
  2888. void scan_mapping_unevictable_pages(struct address_space *mapping)
  2889. {
  2890. pgoff_t next = 0;
  2891. pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
  2892. PAGE_CACHE_SHIFT;
  2893. struct zone *zone;
  2894. struct pagevec pvec;
  2895. if (mapping->nrpages == 0)
  2896. return;
  2897. pagevec_init(&pvec, 0);
  2898. while (next < end &&
  2899. pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  2900. int i;
  2901. int pg_scanned = 0;
  2902. zone = NULL;
  2903. for (i = 0; i < pagevec_count(&pvec); i++) {
  2904. struct page *page = pvec.pages[i];
  2905. pgoff_t page_index = page->index;
  2906. struct zone *pagezone = page_zone(page);
  2907. pg_scanned++;
  2908. if (page_index > next)
  2909. next = page_index;
  2910. next++;
  2911. if (pagezone != zone) {
  2912. if (zone)
  2913. spin_unlock_irq(&zone->lru_lock);
  2914. zone = pagezone;
  2915. spin_lock_irq(&zone->lru_lock);
  2916. }
  2917. if (PageLRU(page) && PageUnevictable(page))
  2918. check_move_unevictable_page(page, zone);
  2919. }
  2920. if (zone)
  2921. spin_unlock_irq(&zone->lru_lock);
  2922. pagevec_release(&pvec);
  2923. count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
  2924. }
  2925. }
  2926. /**
  2927. * scan_zone_unevictable_pages - check unevictable list for evictable pages
  2928. * @zone - zone of which to scan the unevictable list
  2929. *
  2930. * Scan @zone's unevictable LRU lists to check for pages that have become
  2931. * evictable. Move those that have to @zone's inactive list where they
  2932. * become candidates for reclaim, unless shrink_inactive_zone() decides
  2933. * to reactivate them. Pages that are still unevictable are rotated
  2934. * back onto @zone's unevictable list.
  2935. */
  2936. #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
  2937. static void scan_zone_unevictable_pages(struct zone *zone)
  2938. {
  2939. struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
  2940. unsigned long scan;
  2941. unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
  2942. while (nr_to_scan > 0) {
  2943. unsigned long batch_size = min(nr_to_scan,
  2944. SCAN_UNEVICTABLE_BATCH_SIZE);
  2945. spin_lock_irq(&zone->lru_lock);
  2946. for (scan = 0; scan < batch_size; scan++) {
  2947. struct page *page = lru_to_page(l_unevictable);
  2948. if (!trylock_page(page))
  2949. continue;
  2950. prefetchw_prev_lru_page(page, l_unevictable, flags);
  2951. if (likely(PageLRU(page) && PageUnevictable(page)))
  2952. check_move_unevictable_page(page, zone);
  2953. unlock_page(page);
  2954. }
  2955. spin_unlock_irq(&zone->lru_lock);
  2956. nr_to_scan -= batch_size;
  2957. }
  2958. }
  2959. /**
  2960. * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
  2961. *
  2962. * A really big hammer: scan all zones' unevictable LRU lists to check for
  2963. * pages that have become evictable. Move those back to the zones'
  2964. * inactive list where they become candidates for reclaim.
  2965. * This occurs when, e.g., we have unswappable pages on the unevictable lists,
  2966. * and we add swap to the system. As such, it runs in the context of a task
  2967. * that has possibly/probably made some previously unevictable pages
  2968. * evictable.
  2969. */
  2970. static void scan_all_zones_unevictable_pages(void)
  2971. {
  2972. struct zone *zone;
  2973. for_each_zone(zone) {
  2974. scan_zone_unevictable_pages(zone);
  2975. }
  2976. }
  2977. /*
  2978. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  2979. * all nodes' unevictable lists for evictable pages
  2980. */
  2981. unsigned long scan_unevictable_pages;
  2982. int scan_unevictable_handler(struct ctl_table *table, int write,
  2983. void __user *buffer,
  2984. size_t *length, loff_t *ppos)
  2985. {
  2986. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2987. if (write && *(unsigned long *)table->data)
  2988. scan_all_zones_unevictable_pages();
  2989. scan_unevictable_pages = 0;
  2990. return 0;
  2991. }
  2992. #ifdef CONFIG_NUMA
  2993. /*
  2994. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  2995. * a specified node's per zone unevictable lists for evictable pages.
  2996. */
  2997. static ssize_t read_scan_unevictable_node(struct sys_device *dev,
  2998. struct sysdev_attribute *attr,
  2999. char *buf)
  3000. {
  3001. return sprintf(buf, "0\n"); /* always zero; should fit... */
  3002. }
  3003. static ssize_t write_scan_unevictable_node(struct sys_device *dev,
  3004. struct sysdev_attribute *attr,
  3005. const char *buf, size_t count)
  3006. {
  3007. struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
  3008. struct zone *zone;
  3009. unsigned long res;
  3010. unsigned long req = strict_strtoul(buf, 10, &res);
  3011. if (!req)
  3012. return 1; /* zero is no-op */
  3013. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  3014. if (!populated_zone(zone))
  3015. continue;
  3016. scan_zone_unevictable_pages(zone);
  3017. }
  3018. return 1;
  3019. }
  3020. static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  3021. read_scan_unevictable_node,
  3022. write_scan_unevictable_node);
  3023. int scan_unevictable_register_node(struct node *node)
  3024. {
  3025. return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
  3026. }
  3027. void scan_unevictable_unregister_node(struct node *node)
  3028. {
  3029. sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
  3030. }
  3031. #endif