slub.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <linux/stacktrace.h>
  31. #include <trace/events/kmem.h>
  32. /*
  33. * Lock order:
  34. * 1. slub_lock (Global Semaphore)
  35. * 2. node->list_lock
  36. * 3. slab_lock(page) (Only on some arches and for debugging)
  37. *
  38. * slub_lock
  39. *
  40. * The role of the slub_lock is to protect the list of all the slabs
  41. * and to synchronize major metadata changes to slab cache structures.
  42. *
  43. * The slab_lock is only used for debugging and on arches that do not
  44. * have the ability to do a cmpxchg_double. It only protects the second
  45. * double word in the page struct. Meaning
  46. * A. page->freelist -> List of object free in a page
  47. * B. page->counters -> Counters of objects
  48. * C. page->frozen -> frozen state
  49. *
  50. * If a slab is frozen then it is exempt from list management. It is not
  51. * on any list. The processor that froze the slab is the one who can
  52. * perform list operations on the page. Other processors may put objects
  53. * onto the freelist but the processor that froze the slab is the only
  54. * one that can retrieve the objects from the page's freelist.
  55. *
  56. * The list_lock protects the partial and full list on each node and
  57. * the partial slab counter. If taken then no new slabs may be added or
  58. * removed from the lists nor make the number of partial slabs be modified.
  59. * (Note that the total number of slabs is an atomic value that may be
  60. * modified without taking the list lock).
  61. *
  62. * The list_lock is a centralized lock and thus we avoid taking it as
  63. * much as possible. As long as SLUB does not have to handle partial
  64. * slabs, operations can continue without any centralized lock. F.e.
  65. * allocating a long series of objects that fill up slabs does not require
  66. * the list lock.
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /* Enable to log cmpxchg failures */
  127. #undef SLUB_DEBUG_CMPXCHG
  128. /*
  129. * Mininum number of partial slabs. These will be left on the partial
  130. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  131. */
  132. #define MIN_PARTIAL 5
  133. /*
  134. * Maximum number of desirable partial slabs.
  135. * The existence of more partial slabs makes kmem_cache_shrink
  136. * sort the partial list by the number of objects in the.
  137. */
  138. #define MAX_PARTIAL 10
  139. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  140. SLAB_POISON | SLAB_STORE_USER)
  141. /*
  142. * Debugging flags that require metadata to be stored in the slab. These get
  143. * disabled when slub_debug=O is used and a cache's min order increases with
  144. * metadata.
  145. */
  146. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  147. /*
  148. * Set of flags that will prevent slab merging
  149. */
  150. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  151. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  152. SLAB_FAILSLAB)
  153. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  154. SLAB_CACHE_DMA | SLAB_NOTRACK)
  155. #define OO_SHIFT 16
  156. #define OO_MASK ((1 << OO_SHIFT) - 1)
  157. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  158. /* Internal SLUB flags */
  159. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  160. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  161. static int kmem_size = sizeof(struct kmem_cache);
  162. #ifdef CONFIG_SMP
  163. static struct notifier_block slab_notifier;
  164. #endif
  165. static enum {
  166. DOWN, /* No slab functionality available */
  167. PARTIAL, /* Kmem_cache_node works */
  168. UP, /* Everything works but does not show up in sysfs */
  169. SYSFS /* Sysfs up */
  170. } slab_state = DOWN;
  171. /* A list of all slab caches on the system */
  172. static DECLARE_RWSEM(slub_lock);
  173. static LIST_HEAD(slab_caches);
  174. /*
  175. * Tracking user of a slab.
  176. */
  177. #define TRACK_ADDRS_COUNT 16
  178. struct track {
  179. unsigned long addr; /* Called from address */
  180. #ifdef CONFIG_STACKTRACE
  181. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  182. #endif
  183. int cpu; /* Was running on cpu */
  184. int pid; /* Pid context */
  185. unsigned long when; /* When did the operation occur */
  186. };
  187. enum track_item { TRACK_ALLOC, TRACK_FREE };
  188. #ifdef CONFIG_SYSFS
  189. static int sysfs_slab_add(struct kmem_cache *);
  190. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  191. static void sysfs_slab_remove(struct kmem_cache *);
  192. #else
  193. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  194. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  195. { return 0; }
  196. static inline void sysfs_slab_remove(struct kmem_cache *s)
  197. {
  198. kfree(s->name);
  199. kfree(s);
  200. }
  201. #endif
  202. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  203. {
  204. #ifdef CONFIG_SLUB_STATS
  205. __this_cpu_inc(s->cpu_slab->stat[si]);
  206. #endif
  207. }
  208. /********************************************************************
  209. * Core slab cache functions
  210. *******************************************************************/
  211. int slab_is_available(void)
  212. {
  213. return slab_state >= UP;
  214. }
  215. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  216. {
  217. return s->node[node];
  218. }
  219. /* Verify that a pointer has an address that is valid within a slab page */
  220. static inline int check_valid_pointer(struct kmem_cache *s,
  221. struct page *page, const void *object)
  222. {
  223. void *base;
  224. if (!object)
  225. return 1;
  226. base = page_address(page);
  227. if (object < base || object >= base + page->objects * s->size ||
  228. (object - base) % s->size) {
  229. return 0;
  230. }
  231. return 1;
  232. }
  233. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  234. {
  235. return *(void **)(object + s->offset);
  236. }
  237. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  238. {
  239. void *p;
  240. #ifdef CONFIG_DEBUG_PAGEALLOC
  241. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  242. #else
  243. p = get_freepointer(s, object);
  244. #endif
  245. return p;
  246. }
  247. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  248. {
  249. *(void **)(object + s->offset) = fp;
  250. }
  251. /* Loop over all objects in a slab */
  252. #define for_each_object(__p, __s, __addr, __objects) \
  253. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  254. __p += (__s)->size)
  255. /* Determine object index from a given position */
  256. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  257. {
  258. return (p - addr) / s->size;
  259. }
  260. static inline size_t slab_ksize(const struct kmem_cache *s)
  261. {
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debugging requires use of the padding between object
  265. * and whatever may come after it.
  266. */
  267. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  268. return s->objsize;
  269. #endif
  270. /*
  271. * If we have the need to store the freelist pointer
  272. * back there or track user information then we can
  273. * only use the space before that information.
  274. */
  275. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  276. return s->inuse;
  277. /*
  278. * Else we can use all the padding etc for the allocation
  279. */
  280. return s->size;
  281. }
  282. static inline int order_objects(int order, unsigned long size, int reserved)
  283. {
  284. return ((PAGE_SIZE << order) - reserved) / size;
  285. }
  286. static inline struct kmem_cache_order_objects oo_make(int order,
  287. unsigned long size, int reserved)
  288. {
  289. struct kmem_cache_order_objects x = {
  290. (order << OO_SHIFT) + order_objects(order, size, reserved)
  291. };
  292. return x;
  293. }
  294. static inline int oo_order(struct kmem_cache_order_objects x)
  295. {
  296. return x.x >> OO_SHIFT;
  297. }
  298. static inline int oo_objects(struct kmem_cache_order_objects x)
  299. {
  300. return x.x & OO_MASK;
  301. }
  302. /*
  303. * Per slab locking using the pagelock
  304. */
  305. static __always_inline void slab_lock(struct page *page)
  306. {
  307. bit_spin_lock(PG_locked, &page->flags);
  308. }
  309. static __always_inline void slab_unlock(struct page *page)
  310. {
  311. __bit_spin_unlock(PG_locked, &page->flags);
  312. }
  313. /* Interrupts must be disabled (for the fallback code to work right) */
  314. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  315. void *freelist_old, unsigned long counters_old,
  316. void *freelist_new, unsigned long counters_new,
  317. const char *n)
  318. {
  319. VM_BUG_ON(!irqs_disabled());
  320. #ifdef CONFIG_CMPXCHG_DOUBLE
  321. if (s->flags & __CMPXCHG_DOUBLE) {
  322. if (cmpxchg_double(&page->freelist,
  323. freelist_old, counters_old,
  324. freelist_new, counters_new))
  325. return 1;
  326. } else
  327. #endif
  328. {
  329. slab_lock(page);
  330. if (page->freelist == freelist_old && page->counters == counters_old) {
  331. page->freelist = freelist_new;
  332. page->counters = counters_new;
  333. slab_unlock(page);
  334. return 1;
  335. }
  336. slab_unlock(page);
  337. }
  338. cpu_relax();
  339. stat(s, CMPXCHG_DOUBLE_FAIL);
  340. #ifdef SLUB_DEBUG_CMPXCHG
  341. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  342. #endif
  343. return 0;
  344. }
  345. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  346. void *freelist_old, unsigned long counters_old,
  347. void *freelist_new, unsigned long counters_new,
  348. const char *n)
  349. {
  350. #ifdef CONFIG_CMPXCHG_DOUBLE
  351. if (s->flags & __CMPXCHG_DOUBLE) {
  352. if (cmpxchg_double(&page->freelist,
  353. freelist_old, counters_old,
  354. freelist_new, counters_new))
  355. return 1;
  356. } else
  357. #endif
  358. {
  359. unsigned long flags;
  360. local_irq_save(flags);
  361. slab_lock(page);
  362. if (page->freelist == freelist_old && page->counters == counters_old) {
  363. page->freelist = freelist_new;
  364. page->counters = counters_new;
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. return 1;
  368. }
  369. slab_unlock(page);
  370. local_irq_restore(flags);
  371. }
  372. cpu_relax();
  373. stat(s, CMPXCHG_DOUBLE_FAIL);
  374. #ifdef SLUB_DEBUG_CMPXCHG
  375. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  376. #endif
  377. return 0;
  378. }
  379. #ifdef CONFIG_SLUB_DEBUG
  380. /*
  381. * Determine a map of object in use on a page.
  382. *
  383. * Node listlock must be held to guarantee that the page does
  384. * not vanish from under us.
  385. */
  386. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  387. {
  388. void *p;
  389. void *addr = page_address(page);
  390. for (p = page->freelist; p; p = get_freepointer(s, p))
  391. set_bit(slab_index(p, s, addr), map);
  392. }
  393. /*
  394. * Debug settings:
  395. */
  396. #ifdef CONFIG_SLUB_DEBUG_ON
  397. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  398. #else
  399. static int slub_debug;
  400. #endif
  401. static char *slub_debug_slabs;
  402. static int disable_higher_order_debug;
  403. /*
  404. * Object debugging
  405. */
  406. static void print_section(char *text, u8 *addr, unsigned int length)
  407. {
  408. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  409. length, 1);
  410. }
  411. static struct track *get_track(struct kmem_cache *s, void *object,
  412. enum track_item alloc)
  413. {
  414. struct track *p;
  415. if (s->offset)
  416. p = object + s->offset + sizeof(void *);
  417. else
  418. p = object + s->inuse;
  419. return p + alloc;
  420. }
  421. static void set_track(struct kmem_cache *s, void *object,
  422. enum track_item alloc, unsigned long addr)
  423. {
  424. struct track *p = get_track(s, object, alloc);
  425. if (addr) {
  426. #ifdef CONFIG_STACKTRACE
  427. struct stack_trace trace;
  428. int i;
  429. trace.nr_entries = 0;
  430. trace.max_entries = TRACK_ADDRS_COUNT;
  431. trace.entries = p->addrs;
  432. trace.skip = 3;
  433. save_stack_trace(&trace);
  434. /* See rant in lockdep.c */
  435. if (trace.nr_entries != 0 &&
  436. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  437. trace.nr_entries--;
  438. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  439. p->addrs[i] = 0;
  440. #endif
  441. p->addr = addr;
  442. p->cpu = smp_processor_id();
  443. p->pid = current->pid;
  444. p->when = jiffies;
  445. } else
  446. memset(p, 0, sizeof(struct track));
  447. }
  448. static void init_tracking(struct kmem_cache *s, void *object)
  449. {
  450. if (!(s->flags & SLAB_STORE_USER))
  451. return;
  452. set_track(s, object, TRACK_FREE, 0UL);
  453. set_track(s, object, TRACK_ALLOC, 0UL);
  454. }
  455. static void print_track(const char *s, struct track *t)
  456. {
  457. if (!t->addr)
  458. return;
  459. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  460. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  461. #ifdef CONFIG_STACKTRACE
  462. {
  463. int i;
  464. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  465. if (t->addrs[i])
  466. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  467. else
  468. break;
  469. }
  470. #endif
  471. }
  472. static void print_tracking(struct kmem_cache *s, void *object)
  473. {
  474. if (!(s->flags & SLAB_STORE_USER))
  475. return;
  476. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  477. print_track("Freed", get_track(s, object, TRACK_FREE));
  478. }
  479. static void print_page_info(struct page *page)
  480. {
  481. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  482. page, page->objects, page->inuse, page->freelist, page->flags);
  483. }
  484. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  485. {
  486. va_list args;
  487. char buf[100];
  488. va_start(args, fmt);
  489. vsnprintf(buf, sizeof(buf), fmt, args);
  490. va_end(args);
  491. printk(KERN_ERR "========================================"
  492. "=====================================\n");
  493. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  494. printk(KERN_ERR "----------------------------------------"
  495. "-------------------------------------\n\n");
  496. }
  497. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  498. {
  499. va_list args;
  500. char buf[100];
  501. va_start(args, fmt);
  502. vsnprintf(buf, sizeof(buf), fmt, args);
  503. va_end(args);
  504. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  505. }
  506. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  507. {
  508. unsigned int off; /* Offset of last byte */
  509. u8 *addr = page_address(page);
  510. print_tracking(s, p);
  511. print_page_info(page);
  512. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  513. p, p - addr, get_freepointer(s, p));
  514. if (p > addr + 16)
  515. print_section("Bytes b4 ", p - 16, 16);
  516. print_section("Object ", p, min_t(unsigned long, s->objsize,
  517. PAGE_SIZE));
  518. if (s->flags & SLAB_RED_ZONE)
  519. print_section("Redzone ", p + s->objsize,
  520. s->inuse - s->objsize);
  521. if (s->offset)
  522. off = s->offset + sizeof(void *);
  523. else
  524. off = s->inuse;
  525. if (s->flags & SLAB_STORE_USER)
  526. off += 2 * sizeof(struct track);
  527. if (off != s->size)
  528. /* Beginning of the filler is the free pointer */
  529. print_section("Padding ", p + off, s->size - off);
  530. dump_stack();
  531. }
  532. static void object_err(struct kmem_cache *s, struct page *page,
  533. u8 *object, char *reason)
  534. {
  535. slab_bug(s, "%s", reason);
  536. print_trailer(s, page, object);
  537. }
  538. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  539. {
  540. va_list args;
  541. char buf[100];
  542. va_start(args, fmt);
  543. vsnprintf(buf, sizeof(buf), fmt, args);
  544. va_end(args);
  545. slab_bug(s, "%s", buf);
  546. print_page_info(page);
  547. dump_stack();
  548. }
  549. static void init_object(struct kmem_cache *s, void *object, u8 val)
  550. {
  551. u8 *p = object;
  552. if (s->flags & __OBJECT_POISON) {
  553. memset(p, POISON_FREE, s->objsize - 1);
  554. p[s->objsize - 1] = POISON_END;
  555. }
  556. if (s->flags & SLAB_RED_ZONE)
  557. memset(p + s->objsize, val, s->inuse - s->objsize);
  558. }
  559. static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
  560. {
  561. while (bytes) {
  562. if (*start != value)
  563. return start;
  564. start++;
  565. bytes--;
  566. }
  567. return NULL;
  568. }
  569. static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
  570. {
  571. u64 value64;
  572. unsigned int words, prefix;
  573. if (bytes <= 16)
  574. return check_bytes8(start, value, bytes);
  575. value64 = value | value << 8 | value << 16 | value << 24;
  576. value64 = (value64 & 0xffffffff) | value64 << 32;
  577. prefix = 8 - ((unsigned long)start) % 8;
  578. if (prefix) {
  579. u8 *r = check_bytes8(start, value, prefix);
  580. if (r)
  581. return r;
  582. start += prefix;
  583. bytes -= prefix;
  584. }
  585. words = bytes / 8;
  586. while (words) {
  587. if (*(u64 *)start != value64)
  588. return check_bytes8(start, value, 8);
  589. start += 8;
  590. words--;
  591. }
  592. return check_bytes8(start, value, bytes % 8);
  593. }
  594. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  595. void *from, void *to)
  596. {
  597. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  598. memset(from, data, to - from);
  599. }
  600. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  601. u8 *object, char *what,
  602. u8 *start, unsigned int value, unsigned int bytes)
  603. {
  604. u8 *fault;
  605. u8 *end;
  606. fault = check_bytes(start, value, bytes);
  607. if (!fault)
  608. return 1;
  609. end = start + bytes;
  610. while (end > fault && end[-1] == value)
  611. end--;
  612. slab_bug(s, "%s overwritten", what);
  613. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  614. fault, end - 1, fault[0], value);
  615. print_trailer(s, page, object);
  616. restore_bytes(s, what, value, fault, end);
  617. return 0;
  618. }
  619. /*
  620. * Object layout:
  621. *
  622. * object address
  623. * Bytes of the object to be managed.
  624. * If the freepointer may overlay the object then the free
  625. * pointer is the first word of the object.
  626. *
  627. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  628. * 0xa5 (POISON_END)
  629. *
  630. * object + s->objsize
  631. * Padding to reach word boundary. This is also used for Redzoning.
  632. * Padding is extended by another word if Redzoning is enabled and
  633. * objsize == inuse.
  634. *
  635. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  636. * 0xcc (RED_ACTIVE) for objects in use.
  637. *
  638. * object + s->inuse
  639. * Meta data starts here.
  640. *
  641. * A. Free pointer (if we cannot overwrite object on free)
  642. * B. Tracking data for SLAB_STORE_USER
  643. * C. Padding to reach required alignment boundary or at mininum
  644. * one word if debugging is on to be able to detect writes
  645. * before the word boundary.
  646. *
  647. * Padding is done using 0x5a (POISON_INUSE)
  648. *
  649. * object + s->size
  650. * Nothing is used beyond s->size.
  651. *
  652. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  653. * ignored. And therefore no slab options that rely on these boundaries
  654. * may be used with merged slabcaches.
  655. */
  656. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  657. {
  658. unsigned long off = s->inuse; /* The end of info */
  659. if (s->offset)
  660. /* Freepointer is placed after the object. */
  661. off += sizeof(void *);
  662. if (s->flags & SLAB_STORE_USER)
  663. /* We also have user information there */
  664. off += 2 * sizeof(struct track);
  665. if (s->size == off)
  666. return 1;
  667. return check_bytes_and_report(s, page, p, "Object padding",
  668. p + off, POISON_INUSE, s->size - off);
  669. }
  670. /* Check the pad bytes at the end of a slab page */
  671. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  672. {
  673. u8 *start;
  674. u8 *fault;
  675. u8 *end;
  676. int length;
  677. int remainder;
  678. if (!(s->flags & SLAB_POISON))
  679. return 1;
  680. start = page_address(page);
  681. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  682. end = start + length;
  683. remainder = length % s->size;
  684. if (!remainder)
  685. return 1;
  686. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  687. if (!fault)
  688. return 1;
  689. while (end > fault && end[-1] == POISON_INUSE)
  690. end--;
  691. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  692. print_section("Padding ", end - remainder, remainder);
  693. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  694. return 0;
  695. }
  696. static int check_object(struct kmem_cache *s, struct page *page,
  697. void *object, u8 val)
  698. {
  699. u8 *p = object;
  700. u8 *endobject = object + s->objsize;
  701. if (s->flags & SLAB_RED_ZONE) {
  702. if (!check_bytes_and_report(s, page, object, "Redzone",
  703. endobject, val, s->inuse - s->objsize))
  704. return 0;
  705. } else {
  706. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  707. check_bytes_and_report(s, page, p, "Alignment padding",
  708. endobject, POISON_INUSE, s->inuse - s->objsize);
  709. }
  710. }
  711. if (s->flags & SLAB_POISON) {
  712. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  713. (!check_bytes_and_report(s, page, p, "Poison", p,
  714. POISON_FREE, s->objsize - 1) ||
  715. !check_bytes_and_report(s, page, p, "Poison",
  716. p + s->objsize - 1, POISON_END, 1)))
  717. return 0;
  718. /*
  719. * check_pad_bytes cleans up on its own.
  720. */
  721. check_pad_bytes(s, page, p);
  722. }
  723. if (!s->offset && val == SLUB_RED_ACTIVE)
  724. /*
  725. * Object and freepointer overlap. Cannot check
  726. * freepointer while object is allocated.
  727. */
  728. return 1;
  729. /* Check free pointer validity */
  730. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  731. object_err(s, page, p, "Freepointer corrupt");
  732. /*
  733. * No choice but to zap it and thus lose the remainder
  734. * of the free objects in this slab. May cause
  735. * another error because the object count is now wrong.
  736. */
  737. set_freepointer(s, p, NULL);
  738. return 0;
  739. }
  740. return 1;
  741. }
  742. static int check_slab(struct kmem_cache *s, struct page *page)
  743. {
  744. int maxobj;
  745. VM_BUG_ON(!irqs_disabled());
  746. if (!PageSlab(page)) {
  747. slab_err(s, page, "Not a valid slab page");
  748. return 0;
  749. }
  750. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  751. if (page->objects > maxobj) {
  752. slab_err(s, page, "objects %u > max %u",
  753. s->name, page->objects, maxobj);
  754. return 0;
  755. }
  756. if (page->inuse > page->objects) {
  757. slab_err(s, page, "inuse %u > max %u",
  758. s->name, page->inuse, page->objects);
  759. return 0;
  760. }
  761. /* Slab_pad_check fixes things up after itself */
  762. slab_pad_check(s, page);
  763. return 1;
  764. }
  765. /*
  766. * Determine if a certain object on a page is on the freelist. Must hold the
  767. * slab lock to guarantee that the chains are in a consistent state.
  768. */
  769. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  770. {
  771. int nr = 0;
  772. void *fp;
  773. void *object = NULL;
  774. unsigned long max_objects;
  775. fp = page->freelist;
  776. while (fp && nr <= page->objects) {
  777. if (fp == search)
  778. return 1;
  779. if (!check_valid_pointer(s, page, fp)) {
  780. if (object) {
  781. object_err(s, page, object,
  782. "Freechain corrupt");
  783. set_freepointer(s, object, NULL);
  784. break;
  785. } else {
  786. slab_err(s, page, "Freepointer corrupt");
  787. page->freelist = NULL;
  788. page->inuse = page->objects;
  789. slab_fix(s, "Freelist cleared");
  790. return 0;
  791. }
  792. break;
  793. }
  794. object = fp;
  795. fp = get_freepointer(s, object);
  796. nr++;
  797. }
  798. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  799. if (max_objects > MAX_OBJS_PER_PAGE)
  800. max_objects = MAX_OBJS_PER_PAGE;
  801. if (page->objects != max_objects) {
  802. slab_err(s, page, "Wrong number of objects. Found %d but "
  803. "should be %d", page->objects, max_objects);
  804. page->objects = max_objects;
  805. slab_fix(s, "Number of objects adjusted.");
  806. }
  807. if (page->inuse != page->objects - nr) {
  808. slab_err(s, page, "Wrong object count. Counter is %d but "
  809. "counted were %d", page->inuse, page->objects - nr);
  810. page->inuse = page->objects - nr;
  811. slab_fix(s, "Object count adjusted.");
  812. }
  813. return search == NULL;
  814. }
  815. static void trace(struct kmem_cache *s, struct page *page, void *object,
  816. int alloc)
  817. {
  818. if (s->flags & SLAB_TRACE) {
  819. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  820. s->name,
  821. alloc ? "alloc" : "free",
  822. object, page->inuse,
  823. page->freelist);
  824. if (!alloc)
  825. print_section("Object ", (void *)object, s->objsize);
  826. dump_stack();
  827. }
  828. }
  829. /*
  830. * Hooks for other subsystems that check memory allocations. In a typical
  831. * production configuration these hooks all should produce no code at all.
  832. */
  833. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  834. {
  835. flags &= gfp_allowed_mask;
  836. lockdep_trace_alloc(flags);
  837. might_sleep_if(flags & __GFP_WAIT);
  838. return should_failslab(s->objsize, flags, s->flags);
  839. }
  840. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  841. {
  842. flags &= gfp_allowed_mask;
  843. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  844. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  845. }
  846. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  847. {
  848. kmemleak_free_recursive(x, s->flags);
  849. /*
  850. * Trouble is that we may no longer disable interupts in the fast path
  851. * So in order to make the debug calls that expect irqs to be
  852. * disabled we need to disable interrupts temporarily.
  853. */
  854. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  855. {
  856. unsigned long flags;
  857. local_irq_save(flags);
  858. kmemcheck_slab_free(s, x, s->objsize);
  859. debug_check_no_locks_freed(x, s->objsize);
  860. local_irq_restore(flags);
  861. }
  862. #endif
  863. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  864. debug_check_no_obj_freed(x, s->objsize);
  865. }
  866. /*
  867. * Tracking of fully allocated slabs for debugging purposes.
  868. *
  869. * list_lock must be held.
  870. */
  871. static void add_full(struct kmem_cache *s,
  872. struct kmem_cache_node *n, struct page *page)
  873. {
  874. if (!(s->flags & SLAB_STORE_USER))
  875. return;
  876. list_add(&page->lru, &n->full);
  877. }
  878. /*
  879. * list_lock must be held.
  880. */
  881. static void remove_full(struct kmem_cache *s, struct page *page)
  882. {
  883. if (!(s->flags & SLAB_STORE_USER))
  884. return;
  885. list_del(&page->lru);
  886. }
  887. /* Tracking of the number of slabs for debugging purposes */
  888. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  889. {
  890. struct kmem_cache_node *n = get_node(s, node);
  891. return atomic_long_read(&n->nr_slabs);
  892. }
  893. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  894. {
  895. return atomic_long_read(&n->nr_slabs);
  896. }
  897. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  898. {
  899. struct kmem_cache_node *n = get_node(s, node);
  900. /*
  901. * May be called early in order to allocate a slab for the
  902. * kmem_cache_node structure. Solve the chicken-egg
  903. * dilemma by deferring the increment of the count during
  904. * bootstrap (see early_kmem_cache_node_alloc).
  905. */
  906. if (n) {
  907. atomic_long_inc(&n->nr_slabs);
  908. atomic_long_add(objects, &n->total_objects);
  909. }
  910. }
  911. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  912. {
  913. struct kmem_cache_node *n = get_node(s, node);
  914. atomic_long_dec(&n->nr_slabs);
  915. atomic_long_sub(objects, &n->total_objects);
  916. }
  917. /* Object debug checks for alloc/free paths */
  918. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  919. void *object)
  920. {
  921. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  922. return;
  923. init_object(s, object, SLUB_RED_INACTIVE);
  924. init_tracking(s, object);
  925. }
  926. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  927. void *object, unsigned long addr)
  928. {
  929. if (!check_slab(s, page))
  930. goto bad;
  931. if (!check_valid_pointer(s, page, object)) {
  932. object_err(s, page, object, "Freelist Pointer check fails");
  933. goto bad;
  934. }
  935. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  936. goto bad;
  937. /* Success perform special debug activities for allocs */
  938. if (s->flags & SLAB_STORE_USER)
  939. set_track(s, object, TRACK_ALLOC, addr);
  940. trace(s, page, object, 1);
  941. init_object(s, object, SLUB_RED_ACTIVE);
  942. return 1;
  943. bad:
  944. if (PageSlab(page)) {
  945. /*
  946. * If this is a slab page then lets do the best we can
  947. * to avoid issues in the future. Marking all objects
  948. * as used avoids touching the remaining objects.
  949. */
  950. slab_fix(s, "Marking all objects used");
  951. page->inuse = page->objects;
  952. page->freelist = NULL;
  953. }
  954. return 0;
  955. }
  956. static noinline int free_debug_processing(struct kmem_cache *s,
  957. struct page *page, void *object, unsigned long addr)
  958. {
  959. unsigned long flags;
  960. int rc = 0;
  961. local_irq_save(flags);
  962. slab_lock(page);
  963. if (!check_slab(s, page))
  964. goto fail;
  965. if (!check_valid_pointer(s, page, object)) {
  966. slab_err(s, page, "Invalid object pointer 0x%p", object);
  967. goto fail;
  968. }
  969. if (on_freelist(s, page, object)) {
  970. object_err(s, page, object, "Object already free");
  971. goto fail;
  972. }
  973. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  974. goto out;
  975. if (unlikely(s != page->slab)) {
  976. if (!PageSlab(page)) {
  977. slab_err(s, page, "Attempt to free object(0x%p) "
  978. "outside of slab", object);
  979. } else if (!page->slab) {
  980. printk(KERN_ERR
  981. "SLUB <none>: no slab for object 0x%p.\n",
  982. object);
  983. dump_stack();
  984. } else
  985. object_err(s, page, object,
  986. "page slab pointer corrupt.");
  987. goto fail;
  988. }
  989. if (s->flags & SLAB_STORE_USER)
  990. set_track(s, object, TRACK_FREE, addr);
  991. trace(s, page, object, 0);
  992. init_object(s, object, SLUB_RED_INACTIVE);
  993. rc = 1;
  994. out:
  995. slab_unlock(page);
  996. local_irq_restore(flags);
  997. return rc;
  998. fail:
  999. slab_fix(s, "Object at 0x%p not freed", object);
  1000. goto out;
  1001. }
  1002. static int __init setup_slub_debug(char *str)
  1003. {
  1004. slub_debug = DEBUG_DEFAULT_FLAGS;
  1005. if (*str++ != '=' || !*str)
  1006. /*
  1007. * No options specified. Switch on full debugging.
  1008. */
  1009. goto out;
  1010. if (*str == ',')
  1011. /*
  1012. * No options but restriction on slabs. This means full
  1013. * debugging for slabs matching a pattern.
  1014. */
  1015. goto check_slabs;
  1016. if (tolower(*str) == 'o') {
  1017. /*
  1018. * Avoid enabling debugging on caches if its minimum order
  1019. * would increase as a result.
  1020. */
  1021. disable_higher_order_debug = 1;
  1022. goto out;
  1023. }
  1024. slub_debug = 0;
  1025. if (*str == '-')
  1026. /*
  1027. * Switch off all debugging measures.
  1028. */
  1029. goto out;
  1030. /*
  1031. * Determine which debug features should be switched on
  1032. */
  1033. for (; *str && *str != ','; str++) {
  1034. switch (tolower(*str)) {
  1035. case 'f':
  1036. slub_debug |= SLAB_DEBUG_FREE;
  1037. break;
  1038. case 'z':
  1039. slub_debug |= SLAB_RED_ZONE;
  1040. break;
  1041. case 'p':
  1042. slub_debug |= SLAB_POISON;
  1043. break;
  1044. case 'u':
  1045. slub_debug |= SLAB_STORE_USER;
  1046. break;
  1047. case 't':
  1048. slub_debug |= SLAB_TRACE;
  1049. break;
  1050. case 'a':
  1051. slub_debug |= SLAB_FAILSLAB;
  1052. break;
  1053. default:
  1054. printk(KERN_ERR "slub_debug option '%c' "
  1055. "unknown. skipped\n", *str);
  1056. }
  1057. }
  1058. check_slabs:
  1059. if (*str == ',')
  1060. slub_debug_slabs = str + 1;
  1061. out:
  1062. return 1;
  1063. }
  1064. __setup("slub_debug", setup_slub_debug);
  1065. static unsigned long kmem_cache_flags(unsigned long objsize,
  1066. unsigned long flags, const char *name,
  1067. void (*ctor)(void *))
  1068. {
  1069. /*
  1070. * Enable debugging if selected on the kernel commandline.
  1071. */
  1072. if (slub_debug && (!slub_debug_slabs ||
  1073. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1074. flags |= slub_debug;
  1075. return flags;
  1076. }
  1077. #else
  1078. static inline void setup_object_debug(struct kmem_cache *s,
  1079. struct page *page, void *object) {}
  1080. static inline int alloc_debug_processing(struct kmem_cache *s,
  1081. struct page *page, void *object, unsigned long addr) { return 0; }
  1082. static inline int free_debug_processing(struct kmem_cache *s,
  1083. struct page *page, void *object, unsigned long addr) { return 0; }
  1084. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1085. { return 1; }
  1086. static inline int check_object(struct kmem_cache *s, struct page *page,
  1087. void *object, u8 val) { return 1; }
  1088. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1089. struct page *page) {}
  1090. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1091. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1092. unsigned long flags, const char *name,
  1093. void (*ctor)(void *))
  1094. {
  1095. return flags;
  1096. }
  1097. #define slub_debug 0
  1098. #define disable_higher_order_debug 0
  1099. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1100. { return 0; }
  1101. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1102. { return 0; }
  1103. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1104. int objects) {}
  1105. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1106. int objects) {}
  1107. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1108. { return 0; }
  1109. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1110. void *object) {}
  1111. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1112. #endif /* CONFIG_SLUB_DEBUG */
  1113. /*
  1114. * Slab allocation and freeing
  1115. */
  1116. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1117. struct kmem_cache_order_objects oo)
  1118. {
  1119. int order = oo_order(oo);
  1120. flags |= __GFP_NOTRACK;
  1121. if (node == NUMA_NO_NODE)
  1122. return alloc_pages(flags, order);
  1123. else
  1124. return alloc_pages_exact_node(node, flags, order);
  1125. }
  1126. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1127. {
  1128. struct page *page;
  1129. struct kmem_cache_order_objects oo = s->oo;
  1130. gfp_t alloc_gfp;
  1131. flags &= gfp_allowed_mask;
  1132. if (flags & __GFP_WAIT)
  1133. local_irq_enable();
  1134. flags |= s->allocflags;
  1135. /*
  1136. * Let the initial higher-order allocation fail under memory pressure
  1137. * so we fall-back to the minimum order allocation.
  1138. */
  1139. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1140. page = alloc_slab_page(alloc_gfp, node, oo);
  1141. if (unlikely(!page)) {
  1142. oo = s->min;
  1143. /*
  1144. * Allocation may have failed due to fragmentation.
  1145. * Try a lower order alloc if possible
  1146. */
  1147. page = alloc_slab_page(flags, node, oo);
  1148. if (page)
  1149. stat(s, ORDER_FALLBACK);
  1150. }
  1151. if (flags & __GFP_WAIT)
  1152. local_irq_disable();
  1153. if (!page)
  1154. return NULL;
  1155. if (kmemcheck_enabled
  1156. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1157. int pages = 1 << oo_order(oo);
  1158. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1159. /*
  1160. * Objects from caches that have a constructor don't get
  1161. * cleared when they're allocated, so we need to do it here.
  1162. */
  1163. if (s->ctor)
  1164. kmemcheck_mark_uninitialized_pages(page, pages);
  1165. else
  1166. kmemcheck_mark_unallocated_pages(page, pages);
  1167. }
  1168. page->objects = oo_objects(oo);
  1169. mod_zone_page_state(page_zone(page),
  1170. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1171. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1172. 1 << oo_order(oo));
  1173. return page;
  1174. }
  1175. static void setup_object(struct kmem_cache *s, struct page *page,
  1176. void *object)
  1177. {
  1178. setup_object_debug(s, page, object);
  1179. if (unlikely(s->ctor))
  1180. s->ctor(object);
  1181. }
  1182. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1183. {
  1184. struct page *page;
  1185. void *start;
  1186. void *last;
  1187. void *p;
  1188. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1189. page = allocate_slab(s,
  1190. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1191. if (!page)
  1192. goto out;
  1193. inc_slabs_node(s, page_to_nid(page), page->objects);
  1194. page->slab = s;
  1195. page->flags |= 1 << PG_slab;
  1196. start = page_address(page);
  1197. if (unlikely(s->flags & SLAB_POISON))
  1198. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1199. last = start;
  1200. for_each_object(p, s, start, page->objects) {
  1201. setup_object(s, page, last);
  1202. set_freepointer(s, last, p);
  1203. last = p;
  1204. }
  1205. setup_object(s, page, last);
  1206. set_freepointer(s, last, NULL);
  1207. page->freelist = start;
  1208. page->inuse = page->objects;
  1209. page->frozen = 1;
  1210. out:
  1211. return page;
  1212. }
  1213. static void __free_slab(struct kmem_cache *s, struct page *page)
  1214. {
  1215. int order = compound_order(page);
  1216. int pages = 1 << order;
  1217. if (kmem_cache_debug(s)) {
  1218. void *p;
  1219. slab_pad_check(s, page);
  1220. for_each_object(p, s, page_address(page),
  1221. page->objects)
  1222. check_object(s, page, p, SLUB_RED_INACTIVE);
  1223. }
  1224. kmemcheck_free_shadow(page, compound_order(page));
  1225. mod_zone_page_state(page_zone(page),
  1226. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1227. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1228. -pages);
  1229. __ClearPageSlab(page);
  1230. reset_page_mapcount(page);
  1231. if (current->reclaim_state)
  1232. current->reclaim_state->reclaimed_slab += pages;
  1233. __free_pages(page, order);
  1234. }
  1235. #define need_reserve_slab_rcu \
  1236. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1237. static void rcu_free_slab(struct rcu_head *h)
  1238. {
  1239. struct page *page;
  1240. if (need_reserve_slab_rcu)
  1241. page = virt_to_head_page(h);
  1242. else
  1243. page = container_of((struct list_head *)h, struct page, lru);
  1244. __free_slab(page->slab, page);
  1245. }
  1246. static void free_slab(struct kmem_cache *s, struct page *page)
  1247. {
  1248. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1249. struct rcu_head *head;
  1250. if (need_reserve_slab_rcu) {
  1251. int order = compound_order(page);
  1252. int offset = (PAGE_SIZE << order) - s->reserved;
  1253. VM_BUG_ON(s->reserved != sizeof(*head));
  1254. head = page_address(page) + offset;
  1255. } else {
  1256. /*
  1257. * RCU free overloads the RCU head over the LRU
  1258. */
  1259. head = (void *)&page->lru;
  1260. }
  1261. call_rcu(head, rcu_free_slab);
  1262. } else
  1263. __free_slab(s, page);
  1264. }
  1265. static void discard_slab(struct kmem_cache *s, struct page *page)
  1266. {
  1267. dec_slabs_node(s, page_to_nid(page), page->objects);
  1268. free_slab(s, page);
  1269. }
  1270. /*
  1271. * Management of partially allocated slabs.
  1272. *
  1273. * list_lock must be held.
  1274. */
  1275. static inline void add_partial(struct kmem_cache_node *n,
  1276. struct page *page, int tail)
  1277. {
  1278. n->nr_partial++;
  1279. if (tail == DEACTIVATE_TO_TAIL)
  1280. list_add_tail(&page->lru, &n->partial);
  1281. else
  1282. list_add(&page->lru, &n->partial);
  1283. }
  1284. /*
  1285. * list_lock must be held.
  1286. */
  1287. static inline void remove_partial(struct kmem_cache_node *n,
  1288. struct page *page)
  1289. {
  1290. list_del(&page->lru);
  1291. n->nr_partial--;
  1292. }
  1293. /*
  1294. * Lock slab, remove from the partial list and put the object into the
  1295. * per cpu freelist.
  1296. *
  1297. * Returns a list of objects or NULL if it fails.
  1298. *
  1299. * Must hold list_lock.
  1300. */
  1301. static inline void *acquire_slab(struct kmem_cache *s,
  1302. struct kmem_cache_node *n, struct page *page,
  1303. int mode)
  1304. {
  1305. void *freelist;
  1306. unsigned long counters;
  1307. struct page new;
  1308. /*
  1309. * Zap the freelist and set the frozen bit.
  1310. * The old freelist is the list of objects for the
  1311. * per cpu allocation list.
  1312. */
  1313. do {
  1314. freelist = page->freelist;
  1315. counters = page->counters;
  1316. new.counters = counters;
  1317. if (mode)
  1318. new.inuse = page->objects;
  1319. VM_BUG_ON(new.frozen);
  1320. new.frozen = 1;
  1321. } while (!__cmpxchg_double_slab(s, page,
  1322. freelist, counters,
  1323. NULL, new.counters,
  1324. "lock and freeze"));
  1325. remove_partial(n, page);
  1326. return freelist;
  1327. }
  1328. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1329. /*
  1330. * Try to allocate a partial slab from a specific node.
  1331. */
  1332. static void *get_partial_node(struct kmem_cache *s,
  1333. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1334. {
  1335. struct page *page, *page2;
  1336. void *object = NULL;
  1337. /*
  1338. * Racy check. If we mistakenly see no partial slabs then we
  1339. * just allocate an empty slab. If we mistakenly try to get a
  1340. * partial slab and there is none available then get_partials()
  1341. * will return NULL.
  1342. */
  1343. if (!n || !n->nr_partial)
  1344. return NULL;
  1345. spin_lock(&n->list_lock);
  1346. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1347. void *t = acquire_slab(s, n, page, object == NULL);
  1348. int available;
  1349. if (!t)
  1350. break;
  1351. if (!object) {
  1352. c->page = page;
  1353. c->node = page_to_nid(page);
  1354. stat(s, ALLOC_FROM_PARTIAL);
  1355. object = t;
  1356. available = page->objects - page->inuse;
  1357. } else {
  1358. page->freelist = t;
  1359. available = put_cpu_partial(s, page, 0);
  1360. }
  1361. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1362. break;
  1363. }
  1364. spin_unlock(&n->list_lock);
  1365. return object;
  1366. }
  1367. /*
  1368. * Get a page from somewhere. Search in increasing NUMA distances.
  1369. */
  1370. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1371. struct kmem_cache_cpu *c)
  1372. {
  1373. #ifdef CONFIG_NUMA
  1374. struct zonelist *zonelist;
  1375. struct zoneref *z;
  1376. struct zone *zone;
  1377. enum zone_type high_zoneidx = gfp_zone(flags);
  1378. void *object;
  1379. /*
  1380. * The defrag ratio allows a configuration of the tradeoffs between
  1381. * inter node defragmentation and node local allocations. A lower
  1382. * defrag_ratio increases the tendency to do local allocations
  1383. * instead of attempting to obtain partial slabs from other nodes.
  1384. *
  1385. * If the defrag_ratio is set to 0 then kmalloc() always
  1386. * returns node local objects. If the ratio is higher then kmalloc()
  1387. * may return off node objects because partial slabs are obtained
  1388. * from other nodes and filled up.
  1389. *
  1390. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1391. * defrag_ratio = 1000) then every (well almost) allocation will
  1392. * first attempt to defrag slab caches on other nodes. This means
  1393. * scanning over all nodes to look for partial slabs which may be
  1394. * expensive if we do it every time we are trying to find a slab
  1395. * with available objects.
  1396. */
  1397. if (!s->remote_node_defrag_ratio ||
  1398. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1399. return NULL;
  1400. get_mems_allowed();
  1401. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1402. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1403. struct kmem_cache_node *n;
  1404. n = get_node(s, zone_to_nid(zone));
  1405. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1406. n->nr_partial > s->min_partial) {
  1407. object = get_partial_node(s, n, c);
  1408. if (object) {
  1409. put_mems_allowed();
  1410. return object;
  1411. }
  1412. }
  1413. }
  1414. put_mems_allowed();
  1415. #endif
  1416. return NULL;
  1417. }
  1418. /*
  1419. * Get a partial page, lock it and return it.
  1420. */
  1421. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1422. struct kmem_cache_cpu *c)
  1423. {
  1424. void *object;
  1425. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1426. object = get_partial_node(s, get_node(s, searchnode), c);
  1427. if (object || node != NUMA_NO_NODE)
  1428. return object;
  1429. return get_any_partial(s, flags, c);
  1430. }
  1431. #ifdef CONFIG_PREEMPT
  1432. /*
  1433. * Calculate the next globally unique transaction for disambiguiation
  1434. * during cmpxchg. The transactions start with the cpu number and are then
  1435. * incremented by CONFIG_NR_CPUS.
  1436. */
  1437. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1438. #else
  1439. /*
  1440. * No preemption supported therefore also no need to check for
  1441. * different cpus.
  1442. */
  1443. #define TID_STEP 1
  1444. #endif
  1445. static inline unsigned long next_tid(unsigned long tid)
  1446. {
  1447. return tid + TID_STEP;
  1448. }
  1449. static inline unsigned int tid_to_cpu(unsigned long tid)
  1450. {
  1451. return tid % TID_STEP;
  1452. }
  1453. static inline unsigned long tid_to_event(unsigned long tid)
  1454. {
  1455. return tid / TID_STEP;
  1456. }
  1457. static inline unsigned int init_tid(int cpu)
  1458. {
  1459. return cpu;
  1460. }
  1461. static inline void note_cmpxchg_failure(const char *n,
  1462. const struct kmem_cache *s, unsigned long tid)
  1463. {
  1464. #ifdef SLUB_DEBUG_CMPXCHG
  1465. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1466. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1467. #ifdef CONFIG_PREEMPT
  1468. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1469. printk("due to cpu change %d -> %d\n",
  1470. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1471. else
  1472. #endif
  1473. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1474. printk("due to cpu running other code. Event %ld->%ld\n",
  1475. tid_to_event(tid), tid_to_event(actual_tid));
  1476. else
  1477. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1478. actual_tid, tid, next_tid(tid));
  1479. #endif
  1480. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1481. }
  1482. void init_kmem_cache_cpus(struct kmem_cache *s)
  1483. {
  1484. int cpu;
  1485. for_each_possible_cpu(cpu)
  1486. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1487. }
  1488. /*
  1489. * Remove the cpu slab
  1490. */
  1491. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1492. {
  1493. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1494. struct page *page = c->page;
  1495. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1496. int lock = 0;
  1497. enum slab_modes l = M_NONE, m = M_NONE;
  1498. void *freelist;
  1499. void *nextfree;
  1500. int tail = DEACTIVATE_TO_HEAD;
  1501. struct page new;
  1502. struct page old;
  1503. if (page->freelist) {
  1504. stat(s, DEACTIVATE_REMOTE_FREES);
  1505. tail = DEACTIVATE_TO_TAIL;
  1506. }
  1507. c->tid = next_tid(c->tid);
  1508. c->page = NULL;
  1509. freelist = c->freelist;
  1510. c->freelist = NULL;
  1511. /*
  1512. * Stage one: Free all available per cpu objects back
  1513. * to the page freelist while it is still frozen. Leave the
  1514. * last one.
  1515. *
  1516. * There is no need to take the list->lock because the page
  1517. * is still frozen.
  1518. */
  1519. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1520. void *prior;
  1521. unsigned long counters;
  1522. do {
  1523. prior = page->freelist;
  1524. counters = page->counters;
  1525. set_freepointer(s, freelist, prior);
  1526. new.counters = counters;
  1527. new.inuse--;
  1528. VM_BUG_ON(!new.frozen);
  1529. } while (!__cmpxchg_double_slab(s, page,
  1530. prior, counters,
  1531. freelist, new.counters,
  1532. "drain percpu freelist"));
  1533. freelist = nextfree;
  1534. }
  1535. /*
  1536. * Stage two: Ensure that the page is unfrozen while the
  1537. * list presence reflects the actual number of objects
  1538. * during unfreeze.
  1539. *
  1540. * We setup the list membership and then perform a cmpxchg
  1541. * with the count. If there is a mismatch then the page
  1542. * is not unfrozen but the page is on the wrong list.
  1543. *
  1544. * Then we restart the process which may have to remove
  1545. * the page from the list that we just put it on again
  1546. * because the number of objects in the slab may have
  1547. * changed.
  1548. */
  1549. redo:
  1550. old.freelist = page->freelist;
  1551. old.counters = page->counters;
  1552. VM_BUG_ON(!old.frozen);
  1553. /* Determine target state of the slab */
  1554. new.counters = old.counters;
  1555. if (freelist) {
  1556. new.inuse--;
  1557. set_freepointer(s, freelist, old.freelist);
  1558. new.freelist = freelist;
  1559. } else
  1560. new.freelist = old.freelist;
  1561. new.frozen = 0;
  1562. if (!new.inuse && n->nr_partial > s->min_partial)
  1563. m = M_FREE;
  1564. else if (new.freelist) {
  1565. m = M_PARTIAL;
  1566. if (!lock) {
  1567. lock = 1;
  1568. /*
  1569. * Taking the spinlock removes the possiblity
  1570. * that acquire_slab() will see a slab page that
  1571. * is frozen
  1572. */
  1573. spin_lock(&n->list_lock);
  1574. }
  1575. } else {
  1576. m = M_FULL;
  1577. if (kmem_cache_debug(s) && !lock) {
  1578. lock = 1;
  1579. /*
  1580. * This also ensures that the scanning of full
  1581. * slabs from diagnostic functions will not see
  1582. * any frozen slabs.
  1583. */
  1584. spin_lock(&n->list_lock);
  1585. }
  1586. }
  1587. if (l != m) {
  1588. if (l == M_PARTIAL)
  1589. remove_partial(n, page);
  1590. else if (l == M_FULL)
  1591. remove_full(s, page);
  1592. if (m == M_PARTIAL) {
  1593. add_partial(n, page, tail);
  1594. stat(s, tail);
  1595. } else if (m == M_FULL) {
  1596. stat(s, DEACTIVATE_FULL);
  1597. add_full(s, n, page);
  1598. }
  1599. }
  1600. l = m;
  1601. if (!__cmpxchg_double_slab(s, page,
  1602. old.freelist, old.counters,
  1603. new.freelist, new.counters,
  1604. "unfreezing slab"))
  1605. goto redo;
  1606. if (lock)
  1607. spin_unlock(&n->list_lock);
  1608. if (m == M_FREE) {
  1609. stat(s, DEACTIVATE_EMPTY);
  1610. discard_slab(s, page);
  1611. stat(s, FREE_SLAB);
  1612. }
  1613. }
  1614. /* Unfreeze all the cpu partial slabs */
  1615. static void unfreeze_partials(struct kmem_cache *s)
  1616. {
  1617. struct kmem_cache_node *n = NULL;
  1618. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1619. struct page *page;
  1620. while ((page = c->partial)) {
  1621. enum slab_modes { M_PARTIAL, M_FREE };
  1622. enum slab_modes l, m;
  1623. struct page new;
  1624. struct page old;
  1625. c->partial = page->next;
  1626. l = M_FREE;
  1627. do {
  1628. old.freelist = page->freelist;
  1629. old.counters = page->counters;
  1630. VM_BUG_ON(!old.frozen);
  1631. new.counters = old.counters;
  1632. new.freelist = old.freelist;
  1633. new.frozen = 0;
  1634. if (!new.inuse && (!n || n->nr_partial > s->min_partial))
  1635. m = M_FREE;
  1636. else {
  1637. struct kmem_cache_node *n2 = get_node(s,
  1638. page_to_nid(page));
  1639. m = M_PARTIAL;
  1640. if (n != n2) {
  1641. if (n)
  1642. spin_unlock(&n->list_lock);
  1643. n = n2;
  1644. spin_lock(&n->list_lock);
  1645. }
  1646. }
  1647. if (l != m) {
  1648. if (l == M_PARTIAL)
  1649. remove_partial(n, page);
  1650. else
  1651. add_partial(n, page, 1);
  1652. l = m;
  1653. }
  1654. } while (!cmpxchg_double_slab(s, page,
  1655. old.freelist, old.counters,
  1656. new.freelist, new.counters,
  1657. "unfreezing slab"));
  1658. if (m == M_FREE) {
  1659. stat(s, DEACTIVATE_EMPTY);
  1660. discard_slab(s, page);
  1661. stat(s, FREE_SLAB);
  1662. }
  1663. }
  1664. if (n)
  1665. spin_unlock(&n->list_lock);
  1666. }
  1667. /*
  1668. * Put a page that was just frozen (in __slab_free) into a partial page
  1669. * slot if available. This is done without interrupts disabled and without
  1670. * preemption disabled. The cmpxchg is racy and may put the partial page
  1671. * onto a random cpus partial slot.
  1672. *
  1673. * If we did not find a slot then simply move all the partials to the
  1674. * per node partial list.
  1675. */
  1676. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1677. {
  1678. struct page *oldpage;
  1679. int pages;
  1680. int pobjects;
  1681. do {
  1682. pages = 0;
  1683. pobjects = 0;
  1684. oldpage = this_cpu_read(s->cpu_slab->partial);
  1685. if (oldpage) {
  1686. pobjects = oldpage->pobjects;
  1687. pages = oldpage->pages;
  1688. if (drain && pobjects > s->cpu_partial) {
  1689. unsigned long flags;
  1690. /*
  1691. * partial array is full. Move the existing
  1692. * set to the per node partial list.
  1693. */
  1694. local_irq_save(flags);
  1695. unfreeze_partials(s);
  1696. local_irq_restore(flags);
  1697. pobjects = 0;
  1698. pages = 0;
  1699. }
  1700. }
  1701. pages++;
  1702. pobjects += page->objects - page->inuse;
  1703. page->pages = pages;
  1704. page->pobjects = pobjects;
  1705. page->next = oldpage;
  1706. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1707. stat(s, CPU_PARTIAL_FREE);
  1708. return pobjects;
  1709. }
  1710. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1711. {
  1712. stat(s, CPUSLAB_FLUSH);
  1713. deactivate_slab(s, c);
  1714. }
  1715. /*
  1716. * Flush cpu slab.
  1717. *
  1718. * Called from IPI handler with interrupts disabled.
  1719. */
  1720. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1721. {
  1722. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1723. if (likely(c)) {
  1724. if (c->page)
  1725. flush_slab(s, c);
  1726. unfreeze_partials(s);
  1727. }
  1728. }
  1729. static void flush_cpu_slab(void *d)
  1730. {
  1731. struct kmem_cache *s = d;
  1732. __flush_cpu_slab(s, smp_processor_id());
  1733. }
  1734. static void flush_all(struct kmem_cache *s)
  1735. {
  1736. on_each_cpu(flush_cpu_slab, s, 1);
  1737. }
  1738. /*
  1739. * Check if the objects in a per cpu structure fit numa
  1740. * locality expectations.
  1741. */
  1742. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1743. {
  1744. #ifdef CONFIG_NUMA
  1745. if (node != NUMA_NO_NODE && c->node != node)
  1746. return 0;
  1747. #endif
  1748. return 1;
  1749. }
  1750. static int count_free(struct page *page)
  1751. {
  1752. return page->objects - page->inuse;
  1753. }
  1754. static unsigned long count_partial(struct kmem_cache_node *n,
  1755. int (*get_count)(struct page *))
  1756. {
  1757. unsigned long flags;
  1758. unsigned long x = 0;
  1759. struct page *page;
  1760. spin_lock_irqsave(&n->list_lock, flags);
  1761. list_for_each_entry(page, &n->partial, lru)
  1762. x += get_count(page);
  1763. spin_unlock_irqrestore(&n->list_lock, flags);
  1764. return x;
  1765. }
  1766. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1767. {
  1768. #ifdef CONFIG_SLUB_DEBUG
  1769. return atomic_long_read(&n->total_objects);
  1770. #else
  1771. return 0;
  1772. #endif
  1773. }
  1774. static noinline void
  1775. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1776. {
  1777. int node;
  1778. printk(KERN_WARNING
  1779. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1780. nid, gfpflags);
  1781. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1782. "default order: %d, min order: %d\n", s->name, s->objsize,
  1783. s->size, oo_order(s->oo), oo_order(s->min));
  1784. if (oo_order(s->min) > get_order(s->objsize))
  1785. printk(KERN_WARNING " %s debugging increased min order, use "
  1786. "slub_debug=O to disable.\n", s->name);
  1787. for_each_online_node(node) {
  1788. struct kmem_cache_node *n = get_node(s, node);
  1789. unsigned long nr_slabs;
  1790. unsigned long nr_objs;
  1791. unsigned long nr_free;
  1792. if (!n)
  1793. continue;
  1794. nr_free = count_partial(n, count_free);
  1795. nr_slabs = node_nr_slabs(n);
  1796. nr_objs = node_nr_objs(n);
  1797. printk(KERN_WARNING
  1798. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1799. node, nr_slabs, nr_objs, nr_free);
  1800. }
  1801. }
  1802. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1803. int node, struct kmem_cache_cpu **pc)
  1804. {
  1805. void *object;
  1806. struct kmem_cache_cpu *c;
  1807. struct page *page = new_slab(s, flags, node);
  1808. if (page) {
  1809. c = __this_cpu_ptr(s->cpu_slab);
  1810. if (c->page)
  1811. flush_slab(s, c);
  1812. /*
  1813. * No other reference to the page yet so we can
  1814. * muck around with it freely without cmpxchg
  1815. */
  1816. object = page->freelist;
  1817. page->freelist = NULL;
  1818. stat(s, ALLOC_SLAB);
  1819. c->node = page_to_nid(page);
  1820. c->page = page;
  1821. *pc = c;
  1822. } else
  1823. object = NULL;
  1824. return object;
  1825. }
  1826. /*
  1827. * Slow path. The lockless freelist is empty or we need to perform
  1828. * debugging duties.
  1829. *
  1830. * Processing is still very fast if new objects have been freed to the
  1831. * regular freelist. In that case we simply take over the regular freelist
  1832. * as the lockless freelist and zap the regular freelist.
  1833. *
  1834. * If that is not working then we fall back to the partial lists. We take the
  1835. * first element of the freelist as the object to allocate now and move the
  1836. * rest of the freelist to the lockless freelist.
  1837. *
  1838. * And if we were unable to get a new slab from the partial slab lists then
  1839. * we need to allocate a new slab. This is the slowest path since it involves
  1840. * a call to the page allocator and the setup of a new slab.
  1841. */
  1842. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1843. unsigned long addr, struct kmem_cache_cpu *c)
  1844. {
  1845. void **object;
  1846. unsigned long flags;
  1847. struct page new;
  1848. unsigned long counters;
  1849. local_irq_save(flags);
  1850. #ifdef CONFIG_PREEMPT
  1851. /*
  1852. * We may have been preempted and rescheduled on a different
  1853. * cpu before disabling interrupts. Need to reload cpu area
  1854. * pointer.
  1855. */
  1856. c = this_cpu_ptr(s->cpu_slab);
  1857. #endif
  1858. if (!c->page)
  1859. goto new_slab;
  1860. redo:
  1861. if (unlikely(!node_match(c, node))) {
  1862. stat(s, ALLOC_NODE_MISMATCH);
  1863. deactivate_slab(s, c);
  1864. goto new_slab;
  1865. }
  1866. stat(s, ALLOC_SLOWPATH);
  1867. do {
  1868. object = c->page->freelist;
  1869. counters = c->page->counters;
  1870. new.counters = counters;
  1871. VM_BUG_ON(!new.frozen);
  1872. /*
  1873. * If there is no object left then we use this loop to
  1874. * deactivate the slab which is simple since no objects
  1875. * are left in the slab and therefore we do not need to
  1876. * put the page back onto the partial list.
  1877. *
  1878. * If there are objects left then we retrieve them
  1879. * and use them to refill the per cpu queue.
  1880. */
  1881. new.inuse = c->page->objects;
  1882. new.frozen = object != NULL;
  1883. } while (!__cmpxchg_double_slab(s, c->page,
  1884. object, counters,
  1885. NULL, new.counters,
  1886. "__slab_alloc"));
  1887. if (!object) {
  1888. c->page = NULL;
  1889. stat(s, DEACTIVATE_BYPASS);
  1890. goto new_slab;
  1891. }
  1892. stat(s, ALLOC_REFILL);
  1893. load_freelist:
  1894. c->freelist = get_freepointer(s, object);
  1895. c->tid = next_tid(c->tid);
  1896. local_irq_restore(flags);
  1897. return object;
  1898. new_slab:
  1899. if (c->partial) {
  1900. c->page = c->partial;
  1901. c->partial = c->page->next;
  1902. c->node = page_to_nid(c->page);
  1903. stat(s, CPU_PARTIAL_ALLOC);
  1904. c->freelist = NULL;
  1905. goto redo;
  1906. }
  1907. /* Then do expensive stuff like retrieving pages from the partial lists */
  1908. object = get_partial(s, gfpflags, node, c);
  1909. if (unlikely(!object)) {
  1910. object = new_slab_objects(s, gfpflags, node, &c);
  1911. if (unlikely(!object)) {
  1912. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1913. slab_out_of_memory(s, gfpflags, node);
  1914. local_irq_restore(flags);
  1915. return NULL;
  1916. }
  1917. }
  1918. if (likely(!kmem_cache_debug(s)))
  1919. goto load_freelist;
  1920. /* Only entered in the debug case */
  1921. if (!alloc_debug_processing(s, c->page, object, addr))
  1922. goto new_slab; /* Slab failed checks. Next slab needed */
  1923. c->freelist = get_freepointer(s, object);
  1924. deactivate_slab(s, c);
  1925. c->node = NUMA_NO_NODE;
  1926. local_irq_restore(flags);
  1927. return object;
  1928. }
  1929. /*
  1930. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1931. * have the fastpath folded into their functions. So no function call
  1932. * overhead for requests that can be satisfied on the fastpath.
  1933. *
  1934. * The fastpath works by first checking if the lockless freelist can be used.
  1935. * If not then __slab_alloc is called for slow processing.
  1936. *
  1937. * Otherwise we can simply pick the next object from the lockless free list.
  1938. */
  1939. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1940. gfp_t gfpflags, int node, unsigned long addr)
  1941. {
  1942. void **object;
  1943. struct kmem_cache_cpu *c;
  1944. unsigned long tid;
  1945. if (slab_pre_alloc_hook(s, gfpflags))
  1946. return NULL;
  1947. redo:
  1948. /*
  1949. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1950. * enabled. We may switch back and forth between cpus while
  1951. * reading from one cpu area. That does not matter as long
  1952. * as we end up on the original cpu again when doing the cmpxchg.
  1953. */
  1954. c = __this_cpu_ptr(s->cpu_slab);
  1955. /*
  1956. * The transaction ids are globally unique per cpu and per operation on
  1957. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1958. * occurs on the right processor and that there was no operation on the
  1959. * linked list in between.
  1960. */
  1961. tid = c->tid;
  1962. barrier();
  1963. object = c->freelist;
  1964. if (unlikely(!object || !node_match(c, node)))
  1965. object = __slab_alloc(s, gfpflags, node, addr, c);
  1966. else {
  1967. /*
  1968. * The cmpxchg will only match if there was no additional
  1969. * operation and if we are on the right processor.
  1970. *
  1971. * The cmpxchg does the following atomically (without lock semantics!)
  1972. * 1. Relocate first pointer to the current per cpu area.
  1973. * 2. Verify that tid and freelist have not been changed
  1974. * 3. If they were not changed replace tid and freelist
  1975. *
  1976. * Since this is without lock semantics the protection is only against
  1977. * code executing on this cpu *not* from access by other cpus.
  1978. */
  1979. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  1980. s->cpu_slab->freelist, s->cpu_slab->tid,
  1981. object, tid,
  1982. get_freepointer_safe(s, object), next_tid(tid)))) {
  1983. note_cmpxchg_failure("slab_alloc", s, tid);
  1984. goto redo;
  1985. }
  1986. stat(s, ALLOC_FASTPATH);
  1987. }
  1988. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1989. memset(object, 0, s->objsize);
  1990. slab_post_alloc_hook(s, gfpflags, object);
  1991. return object;
  1992. }
  1993. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1994. {
  1995. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1996. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1997. return ret;
  1998. }
  1999. EXPORT_SYMBOL(kmem_cache_alloc);
  2000. #ifdef CONFIG_TRACING
  2001. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2002. {
  2003. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2004. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2005. return ret;
  2006. }
  2007. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2008. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2009. {
  2010. void *ret = kmalloc_order(size, flags, order);
  2011. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2012. return ret;
  2013. }
  2014. EXPORT_SYMBOL(kmalloc_order_trace);
  2015. #endif
  2016. #ifdef CONFIG_NUMA
  2017. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2018. {
  2019. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2020. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2021. s->objsize, s->size, gfpflags, node);
  2022. return ret;
  2023. }
  2024. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2025. #ifdef CONFIG_TRACING
  2026. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2027. gfp_t gfpflags,
  2028. int node, size_t size)
  2029. {
  2030. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2031. trace_kmalloc_node(_RET_IP_, ret,
  2032. size, s->size, gfpflags, node);
  2033. return ret;
  2034. }
  2035. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2036. #endif
  2037. #endif
  2038. /*
  2039. * Slow patch handling. This may still be called frequently since objects
  2040. * have a longer lifetime than the cpu slabs in most processing loads.
  2041. *
  2042. * So we still attempt to reduce cache line usage. Just take the slab
  2043. * lock and free the item. If there is no additional partial page
  2044. * handling required then we can return immediately.
  2045. */
  2046. static void __slab_free(struct kmem_cache *s, struct page *page,
  2047. void *x, unsigned long addr)
  2048. {
  2049. void *prior;
  2050. void **object = (void *)x;
  2051. int was_frozen;
  2052. int inuse;
  2053. struct page new;
  2054. unsigned long counters;
  2055. struct kmem_cache_node *n = NULL;
  2056. unsigned long uninitialized_var(flags);
  2057. stat(s, FREE_SLOWPATH);
  2058. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2059. return;
  2060. do {
  2061. prior = page->freelist;
  2062. counters = page->counters;
  2063. set_freepointer(s, object, prior);
  2064. new.counters = counters;
  2065. was_frozen = new.frozen;
  2066. new.inuse--;
  2067. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2068. if (!kmem_cache_debug(s) && !prior)
  2069. /*
  2070. * Slab was on no list before and will be partially empty
  2071. * We can defer the list move and instead freeze it.
  2072. */
  2073. new.frozen = 1;
  2074. else { /* Needs to be taken off a list */
  2075. n = get_node(s, page_to_nid(page));
  2076. /*
  2077. * Speculatively acquire the list_lock.
  2078. * If the cmpxchg does not succeed then we may
  2079. * drop the list_lock without any processing.
  2080. *
  2081. * Otherwise the list_lock will synchronize with
  2082. * other processors updating the list of slabs.
  2083. */
  2084. spin_lock_irqsave(&n->list_lock, flags);
  2085. }
  2086. }
  2087. inuse = new.inuse;
  2088. } while (!cmpxchg_double_slab(s, page,
  2089. prior, counters,
  2090. object, new.counters,
  2091. "__slab_free"));
  2092. if (likely(!n)) {
  2093. /*
  2094. * If we just froze the page then put it onto the
  2095. * per cpu partial list.
  2096. */
  2097. if (new.frozen && !was_frozen)
  2098. put_cpu_partial(s, page, 1);
  2099. /*
  2100. * The list lock was not taken therefore no list
  2101. * activity can be necessary.
  2102. */
  2103. if (was_frozen)
  2104. stat(s, FREE_FROZEN);
  2105. return;
  2106. }
  2107. /*
  2108. * was_frozen may have been set after we acquired the list_lock in
  2109. * an earlier loop. So we need to check it here again.
  2110. */
  2111. if (was_frozen)
  2112. stat(s, FREE_FROZEN);
  2113. else {
  2114. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2115. goto slab_empty;
  2116. /*
  2117. * Objects left in the slab. If it was not on the partial list before
  2118. * then add it.
  2119. */
  2120. if (unlikely(!prior)) {
  2121. remove_full(s, page);
  2122. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2123. stat(s, FREE_ADD_PARTIAL);
  2124. }
  2125. }
  2126. spin_unlock_irqrestore(&n->list_lock, flags);
  2127. return;
  2128. slab_empty:
  2129. if (prior) {
  2130. /*
  2131. * Slab on the partial list.
  2132. */
  2133. remove_partial(n, page);
  2134. stat(s, FREE_REMOVE_PARTIAL);
  2135. } else
  2136. /* Slab must be on the full list */
  2137. remove_full(s, page);
  2138. spin_unlock_irqrestore(&n->list_lock, flags);
  2139. stat(s, FREE_SLAB);
  2140. discard_slab(s, page);
  2141. }
  2142. /*
  2143. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2144. * can perform fastpath freeing without additional function calls.
  2145. *
  2146. * The fastpath is only possible if we are freeing to the current cpu slab
  2147. * of this processor. This typically the case if we have just allocated
  2148. * the item before.
  2149. *
  2150. * If fastpath is not possible then fall back to __slab_free where we deal
  2151. * with all sorts of special processing.
  2152. */
  2153. static __always_inline void slab_free(struct kmem_cache *s,
  2154. struct page *page, void *x, unsigned long addr)
  2155. {
  2156. void **object = (void *)x;
  2157. struct kmem_cache_cpu *c;
  2158. unsigned long tid;
  2159. slab_free_hook(s, x);
  2160. redo:
  2161. /*
  2162. * Determine the currently cpus per cpu slab.
  2163. * The cpu may change afterward. However that does not matter since
  2164. * data is retrieved via this pointer. If we are on the same cpu
  2165. * during the cmpxchg then the free will succedd.
  2166. */
  2167. c = __this_cpu_ptr(s->cpu_slab);
  2168. tid = c->tid;
  2169. barrier();
  2170. if (likely(page == c->page)) {
  2171. set_freepointer(s, object, c->freelist);
  2172. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  2173. s->cpu_slab->freelist, s->cpu_slab->tid,
  2174. c->freelist, tid,
  2175. object, next_tid(tid)))) {
  2176. note_cmpxchg_failure("slab_free", s, tid);
  2177. goto redo;
  2178. }
  2179. stat(s, FREE_FASTPATH);
  2180. } else
  2181. __slab_free(s, page, x, addr);
  2182. }
  2183. void kmem_cache_free(struct kmem_cache *s, void *x)
  2184. {
  2185. struct page *page;
  2186. page = virt_to_head_page(x);
  2187. slab_free(s, page, x, _RET_IP_);
  2188. trace_kmem_cache_free(_RET_IP_, x);
  2189. }
  2190. EXPORT_SYMBOL(kmem_cache_free);
  2191. /*
  2192. * Object placement in a slab is made very easy because we always start at
  2193. * offset 0. If we tune the size of the object to the alignment then we can
  2194. * get the required alignment by putting one properly sized object after
  2195. * another.
  2196. *
  2197. * Notice that the allocation order determines the sizes of the per cpu
  2198. * caches. Each processor has always one slab available for allocations.
  2199. * Increasing the allocation order reduces the number of times that slabs
  2200. * must be moved on and off the partial lists and is therefore a factor in
  2201. * locking overhead.
  2202. */
  2203. /*
  2204. * Mininum / Maximum order of slab pages. This influences locking overhead
  2205. * and slab fragmentation. A higher order reduces the number of partial slabs
  2206. * and increases the number of allocations possible without having to
  2207. * take the list_lock.
  2208. */
  2209. static int slub_min_order;
  2210. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2211. static int slub_min_objects;
  2212. /*
  2213. * Merge control. If this is set then no merging of slab caches will occur.
  2214. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2215. */
  2216. static int slub_nomerge;
  2217. /*
  2218. * Calculate the order of allocation given an slab object size.
  2219. *
  2220. * The order of allocation has significant impact on performance and other
  2221. * system components. Generally order 0 allocations should be preferred since
  2222. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2223. * be problematic to put into order 0 slabs because there may be too much
  2224. * unused space left. We go to a higher order if more than 1/16th of the slab
  2225. * would be wasted.
  2226. *
  2227. * In order to reach satisfactory performance we must ensure that a minimum
  2228. * number of objects is in one slab. Otherwise we may generate too much
  2229. * activity on the partial lists which requires taking the list_lock. This is
  2230. * less a concern for large slabs though which are rarely used.
  2231. *
  2232. * slub_max_order specifies the order where we begin to stop considering the
  2233. * number of objects in a slab as critical. If we reach slub_max_order then
  2234. * we try to keep the page order as low as possible. So we accept more waste
  2235. * of space in favor of a small page order.
  2236. *
  2237. * Higher order allocations also allow the placement of more objects in a
  2238. * slab and thereby reduce object handling overhead. If the user has
  2239. * requested a higher mininum order then we start with that one instead of
  2240. * the smallest order which will fit the object.
  2241. */
  2242. static inline int slab_order(int size, int min_objects,
  2243. int max_order, int fract_leftover, int reserved)
  2244. {
  2245. int order;
  2246. int rem;
  2247. int min_order = slub_min_order;
  2248. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2249. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2250. for (order = max(min_order,
  2251. fls(min_objects * size - 1) - PAGE_SHIFT);
  2252. order <= max_order; order++) {
  2253. unsigned long slab_size = PAGE_SIZE << order;
  2254. if (slab_size < min_objects * size + reserved)
  2255. continue;
  2256. rem = (slab_size - reserved) % size;
  2257. if (rem <= slab_size / fract_leftover)
  2258. break;
  2259. }
  2260. return order;
  2261. }
  2262. static inline int calculate_order(int size, int reserved)
  2263. {
  2264. int order;
  2265. int min_objects;
  2266. int fraction;
  2267. int max_objects;
  2268. /*
  2269. * Attempt to find best configuration for a slab. This
  2270. * works by first attempting to generate a layout with
  2271. * the best configuration and backing off gradually.
  2272. *
  2273. * First we reduce the acceptable waste in a slab. Then
  2274. * we reduce the minimum objects required in a slab.
  2275. */
  2276. min_objects = slub_min_objects;
  2277. if (!min_objects)
  2278. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2279. max_objects = order_objects(slub_max_order, size, reserved);
  2280. min_objects = min(min_objects, max_objects);
  2281. while (min_objects > 1) {
  2282. fraction = 16;
  2283. while (fraction >= 4) {
  2284. order = slab_order(size, min_objects,
  2285. slub_max_order, fraction, reserved);
  2286. if (order <= slub_max_order)
  2287. return order;
  2288. fraction /= 2;
  2289. }
  2290. min_objects--;
  2291. }
  2292. /*
  2293. * We were unable to place multiple objects in a slab. Now
  2294. * lets see if we can place a single object there.
  2295. */
  2296. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2297. if (order <= slub_max_order)
  2298. return order;
  2299. /*
  2300. * Doh this slab cannot be placed using slub_max_order.
  2301. */
  2302. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2303. if (order < MAX_ORDER)
  2304. return order;
  2305. return -ENOSYS;
  2306. }
  2307. /*
  2308. * Figure out what the alignment of the objects will be.
  2309. */
  2310. static unsigned long calculate_alignment(unsigned long flags,
  2311. unsigned long align, unsigned long size)
  2312. {
  2313. /*
  2314. * If the user wants hardware cache aligned objects then follow that
  2315. * suggestion if the object is sufficiently large.
  2316. *
  2317. * The hardware cache alignment cannot override the specified
  2318. * alignment though. If that is greater then use it.
  2319. */
  2320. if (flags & SLAB_HWCACHE_ALIGN) {
  2321. unsigned long ralign = cache_line_size();
  2322. while (size <= ralign / 2)
  2323. ralign /= 2;
  2324. align = max(align, ralign);
  2325. }
  2326. if (align < ARCH_SLAB_MINALIGN)
  2327. align = ARCH_SLAB_MINALIGN;
  2328. return ALIGN(align, sizeof(void *));
  2329. }
  2330. static void
  2331. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2332. {
  2333. n->nr_partial = 0;
  2334. spin_lock_init(&n->list_lock);
  2335. INIT_LIST_HEAD(&n->partial);
  2336. #ifdef CONFIG_SLUB_DEBUG
  2337. atomic_long_set(&n->nr_slabs, 0);
  2338. atomic_long_set(&n->total_objects, 0);
  2339. INIT_LIST_HEAD(&n->full);
  2340. #endif
  2341. }
  2342. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2343. {
  2344. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2345. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2346. /*
  2347. * Must align to double word boundary for the double cmpxchg
  2348. * instructions to work; see __pcpu_double_call_return_bool().
  2349. */
  2350. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2351. 2 * sizeof(void *));
  2352. if (!s->cpu_slab)
  2353. return 0;
  2354. init_kmem_cache_cpus(s);
  2355. return 1;
  2356. }
  2357. static struct kmem_cache *kmem_cache_node;
  2358. /*
  2359. * No kmalloc_node yet so do it by hand. We know that this is the first
  2360. * slab on the node for this slabcache. There are no concurrent accesses
  2361. * possible.
  2362. *
  2363. * Note that this function only works on the kmalloc_node_cache
  2364. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2365. * memory on a fresh node that has no slab structures yet.
  2366. */
  2367. static void early_kmem_cache_node_alloc(int node)
  2368. {
  2369. struct page *page;
  2370. struct kmem_cache_node *n;
  2371. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2372. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2373. BUG_ON(!page);
  2374. if (page_to_nid(page) != node) {
  2375. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2376. "node %d\n", node);
  2377. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2378. "in order to be able to continue\n");
  2379. }
  2380. n = page->freelist;
  2381. BUG_ON(!n);
  2382. page->freelist = get_freepointer(kmem_cache_node, n);
  2383. page->inuse = 1;
  2384. page->frozen = 0;
  2385. kmem_cache_node->node[node] = n;
  2386. #ifdef CONFIG_SLUB_DEBUG
  2387. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2388. init_tracking(kmem_cache_node, n);
  2389. #endif
  2390. init_kmem_cache_node(n, kmem_cache_node);
  2391. inc_slabs_node(kmem_cache_node, node, page->objects);
  2392. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2393. }
  2394. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2395. {
  2396. int node;
  2397. for_each_node_state(node, N_NORMAL_MEMORY) {
  2398. struct kmem_cache_node *n = s->node[node];
  2399. if (n)
  2400. kmem_cache_free(kmem_cache_node, n);
  2401. s->node[node] = NULL;
  2402. }
  2403. }
  2404. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2405. {
  2406. int node;
  2407. for_each_node_state(node, N_NORMAL_MEMORY) {
  2408. struct kmem_cache_node *n;
  2409. if (slab_state == DOWN) {
  2410. early_kmem_cache_node_alloc(node);
  2411. continue;
  2412. }
  2413. n = kmem_cache_alloc_node(kmem_cache_node,
  2414. GFP_KERNEL, node);
  2415. if (!n) {
  2416. free_kmem_cache_nodes(s);
  2417. return 0;
  2418. }
  2419. s->node[node] = n;
  2420. init_kmem_cache_node(n, s);
  2421. }
  2422. return 1;
  2423. }
  2424. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2425. {
  2426. if (min < MIN_PARTIAL)
  2427. min = MIN_PARTIAL;
  2428. else if (min > MAX_PARTIAL)
  2429. min = MAX_PARTIAL;
  2430. s->min_partial = min;
  2431. }
  2432. /*
  2433. * calculate_sizes() determines the order and the distribution of data within
  2434. * a slab object.
  2435. */
  2436. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2437. {
  2438. unsigned long flags = s->flags;
  2439. unsigned long size = s->objsize;
  2440. unsigned long align = s->align;
  2441. int order;
  2442. /*
  2443. * Round up object size to the next word boundary. We can only
  2444. * place the free pointer at word boundaries and this determines
  2445. * the possible location of the free pointer.
  2446. */
  2447. size = ALIGN(size, sizeof(void *));
  2448. #ifdef CONFIG_SLUB_DEBUG
  2449. /*
  2450. * Determine if we can poison the object itself. If the user of
  2451. * the slab may touch the object after free or before allocation
  2452. * then we should never poison the object itself.
  2453. */
  2454. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2455. !s->ctor)
  2456. s->flags |= __OBJECT_POISON;
  2457. else
  2458. s->flags &= ~__OBJECT_POISON;
  2459. /*
  2460. * If we are Redzoning then check if there is some space between the
  2461. * end of the object and the free pointer. If not then add an
  2462. * additional word to have some bytes to store Redzone information.
  2463. */
  2464. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2465. size += sizeof(void *);
  2466. #endif
  2467. /*
  2468. * With that we have determined the number of bytes in actual use
  2469. * by the object. This is the potential offset to the free pointer.
  2470. */
  2471. s->inuse = size;
  2472. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2473. s->ctor)) {
  2474. /*
  2475. * Relocate free pointer after the object if it is not
  2476. * permitted to overwrite the first word of the object on
  2477. * kmem_cache_free.
  2478. *
  2479. * This is the case if we do RCU, have a constructor or
  2480. * destructor or are poisoning the objects.
  2481. */
  2482. s->offset = size;
  2483. size += sizeof(void *);
  2484. }
  2485. #ifdef CONFIG_SLUB_DEBUG
  2486. if (flags & SLAB_STORE_USER)
  2487. /*
  2488. * Need to store information about allocs and frees after
  2489. * the object.
  2490. */
  2491. size += 2 * sizeof(struct track);
  2492. if (flags & SLAB_RED_ZONE)
  2493. /*
  2494. * Add some empty padding so that we can catch
  2495. * overwrites from earlier objects rather than let
  2496. * tracking information or the free pointer be
  2497. * corrupted if a user writes before the start
  2498. * of the object.
  2499. */
  2500. size += sizeof(void *);
  2501. #endif
  2502. /*
  2503. * Determine the alignment based on various parameters that the
  2504. * user specified and the dynamic determination of cache line size
  2505. * on bootup.
  2506. */
  2507. align = calculate_alignment(flags, align, s->objsize);
  2508. s->align = align;
  2509. /*
  2510. * SLUB stores one object immediately after another beginning from
  2511. * offset 0. In order to align the objects we have to simply size
  2512. * each object to conform to the alignment.
  2513. */
  2514. size = ALIGN(size, align);
  2515. s->size = size;
  2516. if (forced_order >= 0)
  2517. order = forced_order;
  2518. else
  2519. order = calculate_order(size, s->reserved);
  2520. if (order < 0)
  2521. return 0;
  2522. s->allocflags = 0;
  2523. if (order)
  2524. s->allocflags |= __GFP_COMP;
  2525. if (s->flags & SLAB_CACHE_DMA)
  2526. s->allocflags |= SLUB_DMA;
  2527. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2528. s->allocflags |= __GFP_RECLAIMABLE;
  2529. /*
  2530. * Determine the number of objects per slab
  2531. */
  2532. s->oo = oo_make(order, size, s->reserved);
  2533. s->min = oo_make(get_order(size), size, s->reserved);
  2534. if (oo_objects(s->oo) > oo_objects(s->max))
  2535. s->max = s->oo;
  2536. return !!oo_objects(s->oo);
  2537. }
  2538. static int kmem_cache_open(struct kmem_cache *s,
  2539. const char *name, size_t size,
  2540. size_t align, unsigned long flags,
  2541. void (*ctor)(void *))
  2542. {
  2543. memset(s, 0, kmem_size);
  2544. s->name = name;
  2545. s->ctor = ctor;
  2546. s->objsize = size;
  2547. s->align = align;
  2548. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2549. s->reserved = 0;
  2550. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2551. s->reserved = sizeof(struct rcu_head);
  2552. if (!calculate_sizes(s, -1))
  2553. goto error;
  2554. if (disable_higher_order_debug) {
  2555. /*
  2556. * Disable debugging flags that store metadata if the min slab
  2557. * order increased.
  2558. */
  2559. if (get_order(s->size) > get_order(s->objsize)) {
  2560. s->flags &= ~DEBUG_METADATA_FLAGS;
  2561. s->offset = 0;
  2562. if (!calculate_sizes(s, -1))
  2563. goto error;
  2564. }
  2565. }
  2566. #ifdef CONFIG_CMPXCHG_DOUBLE
  2567. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2568. /* Enable fast mode */
  2569. s->flags |= __CMPXCHG_DOUBLE;
  2570. #endif
  2571. /*
  2572. * The larger the object size is, the more pages we want on the partial
  2573. * list to avoid pounding the page allocator excessively.
  2574. */
  2575. set_min_partial(s, ilog2(s->size) / 2);
  2576. /*
  2577. * cpu_partial determined the maximum number of objects kept in the
  2578. * per cpu partial lists of a processor.
  2579. *
  2580. * Per cpu partial lists mainly contain slabs that just have one
  2581. * object freed. If they are used for allocation then they can be
  2582. * filled up again with minimal effort. The slab will never hit the
  2583. * per node partial lists and therefore no locking will be required.
  2584. *
  2585. * This setting also determines
  2586. *
  2587. * A) The number of objects from per cpu partial slabs dumped to the
  2588. * per node list when we reach the limit.
  2589. * B) The number of objects in cpu partial slabs to extract from the
  2590. * per node list when we run out of per cpu objects. We only fetch 50%
  2591. * to keep some capacity around for frees.
  2592. */
  2593. if (s->size >= PAGE_SIZE)
  2594. s->cpu_partial = 2;
  2595. else if (s->size >= 1024)
  2596. s->cpu_partial = 6;
  2597. else if (s->size >= 256)
  2598. s->cpu_partial = 13;
  2599. else
  2600. s->cpu_partial = 30;
  2601. s->refcount = 1;
  2602. #ifdef CONFIG_NUMA
  2603. s->remote_node_defrag_ratio = 1000;
  2604. #endif
  2605. if (!init_kmem_cache_nodes(s))
  2606. goto error;
  2607. if (alloc_kmem_cache_cpus(s))
  2608. return 1;
  2609. free_kmem_cache_nodes(s);
  2610. error:
  2611. if (flags & SLAB_PANIC)
  2612. panic("Cannot create slab %s size=%lu realsize=%u "
  2613. "order=%u offset=%u flags=%lx\n",
  2614. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2615. s->offset, flags);
  2616. return 0;
  2617. }
  2618. /*
  2619. * Determine the size of a slab object
  2620. */
  2621. unsigned int kmem_cache_size(struct kmem_cache *s)
  2622. {
  2623. return s->objsize;
  2624. }
  2625. EXPORT_SYMBOL(kmem_cache_size);
  2626. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2627. const char *text)
  2628. {
  2629. #ifdef CONFIG_SLUB_DEBUG
  2630. void *addr = page_address(page);
  2631. void *p;
  2632. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2633. sizeof(long), GFP_ATOMIC);
  2634. if (!map)
  2635. return;
  2636. slab_err(s, page, "%s", text);
  2637. slab_lock(page);
  2638. get_map(s, page, map);
  2639. for_each_object(p, s, addr, page->objects) {
  2640. if (!test_bit(slab_index(p, s, addr), map)) {
  2641. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2642. p, p - addr);
  2643. print_tracking(s, p);
  2644. }
  2645. }
  2646. slab_unlock(page);
  2647. kfree(map);
  2648. #endif
  2649. }
  2650. /*
  2651. * Attempt to free all partial slabs on a node.
  2652. * This is called from kmem_cache_close(). We must be the last thread
  2653. * using the cache and therefore we do not need to lock anymore.
  2654. */
  2655. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2656. {
  2657. struct page *page, *h;
  2658. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2659. if (!page->inuse) {
  2660. remove_partial(n, page);
  2661. discard_slab(s, page);
  2662. } else {
  2663. list_slab_objects(s, page,
  2664. "Objects remaining on kmem_cache_close()");
  2665. }
  2666. }
  2667. }
  2668. /*
  2669. * Release all resources used by a slab cache.
  2670. */
  2671. static inline int kmem_cache_close(struct kmem_cache *s)
  2672. {
  2673. int node;
  2674. flush_all(s);
  2675. free_percpu(s->cpu_slab);
  2676. /* Attempt to free all objects */
  2677. for_each_node_state(node, N_NORMAL_MEMORY) {
  2678. struct kmem_cache_node *n = get_node(s, node);
  2679. free_partial(s, n);
  2680. if (n->nr_partial || slabs_node(s, node))
  2681. return 1;
  2682. }
  2683. free_kmem_cache_nodes(s);
  2684. return 0;
  2685. }
  2686. /*
  2687. * Close a cache and release the kmem_cache structure
  2688. * (must be used for caches created using kmem_cache_create)
  2689. */
  2690. void kmem_cache_destroy(struct kmem_cache *s)
  2691. {
  2692. down_write(&slub_lock);
  2693. s->refcount--;
  2694. if (!s->refcount) {
  2695. list_del(&s->list);
  2696. up_write(&slub_lock);
  2697. if (kmem_cache_close(s)) {
  2698. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2699. "still has objects.\n", s->name, __func__);
  2700. dump_stack();
  2701. }
  2702. if (s->flags & SLAB_DESTROY_BY_RCU)
  2703. rcu_barrier();
  2704. sysfs_slab_remove(s);
  2705. } else
  2706. up_write(&slub_lock);
  2707. }
  2708. EXPORT_SYMBOL(kmem_cache_destroy);
  2709. /********************************************************************
  2710. * Kmalloc subsystem
  2711. *******************************************************************/
  2712. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2713. EXPORT_SYMBOL(kmalloc_caches);
  2714. static struct kmem_cache *kmem_cache;
  2715. #ifdef CONFIG_ZONE_DMA
  2716. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2717. #endif
  2718. static int __init setup_slub_min_order(char *str)
  2719. {
  2720. get_option(&str, &slub_min_order);
  2721. return 1;
  2722. }
  2723. __setup("slub_min_order=", setup_slub_min_order);
  2724. static int __init setup_slub_max_order(char *str)
  2725. {
  2726. get_option(&str, &slub_max_order);
  2727. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2728. return 1;
  2729. }
  2730. __setup("slub_max_order=", setup_slub_max_order);
  2731. static int __init setup_slub_min_objects(char *str)
  2732. {
  2733. get_option(&str, &slub_min_objects);
  2734. return 1;
  2735. }
  2736. __setup("slub_min_objects=", setup_slub_min_objects);
  2737. static int __init setup_slub_nomerge(char *str)
  2738. {
  2739. slub_nomerge = 1;
  2740. return 1;
  2741. }
  2742. __setup("slub_nomerge", setup_slub_nomerge);
  2743. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2744. int size, unsigned int flags)
  2745. {
  2746. struct kmem_cache *s;
  2747. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2748. /*
  2749. * This function is called with IRQs disabled during early-boot on
  2750. * single CPU so there's no need to take slub_lock here.
  2751. */
  2752. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2753. flags, NULL))
  2754. goto panic;
  2755. list_add(&s->list, &slab_caches);
  2756. return s;
  2757. panic:
  2758. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2759. return NULL;
  2760. }
  2761. /*
  2762. * Conversion table for small slabs sizes / 8 to the index in the
  2763. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2764. * of two cache sizes there. The size of larger slabs can be determined using
  2765. * fls.
  2766. */
  2767. static s8 size_index[24] = {
  2768. 3, /* 8 */
  2769. 4, /* 16 */
  2770. 5, /* 24 */
  2771. 5, /* 32 */
  2772. 6, /* 40 */
  2773. 6, /* 48 */
  2774. 6, /* 56 */
  2775. 6, /* 64 */
  2776. 1, /* 72 */
  2777. 1, /* 80 */
  2778. 1, /* 88 */
  2779. 1, /* 96 */
  2780. 7, /* 104 */
  2781. 7, /* 112 */
  2782. 7, /* 120 */
  2783. 7, /* 128 */
  2784. 2, /* 136 */
  2785. 2, /* 144 */
  2786. 2, /* 152 */
  2787. 2, /* 160 */
  2788. 2, /* 168 */
  2789. 2, /* 176 */
  2790. 2, /* 184 */
  2791. 2 /* 192 */
  2792. };
  2793. static inline int size_index_elem(size_t bytes)
  2794. {
  2795. return (bytes - 1) / 8;
  2796. }
  2797. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2798. {
  2799. int index;
  2800. if (size <= 192) {
  2801. if (!size)
  2802. return ZERO_SIZE_PTR;
  2803. index = size_index[size_index_elem(size)];
  2804. } else
  2805. index = fls(size - 1);
  2806. #ifdef CONFIG_ZONE_DMA
  2807. if (unlikely((flags & SLUB_DMA)))
  2808. return kmalloc_dma_caches[index];
  2809. #endif
  2810. return kmalloc_caches[index];
  2811. }
  2812. void *__kmalloc(size_t size, gfp_t flags)
  2813. {
  2814. struct kmem_cache *s;
  2815. void *ret;
  2816. if (unlikely(size > SLUB_MAX_SIZE))
  2817. return kmalloc_large(size, flags);
  2818. s = get_slab(size, flags);
  2819. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2820. return s;
  2821. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2822. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2823. return ret;
  2824. }
  2825. EXPORT_SYMBOL(__kmalloc);
  2826. #ifdef CONFIG_NUMA
  2827. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2828. {
  2829. struct page *page;
  2830. void *ptr = NULL;
  2831. flags |= __GFP_COMP | __GFP_NOTRACK;
  2832. page = alloc_pages_node(node, flags, get_order(size));
  2833. if (page)
  2834. ptr = page_address(page);
  2835. kmemleak_alloc(ptr, size, 1, flags);
  2836. return ptr;
  2837. }
  2838. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2839. {
  2840. struct kmem_cache *s;
  2841. void *ret;
  2842. if (unlikely(size > SLUB_MAX_SIZE)) {
  2843. ret = kmalloc_large_node(size, flags, node);
  2844. trace_kmalloc_node(_RET_IP_, ret,
  2845. size, PAGE_SIZE << get_order(size),
  2846. flags, node);
  2847. return ret;
  2848. }
  2849. s = get_slab(size, flags);
  2850. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2851. return s;
  2852. ret = slab_alloc(s, flags, node, _RET_IP_);
  2853. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2854. return ret;
  2855. }
  2856. EXPORT_SYMBOL(__kmalloc_node);
  2857. #endif
  2858. size_t ksize(const void *object)
  2859. {
  2860. struct page *page;
  2861. if (unlikely(object == ZERO_SIZE_PTR))
  2862. return 0;
  2863. page = virt_to_head_page(object);
  2864. if (unlikely(!PageSlab(page))) {
  2865. WARN_ON(!PageCompound(page));
  2866. return PAGE_SIZE << compound_order(page);
  2867. }
  2868. return slab_ksize(page->slab);
  2869. }
  2870. EXPORT_SYMBOL(ksize);
  2871. #ifdef CONFIG_SLUB_DEBUG
  2872. bool verify_mem_not_deleted(const void *x)
  2873. {
  2874. struct page *page;
  2875. void *object = (void *)x;
  2876. unsigned long flags;
  2877. bool rv;
  2878. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2879. return false;
  2880. local_irq_save(flags);
  2881. page = virt_to_head_page(x);
  2882. if (unlikely(!PageSlab(page))) {
  2883. /* maybe it was from stack? */
  2884. rv = true;
  2885. goto out_unlock;
  2886. }
  2887. slab_lock(page);
  2888. if (on_freelist(page->slab, page, object)) {
  2889. object_err(page->slab, page, object, "Object is on free-list");
  2890. rv = false;
  2891. } else {
  2892. rv = true;
  2893. }
  2894. slab_unlock(page);
  2895. out_unlock:
  2896. local_irq_restore(flags);
  2897. return rv;
  2898. }
  2899. EXPORT_SYMBOL(verify_mem_not_deleted);
  2900. #endif
  2901. void kfree(const void *x)
  2902. {
  2903. struct page *page;
  2904. void *object = (void *)x;
  2905. trace_kfree(_RET_IP_, x);
  2906. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2907. return;
  2908. page = virt_to_head_page(x);
  2909. if (unlikely(!PageSlab(page))) {
  2910. BUG_ON(!PageCompound(page));
  2911. kmemleak_free(x);
  2912. put_page(page);
  2913. return;
  2914. }
  2915. slab_free(page->slab, page, object, _RET_IP_);
  2916. }
  2917. EXPORT_SYMBOL(kfree);
  2918. /*
  2919. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2920. * the remaining slabs by the number of items in use. The slabs with the
  2921. * most items in use come first. New allocations will then fill those up
  2922. * and thus they can be removed from the partial lists.
  2923. *
  2924. * The slabs with the least items are placed last. This results in them
  2925. * being allocated from last increasing the chance that the last objects
  2926. * are freed in them.
  2927. */
  2928. int kmem_cache_shrink(struct kmem_cache *s)
  2929. {
  2930. int node;
  2931. int i;
  2932. struct kmem_cache_node *n;
  2933. struct page *page;
  2934. struct page *t;
  2935. int objects = oo_objects(s->max);
  2936. struct list_head *slabs_by_inuse =
  2937. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2938. unsigned long flags;
  2939. if (!slabs_by_inuse)
  2940. return -ENOMEM;
  2941. flush_all(s);
  2942. for_each_node_state(node, N_NORMAL_MEMORY) {
  2943. n = get_node(s, node);
  2944. if (!n->nr_partial)
  2945. continue;
  2946. for (i = 0; i < objects; i++)
  2947. INIT_LIST_HEAD(slabs_by_inuse + i);
  2948. spin_lock_irqsave(&n->list_lock, flags);
  2949. /*
  2950. * Build lists indexed by the items in use in each slab.
  2951. *
  2952. * Note that concurrent frees may occur while we hold the
  2953. * list_lock. page->inuse here is the upper limit.
  2954. */
  2955. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2956. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2957. if (!page->inuse)
  2958. n->nr_partial--;
  2959. }
  2960. /*
  2961. * Rebuild the partial list with the slabs filled up most
  2962. * first and the least used slabs at the end.
  2963. */
  2964. for (i = objects - 1; i > 0; i--)
  2965. list_splice(slabs_by_inuse + i, n->partial.prev);
  2966. spin_unlock_irqrestore(&n->list_lock, flags);
  2967. /* Release empty slabs */
  2968. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2969. discard_slab(s, page);
  2970. }
  2971. kfree(slabs_by_inuse);
  2972. return 0;
  2973. }
  2974. EXPORT_SYMBOL(kmem_cache_shrink);
  2975. #if defined(CONFIG_MEMORY_HOTPLUG)
  2976. static int slab_mem_going_offline_callback(void *arg)
  2977. {
  2978. struct kmem_cache *s;
  2979. down_read(&slub_lock);
  2980. list_for_each_entry(s, &slab_caches, list)
  2981. kmem_cache_shrink(s);
  2982. up_read(&slub_lock);
  2983. return 0;
  2984. }
  2985. static void slab_mem_offline_callback(void *arg)
  2986. {
  2987. struct kmem_cache_node *n;
  2988. struct kmem_cache *s;
  2989. struct memory_notify *marg = arg;
  2990. int offline_node;
  2991. offline_node = marg->status_change_nid;
  2992. /*
  2993. * If the node still has available memory. we need kmem_cache_node
  2994. * for it yet.
  2995. */
  2996. if (offline_node < 0)
  2997. return;
  2998. down_read(&slub_lock);
  2999. list_for_each_entry(s, &slab_caches, list) {
  3000. n = get_node(s, offline_node);
  3001. if (n) {
  3002. /*
  3003. * if n->nr_slabs > 0, slabs still exist on the node
  3004. * that is going down. We were unable to free them,
  3005. * and offline_pages() function shouldn't call this
  3006. * callback. So, we must fail.
  3007. */
  3008. BUG_ON(slabs_node(s, offline_node));
  3009. s->node[offline_node] = NULL;
  3010. kmem_cache_free(kmem_cache_node, n);
  3011. }
  3012. }
  3013. up_read(&slub_lock);
  3014. }
  3015. static int slab_mem_going_online_callback(void *arg)
  3016. {
  3017. struct kmem_cache_node *n;
  3018. struct kmem_cache *s;
  3019. struct memory_notify *marg = arg;
  3020. int nid = marg->status_change_nid;
  3021. int ret = 0;
  3022. /*
  3023. * If the node's memory is already available, then kmem_cache_node is
  3024. * already created. Nothing to do.
  3025. */
  3026. if (nid < 0)
  3027. return 0;
  3028. /*
  3029. * We are bringing a node online. No memory is available yet. We must
  3030. * allocate a kmem_cache_node structure in order to bring the node
  3031. * online.
  3032. */
  3033. down_read(&slub_lock);
  3034. list_for_each_entry(s, &slab_caches, list) {
  3035. /*
  3036. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3037. * since memory is not yet available from the node that
  3038. * is brought up.
  3039. */
  3040. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3041. if (!n) {
  3042. ret = -ENOMEM;
  3043. goto out;
  3044. }
  3045. init_kmem_cache_node(n, s);
  3046. s->node[nid] = n;
  3047. }
  3048. out:
  3049. up_read(&slub_lock);
  3050. return ret;
  3051. }
  3052. static int slab_memory_callback(struct notifier_block *self,
  3053. unsigned long action, void *arg)
  3054. {
  3055. int ret = 0;
  3056. switch (action) {
  3057. case MEM_GOING_ONLINE:
  3058. ret = slab_mem_going_online_callback(arg);
  3059. break;
  3060. case MEM_GOING_OFFLINE:
  3061. ret = slab_mem_going_offline_callback(arg);
  3062. break;
  3063. case MEM_OFFLINE:
  3064. case MEM_CANCEL_ONLINE:
  3065. slab_mem_offline_callback(arg);
  3066. break;
  3067. case MEM_ONLINE:
  3068. case MEM_CANCEL_OFFLINE:
  3069. break;
  3070. }
  3071. if (ret)
  3072. ret = notifier_from_errno(ret);
  3073. else
  3074. ret = NOTIFY_OK;
  3075. return ret;
  3076. }
  3077. #endif /* CONFIG_MEMORY_HOTPLUG */
  3078. /********************************************************************
  3079. * Basic setup of slabs
  3080. *******************************************************************/
  3081. /*
  3082. * Used for early kmem_cache structures that were allocated using
  3083. * the page allocator
  3084. */
  3085. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3086. {
  3087. int node;
  3088. list_add(&s->list, &slab_caches);
  3089. s->refcount = -1;
  3090. for_each_node_state(node, N_NORMAL_MEMORY) {
  3091. struct kmem_cache_node *n = get_node(s, node);
  3092. struct page *p;
  3093. if (n) {
  3094. list_for_each_entry(p, &n->partial, lru)
  3095. p->slab = s;
  3096. #ifdef CONFIG_SLUB_DEBUG
  3097. list_for_each_entry(p, &n->full, lru)
  3098. p->slab = s;
  3099. #endif
  3100. }
  3101. }
  3102. }
  3103. void __init kmem_cache_init(void)
  3104. {
  3105. int i;
  3106. int caches = 0;
  3107. struct kmem_cache *temp_kmem_cache;
  3108. int order;
  3109. struct kmem_cache *temp_kmem_cache_node;
  3110. unsigned long kmalloc_size;
  3111. kmem_size = offsetof(struct kmem_cache, node) +
  3112. nr_node_ids * sizeof(struct kmem_cache_node *);
  3113. /* Allocate two kmem_caches from the page allocator */
  3114. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3115. order = get_order(2 * kmalloc_size);
  3116. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3117. /*
  3118. * Must first have the slab cache available for the allocations of the
  3119. * struct kmem_cache_node's. There is special bootstrap code in
  3120. * kmem_cache_open for slab_state == DOWN.
  3121. */
  3122. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3123. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3124. sizeof(struct kmem_cache_node),
  3125. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3126. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3127. /* Able to allocate the per node structures */
  3128. slab_state = PARTIAL;
  3129. temp_kmem_cache = kmem_cache;
  3130. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3131. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3132. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3133. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3134. /*
  3135. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3136. * kmem_cache_node is separately allocated so no need to
  3137. * update any list pointers.
  3138. */
  3139. temp_kmem_cache_node = kmem_cache_node;
  3140. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3141. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3142. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3143. caches++;
  3144. kmem_cache_bootstrap_fixup(kmem_cache);
  3145. caches++;
  3146. /* Free temporary boot structure */
  3147. free_pages((unsigned long)temp_kmem_cache, order);
  3148. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3149. /*
  3150. * Patch up the size_index table if we have strange large alignment
  3151. * requirements for the kmalloc array. This is only the case for
  3152. * MIPS it seems. The standard arches will not generate any code here.
  3153. *
  3154. * Largest permitted alignment is 256 bytes due to the way we
  3155. * handle the index determination for the smaller caches.
  3156. *
  3157. * Make sure that nothing crazy happens if someone starts tinkering
  3158. * around with ARCH_KMALLOC_MINALIGN
  3159. */
  3160. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3161. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3162. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3163. int elem = size_index_elem(i);
  3164. if (elem >= ARRAY_SIZE(size_index))
  3165. break;
  3166. size_index[elem] = KMALLOC_SHIFT_LOW;
  3167. }
  3168. if (KMALLOC_MIN_SIZE == 64) {
  3169. /*
  3170. * The 96 byte size cache is not used if the alignment
  3171. * is 64 byte.
  3172. */
  3173. for (i = 64 + 8; i <= 96; i += 8)
  3174. size_index[size_index_elem(i)] = 7;
  3175. } else if (KMALLOC_MIN_SIZE == 128) {
  3176. /*
  3177. * The 192 byte sized cache is not used if the alignment
  3178. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3179. * instead.
  3180. */
  3181. for (i = 128 + 8; i <= 192; i += 8)
  3182. size_index[size_index_elem(i)] = 8;
  3183. }
  3184. /* Caches that are not of the two-to-the-power-of size */
  3185. if (KMALLOC_MIN_SIZE <= 32) {
  3186. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3187. caches++;
  3188. }
  3189. if (KMALLOC_MIN_SIZE <= 64) {
  3190. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3191. caches++;
  3192. }
  3193. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3194. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3195. caches++;
  3196. }
  3197. slab_state = UP;
  3198. /* Provide the correct kmalloc names now that the caches are up */
  3199. if (KMALLOC_MIN_SIZE <= 32) {
  3200. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3201. BUG_ON(!kmalloc_caches[1]->name);
  3202. }
  3203. if (KMALLOC_MIN_SIZE <= 64) {
  3204. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3205. BUG_ON(!kmalloc_caches[2]->name);
  3206. }
  3207. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3208. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3209. BUG_ON(!s);
  3210. kmalloc_caches[i]->name = s;
  3211. }
  3212. #ifdef CONFIG_SMP
  3213. register_cpu_notifier(&slab_notifier);
  3214. #endif
  3215. #ifdef CONFIG_ZONE_DMA
  3216. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3217. struct kmem_cache *s = kmalloc_caches[i];
  3218. if (s && s->size) {
  3219. char *name = kasprintf(GFP_NOWAIT,
  3220. "dma-kmalloc-%d", s->objsize);
  3221. BUG_ON(!name);
  3222. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3223. s->objsize, SLAB_CACHE_DMA);
  3224. }
  3225. }
  3226. #endif
  3227. printk(KERN_INFO
  3228. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3229. " CPUs=%d, Nodes=%d\n",
  3230. caches, cache_line_size(),
  3231. slub_min_order, slub_max_order, slub_min_objects,
  3232. nr_cpu_ids, nr_node_ids);
  3233. }
  3234. void __init kmem_cache_init_late(void)
  3235. {
  3236. }
  3237. /*
  3238. * Find a mergeable slab cache
  3239. */
  3240. static int slab_unmergeable(struct kmem_cache *s)
  3241. {
  3242. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3243. return 1;
  3244. if (s->ctor)
  3245. return 1;
  3246. /*
  3247. * We may have set a slab to be unmergeable during bootstrap.
  3248. */
  3249. if (s->refcount < 0)
  3250. return 1;
  3251. return 0;
  3252. }
  3253. static struct kmem_cache *find_mergeable(size_t size,
  3254. size_t align, unsigned long flags, const char *name,
  3255. void (*ctor)(void *))
  3256. {
  3257. struct kmem_cache *s;
  3258. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3259. return NULL;
  3260. if (ctor)
  3261. return NULL;
  3262. size = ALIGN(size, sizeof(void *));
  3263. align = calculate_alignment(flags, align, size);
  3264. size = ALIGN(size, align);
  3265. flags = kmem_cache_flags(size, flags, name, NULL);
  3266. list_for_each_entry(s, &slab_caches, list) {
  3267. if (slab_unmergeable(s))
  3268. continue;
  3269. if (size > s->size)
  3270. continue;
  3271. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3272. continue;
  3273. /*
  3274. * Check if alignment is compatible.
  3275. * Courtesy of Adrian Drzewiecki
  3276. */
  3277. if ((s->size & ~(align - 1)) != s->size)
  3278. continue;
  3279. if (s->size - size >= sizeof(void *))
  3280. continue;
  3281. return s;
  3282. }
  3283. return NULL;
  3284. }
  3285. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3286. size_t align, unsigned long flags, void (*ctor)(void *))
  3287. {
  3288. struct kmem_cache *s;
  3289. char *n;
  3290. if (WARN_ON(!name))
  3291. return NULL;
  3292. down_write(&slub_lock);
  3293. s = find_mergeable(size, align, flags, name, ctor);
  3294. if (s) {
  3295. s->refcount++;
  3296. /*
  3297. * Adjust the object sizes so that we clear
  3298. * the complete object on kzalloc.
  3299. */
  3300. s->objsize = max(s->objsize, (int)size);
  3301. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3302. if (sysfs_slab_alias(s, name)) {
  3303. s->refcount--;
  3304. goto err;
  3305. }
  3306. up_write(&slub_lock);
  3307. return s;
  3308. }
  3309. n = kstrdup(name, GFP_KERNEL);
  3310. if (!n)
  3311. goto err;
  3312. s = kmalloc(kmem_size, GFP_KERNEL);
  3313. if (s) {
  3314. if (kmem_cache_open(s, n,
  3315. size, align, flags, ctor)) {
  3316. list_add(&s->list, &slab_caches);
  3317. if (sysfs_slab_add(s)) {
  3318. list_del(&s->list);
  3319. kfree(n);
  3320. kfree(s);
  3321. goto err;
  3322. }
  3323. up_write(&slub_lock);
  3324. return s;
  3325. }
  3326. kfree(n);
  3327. kfree(s);
  3328. }
  3329. err:
  3330. up_write(&slub_lock);
  3331. if (flags & SLAB_PANIC)
  3332. panic("Cannot create slabcache %s\n", name);
  3333. else
  3334. s = NULL;
  3335. return s;
  3336. }
  3337. EXPORT_SYMBOL(kmem_cache_create);
  3338. #ifdef CONFIG_SMP
  3339. /*
  3340. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3341. * necessary.
  3342. */
  3343. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3344. unsigned long action, void *hcpu)
  3345. {
  3346. long cpu = (long)hcpu;
  3347. struct kmem_cache *s;
  3348. unsigned long flags;
  3349. switch (action) {
  3350. case CPU_UP_CANCELED:
  3351. case CPU_UP_CANCELED_FROZEN:
  3352. case CPU_DEAD:
  3353. case CPU_DEAD_FROZEN:
  3354. down_read(&slub_lock);
  3355. list_for_each_entry(s, &slab_caches, list) {
  3356. local_irq_save(flags);
  3357. __flush_cpu_slab(s, cpu);
  3358. local_irq_restore(flags);
  3359. }
  3360. up_read(&slub_lock);
  3361. break;
  3362. default:
  3363. break;
  3364. }
  3365. return NOTIFY_OK;
  3366. }
  3367. static struct notifier_block __cpuinitdata slab_notifier = {
  3368. .notifier_call = slab_cpuup_callback
  3369. };
  3370. #endif
  3371. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3372. {
  3373. struct kmem_cache *s;
  3374. void *ret;
  3375. if (unlikely(size > SLUB_MAX_SIZE))
  3376. return kmalloc_large(size, gfpflags);
  3377. s = get_slab(size, gfpflags);
  3378. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3379. return s;
  3380. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3381. /* Honor the call site pointer we received. */
  3382. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3383. return ret;
  3384. }
  3385. #ifdef CONFIG_NUMA
  3386. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3387. int node, unsigned long caller)
  3388. {
  3389. struct kmem_cache *s;
  3390. void *ret;
  3391. if (unlikely(size > SLUB_MAX_SIZE)) {
  3392. ret = kmalloc_large_node(size, gfpflags, node);
  3393. trace_kmalloc_node(caller, ret,
  3394. size, PAGE_SIZE << get_order(size),
  3395. gfpflags, node);
  3396. return ret;
  3397. }
  3398. s = get_slab(size, gfpflags);
  3399. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3400. return s;
  3401. ret = slab_alloc(s, gfpflags, node, caller);
  3402. /* Honor the call site pointer we received. */
  3403. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3404. return ret;
  3405. }
  3406. #endif
  3407. #ifdef CONFIG_SYSFS
  3408. static int count_inuse(struct page *page)
  3409. {
  3410. return page->inuse;
  3411. }
  3412. static int count_total(struct page *page)
  3413. {
  3414. return page->objects;
  3415. }
  3416. #endif
  3417. #ifdef CONFIG_SLUB_DEBUG
  3418. static int validate_slab(struct kmem_cache *s, struct page *page,
  3419. unsigned long *map)
  3420. {
  3421. void *p;
  3422. void *addr = page_address(page);
  3423. if (!check_slab(s, page) ||
  3424. !on_freelist(s, page, NULL))
  3425. return 0;
  3426. /* Now we know that a valid freelist exists */
  3427. bitmap_zero(map, page->objects);
  3428. get_map(s, page, map);
  3429. for_each_object(p, s, addr, page->objects) {
  3430. if (test_bit(slab_index(p, s, addr), map))
  3431. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3432. return 0;
  3433. }
  3434. for_each_object(p, s, addr, page->objects)
  3435. if (!test_bit(slab_index(p, s, addr), map))
  3436. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3437. return 0;
  3438. return 1;
  3439. }
  3440. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3441. unsigned long *map)
  3442. {
  3443. slab_lock(page);
  3444. validate_slab(s, page, map);
  3445. slab_unlock(page);
  3446. }
  3447. static int validate_slab_node(struct kmem_cache *s,
  3448. struct kmem_cache_node *n, unsigned long *map)
  3449. {
  3450. unsigned long count = 0;
  3451. struct page *page;
  3452. unsigned long flags;
  3453. spin_lock_irqsave(&n->list_lock, flags);
  3454. list_for_each_entry(page, &n->partial, lru) {
  3455. validate_slab_slab(s, page, map);
  3456. count++;
  3457. }
  3458. if (count != n->nr_partial)
  3459. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3460. "counter=%ld\n", s->name, count, n->nr_partial);
  3461. if (!(s->flags & SLAB_STORE_USER))
  3462. goto out;
  3463. list_for_each_entry(page, &n->full, lru) {
  3464. validate_slab_slab(s, page, map);
  3465. count++;
  3466. }
  3467. if (count != atomic_long_read(&n->nr_slabs))
  3468. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3469. "counter=%ld\n", s->name, count,
  3470. atomic_long_read(&n->nr_slabs));
  3471. out:
  3472. spin_unlock_irqrestore(&n->list_lock, flags);
  3473. return count;
  3474. }
  3475. static long validate_slab_cache(struct kmem_cache *s)
  3476. {
  3477. int node;
  3478. unsigned long count = 0;
  3479. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3480. sizeof(unsigned long), GFP_KERNEL);
  3481. if (!map)
  3482. return -ENOMEM;
  3483. flush_all(s);
  3484. for_each_node_state(node, N_NORMAL_MEMORY) {
  3485. struct kmem_cache_node *n = get_node(s, node);
  3486. count += validate_slab_node(s, n, map);
  3487. }
  3488. kfree(map);
  3489. return count;
  3490. }
  3491. /*
  3492. * Generate lists of code addresses where slabcache objects are allocated
  3493. * and freed.
  3494. */
  3495. struct location {
  3496. unsigned long count;
  3497. unsigned long addr;
  3498. long long sum_time;
  3499. long min_time;
  3500. long max_time;
  3501. long min_pid;
  3502. long max_pid;
  3503. DECLARE_BITMAP(cpus, NR_CPUS);
  3504. nodemask_t nodes;
  3505. };
  3506. struct loc_track {
  3507. unsigned long max;
  3508. unsigned long count;
  3509. struct location *loc;
  3510. };
  3511. static void free_loc_track(struct loc_track *t)
  3512. {
  3513. if (t->max)
  3514. free_pages((unsigned long)t->loc,
  3515. get_order(sizeof(struct location) * t->max));
  3516. }
  3517. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3518. {
  3519. struct location *l;
  3520. int order;
  3521. order = get_order(sizeof(struct location) * max);
  3522. l = (void *)__get_free_pages(flags, order);
  3523. if (!l)
  3524. return 0;
  3525. if (t->count) {
  3526. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3527. free_loc_track(t);
  3528. }
  3529. t->max = max;
  3530. t->loc = l;
  3531. return 1;
  3532. }
  3533. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3534. const struct track *track)
  3535. {
  3536. long start, end, pos;
  3537. struct location *l;
  3538. unsigned long caddr;
  3539. unsigned long age = jiffies - track->when;
  3540. start = -1;
  3541. end = t->count;
  3542. for ( ; ; ) {
  3543. pos = start + (end - start + 1) / 2;
  3544. /*
  3545. * There is nothing at "end". If we end up there
  3546. * we need to add something to before end.
  3547. */
  3548. if (pos == end)
  3549. break;
  3550. caddr = t->loc[pos].addr;
  3551. if (track->addr == caddr) {
  3552. l = &t->loc[pos];
  3553. l->count++;
  3554. if (track->when) {
  3555. l->sum_time += age;
  3556. if (age < l->min_time)
  3557. l->min_time = age;
  3558. if (age > l->max_time)
  3559. l->max_time = age;
  3560. if (track->pid < l->min_pid)
  3561. l->min_pid = track->pid;
  3562. if (track->pid > l->max_pid)
  3563. l->max_pid = track->pid;
  3564. cpumask_set_cpu(track->cpu,
  3565. to_cpumask(l->cpus));
  3566. }
  3567. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3568. return 1;
  3569. }
  3570. if (track->addr < caddr)
  3571. end = pos;
  3572. else
  3573. start = pos;
  3574. }
  3575. /*
  3576. * Not found. Insert new tracking element.
  3577. */
  3578. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3579. return 0;
  3580. l = t->loc + pos;
  3581. if (pos < t->count)
  3582. memmove(l + 1, l,
  3583. (t->count - pos) * sizeof(struct location));
  3584. t->count++;
  3585. l->count = 1;
  3586. l->addr = track->addr;
  3587. l->sum_time = age;
  3588. l->min_time = age;
  3589. l->max_time = age;
  3590. l->min_pid = track->pid;
  3591. l->max_pid = track->pid;
  3592. cpumask_clear(to_cpumask(l->cpus));
  3593. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3594. nodes_clear(l->nodes);
  3595. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3596. return 1;
  3597. }
  3598. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3599. struct page *page, enum track_item alloc,
  3600. unsigned long *map)
  3601. {
  3602. void *addr = page_address(page);
  3603. void *p;
  3604. bitmap_zero(map, page->objects);
  3605. get_map(s, page, map);
  3606. for_each_object(p, s, addr, page->objects)
  3607. if (!test_bit(slab_index(p, s, addr), map))
  3608. add_location(t, s, get_track(s, p, alloc));
  3609. }
  3610. static int list_locations(struct kmem_cache *s, char *buf,
  3611. enum track_item alloc)
  3612. {
  3613. int len = 0;
  3614. unsigned long i;
  3615. struct loc_track t = { 0, 0, NULL };
  3616. int node;
  3617. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3618. sizeof(unsigned long), GFP_KERNEL);
  3619. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3620. GFP_TEMPORARY)) {
  3621. kfree(map);
  3622. return sprintf(buf, "Out of memory\n");
  3623. }
  3624. /* Push back cpu slabs */
  3625. flush_all(s);
  3626. for_each_node_state(node, N_NORMAL_MEMORY) {
  3627. struct kmem_cache_node *n = get_node(s, node);
  3628. unsigned long flags;
  3629. struct page *page;
  3630. if (!atomic_long_read(&n->nr_slabs))
  3631. continue;
  3632. spin_lock_irqsave(&n->list_lock, flags);
  3633. list_for_each_entry(page, &n->partial, lru)
  3634. process_slab(&t, s, page, alloc, map);
  3635. list_for_each_entry(page, &n->full, lru)
  3636. process_slab(&t, s, page, alloc, map);
  3637. spin_unlock_irqrestore(&n->list_lock, flags);
  3638. }
  3639. for (i = 0; i < t.count; i++) {
  3640. struct location *l = &t.loc[i];
  3641. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3642. break;
  3643. len += sprintf(buf + len, "%7ld ", l->count);
  3644. if (l->addr)
  3645. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3646. else
  3647. len += sprintf(buf + len, "<not-available>");
  3648. if (l->sum_time != l->min_time) {
  3649. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3650. l->min_time,
  3651. (long)div_u64(l->sum_time, l->count),
  3652. l->max_time);
  3653. } else
  3654. len += sprintf(buf + len, " age=%ld",
  3655. l->min_time);
  3656. if (l->min_pid != l->max_pid)
  3657. len += sprintf(buf + len, " pid=%ld-%ld",
  3658. l->min_pid, l->max_pid);
  3659. else
  3660. len += sprintf(buf + len, " pid=%ld",
  3661. l->min_pid);
  3662. if (num_online_cpus() > 1 &&
  3663. !cpumask_empty(to_cpumask(l->cpus)) &&
  3664. len < PAGE_SIZE - 60) {
  3665. len += sprintf(buf + len, " cpus=");
  3666. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3667. to_cpumask(l->cpus));
  3668. }
  3669. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3670. len < PAGE_SIZE - 60) {
  3671. len += sprintf(buf + len, " nodes=");
  3672. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3673. l->nodes);
  3674. }
  3675. len += sprintf(buf + len, "\n");
  3676. }
  3677. free_loc_track(&t);
  3678. kfree(map);
  3679. if (!t.count)
  3680. len += sprintf(buf, "No data\n");
  3681. return len;
  3682. }
  3683. #endif
  3684. #ifdef SLUB_RESILIENCY_TEST
  3685. static void resiliency_test(void)
  3686. {
  3687. u8 *p;
  3688. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3689. printk(KERN_ERR "SLUB resiliency testing\n");
  3690. printk(KERN_ERR "-----------------------\n");
  3691. printk(KERN_ERR "A. Corruption after allocation\n");
  3692. p = kzalloc(16, GFP_KERNEL);
  3693. p[16] = 0x12;
  3694. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3695. " 0x12->0x%p\n\n", p + 16);
  3696. validate_slab_cache(kmalloc_caches[4]);
  3697. /* Hmmm... The next two are dangerous */
  3698. p = kzalloc(32, GFP_KERNEL);
  3699. p[32 + sizeof(void *)] = 0x34;
  3700. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3701. " 0x34 -> -0x%p\n", p);
  3702. printk(KERN_ERR
  3703. "If allocated object is overwritten then not detectable\n\n");
  3704. validate_slab_cache(kmalloc_caches[5]);
  3705. p = kzalloc(64, GFP_KERNEL);
  3706. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3707. *p = 0x56;
  3708. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3709. p);
  3710. printk(KERN_ERR
  3711. "If allocated object is overwritten then not detectable\n\n");
  3712. validate_slab_cache(kmalloc_caches[6]);
  3713. printk(KERN_ERR "\nB. Corruption after free\n");
  3714. p = kzalloc(128, GFP_KERNEL);
  3715. kfree(p);
  3716. *p = 0x78;
  3717. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3718. validate_slab_cache(kmalloc_caches[7]);
  3719. p = kzalloc(256, GFP_KERNEL);
  3720. kfree(p);
  3721. p[50] = 0x9a;
  3722. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3723. p);
  3724. validate_slab_cache(kmalloc_caches[8]);
  3725. p = kzalloc(512, GFP_KERNEL);
  3726. kfree(p);
  3727. p[512] = 0xab;
  3728. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3729. validate_slab_cache(kmalloc_caches[9]);
  3730. }
  3731. #else
  3732. #ifdef CONFIG_SYSFS
  3733. static void resiliency_test(void) {};
  3734. #endif
  3735. #endif
  3736. #ifdef CONFIG_SYSFS
  3737. enum slab_stat_type {
  3738. SL_ALL, /* All slabs */
  3739. SL_PARTIAL, /* Only partially allocated slabs */
  3740. SL_CPU, /* Only slabs used for cpu caches */
  3741. SL_OBJECTS, /* Determine allocated objects not slabs */
  3742. SL_TOTAL /* Determine object capacity not slabs */
  3743. };
  3744. #define SO_ALL (1 << SL_ALL)
  3745. #define SO_PARTIAL (1 << SL_PARTIAL)
  3746. #define SO_CPU (1 << SL_CPU)
  3747. #define SO_OBJECTS (1 << SL_OBJECTS)
  3748. #define SO_TOTAL (1 << SL_TOTAL)
  3749. static ssize_t show_slab_objects(struct kmem_cache *s,
  3750. char *buf, unsigned long flags)
  3751. {
  3752. unsigned long total = 0;
  3753. int node;
  3754. int x;
  3755. unsigned long *nodes;
  3756. unsigned long *per_cpu;
  3757. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3758. if (!nodes)
  3759. return -ENOMEM;
  3760. per_cpu = nodes + nr_node_ids;
  3761. if (flags & SO_CPU) {
  3762. int cpu;
  3763. for_each_possible_cpu(cpu) {
  3764. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3765. struct page *page;
  3766. if (!c || c->node < 0)
  3767. continue;
  3768. if (c->page) {
  3769. if (flags & SO_TOTAL)
  3770. x = c->page->objects;
  3771. else if (flags & SO_OBJECTS)
  3772. x = c->page->inuse;
  3773. else
  3774. x = 1;
  3775. total += x;
  3776. nodes[c->node] += x;
  3777. }
  3778. page = c->partial;
  3779. if (page) {
  3780. x = page->pobjects;
  3781. total += x;
  3782. nodes[c->node] += x;
  3783. }
  3784. per_cpu[c->node]++;
  3785. }
  3786. }
  3787. lock_memory_hotplug();
  3788. #ifdef CONFIG_SLUB_DEBUG
  3789. if (flags & SO_ALL) {
  3790. for_each_node_state(node, N_NORMAL_MEMORY) {
  3791. struct kmem_cache_node *n = get_node(s, node);
  3792. if (flags & SO_TOTAL)
  3793. x = atomic_long_read(&n->total_objects);
  3794. else if (flags & SO_OBJECTS)
  3795. x = atomic_long_read(&n->total_objects) -
  3796. count_partial(n, count_free);
  3797. else
  3798. x = atomic_long_read(&n->nr_slabs);
  3799. total += x;
  3800. nodes[node] += x;
  3801. }
  3802. } else
  3803. #endif
  3804. if (flags & SO_PARTIAL) {
  3805. for_each_node_state(node, N_NORMAL_MEMORY) {
  3806. struct kmem_cache_node *n = get_node(s, node);
  3807. if (flags & SO_TOTAL)
  3808. x = count_partial(n, count_total);
  3809. else if (flags & SO_OBJECTS)
  3810. x = count_partial(n, count_inuse);
  3811. else
  3812. x = n->nr_partial;
  3813. total += x;
  3814. nodes[node] += x;
  3815. }
  3816. }
  3817. x = sprintf(buf, "%lu", total);
  3818. #ifdef CONFIG_NUMA
  3819. for_each_node_state(node, N_NORMAL_MEMORY)
  3820. if (nodes[node])
  3821. x += sprintf(buf + x, " N%d=%lu",
  3822. node, nodes[node]);
  3823. #endif
  3824. unlock_memory_hotplug();
  3825. kfree(nodes);
  3826. return x + sprintf(buf + x, "\n");
  3827. }
  3828. #ifdef CONFIG_SLUB_DEBUG
  3829. static int any_slab_objects(struct kmem_cache *s)
  3830. {
  3831. int node;
  3832. for_each_online_node(node) {
  3833. struct kmem_cache_node *n = get_node(s, node);
  3834. if (!n)
  3835. continue;
  3836. if (atomic_long_read(&n->total_objects))
  3837. return 1;
  3838. }
  3839. return 0;
  3840. }
  3841. #endif
  3842. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3843. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3844. struct slab_attribute {
  3845. struct attribute attr;
  3846. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3847. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3848. };
  3849. #define SLAB_ATTR_RO(_name) \
  3850. static struct slab_attribute _name##_attr = \
  3851. __ATTR(_name, 0400, _name##_show, NULL)
  3852. #define SLAB_ATTR(_name) \
  3853. static struct slab_attribute _name##_attr = \
  3854. __ATTR(_name, 0600, _name##_show, _name##_store)
  3855. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3856. {
  3857. return sprintf(buf, "%d\n", s->size);
  3858. }
  3859. SLAB_ATTR_RO(slab_size);
  3860. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3861. {
  3862. return sprintf(buf, "%d\n", s->align);
  3863. }
  3864. SLAB_ATTR_RO(align);
  3865. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3866. {
  3867. return sprintf(buf, "%d\n", s->objsize);
  3868. }
  3869. SLAB_ATTR_RO(object_size);
  3870. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3871. {
  3872. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3873. }
  3874. SLAB_ATTR_RO(objs_per_slab);
  3875. static ssize_t order_store(struct kmem_cache *s,
  3876. const char *buf, size_t length)
  3877. {
  3878. unsigned long order;
  3879. int err;
  3880. err = strict_strtoul(buf, 10, &order);
  3881. if (err)
  3882. return err;
  3883. if (order > slub_max_order || order < slub_min_order)
  3884. return -EINVAL;
  3885. calculate_sizes(s, order);
  3886. return length;
  3887. }
  3888. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3889. {
  3890. return sprintf(buf, "%d\n", oo_order(s->oo));
  3891. }
  3892. SLAB_ATTR(order);
  3893. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3894. {
  3895. return sprintf(buf, "%lu\n", s->min_partial);
  3896. }
  3897. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3898. size_t length)
  3899. {
  3900. unsigned long min;
  3901. int err;
  3902. err = strict_strtoul(buf, 10, &min);
  3903. if (err)
  3904. return err;
  3905. set_min_partial(s, min);
  3906. return length;
  3907. }
  3908. SLAB_ATTR(min_partial);
  3909. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3910. {
  3911. return sprintf(buf, "%u\n", s->cpu_partial);
  3912. }
  3913. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3914. size_t length)
  3915. {
  3916. unsigned long objects;
  3917. int err;
  3918. err = strict_strtoul(buf, 10, &objects);
  3919. if (err)
  3920. return err;
  3921. s->cpu_partial = objects;
  3922. flush_all(s);
  3923. return length;
  3924. }
  3925. SLAB_ATTR(cpu_partial);
  3926. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3927. {
  3928. if (!s->ctor)
  3929. return 0;
  3930. return sprintf(buf, "%pS\n", s->ctor);
  3931. }
  3932. SLAB_ATTR_RO(ctor);
  3933. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3934. {
  3935. return sprintf(buf, "%d\n", s->refcount - 1);
  3936. }
  3937. SLAB_ATTR_RO(aliases);
  3938. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3939. {
  3940. return show_slab_objects(s, buf, SO_PARTIAL);
  3941. }
  3942. SLAB_ATTR_RO(partial);
  3943. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3944. {
  3945. return show_slab_objects(s, buf, SO_CPU);
  3946. }
  3947. SLAB_ATTR_RO(cpu_slabs);
  3948. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3949. {
  3950. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3951. }
  3952. SLAB_ATTR_RO(objects);
  3953. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3954. {
  3955. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3956. }
  3957. SLAB_ATTR_RO(objects_partial);
  3958. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3959. {
  3960. int objects = 0;
  3961. int pages = 0;
  3962. int cpu;
  3963. int len;
  3964. for_each_online_cpu(cpu) {
  3965. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3966. if (page) {
  3967. pages += page->pages;
  3968. objects += page->pobjects;
  3969. }
  3970. }
  3971. len = sprintf(buf, "%d(%d)", objects, pages);
  3972. #ifdef CONFIG_SMP
  3973. for_each_online_cpu(cpu) {
  3974. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3975. if (page && len < PAGE_SIZE - 20)
  3976. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3977. page->pobjects, page->pages);
  3978. }
  3979. #endif
  3980. return len + sprintf(buf + len, "\n");
  3981. }
  3982. SLAB_ATTR_RO(slabs_cpu_partial);
  3983. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3984. {
  3985. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3986. }
  3987. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3988. const char *buf, size_t length)
  3989. {
  3990. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3991. if (buf[0] == '1')
  3992. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3993. return length;
  3994. }
  3995. SLAB_ATTR(reclaim_account);
  3996. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3997. {
  3998. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3999. }
  4000. SLAB_ATTR_RO(hwcache_align);
  4001. #ifdef CONFIG_ZONE_DMA
  4002. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4003. {
  4004. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4005. }
  4006. SLAB_ATTR_RO(cache_dma);
  4007. #endif
  4008. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4009. {
  4010. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4011. }
  4012. SLAB_ATTR_RO(destroy_by_rcu);
  4013. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4014. {
  4015. return sprintf(buf, "%d\n", s->reserved);
  4016. }
  4017. SLAB_ATTR_RO(reserved);
  4018. #ifdef CONFIG_SLUB_DEBUG
  4019. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4020. {
  4021. return show_slab_objects(s, buf, SO_ALL);
  4022. }
  4023. SLAB_ATTR_RO(slabs);
  4024. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4025. {
  4026. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4027. }
  4028. SLAB_ATTR_RO(total_objects);
  4029. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4030. {
  4031. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4032. }
  4033. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4034. const char *buf, size_t length)
  4035. {
  4036. s->flags &= ~SLAB_DEBUG_FREE;
  4037. if (buf[0] == '1') {
  4038. s->flags &= ~__CMPXCHG_DOUBLE;
  4039. s->flags |= SLAB_DEBUG_FREE;
  4040. }
  4041. return length;
  4042. }
  4043. SLAB_ATTR(sanity_checks);
  4044. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4045. {
  4046. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4047. }
  4048. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4049. size_t length)
  4050. {
  4051. s->flags &= ~SLAB_TRACE;
  4052. if (buf[0] == '1') {
  4053. s->flags &= ~__CMPXCHG_DOUBLE;
  4054. s->flags |= SLAB_TRACE;
  4055. }
  4056. return length;
  4057. }
  4058. SLAB_ATTR(trace);
  4059. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4060. {
  4061. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4062. }
  4063. static ssize_t red_zone_store(struct kmem_cache *s,
  4064. const char *buf, size_t length)
  4065. {
  4066. if (any_slab_objects(s))
  4067. return -EBUSY;
  4068. s->flags &= ~SLAB_RED_ZONE;
  4069. if (buf[0] == '1') {
  4070. s->flags &= ~__CMPXCHG_DOUBLE;
  4071. s->flags |= SLAB_RED_ZONE;
  4072. }
  4073. calculate_sizes(s, -1);
  4074. return length;
  4075. }
  4076. SLAB_ATTR(red_zone);
  4077. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4078. {
  4079. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4080. }
  4081. static ssize_t poison_store(struct kmem_cache *s,
  4082. const char *buf, size_t length)
  4083. {
  4084. if (any_slab_objects(s))
  4085. return -EBUSY;
  4086. s->flags &= ~SLAB_POISON;
  4087. if (buf[0] == '1') {
  4088. s->flags &= ~__CMPXCHG_DOUBLE;
  4089. s->flags |= SLAB_POISON;
  4090. }
  4091. calculate_sizes(s, -1);
  4092. return length;
  4093. }
  4094. SLAB_ATTR(poison);
  4095. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4096. {
  4097. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4098. }
  4099. static ssize_t store_user_store(struct kmem_cache *s,
  4100. const char *buf, size_t length)
  4101. {
  4102. if (any_slab_objects(s))
  4103. return -EBUSY;
  4104. s->flags &= ~SLAB_STORE_USER;
  4105. if (buf[0] == '1') {
  4106. s->flags &= ~__CMPXCHG_DOUBLE;
  4107. s->flags |= SLAB_STORE_USER;
  4108. }
  4109. calculate_sizes(s, -1);
  4110. return length;
  4111. }
  4112. SLAB_ATTR(store_user);
  4113. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4114. {
  4115. return 0;
  4116. }
  4117. static ssize_t validate_store(struct kmem_cache *s,
  4118. const char *buf, size_t length)
  4119. {
  4120. int ret = -EINVAL;
  4121. if (buf[0] == '1') {
  4122. ret = validate_slab_cache(s);
  4123. if (ret >= 0)
  4124. ret = length;
  4125. }
  4126. return ret;
  4127. }
  4128. SLAB_ATTR(validate);
  4129. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4130. {
  4131. if (!(s->flags & SLAB_STORE_USER))
  4132. return -ENOSYS;
  4133. return list_locations(s, buf, TRACK_ALLOC);
  4134. }
  4135. SLAB_ATTR_RO(alloc_calls);
  4136. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4137. {
  4138. if (!(s->flags & SLAB_STORE_USER))
  4139. return -ENOSYS;
  4140. return list_locations(s, buf, TRACK_FREE);
  4141. }
  4142. SLAB_ATTR_RO(free_calls);
  4143. #endif /* CONFIG_SLUB_DEBUG */
  4144. #ifdef CONFIG_FAILSLAB
  4145. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4146. {
  4147. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4148. }
  4149. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4150. size_t length)
  4151. {
  4152. s->flags &= ~SLAB_FAILSLAB;
  4153. if (buf[0] == '1')
  4154. s->flags |= SLAB_FAILSLAB;
  4155. return length;
  4156. }
  4157. SLAB_ATTR(failslab);
  4158. #endif
  4159. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4160. {
  4161. return 0;
  4162. }
  4163. static ssize_t shrink_store(struct kmem_cache *s,
  4164. const char *buf, size_t length)
  4165. {
  4166. if (buf[0] == '1') {
  4167. int rc = kmem_cache_shrink(s);
  4168. if (rc)
  4169. return rc;
  4170. } else
  4171. return -EINVAL;
  4172. return length;
  4173. }
  4174. SLAB_ATTR(shrink);
  4175. #ifdef CONFIG_NUMA
  4176. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4177. {
  4178. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4179. }
  4180. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4181. const char *buf, size_t length)
  4182. {
  4183. unsigned long ratio;
  4184. int err;
  4185. err = strict_strtoul(buf, 10, &ratio);
  4186. if (err)
  4187. return err;
  4188. if (ratio <= 100)
  4189. s->remote_node_defrag_ratio = ratio * 10;
  4190. return length;
  4191. }
  4192. SLAB_ATTR(remote_node_defrag_ratio);
  4193. #endif
  4194. #ifdef CONFIG_SLUB_STATS
  4195. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4196. {
  4197. unsigned long sum = 0;
  4198. int cpu;
  4199. int len;
  4200. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4201. if (!data)
  4202. return -ENOMEM;
  4203. for_each_online_cpu(cpu) {
  4204. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4205. data[cpu] = x;
  4206. sum += x;
  4207. }
  4208. len = sprintf(buf, "%lu", sum);
  4209. #ifdef CONFIG_SMP
  4210. for_each_online_cpu(cpu) {
  4211. if (data[cpu] && len < PAGE_SIZE - 20)
  4212. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4213. }
  4214. #endif
  4215. kfree(data);
  4216. return len + sprintf(buf + len, "\n");
  4217. }
  4218. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4219. {
  4220. int cpu;
  4221. for_each_online_cpu(cpu)
  4222. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4223. }
  4224. #define STAT_ATTR(si, text) \
  4225. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4226. { \
  4227. return show_stat(s, buf, si); \
  4228. } \
  4229. static ssize_t text##_store(struct kmem_cache *s, \
  4230. const char *buf, size_t length) \
  4231. { \
  4232. if (buf[0] != '0') \
  4233. return -EINVAL; \
  4234. clear_stat(s, si); \
  4235. return length; \
  4236. } \
  4237. SLAB_ATTR(text); \
  4238. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4239. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4240. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4241. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4242. STAT_ATTR(FREE_FROZEN, free_frozen);
  4243. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4244. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4245. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4246. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4247. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4248. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4249. STAT_ATTR(FREE_SLAB, free_slab);
  4250. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4251. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4252. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4253. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4254. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4255. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4256. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4257. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4258. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4259. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4260. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4261. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4262. #endif
  4263. static struct attribute *slab_attrs[] = {
  4264. &slab_size_attr.attr,
  4265. &object_size_attr.attr,
  4266. &objs_per_slab_attr.attr,
  4267. &order_attr.attr,
  4268. &min_partial_attr.attr,
  4269. &cpu_partial_attr.attr,
  4270. &objects_attr.attr,
  4271. &objects_partial_attr.attr,
  4272. &partial_attr.attr,
  4273. &cpu_slabs_attr.attr,
  4274. &ctor_attr.attr,
  4275. &aliases_attr.attr,
  4276. &align_attr.attr,
  4277. &hwcache_align_attr.attr,
  4278. &reclaim_account_attr.attr,
  4279. &destroy_by_rcu_attr.attr,
  4280. &shrink_attr.attr,
  4281. &reserved_attr.attr,
  4282. &slabs_cpu_partial_attr.attr,
  4283. #ifdef CONFIG_SLUB_DEBUG
  4284. &total_objects_attr.attr,
  4285. &slabs_attr.attr,
  4286. &sanity_checks_attr.attr,
  4287. &trace_attr.attr,
  4288. &red_zone_attr.attr,
  4289. &poison_attr.attr,
  4290. &store_user_attr.attr,
  4291. &validate_attr.attr,
  4292. &alloc_calls_attr.attr,
  4293. &free_calls_attr.attr,
  4294. #endif
  4295. #ifdef CONFIG_ZONE_DMA
  4296. &cache_dma_attr.attr,
  4297. #endif
  4298. #ifdef CONFIG_NUMA
  4299. &remote_node_defrag_ratio_attr.attr,
  4300. #endif
  4301. #ifdef CONFIG_SLUB_STATS
  4302. &alloc_fastpath_attr.attr,
  4303. &alloc_slowpath_attr.attr,
  4304. &free_fastpath_attr.attr,
  4305. &free_slowpath_attr.attr,
  4306. &free_frozen_attr.attr,
  4307. &free_add_partial_attr.attr,
  4308. &free_remove_partial_attr.attr,
  4309. &alloc_from_partial_attr.attr,
  4310. &alloc_slab_attr.attr,
  4311. &alloc_refill_attr.attr,
  4312. &alloc_node_mismatch_attr.attr,
  4313. &free_slab_attr.attr,
  4314. &cpuslab_flush_attr.attr,
  4315. &deactivate_full_attr.attr,
  4316. &deactivate_empty_attr.attr,
  4317. &deactivate_to_head_attr.attr,
  4318. &deactivate_to_tail_attr.attr,
  4319. &deactivate_remote_frees_attr.attr,
  4320. &deactivate_bypass_attr.attr,
  4321. &order_fallback_attr.attr,
  4322. &cmpxchg_double_fail_attr.attr,
  4323. &cmpxchg_double_cpu_fail_attr.attr,
  4324. &cpu_partial_alloc_attr.attr,
  4325. &cpu_partial_free_attr.attr,
  4326. #endif
  4327. #ifdef CONFIG_FAILSLAB
  4328. &failslab_attr.attr,
  4329. #endif
  4330. NULL
  4331. };
  4332. static struct attribute_group slab_attr_group = {
  4333. .attrs = slab_attrs,
  4334. };
  4335. static ssize_t slab_attr_show(struct kobject *kobj,
  4336. struct attribute *attr,
  4337. char *buf)
  4338. {
  4339. struct slab_attribute *attribute;
  4340. struct kmem_cache *s;
  4341. int err;
  4342. attribute = to_slab_attr(attr);
  4343. s = to_slab(kobj);
  4344. if (!attribute->show)
  4345. return -EIO;
  4346. err = attribute->show(s, buf);
  4347. return err;
  4348. }
  4349. static ssize_t slab_attr_store(struct kobject *kobj,
  4350. struct attribute *attr,
  4351. const char *buf, size_t len)
  4352. {
  4353. struct slab_attribute *attribute;
  4354. struct kmem_cache *s;
  4355. int err;
  4356. attribute = to_slab_attr(attr);
  4357. s = to_slab(kobj);
  4358. if (!attribute->store)
  4359. return -EIO;
  4360. err = attribute->store(s, buf, len);
  4361. return err;
  4362. }
  4363. static void kmem_cache_release(struct kobject *kobj)
  4364. {
  4365. struct kmem_cache *s = to_slab(kobj);
  4366. kfree(s->name);
  4367. kfree(s);
  4368. }
  4369. static const struct sysfs_ops slab_sysfs_ops = {
  4370. .show = slab_attr_show,
  4371. .store = slab_attr_store,
  4372. };
  4373. static struct kobj_type slab_ktype = {
  4374. .sysfs_ops = &slab_sysfs_ops,
  4375. .release = kmem_cache_release
  4376. };
  4377. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4378. {
  4379. struct kobj_type *ktype = get_ktype(kobj);
  4380. if (ktype == &slab_ktype)
  4381. return 1;
  4382. return 0;
  4383. }
  4384. static const struct kset_uevent_ops slab_uevent_ops = {
  4385. .filter = uevent_filter,
  4386. };
  4387. static struct kset *slab_kset;
  4388. #define ID_STR_LENGTH 64
  4389. /* Create a unique string id for a slab cache:
  4390. *
  4391. * Format :[flags-]size
  4392. */
  4393. static char *create_unique_id(struct kmem_cache *s)
  4394. {
  4395. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4396. char *p = name;
  4397. BUG_ON(!name);
  4398. *p++ = ':';
  4399. /*
  4400. * First flags affecting slabcache operations. We will only
  4401. * get here for aliasable slabs so we do not need to support
  4402. * too many flags. The flags here must cover all flags that
  4403. * are matched during merging to guarantee that the id is
  4404. * unique.
  4405. */
  4406. if (s->flags & SLAB_CACHE_DMA)
  4407. *p++ = 'd';
  4408. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4409. *p++ = 'a';
  4410. if (s->flags & SLAB_DEBUG_FREE)
  4411. *p++ = 'F';
  4412. if (!(s->flags & SLAB_NOTRACK))
  4413. *p++ = 't';
  4414. if (p != name + 1)
  4415. *p++ = '-';
  4416. p += sprintf(p, "%07d", s->size);
  4417. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4418. return name;
  4419. }
  4420. static int sysfs_slab_add(struct kmem_cache *s)
  4421. {
  4422. int err;
  4423. const char *name;
  4424. int unmergeable;
  4425. if (slab_state < SYSFS)
  4426. /* Defer until later */
  4427. return 0;
  4428. unmergeable = slab_unmergeable(s);
  4429. if (unmergeable) {
  4430. /*
  4431. * Slabcache can never be merged so we can use the name proper.
  4432. * This is typically the case for debug situations. In that
  4433. * case we can catch duplicate names easily.
  4434. */
  4435. sysfs_remove_link(&slab_kset->kobj, s->name);
  4436. name = s->name;
  4437. } else {
  4438. /*
  4439. * Create a unique name for the slab as a target
  4440. * for the symlinks.
  4441. */
  4442. name = create_unique_id(s);
  4443. }
  4444. s->kobj.kset = slab_kset;
  4445. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4446. if (err) {
  4447. kobject_put(&s->kobj);
  4448. return err;
  4449. }
  4450. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4451. if (err) {
  4452. kobject_del(&s->kobj);
  4453. kobject_put(&s->kobj);
  4454. return err;
  4455. }
  4456. kobject_uevent(&s->kobj, KOBJ_ADD);
  4457. if (!unmergeable) {
  4458. /* Setup first alias */
  4459. sysfs_slab_alias(s, s->name);
  4460. kfree(name);
  4461. }
  4462. return 0;
  4463. }
  4464. static void sysfs_slab_remove(struct kmem_cache *s)
  4465. {
  4466. if (slab_state < SYSFS)
  4467. /*
  4468. * Sysfs has not been setup yet so no need to remove the
  4469. * cache from sysfs.
  4470. */
  4471. return;
  4472. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4473. kobject_del(&s->kobj);
  4474. kobject_put(&s->kobj);
  4475. }
  4476. /*
  4477. * Need to buffer aliases during bootup until sysfs becomes
  4478. * available lest we lose that information.
  4479. */
  4480. struct saved_alias {
  4481. struct kmem_cache *s;
  4482. const char *name;
  4483. struct saved_alias *next;
  4484. };
  4485. static struct saved_alias *alias_list;
  4486. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4487. {
  4488. struct saved_alias *al;
  4489. if (slab_state == SYSFS) {
  4490. /*
  4491. * If we have a leftover link then remove it.
  4492. */
  4493. sysfs_remove_link(&slab_kset->kobj, name);
  4494. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4495. }
  4496. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4497. if (!al)
  4498. return -ENOMEM;
  4499. al->s = s;
  4500. al->name = name;
  4501. al->next = alias_list;
  4502. alias_list = al;
  4503. return 0;
  4504. }
  4505. static int __init slab_sysfs_init(void)
  4506. {
  4507. struct kmem_cache *s;
  4508. int err;
  4509. down_write(&slub_lock);
  4510. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4511. if (!slab_kset) {
  4512. up_write(&slub_lock);
  4513. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4514. return -ENOSYS;
  4515. }
  4516. slab_state = SYSFS;
  4517. list_for_each_entry(s, &slab_caches, list) {
  4518. err = sysfs_slab_add(s);
  4519. if (err)
  4520. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4521. " to sysfs\n", s->name);
  4522. }
  4523. while (alias_list) {
  4524. struct saved_alias *al = alias_list;
  4525. alias_list = alias_list->next;
  4526. err = sysfs_slab_alias(al->s, al->name);
  4527. if (err)
  4528. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4529. " %s to sysfs\n", s->name);
  4530. kfree(al);
  4531. }
  4532. up_write(&slub_lock);
  4533. resiliency_test();
  4534. return 0;
  4535. }
  4536. __initcall(slab_sysfs_init);
  4537. #endif /* CONFIG_SYSFS */
  4538. /*
  4539. * The /proc/slabinfo ABI
  4540. */
  4541. #ifdef CONFIG_SLABINFO
  4542. static void print_slabinfo_header(struct seq_file *m)
  4543. {
  4544. seq_puts(m, "slabinfo - version: 2.1\n");
  4545. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4546. "<objperslab> <pagesperslab>");
  4547. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4548. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4549. seq_putc(m, '\n');
  4550. }
  4551. static void *s_start(struct seq_file *m, loff_t *pos)
  4552. {
  4553. loff_t n = *pos;
  4554. down_read(&slub_lock);
  4555. if (!n)
  4556. print_slabinfo_header(m);
  4557. return seq_list_start(&slab_caches, *pos);
  4558. }
  4559. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4560. {
  4561. return seq_list_next(p, &slab_caches, pos);
  4562. }
  4563. static void s_stop(struct seq_file *m, void *p)
  4564. {
  4565. up_read(&slub_lock);
  4566. }
  4567. static int s_show(struct seq_file *m, void *p)
  4568. {
  4569. unsigned long nr_partials = 0;
  4570. unsigned long nr_slabs = 0;
  4571. unsigned long nr_inuse = 0;
  4572. unsigned long nr_objs = 0;
  4573. unsigned long nr_free = 0;
  4574. struct kmem_cache *s;
  4575. int node;
  4576. s = list_entry(p, struct kmem_cache, list);
  4577. for_each_online_node(node) {
  4578. struct kmem_cache_node *n = get_node(s, node);
  4579. if (!n)
  4580. continue;
  4581. nr_partials += n->nr_partial;
  4582. nr_slabs += atomic_long_read(&n->nr_slabs);
  4583. nr_objs += atomic_long_read(&n->total_objects);
  4584. nr_free += count_partial(n, count_free);
  4585. }
  4586. nr_inuse = nr_objs - nr_free;
  4587. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4588. nr_objs, s->size, oo_objects(s->oo),
  4589. (1 << oo_order(s->oo)));
  4590. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4591. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4592. 0UL);
  4593. seq_putc(m, '\n');
  4594. return 0;
  4595. }
  4596. static const struct seq_operations slabinfo_op = {
  4597. .start = s_start,
  4598. .next = s_next,
  4599. .stop = s_stop,
  4600. .show = s_show,
  4601. };
  4602. static int slabinfo_open(struct inode *inode, struct file *file)
  4603. {
  4604. return seq_open(file, &slabinfo_op);
  4605. }
  4606. static const struct file_operations proc_slabinfo_operations = {
  4607. .open = slabinfo_open,
  4608. .read = seq_read,
  4609. .llseek = seq_lseek,
  4610. .release = seq_release,
  4611. };
  4612. static int __init slab_proc_init(void)
  4613. {
  4614. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4615. return 0;
  4616. }
  4617. module_init(slab_proc_init);
  4618. #endif /* CONFIG_SLABINFO */