tlbex.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/init.h>
  29. #include <linux/cache.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/war.h>
  33. #include <asm/uasm.h>
  34. #include <asm/setup.h>
  35. /*
  36. * TLB load/store/modify handlers.
  37. *
  38. * Only the fastpath gets synthesized at runtime, the slowpath for
  39. * do_page_fault remains normal asm.
  40. */
  41. extern void tlb_do_page_fault_0(void);
  42. extern void tlb_do_page_fault_1(void);
  43. struct work_registers {
  44. int r1;
  45. int r2;
  46. int r3;
  47. };
  48. struct tlb_reg_save {
  49. unsigned long a;
  50. unsigned long b;
  51. } ____cacheline_aligned_in_smp;
  52. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  53. static inline int r45k_bvahwbug(void)
  54. {
  55. /* XXX: We should probe for the presence of this bug, but we don't. */
  56. return 0;
  57. }
  58. static inline int r4k_250MHZhwbug(void)
  59. {
  60. /* XXX: We should probe for the presence of this bug, but we don't. */
  61. return 0;
  62. }
  63. static inline int __maybe_unused bcm1250_m3_war(void)
  64. {
  65. return BCM1250_M3_WAR;
  66. }
  67. static inline int __maybe_unused r10000_llsc_war(void)
  68. {
  69. return R10000_LLSC_WAR;
  70. }
  71. static int use_bbit_insns(void)
  72. {
  73. switch (current_cpu_type()) {
  74. case CPU_CAVIUM_OCTEON:
  75. case CPU_CAVIUM_OCTEON_PLUS:
  76. case CPU_CAVIUM_OCTEON2:
  77. return 1;
  78. default:
  79. return 0;
  80. }
  81. }
  82. static int use_lwx_insns(void)
  83. {
  84. switch (current_cpu_type()) {
  85. case CPU_CAVIUM_OCTEON2:
  86. return 1;
  87. default:
  88. return 0;
  89. }
  90. }
  91. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  92. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  93. static bool scratchpad_available(void)
  94. {
  95. return true;
  96. }
  97. static int scratchpad_offset(int i)
  98. {
  99. /*
  100. * CVMSEG starts at address -32768 and extends for
  101. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  102. */
  103. i += 1; /* Kernel use starts at the top and works down. */
  104. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  105. }
  106. #else
  107. static bool scratchpad_available(void)
  108. {
  109. return false;
  110. }
  111. static int scratchpad_offset(int i)
  112. {
  113. BUG();
  114. /* Really unreachable, but evidently some GCC want this. */
  115. return 0;
  116. }
  117. #endif
  118. /*
  119. * Found by experiment: At least some revisions of the 4kc throw under
  120. * some circumstances a machine check exception, triggered by invalid
  121. * values in the index register. Delaying the tlbp instruction until
  122. * after the next branch, plus adding an additional nop in front of
  123. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  124. * why; it's not an issue caused by the core RTL.
  125. *
  126. */
  127. static int __cpuinit m4kc_tlbp_war(void)
  128. {
  129. return (current_cpu_data.processor_id & 0xffff00) ==
  130. (PRID_COMP_MIPS | PRID_IMP_4KC);
  131. }
  132. /* Handle labels (which must be positive integers). */
  133. enum label_id {
  134. label_second_part = 1,
  135. label_leave,
  136. label_vmalloc,
  137. label_vmalloc_done,
  138. label_tlbw_hazard_0,
  139. label_split = label_tlbw_hazard_0 + 8,
  140. label_tlbl_goaround1,
  141. label_tlbl_goaround2,
  142. label_nopage_tlbl,
  143. label_nopage_tlbs,
  144. label_nopage_tlbm,
  145. label_smp_pgtable_change,
  146. label_r3000_write_probe_fail,
  147. label_large_segbits_fault,
  148. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  149. label_tlb_huge_update,
  150. #endif
  151. };
  152. UASM_L_LA(_second_part)
  153. UASM_L_LA(_leave)
  154. UASM_L_LA(_vmalloc)
  155. UASM_L_LA(_vmalloc_done)
  156. /* _tlbw_hazard_x is handled differently. */
  157. UASM_L_LA(_split)
  158. UASM_L_LA(_tlbl_goaround1)
  159. UASM_L_LA(_tlbl_goaround2)
  160. UASM_L_LA(_nopage_tlbl)
  161. UASM_L_LA(_nopage_tlbs)
  162. UASM_L_LA(_nopage_tlbm)
  163. UASM_L_LA(_smp_pgtable_change)
  164. UASM_L_LA(_r3000_write_probe_fail)
  165. UASM_L_LA(_large_segbits_fault)
  166. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  167. UASM_L_LA(_tlb_huge_update)
  168. #endif
  169. static int __cpuinitdata hazard_instance;
  170. static void __cpuinit uasm_bgezl_hazard(u32 **p,
  171. struct uasm_reloc **r,
  172. int instance)
  173. {
  174. switch (instance) {
  175. case 0 ... 7:
  176. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  177. return;
  178. default:
  179. BUG();
  180. }
  181. }
  182. static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
  183. u32 **p,
  184. int instance)
  185. {
  186. switch (instance) {
  187. case 0 ... 7:
  188. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  189. break;
  190. default:
  191. BUG();
  192. }
  193. }
  194. /*
  195. * pgtable bits are assigned dynamically depending on processor feature
  196. * and statically based on kernel configuration. This spits out the actual
  197. * values the kernel is using. Required to make sense from disassembled
  198. * TLB exception handlers.
  199. */
  200. static void output_pgtable_bits_defines(void)
  201. {
  202. #define pr_define(fmt, ...) \
  203. pr_debug("#define " fmt, ##__VA_ARGS__)
  204. pr_debug("#include <asm/asm.h>\n");
  205. pr_debug("#include <asm/regdef.h>\n");
  206. pr_debug("\n");
  207. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  208. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  209. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  210. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  211. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  212. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  213. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  214. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  215. #endif
  216. if (cpu_has_rixi) {
  217. #ifdef _PAGE_NO_EXEC_SHIFT
  218. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  219. #endif
  220. #ifdef _PAGE_NO_READ_SHIFT
  221. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  222. #endif
  223. }
  224. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  225. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  226. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  227. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  228. pr_debug("\n");
  229. }
  230. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  231. {
  232. int i;
  233. pr_debug("LEAF(%s)\n", symbol);
  234. pr_debug("\t.set push\n");
  235. pr_debug("\t.set noreorder\n");
  236. for (i = 0; i < count; i++)
  237. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  238. pr_debug("\t.set\tpop\n");
  239. pr_debug("\tEND(%s)\n", symbol);
  240. }
  241. /* The only general purpose registers allowed in TLB handlers. */
  242. #define K0 26
  243. #define K1 27
  244. /* Some CP0 registers */
  245. #define C0_INDEX 0, 0
  246. #define C0_ENTRYLO0 2, 0
  247. #define C0_TCBIND 2, 2
  248. #define C0_ENTRYLO1 3, 0
  249. #define C0_CONTEXT 4, 0
  250. #define C0_PAGEMASK 5, 0
  251. #define C0_BADVADDR 8, 0
  252. #define C0_ENTRYHI 10, 0
  253. #define C0_EPC 14, 0
  254. #define C0_XCONTEXT 20, 0
  255. #ifdef CONFIG_64BIT
  256. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  257. #else
  258. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  259. #endif
  260. /* The worst case length of the handler is around 18 instructions for
  261. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  262. * Maximum space available is 32 instructions for R3000 and 64
  263. * instructions for R4000.
  264. *
  265. * We deliberately chose a buffer size of 128, so we won't scribble
  266. * over anything important on overflow before we panic.
  267. */
  268. static u32 tlb_handler[128] __cpuinitdata;
  269. /* simply assume worst case size for labels and relocs */
  270. static struct uasm_label labels[128] __cpuinitdata;
  271. static struct uasm_reloc relocs[128] __cpuinitdata;
  272. static int check_for_high_segbits __cpuinitdata;
  273. static unsigned int kscratch_used_mask __cpuinitdata;
  274. static inline int __maybe_unused c0_kscratch(void)
  275. {
  276. switch (current_cpu_type()) {
  277. case CPU_XLP:
  278. case CPU_XLR:
  279. return 22;
  280. default:
  281. return 31;
  282. }
  283. }
  284. static int __cpuinit allocate_kscratch(void)
  285. {
  286. int r;
  287. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  288. r = ffs(a);
  289. if (r == 0)
  290. return -1;
  291. r--; /* make it zero based */
  292. kscratch_used_mask |= (1 << r);
  293. return r;
  294. }
  295. static int scratch_reg __cpuinitdata;
  296. static int pgd_reg __cpuinitdata;
  297. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  298. static struct work_registers __cpuinit build_get_work_registers(u32 **p)
  299. {
  300. struct work_registers r;
  301. int smp_processor_id_reg;
  302. int smp_processor_id_sel;
  303. int smp_processor_id_shift;
  304. if (scratch_reg >= 0) {
  305. /* Save in CPU local C0_KScratch? */
  306. UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
  307. r.r1 = K0;
  308. r.r2 = K1;
  309. r.r3 = 1;
  310. return r;
  311. }
  312. if (num_possible_cpus() > 1) {
  313. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  314. smp_processor_id_shift = 51;
  315. smp_processor_id_reg = 20; /* XContext */
  316. smp_processor_id_sel = 0;
  317. #else
  318. # ifdef CONFIG_32BIT
  319. smp_processor_id_shift = 25;
  320. smp_processor_id_reg = 4; /* Context */
  321. smp_processor_id_sel = 0;
  322. # endif
  323. # ifdef CONFIG_64BIT
  324. smp_processor_id_shift = 26;
  325. smp_processor_id_reg = 4; /* Context */
  326. smp_processor_id_sel = 0;
  327. # endif
  328. #endif
  329. /* Get smp_processor_id */
  330. UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
  331. UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
  332. /* handler_reg_save index in K0 */
  333. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  334. UASM_i_LA(p, K1, (long)&handler_reg_save);
  335. UASM_i_ADDU(p, K0, K0, K1);
  336. } else {
  337. UASM_i_LA(p, K0, (long)&handler_reg_save);
  338. }
  339. /* K0 now points to save area, save $1 and $2 */
  340. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  341. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  342. r.r1 = K1;
  343. r.r2 = 1;
  344. r.r3 = 2;
  345. return r;
  346. }
  347. static void __cpuinit build_restore_work_registers(u32 **p)
  348. {
  349. if (scratch_reg >= 0) {
  350. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  351. return;
  352. }
  353. /* K0 already points to save area, restore $1 and $2 */
  354. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  355. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  356. }
  357. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  358. /*
  359. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  360. * we cannot do r3000 under these circumstances.
  361. *
  362. * Declare pgd_current here instead of including mmu_context.h to avoid type
  363. * conflicts for tlbmiss_handler_setup_pgd
  364. */
  365. extern unsigned long pgd_current[];
  366. /*
  367. * The R3000 TLB handler is simple.
  368. */
  369. static void __cpuinit build_r3000_tlb_refill_handler(void)
  370. {
  371. long pgdc = (long)pgd_current;
  372. u32 *p;
  373. memset(tlb_handler, 0, sizeof(tlb_handler));
  374. p = tlb_handler;
  375. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  376. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  377. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  378. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  379. uasm_i_sll(&p, K0, K0, 2);
  380. uasm_i_addu(&p, K1, K1, K0);
  381. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  382. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  383. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  384. uasm_i_addu(&p, K1, K1, K0);
  385. uasm_i_lw(&p, K0, 0, K1);
  386. uasm_i_nop(&p); /* load delay */
  387. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  388. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  389. uasm_i_tlbwr(&p); /* cp0 delay */
  390. uasm_i_jr(&p, K1);
  391. uasm_i_rfe(&p); /* branch delay */
  392. if (p > tlb_handler + 32)
  393. panic("TLB refill handler space exceeded");
  394. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  395. (unsigned int)(p - tlb_handler));
  396. memcpy((void *)ebase, tlb_handler, 0x80);
  397. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  398. }
  399. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  400. /*
  401. * The R4000 TLB handler is much more complicated. We have two
  402. * consecutive handler areas with 32 instructions space each.
  403. * Since they aren't used at the same time, we can overflow in the
  404. * other one.To keep things simple, we first assume linear space,
  405. * then we relocate it to the final handler layout as needed.
  406. */
  407. static u32 final_handler[64] __cpuinitdata;
  408. /*
  409. * Hazards
  410. *
  411. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  412. * 2. A timing hazard exists for the TLBP instruction.
  413. *
  414. * stalling_instruction
  415. * TLBP
  416. *
  417. * The JTLB is being read for the TLBP throughout the stall generated by the
  418. * previous instruction. This is not really correct as the stalling instruction
  419. * can modify the address used to access the JTLB. The failure symptom is that
  420. * the TLBP instruction will use an address created for the stalling instruction
  421. * and not the address held in C0_ENHI and thus report the wrong results.
  422. *
  423. * The software work-around is to not allow the instruction preceding the TLBP
  424. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  425. *
  426. * Errata 2 will not be fixed. This errata is also on the R5000.
  427. *
  428. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  429. */
  430. static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
  431. {
  432. switch (current_cpu_type()) {
  433. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  434. case CPU_R4600:
  435. case CPU_R4700:
  436. case CPU_R5000:
  437. case CPU_NEVADA:
  438. uasm_i_nop(p);
  439. uasm_i_tlbp(p);
  440. break;
  441. default:
  442. uasm_i_tlbp(p);
  443. break;
  444. }
  445. }
  446. /*
  447. * Write random or indexed TLB entry, and care about the hazards from
  448. * the preceding mtc0 and for the following eret.
  449. */
  450. enum tlb_write_entry { tlb_random, tlb_indexed };
  451. static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
  452. struct uasm_reloc **r,
  453. enum tlb_write_entry wmode)
  454. {
  455. void(*tlbw)(u32 **) = NULL;
  456. switch (wmode) {
  457. case tlb_random: tlbw = uasm_i_tlbwr; break;
  458. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  459. }
  460. if (cpu_has_mips_r2) {
  461. /*
  462. * The architecture spec says an ehb is required here,
  463. * but a number of cores do not have the hazard and
  464. * using an ehb causes an expensive pipeline stall.
  465. */
  466. switch (current_cpu_type()) {
  467. case CPU_M14KC:
  468. case CPU_74K:
  469. break;
  470. default:
  471. uasm_i_ehb(p);
  472. break;
  473. }
  474. tlbw(p);
  475. return;
  476. }
  477. switch (current_cpu_type()) {
  478. case CPU_R4000PC:
  479. case CPU_R4000SC:
  480. case CPU_R4000MC:
  481. case CPU_R4400PC:
  482. case CPU_R4400SC:
  483. case CPU_R4400MC:
  484. /*
  485. * This branch uses up a mtc0 hazard nop slot and saves
  486. * two nops after the tlbw instruction.
  487. */
  488. uasm_bgezl_hazard(p, r, hazard_instance);
  489. tlbw(p);
  490. uasm_bgezl_label(l, p, hazard_instance);
  491. hazard_instance++;
  492. uasm_i_nop(p);
  493. break;
  494. case CPU_R4600:
  495. case CPU_R4700:
  496. uasm_i_nop(p);
  497. tlbw(p);
  498. uasm_i_nop(p);
  499. break;
  500. case CPU_R5000:
  501. case CPU_NEVADA:
  502. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  503. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  504. tlbw(p);
  505. break;
  506. case CPU_R4300:
  507. case CPU_5KC:
  508. case CPU_TX49XX:
  509. case CPU_PR4450:
  510. case CPU_XLR:
  511. uasm_i_nop(p);
  512. tlbw(p);
  513. break;
  514. case CPU_R10000:
  515. case CPU_R12000:
  516. case CPU_R14000:
  517. case CPU_4KC:
  518. case CPU_4KEC:
  519. case CPU_M14KC:
  520. case CPU_M14KEC:
  521. case CPU_SB1:
  522. case CPU_SB1A:
  523. case CPU_4KSC:
  524. case CPU_20KC:
  525. case CPU_25KF:
  526. case CPU_BMIPS32:
  527. case CPU_BMIPS3300:
  528. case CPU_BMIPS4350:
  529. case CPU_BMIPS4380:
  530. case CPU_BMIPS5000:
  531. case CPU_LOONGSON2:
  532. case CPU_R5500:
  533. if (m4kc_tlbp_war())
  534. uasm_i_nop(p);
  535. case CPU_ALCHEMY:
  536. tlbw(p);
  537. break;
  538. case CPU_RM7000:
  539. uasm_i_nop(p);
  540. uasm_i_nop(p);
  541. uasm_i_nop(p);
  542. uasm_i_nop(p);
  543. tlbw(p);
  544. break;
  545. case CPU_VR4111:
  546. case CPU_VR4121:
  547. case CPU_VR4122:
  548. case CPU_VR4181:
  549. case CPU_VR4181A:
  550. uasm_i_nop(p);
  551. uasm_i_nop(p);
  552. tlbw(p);
  553. uasm_i_nop(p);
  554. uasm_i_nop(p);
  555. break;
  556. case CPU_VR4131:
  557. case CPU_VR4133:
  558. case CPU_R5432:
  559. uasm_i_nop(p);
  560. uasm_i_nop(p);
  561. tlbw(p);
  562. break;
  563. case CPU_JZRISC:
  564. tlbw(p);
  565. uasm_i_nop(p);
  566. break;
  567. default:
  568. panic("No TLB refill handler yet (CPU type: %d)",
  569. current_cpu_data.cputype);
  570. break;
  571. }
  572. }
  573. static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  574. unsigned int reg)
  575. {
  576. if (cpu_has_rixi) {
  577. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  578. } else {
  579. #ifdef CONFIG_64BIT_PHYS_ADDR
  580. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  581. #else
  582. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  583. #endif
  584. }
  585. }
  586. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  587. static __cpuinit void build_restore_pagemask(u32 **p,
  588. struct uasm_reloc **r,
  589. unsigned int tmp,
  590. enum label_id lid,
  591. int restore_scratch)
  592. {
  593. if (restore_scratch) {
  594. /* Reset default page size */
  595. if (PM_DEFAULT_MASK >> 16) {
  596. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  597. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  598. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  599. uasm_il_b(p, r, lid);
  600. } else if (PM_DEFAULT_MASK) {
  601. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  602. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  603. uasm_il_b(p, r, lid);
  604. } else {
  605. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  606. uasm_il_b(p, r, lid);
  607. }
  608. if (scratch_reg >= 0)
  609. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  610. else
  611. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  612. } else {
  613. /* Reset default page size */
  614. if (PM_DEFAULT_MASK >> 16) {
  615. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  616. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  617. uasm_il_b(p, r, lid);
  618. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  619. } else if (PM_DEFAULT_MASK) {
  620. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  621. uasm_il_b(p, r, lid);
  622. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  623. } else {
  624. uasm_il_b(p, r, lid);
  625. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  626. }
  627. }
  628. }
  629. static __cpuinit void build_huge_tlb_write_entry(u32 **p,
  630. struct uasm_label **l,
  631. struct uasm_reloc **r,
  632. unsigned int tmp,
  633. enum tlb_write_entry wmode,
  634. int restore_scratch)
  635. {
  636. /* Set huge page tlb entry size */
  637. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  638. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  639. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  640. build_tlb_write_entry(p, l, r, wmode);
  641. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  642. }
  643. /*
  644. * Check if Huge PTE is present, if so then jump to LABEL.
  645. */
  646. static void __cpuinit
  647. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  648. unsigned int pmd, int lid)
  649. {
  650. UASM_i_LW(p, tmp, 0, pmd);
  651. if (use_bbit_insns()) {
  652. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  653. } else {
  654. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  655. uasm_il_bnez(p, r, tmp, lid);
  656. }
  657. }
  658. static __cpuinit void build_huge_update_entries(u32 **p,
  659. unsigned int pte,
  660. unsigned int tmp)
  661. {
  662. int small_sequence;
  663. /*
  664. * A huge PTE describes an area the size of the
  665. * configured huge page size. This is twice the
  666. * of the large TLB entry size we intend to use.
  667. * A TLB entry half the size of the configured
  668. * huge page size is configured into entrylo0
  669. * and entrylo1 to cover the contiguous huge PTE
  670. * address space.
  671. */
  672. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  673. /* We can clobber tmp. It isn't used after this.*/
  674. if (!small_sequence)
  675. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  676. build_convert_pte_to_entrylo(p, pte);
  677. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  678. /* convert to entrylo1 */
  679. if (small_sequence)
  680. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  681. else
  682. UASM_i_ADDU(p, pte, pte, tmp);
  683. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  684. }
  685. static __cpuinit void build_huge_handler_tail(u32 **p,
  686. struct uasm_reloc **r,
  687. struct uasm_label **l,
  688. unsigned int pte,
  689. unsigned int ptr)
  690. {
  691. #ifdef CONFIG_SMP
  692. UASM_i_SC(p, pte, 0, ptr);
  693. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  694. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  695. #else
  696. UASM_i_SW(p, pte, 0, ptr);
  697. #endif
  698. build_huge_update_entries(p, pte, ptr);
  699. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  700. }
  701. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  702. #ifdef CONFIG_64BIT
  703. /*
  704. * TMP and PTR are scratch.
  705. * TMP will be clobbered, PTR will hold the pmd entry.
  706. */
  707. static void __cpuinit
  708. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  709. unsigned int tmp, unsigned int ptr)
  710. {
  711. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  712. long pgdc = (long)pgd_current;
  713. #endif
  714. /*
  715. * The vmalloc handling is not in the hotpath.
  716. */
  717. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  718. if (check_for_high_segbits) {
  719. /*
  720. * The kernel currently implicitely assumes that the
  721. * MIPS SEGBITS parameter for the processor is
  722. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  723. * allocate virtual addresses outside the maximum
  724. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  725. * that doesn't prevent user code from accessing the
  726. * higher xuseg addresses. Here, we make sure that
  727. * everything but the lower xuseg addresses goes down
  728. * the module_alloc/vmalloc path.
  729. */
  730. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  731. uasm_il_bnez(p, r, ptr, label_vmalloc);
  732. } else {
  733. uasm_il_bltz(p, r, tmp, label_vmalloc);
  734. }
  735. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  736. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  737. if (pgd_reg != -1) {
  738. /* pgd is in pgd_reg */
  739. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  740. } else {
  741. /*
  742. * &pgd << 11 stored in CONTEXT [23..63].
  743. */
  744. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  745. /* Clear lower 23 bits of context. */
  746. uasm_i_dins(p, ptr, 0, 0, 23);
  747. /* 1 0 1 0 1 << 6 xkphys cached */
  748. uasm_i_ori(p, ptr, ptr, 0x540);
  749. uasm_i_drotr(p, ptr, ptr, 11);
  750. }
  751. #elif defined(CONFIG_SMP)
  752. # ifdef CONFIG_MIPS_MT_SMTC
  753. /*
  754. * SMTC uses TCBind value as "CPU" index
  755. */
  756. uasm_i_mfc0(p, ptr, C0_TCBIND);
  757. uasm_i_dsrl_safe(p, ptr, ptr, 19);
  758. # else
  759. /*
  760. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  761. * stored in CONTEXT.
  762. */
  763. uasm_i_dmfc0(p, ptr, C0_CONTEXT);
  764. uasm_i_dsrl_safe(p, ptr, ptr, 23);
  765. # endif
  766. UASM_i_LA_mostly(p, tmp, pgdc);
  767. uasm_i_daddu(p, ptr, ptr, tmp);
  768. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  769. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  770. #else
  771. UASM_i_LA_mostly(p, ptr, pgdc);
  772. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  773. #endif
  774. uasm_l_vmalloc_done(l, *p);
  775. /* get pgd offset in bytes */
  776. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  777. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  778. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  779. #ifndef __PAGETABLE_PMD_FOLDED
  780. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  781. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  782. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  783. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  784. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  785. #endif
  786. }
  787. /*
  788. * BVADDR is the faulting address, PTR is scratch.
  789. * PTR will hold the pgd for vmalloc.
  790. */
  791. static void __cpuinit
  792. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  793. unsigned int bvaddr, unsigned int ptr,
  794. enum vmalloc64_mode mode)
  795. {
  796. long swpd = (long)swapper_pg_dir;
  797. int single_insn_swpd;
  798. int did_vmalloc_branch = 0;
  799. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  800. uasm_l_vmalloc(l, *p);
  801. if (mode != not_refill && check_for_high_segbits) {
  802. if (single_insn_swpd) {
  803. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  804. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  805. did_vmalloc_branch = 1;
  806. /* fall through */
  807. } else {
  808. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  809. }
  810. }
  811. if (!did_vmalloc_branch) {
  812. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  813. uasm_il_b(p, r, label_vmalloc_done);
  814. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  815. } else {
  816. UASM_i_LA_mostly(p, ptr, swpd);
  817. uasm_il_b(p, r, label_vmalloc_done);
  818. if (uasm_in_compat_space_p(swpd))
  819. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  820. else
  821. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  822. }
  823. }
  824. if (mode != not_refill && check_for_high_segbits) {
  825. uasm_l_large_segbits_fault(l, *p);
  826. /*
  827. * We get here if we are an xsseg address, or if we are
  828. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  829. *
  830. * Ignoring xsseg (assume disabled so would generate
  831. * (address errors?), the only remaining possibility
  832. * is the upper xuseg addresses. On processors with
  833. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  834. * addresses would have taken an address error. We try
  835. * to mimic that here by taking a load/istream page
  836. * fault.
  837. */
  838. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  839. uasm_i_jr(p, ptr);
  840. if (mode == refill_scratch) {
  841. if (scratch_reg >= 0)
  842. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  843. else
  844. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  845. } else {
  846. uasm_i_nop(p);
  847. }
  848. }
  849. }
  850. #else /* !CONFIG_64BIT */
  851. /*
  852. * TMP and PTR are scratch.
  853. * TMP will be clobbered, PTR will hold the pgd entry.
  854. */
  855. static void __cpuinit __maybe_unused
  856. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  857. {
  858. long pgdc = (long)pgd_current;
  859. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  860. #ifdef CONFIG_SMP
  861. #ifdef CONFIG_MIPS_MT_SMTC
  862. /*
  863. * SMTC uses TCBind value as "CPU" index
  864. */
  865. uasm_i_mfc0(p, ptr, C0_TCBIND);
  866. UASM_i_LA_mostly(p, tmp, pgdc);
  867. uasm_i_srl(p, ptr, ptr, 19);
  868. #else
  869. /*
  870. * smp_processor_id() << 2 is stored in CONTEXT.
  871. */
  872. uasm_i_mfc0(p, ptr, C0_CONTEXT);
  873. UASM_i_LA_mostly(p, tmp, pgdc);
  874. uasm_i_srl(p, ptr, ptr, 23);
  875. #endif
  876. uasm_i_addu(p, ptr, tmp, ptr);
  877. #else
  878. UASM_i_LA_mostly(p, ptr, pgdc);
  879. #endif
  880. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  881. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  882. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  883. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  884. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  885. }
  886. #endif /* !CONFIG_64BIT */
  887. static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
  888. {
  889. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  890. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  891. switch (current_cpu_type()) {
  892. case CPU_VR41XX:
  893. case CPU_VR4111:
  894. case CPU_VR4121:
  895. case CPU_VR4122:
  896. case CPU_VR4131:
  897. case CPU_VR4181:
  898. case CPU_VR4181A:
  899. case CPU_VR4133:
  900. shift += 2;
  901. break;
  902. default:
  903. break;
  904. }
  905. if (shift)
  906. UASM_i_SRL(p, ctx, ctx, shift);
  907. uasm_i_andi(p, ctx, ctx, mask);
  908. }
  909. static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  910. {
  911. /*
  912. * Bug workaround for the Nevada. It seems as if under certain
  913. * circumstances the move from cp0_context might produce a
  914. * bogus result when the mfc0 instruction and its consumer are
  915. * in a different cacheline or a load instruction, probably any
  916. * memory reference, is between them.
  917. */
  918. switch (current_cpu_type()) {
  919. case CPU_NEVADA:
  920. UASM_i_LW(p, ptr, 0, ptr);
  921. GET_CONTEXT(p, tmp); /* get context reg */
  922. break;
  923. default:
  924. GET_CONTEXT(p, tmp); /* get context reg */
  925. UASM_i_LW(p, ptr, 0, ptr);
  926. break;
  927. }
  928. build_adjust_context(p, tmp);
  929. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  930. }
  931. static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
  932. unsigned int ptep)
  933. {
  934. /*
  935. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  936. * Kernel is a special case. Only a few CPUs use it.
  937. */
  938. #ifdef CONFIG_64BIT_PHYS_ADDR
  939. if (cpu_has_64bits) {
  940. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  941. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  942. if (cpu_has_rixi) {
  943. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  944. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  945. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  946. } else {
  947. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  948. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  949. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  950. }
  951. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  952. } else {
  953. int pte_off_even = sizeof(pte_t) / 2;
  954. int pte_off_odd = pte_off_even + sizeof(pte_t);
  955. /* The pte entries are pre-shifted */
  956. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  957. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  958. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  959. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  960. }
  961. #else
  962. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  963. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  964. if (r45k_bvahwbug())
  965. build_tlb_probe_entry(p);
  966. if (cpu_has_rixi) {
  967. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  968. if (r4k_250MHZhwbug())
  969. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  970. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  971. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  972. } else {
  973. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  974. if (r4k_250MHZhwbug())
  975. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  976. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  977. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  978. if (r45k_bvahwbug())
  979. uasm_i_mfc0(p, tmp, C0_INDEX);
  980. }
  981. if (r4k_250MHZhwbug())
  982. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  983. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  984. #endif
  985. }
  986. struct mips_huge_tlb_info {
  987. int huge_pte;
  988. int restore_scratch;
  989. };
  990. static struct mips_huge_tlb_info __cpuinit
  991. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  992. struct uasm_reloc **r, unsigned int tmp,
  993. unsigned int ptr, int c0_scratch_reg)
  994. {
  995. struct mips_huge_tlb_info rv;
  996. unsigned int even, odd;
  997. int vmalloc_branch_delay_filled = 0;
  998. const int scratch = 1; /* Our extra working register */
  999. rv.huge_pte = scratch;
  1000. rv.restore_scratch = 0;
  1001. if (check_for_high_segbits) {
  1002. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  1003. if (pgd_reg != -1)
  1004. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  1005. else
  1006. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  1007. if (c0_scratch_reg >= 0)
  1008. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1009. else
  1010. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  1011. uasm_i_dsrl_safe(p, scratch, tmp,
  1012. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1013. uasm_il_bnez(p, r, scratch, label_vmalloc);
  1014. if (pgd_reg == -1) {
  1015. vmalloc_branch_delay_filled = 1;
  1016. /* Clear lower 23 bits of context. */
  1017. uasm_i_dins(p, ptr, 0, 0, 23);
  1018. }
  1019. } else {
  1020. if (pgd_reg != -1)
  1021. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  1022. else
  1023. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  1024. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  1025. if (c0_scratch_reg >= 0)
  1026. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1027. else
  1028. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  1029. if (pgd_reg == -1)
  1030. /* Clear lower 23 bits of context. */
  1031. uasm_i_dins(p, ptr, 0, 0, 23);
  1032. uasm_il_bltz(p, r, tmp, label_vmalloc);
  1033. }
  1034. if (pgd_reg == -1) {
  1035. vmalloc_branch_delay_filled = 1;
  1036. /* 1 0 1 0 1 << 6 xkphys cached */
  1037. uasm_i_ori(p, ptr, ptr, 0x540);
  1038. uasm_i_drotr(p, ptr, ptr, 11);
  1039. }
  1040. #ifdef __PAGETABLE_PMD_FOLDED
  1041. #define LOC_PTEP scratch
  1042. #else
  1043. #define LOC_PTEP ptr
  1044. #endif
  1045. if (!vmalloc_branch_delay_filled)
  1046. /* get pgd offset in bytes */
  1047. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1048. uasm_l_vmalloc_done(l, *p);
  1049. /*
  1050. * tmp ptr
  1051. * fall-through case = badvaddr *pgd_current
  1052. * vmalloc case = badvaddr swapper_pg_dir
  1053. */
  1054. if (vmalloc_branch_delay_filled)
  1055. /* get pgd offset in bytes */
  1056. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1057. #ifdef __PAGETABLE_PMD_FOLDED
  1058. GET_CONTEXT(p, tmp); /* get context reg */
  1059. #endif
  1060. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1061. if (use_lwx_insns()) {
  1062. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1063. } else {
  1064. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1065. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1066. }
  1067. #ifndef __PAGETABLE_PMD_FOLDED
  1068. /* get pmd offset in bytes */
  1069. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1070. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1071. GET_CONTEXT(p, tmp); /* get context reg */
  1072. if (use_lwx_insns()) {
  1073. UASM_i_LWX(p, scratch, scratch, ptr);
  1074. } else {
  1075. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1076. UASM_i_LW(p, scratch, 0, ptr);
  1077. }
  1078. #endif
  1079. /* Adjust the context during the load latency. */
  1080. build_adjust_context(p, tmp);
  1081. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1082. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1083. /*
  1084. * The in the LWX case we don't want to do the load in the
  1085. * delay slot. It cannot issue in the same cycle and may be
  1086. * speculative and unneeded.
  1087. */
  1088. if (use_lwx_insns())
  1089. uasm_i_nop(p);
  1090. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1091. /* build_update_entries */
  1092. if (use_lwx_insns()) {
  1093. even = ptr;
  1094. odd = tmp;
  1095. UASM_i_LWX(p, even, scratch, tmp);
  1096. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1097. UASM_i_LWX(p, odd, scratch, tmp);
  1098. } else {
  1099. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1100. even = tmp;
  1101. odd = ptr;
  1102. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1103. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1104. }
  1105. if (cpu_has_rixi) {
  1106. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1107. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1108. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1109. } else {
  1110. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1111. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1112. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1113. }
  1114. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1115. if (c0_scratch_reg >= 0) {
  1116. UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1117. build_tlb_write_entry(p, l, r, tlb_random);
  1118. uasm_l_leave(l, *p);
  1119. rv.restore_scratch = 1;
  1120. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1121. build_tlb_write_entry(p, l, r, tlb_random);
  1122. uasm_l_leave(l, *p);
  1123. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1124. } else {
  1125. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1126. build_tlb_write_entry(p, l, r, tlb_random);
  1127. uasm_l_leave(l, *p);
  1128. rv.restore_scratch = 1;
  1129. }
  1130. uasm_i_eret(p); /* return from trap */
  1131. return rv;
  1132. }
  1133. /*
  1134. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1135. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1136. * slots before the XTLB refill exception handler which belong to the
  1137. * unused TLB refill exception.
  1138. */
  1139. #define MIPS64_REFILL_INSNS 32
  1140. static void __cpuinit build_r4000_tlb_refill_handler(void)
  1141. {
  1142. u32 *p = tlb_handler;
  1143. struct uasm_label *l = labels;
  1144. struct uasm_reloc *r = relocs;
  1145. u32 *f;
  1146. unsigned int final_len;
  1147. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1148. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1149. memset(tlb_handler, 0, sizeof(tlb_handler));
  1150. memset(labels, 0, sizeof(labels));
  1151. memset(relocs, 0, sizeof(relocs));
  1152. memset(final_handler, 0, sizeof(final_handler));
  1153. if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
  1154. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1155. scratch_reg);
  1156. vmalloc_mode = refill_scratch;
  1157. } else {
  1158. htlb_info.huge_pte = K0;
  1159. htlb_info.restore_scratch = 0;
  1160. vmalloc_mode = refill_noscratch;
  1161. /*
  1162. * create the plain linear handler
  1163. */
  1164. if (bcm1250_m3_war()) {
  1165. unsigned int segbits = 44;
  1166. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1167. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1168. uasm_i_xor(&p, K0, K0, K1);
  1169. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1170. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1171. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1172. uasm_i_or(&p, K0, K0, K1);
  1173. uasm_il_bnez(&p, &r, K0, label_leave);
  1174. /* No need for uasm_i_nop */
  1175. }
  1176. #ifdef CONFIG_64BIT
  1177. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1178. #else
  1179. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1180. #endif
  1181. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1182. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1183. #endif
  1184. build_get_ptep(&p, K0, K1);
  1185. build_update_entries(&p, K0, K1);
  1186. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1187. uasm_l_leave(&l, p);
  1188. uasm_i_eret(&p); /* return from trap */
  1189. }
  1190. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1191. uasm_l_tlb_huge_update(&l, p);
  1192. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1193. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1194. htlb_info.restore_scratch);
  1195. #endif
  1196. #ifdef CONFIG_64BIT
  1197. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1198. #endif
  1199. /*
  1200. * Overflow check: For the 64bit handler, we need at least one
  1201. * free instruction slot for the wrap-around branch. In worst
  1202. * case, if the intended insertion point is a delay slot, we
  1203. * need three, with the second nop'ed and the third being
  1204. * unused.
  1205. */
  1206. /* Loongson2 ebase is different than r4k, we have more space */
  1207. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1208. if ((p - tlb_handler) > 64)
  1209. panic("TLB refill handler space exceeded");
  1210. #else
  1211. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1212. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1213. && uasm_insn_has_bdelay(relocs,
  1214. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1215. panic("TLB refill handler space exceeded");
  1216. #endif
  1217. /*
  1218. * Now fold the handler in the TLB refill handler space.
  1219. */
  1220. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1221. f = final_handler;
  1222. /* Simplest case, just copy the handler. */
  1223. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1224. final_len = p - tlb_handler;
  1225. #else /* CONFIG_64BIT */
  1226. f = final_handler + MIPS64_REFILL_INSNS;
  1227. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1228. /* Just copy the handler. */
  1229. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1230. final_len = p - tlb_handler;
  1231. } else {
  1232. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1233. const enum label_id ls = label_tlb_huge_update;
  1234. #else
  1235. const enum label_id ls = label_vmalloc;
  1236. #endif
  1237. u32 *split;
  1238. int ov = 0;
  1239. int i;
  1240. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1241. ;
  1242. BUG_ON(i == ARRAY_SIZE(labels));
  1243. split = labels[i].addr;
  1244. /*
  1245. * See if we have overflown one way or the other.
  1246. */
  1247. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1248. split < p - MIPS64_REFILL_INSNS)
  1249. ov = 1;
  1250. if (ov) {
  1251. /*
  1252. * Split two instructions before the end. One
  1253. * for the branch and one for the instruction
  1254. * in the delay slot.
  1255. */
  1256. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1257. /*
  1258. * If the branch would fall in a delay slot,
  1259. * we must back up an additional instruction
  1260. * so that it is no longer in a delay slot.
  1261. */
  1262. if (uasm_insn_has_bdelay(relocs, split - 1))
  1263. split--;
  1264. }
  1265. /* Copy first part of the handler. */
  1266. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1267. f += split - tlb_handler;
  1268. if (ov) {
  1269. /* Insert branch. */
  1270. uasm_l_split(&l, final_handler);
  1271. uasm_il_b(&f, &r, label_split);
  1272. if (uasm_insn_has_bdelay(relocs, split))
  1273. uasm_i_nop(&f);
  1274. else {
  1275. uasm_copy_handler(relocs, labels,
  1276. split, split + 1, f);
  1277. uasm_move_labels(labels, f, f + 1, -1);
  1278. f++;
  1279. split++;
  1280. }
  1281. }
  1282. /* Copy the rest of the handler. */
  1283. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1284. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1285. (p - split);
  1286. }
  1287. #endif /* CONFIG_64BIT */
  1288. uasm_resolve_relocs(relocs, labels);
  1289. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1290. final_len);
  1291. memcpy((void *)ebase, final_handler, 0x100);
  1292. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1293. }
  1294. extern u32 handle_tlbl[], handle_tlbl_end[];
  1295. extern u32 handle_tlbs[], handle_tlbs_end[];
  1296. extern u32 handle_tlbm[], handle_tlbm_end[];
  1297. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1298. extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
  1299. static void __cpuinit build_r4000_setup_pgd(void)
  1300. {
  1301. const int a0 = 4;
  1302. const int a1 = 5;
  1303. u32 *p = tlbmiss_handler_setup_pgd_array;
  1304. const int tlbmiss_handler_setup_pgd_size =
  1305. tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
  1306. struct uasm_label *l = labels;
  1307. struct uasm_reloc *r = relocs;
  1308. memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
  1309. sizeof(tlbmiss_handler_setup_pgd[0]));
  1310. memset(labels, 0, sizeof(labels));
  1311. memset(relocs, 0, sizeof(relocs));
  1312. pgd_reg = allocate_kscratch();
  1313. if (pgd_reg == -1) {
  1314. /* PGD << 11 in c0_Context */
  1315. /*
  1316. * If it is a ckseg0 address, convert to a physical
  1317. * address. Shifting right by 29 and adding 4 will
  1318. * result in zero for these addresses.
  1319. *
  1320. */
  1321. UASM_i_SRA(&p, a1, a0, 29);
  1322. UASM_i_ADDIU(&p, a1, a1, 4);
  1323. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1324. uasm_i_nop(&p);
  1325. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1326. uasm_l_tlbl_goaround1(&l, p);
  1327. UASM_i_SLL(&p, a0, a0, 11);
  1328. uasm_i_jr(&p, 31);
  1329. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1330. } else {
  1331. /* PGD in c0_KScratch */
  1332. uasm_i_jr(&p, 31);
  1333. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1334. }
  1335. if (p >= tlbmiss_handler_setup_pgd_end)
  1336. panic("tlbmiss_handler_setup_pgd space exceeded");
  1337. uasm_resolve_relocs(relocs, labels);
  1338. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1339. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1340. dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
  1341. tlbmiss_handler_setup_pgd_size);
  1342. }
  1343. #endif
  1344. static void __cpuinit
  1345. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1346. {
  1347. #ifdef CONFIG_SMP
  1348. # ifdef CONFIG_64BIT_PHYS_ADDR
  1349. if (cpu_has_64bits)
  1350. uasm_i_lld(p, pte, 0, ptr);
  1351. else
  1352. # endif
  1353. UASM_i_LL(p, pte, 0, ptr);
  1354. #else
  1355. # ifdef CONFIG_64BIT_PHYS_ADDR
  1356. if (cpu_has_64bits)
  1357. uasm_i_ld(p, pte, 0, ptr);
  1358. else
  1359. # endif
  1360. UASM_i_LW(p, pte, 0, ptr);
  1361. #endif
  1362. }
  1363. static void __cpuinit
  1364. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1365. unsigned int mode)
  1366. {
  1367. #ifdef CONFIG_64BIT_PHYS_ADDR
  1368. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1369. #endif
  1370. uasm_i_ori(p, pte, pte, mode);
  1371. #ifdef CONFIG_SMP
  1372. # ifdef CONFIG_64BIT_PHYS_ADDR
  1373. if (cpu_has_64bits)
  1374. uasm_i_scd(p, pte, 0, ptr);
  1375. else
  1376. # endif
  1377. UASM_i_SC(p, pte, 0, ptr);
  1378. if (r10000_llsc_war())
  1379. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1380. else
  1381. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1382. # ifdef CONFIG_64BIT_PHYS_ADDR
  1383. if (!cpu_has_64bits) {
  1384. /* no uasm_i_nop needed */
  1385. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1386. uasm_i_ori(p, pte, pte, hwmode);
  1387. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1388. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1389. /* no uasm_i_nop needed */
  1390. uasm_i_lw(p, pte, 0, ptr);
  1391. } else
  1392. uasm_i_nop(p);
  1393. # else
  1394. uasm_i_nop(p);
  1395. # endif
  1396. #else
  1397. # ifdef CONFIG_64BIT_PHYS_ADDR
  1398. if (cpu_has_64bits)
  1399. uasm_i_sd(p, pte, 0, ptr);
  1400. else
  1401. # endif
  1402. UASM_i_SW(p, pte, 0, ptr);
  1403. # ifdef CONFIG_64BIT_PHYS_ADDR
  1404. if (!cpu_has_64bits) {
  1405. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1406. uasm_i_ori(p, pte, pte, hwmode);
  1407. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1408. uasm_i_lw(p, pte, 0, ptr);
  1409. }
  1410. # endif
  1411. #endif
  1412. }
  1413. /*
  1414. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1415. * the page table where this PTE is located, PTE will be re-loaded
  1416. * with it's original value.
  1417. */
  1418. static void __cpuinit
  1419. build_pte_present(u32 **p, struct uasm_reloc **r,
  1420. int pte, int ptr, int scratch, enum label_id lid)
  1421. {
  1422. int t = scratch >= 0 ? scratch : pte;
  1423. if (cpu_has_rixi) {
  1424. if (use_bbit_insns()) {
  1425. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1426. uasm_i_nop(p);
  1427. } else {
  1428. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1429. uasm_il_beqz(p, r, t, lid);
  1430. if (pte == t)
  1431. /* You lose the SMP race :-(*/
  1432. iPTE_LW(p, pte, ptr);
  1433. }
  1434. } else {
  1435. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1436. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1437. uasm_il_bnez(p, r, t, lid);
  1438. if (pte == t)
  1439. /* You lose the SMP race :-(*/
  1440. iPTE_LW(p, pte, ptr);
  1441. }
  1442. }
  1443. /* Make PTE valid, store result in PTR. */
  1444. static void __cpuinit
  1445. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1446. unsigned int ptr)
  1447. {
  1448. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1449. iPTE_SW(p, r, pte, ptr, mode);
  1450. }
  1451. /*
  1452. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1453. * restore PTE with value from PTR when done.
  1454. */
  1455. static void __cpuinit
  1456. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1457. unsigned int pte, unsigned int ptr, int scratch,
  1458. enum label_id lid)
  1459. {
  1460. int t = scratch >= 0 ? scratch : pte;
  1461. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1462. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1463. uasm_il_bnez(p, r, t, lid);
  1464. if (pte == t)
  1465. /* You lose the SMP race :-(*/
  1466. iPTE_LW(p, pte, ptr);
  1467. else
  1468. uasm_i_nop(p);
  1469. }
  1470. /* Make PTE writable, update software status bits as well, then store
  1471. * at PTR.
  1472. */
  1473. static void __cpuinit
  1474. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1475. unsigned int ptr)
  1476. {
  1477. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1478. | _PAGE_DIRTY);
  1479. iPTE_SW(p, r, pte, ptr, mode);
  1480. }
  1481. /*
  1482. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1483. * restore PTE with value from PTR when done.
  1484. */
  1485. static void __cpuinit
  1486. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1487. unsigned int pte, unsigned int ptr, int scratch,
  1488. enum label_id lid)
  1489. {
  1490. if (use_bbit_insns()) {
  1491. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1492. uasm_i_nop(p);
  1493. } else {
  1494. int t = scratch >= 0 ? scratch : pte;
  1495. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1496. uasm_il_beqz(p, r, t, lid);
  1497. if (pte == t)
  1498. /* You lose the SMP race :-(*/
  1499. iPTE_LW(p, pte, ptr);
  1500. }
  1501. }
  1502. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1503. /*
  1504. * R3000 style TLB load/store/modify handlers.
  1505. */
  1506. /*
  1507. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1508. * Then it returns.
  1509. */
  1510. static void __cpuinit
  1511. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1512. {
  1513. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1514. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1515. uasm_i_tlbwi(p);
  1516. uasm_i_jr(p, tmp);
  1517. uasm_i_rfe(p); /* branch delay */
  1518. }
  1519. /*
  1520. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1521. * or tlbwr as appropriate. This is because the index register
  1522. * may have the probe fail bit set as a result of a trap on a
  1523. * kseg2 access, i.e. without refill. Then it returns.
  1524. */
  1525. static void __cpuinit
  1526. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1527. struct uasm_reloc **r, unsigned int pte,
  1528. unsigned int tmp)
  1529. {
  1530. uasm_i_mfc0(p, tmp, C0_INDEX);
  1531. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1532. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1533. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1534. uasm_i_tlbwi(p); /* cp0 delay */
  1535. uasm_i_jr(p, tmp);
  1536. uasm_i_rfe(p); /* branch delay */
  1537. uasm_l_r3000_write_probe_fail(l, *p);
  1538. uasm_i_tlbwr(p); /* cp0 delay */
  1539. uasm_i_jr(p, tmp);
  1540. uasm_i_rfe(p); /* branch delay */
  1541. }
  1542. static void __cpuinit
  1543. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1544. unsigned int ptr)
  1545. {
  1546. long pgdc = (long)pgd_current;
  1547. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1548. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1549. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1550. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1551. uasm_i_sll(p, pte, pte, 2);
  1552. uasm_i_addu(p, ptr, ptr, pte);
  1553. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1554. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1555. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1556. uasm_i_addu(p, ptr, ptr, pte);
  1557. uasm_i_lw(p, pte, 0, ptr);
  1558. uasm_i_tlbp(p); /* load delay */
  1559. }
  1560. static void __cpuinit build_r3000_tlb_load_handler(void)
  1561. {
  1562. u32 *p = handle_tlbl;
  1563. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1564. struct uasm_label *l = labels;
  1565. struct uasm_reloc *r = relocs;
  1566. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1567. memset(labels, 0, sizeof(labels));
  1568. memset(relocs, 0, sizeof(relocs));
  1569. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1570. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1571. uasm_i_nop(&p); /* load delay */
  1572. build_make_valid(&p, &r, K0, K1);
  1573. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1574. uasm_l_nopage_tlbl(&l, p);
  1575. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1576. uasm_i_nop(&p);
  1577. if (p >= handle_tlbl_end)
  1578. panic("TLB load handler fastpath space exceeded");
  1579. uasm_resolve_relocs(relocs, labels);
  1580. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1581. (unsigned int)(p - handle_tlbl));
  1582. dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
  1583. }
  1584. static void __cpuinit build_r3000_tlb_store_handler(void)
  1585. {
  1586. u32 *p = handle_tlbs;
  1587. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1588. struct uasm_label *l = labels;
  1589. struct uasm_reloc *r = relocs;
  1590. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1591. memset(labels, 0, sizeof(labels));
  1592. memset(relocs, 0, sizeof(relocs));
  1593. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1594. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1595. uasm_i_nop(&p); /* load delay */
  1596. build_make_write(&p, &r, K0, K1);
  1597. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1598. uasm_l_nopage_tlbs(&l, p);
  1599. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1600. uasm_i_nop(&p);
  1601. if (p >= handle_tlbs)
  1602. panic("TLB store handler fastpath space exceeded");
  1603. uasm_resolve_relocs(relocs, labels);
  1604. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1605. (unsigned int)(p - handle_tlbs));
  1606. dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
  1607. }
  1608. static void __cpuinit build_r3000_tlb_modify_handler(void)
  1609. {
  1610. u32 *p = handle_tlbm;
  1611. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1612. struct uasm_label *l = labels;
  1613. struct uasm_reloc *r = relocs;
  1614. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1615. memset(labels, 0, sizeof(labels));
  1616. memset(relocs, 0, sizeof(relocs));
  1617. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1618. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1619. uasm_i_nop(&p); /* load delay */
  1620. build_make_write(&p, &r, K0, K1);
  1621. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1622. uasm_l_nopage_tlbm(&l, p);
  1623. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1624. uasm_i_nop(&p);
  1625. if (p >= handle_tlbm_end)
  1626. panic("TLB modify handler fastpath space exceeded");
  1627. uasm_resolve_relocs(relocs, labels);
  1628. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1629. (unsigned int)(p - handle_tlbm));
  1630. dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1631. }
  1632. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1633. /*
  1634. * R4000 style TLB load/store/modify handlers.
  1635. */
  1636. static struct work_registers __cpuinit
  1637. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1638. struct uasm_reloc **r)
  1639. {
  1640. struct work_registers wr = build_get_work_registers(p);
  1641. #ifdef CONFIG_64BIT
  1642. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1643. #else
  1644. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1645. #endif
  1646. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1647. /*
  1648. * For huge tlb entries, pmd doesn't contain an address but
  1649. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1650. * see if we need to jump to huge tlb processing.
  1651. */
  1652. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1653. #endif
  1654. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1655. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1656. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1657. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1658. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1659. #ifdef CONFIG_SMP
  1660. uasm_l_smp_pgtable_change(l, *p);
  1661. #endif
  1662. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1663. if (!m4kc_tlbp_war())
  1664. build_tlb_probe_entry(p);
  1665. return wr;
  1666. }
  1667. static void __cpuinit
  1668. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1669. struct uasm_reloc **r, unsigned int tmp,
  1670. unsigned int ptr)
  1671. {
  1672. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1673. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1674. build_update_entries(p, tmp, ptr);
  1675. build_tlb_write_entry(p, l, r, tlb_indexed);
  1676. uasm_l_leave(l, *p);
  1677. build_restore_work_registers(p);
  1678. uasm_i_eret(p); /* return from trap */
  1679. #ifdef CONFIG_64BIT
  1680. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1681. #endif
  1682. }
  1683. static void __cpuinit build_r4000_tlb_load_handler(void)
  1684. {
  1685. u32 *p = handle_tlbl;
  1686. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1687. struct uasm_label *l = labels;
  1688. struct uasm_reloc *r = relocs;
  1689. struct work_registers wr;
  1690. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1691. memset(labels, 0, sizeof(labels));
  1692. memset(relocs, 0, sizeof(relocs));
  1693. if (bcm1250_m3_war()) {
  1694. unsigned int segbits = 44;
  1695. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1696. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1697. uasm_i_xor(&p, K0, K0, K1);
  1698. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1699. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1700. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1701. uasm_i_or(&p, K0, K0, K1);
  1702. uasm_il_bnez(&p, &r, K0, label_leave);
  1703. /* No need for uasm_i_nop */
  1704. }
  1705. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1706. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1707. if (m4kc_tlbp_war())
  1708. build_tlb_probe_entry(&p);
  1709. if (cpu_has_rixi) {
  1710. /*
  1711. * If the page is not _PAGE_VALID, RI or XI could not
  1712. * have triggered it. Skip the expensive test..
  1713. */
  1714. if (use_bbit_insns()) {
  1715. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1716. label_tlbl_goaround1);
  1717. } else {
  1718. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1719. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1720. }
  1721. uasm_i_nop(&p);
  1722. uasm_i_tlbr(&p);
  1723. switch (current_cpu_type()) {
  1724. default:
  1725. if (cpu_has_mips_r2) {
  1726. uasm_i_ehb(&p);
  1727. case CPU_CAVIUM_OCTEON:
  1728. case CPU_CAVIUM_OCTEON_PLUS:
  1729. case CPU_CAVIUM_OCTEON2:
  1730. break;
  1731. }
  1732. }
  1733. /* Examine entrylo 0 or 1 based on ptr. */
  1734. if (use_bbit_insns()) {
  1735. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1736. } else {
  1737. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1738. uasm_i_beqz(&p, wr.r3, 8);
  1739. }
  1740. /* load it in the delay slot*/
  1741. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1742. /* load it if ptr is odd */
  1743. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1744. /*
  1745. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1746. * XI must have triggered it.
  1747. */
  1748. if (use_bbit_insns()) {
  1749. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1750. uasm_i_nop(&p);
  1751. uasm_l_tlbl_goaround1(&l, p);
  1752. } else {
  1753. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1754. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1755. uasm_i_nop(&p);
  1756. }
  1757. uasm_l_tlbl_goaround1(&l, p);
  1758. }
  1759. build_make_valid(&p, &r, wr.r1, wr.r2);
  1760. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1761. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1762. /*
  1763. * This is the entry point when build_r4000_tlbchange_handler_head
  1764. * spots a huge page.
  1765. */
  1766. uasm_l_tlb_huge_update(&l, p);
  1767. iPTE_LW(&p, wr.r1, wr.r2);
  1768. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1769. build_tlb_probe_entry(&p);
  1770. if (cpu_has_rixi) {
  1771. /*
  1772. * If the page is not _PAGE_VALID, RI or XI could not
  1773. * have triggered it. Skip the expensive test..
  1774. */
  1775. if (use_bbit_insns()) {
  1776. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1777. label_tlbl_goaround2);
  1778. } else {
  1779. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1780. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1781. }
  1782. uasm_i_nop(&p);
  1783. uasm_i_tlbr(&p);
  1784. switch (current_cpu_type()) {
  1785. default:
  1786. if (cpu_has_mips_r2) {
  1787. uasm_i_ehb(&p);
  1788. case CPU_CAVIUM_OCTEON:
  1789. case CPU_CAVIUM_OCTEON_PLUS:
  1790. case CPU_CAVIUM_OCTEON2:
  1791. break;
  1792. }
  1793. }
  1794. /* Examine entrylo 0 or 1 based on ptr. */
  1795. if (use_bbit_insns()) {
  1796. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1797. } else {
  1798. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1799. uasm_i_beqz(&p, wr.r3, 8);
  1800. }
  1801. /* load it in the delay slot*/
  1802. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1803. /* load it if ptr is odd */
  1804. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1805. /*
  1806. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1807. * XI must have triggered it.
  1808. */
  1809. if (use_bbit_insns()) {
  1810. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1811. } else {
  1812. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1813. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1814. }
  1815. if (PM_DEFAULT_MASK == 0)
  1816. uasm_i_nop(&p);
  1817. /*
  1818. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1819. * it is restored in build_huge_tlb_write_entry.
  1820. */
  1821. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1822. uasm_l_tlbl_goaround2(&l, p);
  1823. }
  1824. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1825. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1826. #endif
  1827. uasm_l_nopage_tlbl(&l, p);
  1828. build_restore_work_registers(&p);
  1829. #ifdef CONFIG_CPU_MICROMIPS
  1830. if ((unsigned long)tlb_do_page_fault_0 & 1) {
  1831. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
  1832. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
  1833. uasm_i_jr(&p, K0);
  1834. } else
  1835. #endif
  1836. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1837. uasm_i_nop(&p);
  1838. if (p >= handle_tlbl_end)
  1839. panic("TLB load handler fastpath space exceeded");
  1840. uasm_resolve_relocs(relocs, labels);
  1841. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1842. (unsigned int)(p - handle_tlbl));
  1843. dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
  1844. }
  1845. static void __cpuinit build_r4000_tlb_store_handler(void)
  1846. {
  1847. u32 *p = handle_tlbs;
  1848. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1849. struct uasm_label *l = labels;
  1850. struct uasm_reloc *r = relocs;
  1851. struct work_registers wr;
  1852. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1853. memset(labels, 0, sizeof(labels));
  1854. memset(relocs, 0, sizeof(relocs));
  1855. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1856. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1857. if (m4kc_tlbp_war())
  1858. build_tlb_probe_entry(&p);
  1859. build_make_write(&p, &r, wr.r1, wr.r2);
  1860. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1861. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1862. /*
  1863. * This is the entry point when
  1864. * build_r4000_tlbchange_handler_head spots a huge page.
  1865. */
  1866. uasm_l_tlb_huge_update(&l, p);
  1867. iPTE_LW(&p, wr.r1, wr.r2);
  1868. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1869. build_tlb_probe_entry(&p);
  1870. uasm_i_ori(&p, wr.r1, wr.r1,
  1871. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1872. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1873. #endif
  1874. uasm_l_nopage_tlbs(&l, p);
  1875. build_restore_work_registers(&p);
  1876. #ifdef CONFIG_CPU_MICROMIPS
  1877. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1878. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1879. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1880. uasm_i_jr(&p, K0);
  1881. } else
  1882. #endif
  1883. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1884. uasm_i_nop(&p);
  1885. if (p >= handle_tlbs_end)
  1886. panic("TLB store handler fastpath space exceeded");
  1887. uasm_resolve_relocs(relocs, labels);
  1888. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1889. (unsigned int)(p - handle_tlbs));
  1890. dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
  1891. }
  1892. static void __cpuinit build_r4000_tlb_modify_handler(void)
  1893. {
  1894. u32 *p = handle_tlbm;
  1895. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1896. struct uasm_label *l = labels;
  1897. struct uasm_reloc *r = relocs;
  1898. struct work_registers wr;
  1899. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1900. memset(labels, 0, sizeof(labels));
  1901. memset(relocs, 0, sizeof(relocs));
  1902. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1903. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1904. if (m4kc_tlbp_war())
  1905. build_tlb_probe_entry(&p);
  1906. /* Present and writable bits set, set accessed and dirty bits. */
  1907. build_make_write(&p, &r, wr.r1, wr.r2);
  1908. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1909. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1910. /*
  1911. * This is the entry point when
  1912. * build_r4000_tlbchange_handler_head spots a huge page.
  1913. */
  1914. uasm_l_tlb_huge_update(&l, p);
  1915. iPTE_LW(&p, wr.r1, wr.r2);
  1916. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1917. build_tlb_probe_entry(&p);
  1918. uasm_i_ori(&p, wr.r1, wr.r1,
  1919. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1920. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1921. #endif
  1922. uasm_l_nopage_tlbm(&l, p);
  1923. build_restore_work_registers(&p);
  1924. #ifdef CONFIG_CPU_MICROMIPS
  1925. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1926. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1927. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1928. uasm_i_jr(&p, K0);
  1929. } else
  1930. #endif
  1931. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1932. uasm_i_nop(&p);
  1933. if (p >= handle_tlbm_end)
  1934. panic("TLB modify handler fastpath space exceeded");
  1935. uasm_resolve_relocs(relocs, labels);
  1936. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1937. (unsigned int)(p - handle_tlbm));
  1938. dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1939. }
  1940. static void __cpuinit flush_tlb_handlers(void)
  1941. {
  1942. local_flush_icache_range((unsigned long)handle_tlbl,
  1943. (unsigned long)handle_tlbl_end);
  1944. local_flush_icache_range((unsigned long)handle_tlbs,
  1945. (unsigned long)handle_tlbs_end);
  1946. local_flush_icache_range((unsigned long)handle_tlbm,
  1947. (unsigned long)handle_tlbm_end);
  1948. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1949. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1950. (unsigned long)tlbmiss_handler_setup_pgd_end);
  1951. #endif
  1952. }
  1953. void __cpuinit build_tlb_refill_handler(void)
  1954. {
  1955. /*
  1956. * The refill handler is generated per-CPU, multi-node systems
  1957. * may have local storage for it. The other handlers are only
  1958. * needed once.
  1959. */
  1960. static int run_once = 0;
  1961. output_pgtable_bits_defines();
  1962. #ifdef CONFIG_64BIT
  1963. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1964. #endif
  1965. switch (current_cpu_type()) {
  1966. case CPU_R2000:
  1967. case CPU_R3000:
  1968. case CPU_R3000A:
  1969. case CPU_R3081E:
  1970. case CPU_TX3912:
  1971. case CPU_TX3922:
  1972. case CPU_TX3927:
  1973. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1974. if (cpu_has_local_ebase)
  1975. build_r3000_tlb_refill_handler();
  1976. if (!run_once) {
  1977. if (!cpu_has_local_ebase)
  1978. build_r3000_tlb_refill_handler();
  1979. build_r3000_tlb_load_handler();
  1980. build_r3000_tlb_store_handler();
  1981. build_r3000_tlb_modify_handler();
  1982. flush_tlb_handlers();
  1983. run_once++;
  1984. }
  1985. #else
  1986. panic("No R3000 TLB refill handler");
  1987. #endif
  1988. break;
  1989. case CPU_R6000:
  1990. case CPU_R6000A:
  1991. panic("No R6000 TLB refill handler yet");
  1992. break;
  1993. case CPU_R8000:
  1994. panic("No R8000 TLB refill handler yet");
  1995. break;
  1996. default:
  1997. if (!run_once) {
  1998. scratch_reg = allocate_kscratch();
  1999. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  2000. build_r4000_setup_pgd();
  2001. #endif
  2002. build_r4000_tlb_load_handler();
  2003. build_r4000_tlb_store_handler();
  2004. build_r4000_tlb_modify_handler();
  2005. if (!cpu_has_local_ebase)
  2006. build_r4000_tlb_refill_handler();
  2007. flush_tlb_handlers();
  2008. run_once++;
  2009. }
  2010. if (cpu_has_local_ebase)
  2011. build_r4000_tlb_refill_handler();
  2012. }
  2013. }