kvm_main.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_exits", &kvm_stat.irq_exits },
  56. { 0, 0 }
  57. };
  58. static struct dentry *debugfs_dir;
  59. #define MAX_IO_MSRS 256
  60. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  61. #define LMSW_GUEST_MASK 0x0eULL
  62. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  63. #define CR8_RESEVED_BITS (~0x0fULL)
  64. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  65. struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  66. {
  67. int i;
  68. for (i = 0; i < vcpu->nmsrs; ++i)
  69. if (vcpu->guest_msrs[i].index == msr)
  70. return &vcpu->guest_msrs[i];
  71. return 0;
  72. }
  73. EXPORT_SYMBOL_GPL(find_msr_entry);
  74. #ifdef __x86_64__
  75. // LDT or TSS descriptor in the GDT. 16 bytes.
  76. struct segment_descriptor_64 {
  77. struct segment_descriptor s;
  78. u32 base_higher;
  79. u32 pad_zero;
  80. };
  81. #endif
  82. unsigned long segment_base(u16 selector)
  83. {
  84. struct descriptor_table gdt;
  85. struct segment_descriptor *d;
  86. unsigned long table_base;
  87. typedef unsigned long ul;
  88. unsigned long v;
  89. if (selector == 0)
  90. return 0;
  91. asm ("sgdt %0" : "=m"(gdt));
  92. table_base = gdt.base;
  93. if (selector & 4) { /* from ldt */
  94. u16 ldt_selector;
  95. asm ("sldt %0" : "=g"(ldt_selector));
  96. table_base = segment_base(ldt_selector);
  97. }
  98. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  99. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  100. #ifdef __x86_64__
  101. if (d->system == 0
  102. && (d->type == 2 || d->type == 9 || d->type == 11))
  103. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  104. #endif
  105. return v;
  106. }
  107. EXPORT_SYMBOL_GPL(segment_base);
  108. int kvm_read_guest(struct kvm_vcpu *vcpu,
  109. gva_t addr,
  110. unsigned long size,
  111. void *dest)
  112. {
  113. unsigned char *host_buf = dest;
  114. unsigned long req_size = size;
  115. while (size) {
  116. hpa_t paddr;
  117. unsigned now;
  118. unsigned offset;
  119. hva_t guest_buf;
  120. paddr = gva_to_hpa(vcpu, addr);
  121. if (is_error_hpa(paddr))
  122. break;
  123. guest_buf = (hva_t)kmap_atomic(
  124. pfn_to_page(paddr >> PAGE_SHIFT),
  125. KM_USER0);
  126. offset = addr & ~PAGE_MASK;
  127. guest_buf |= offset;
  128. now = min(size, PAGE_SIZE - offset);
  129. memcpy(host_buf, (void*)guest_buf, now);
  130. host_buf += now;
  131. addr += now;
  132. size -= now;
  133. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  134. }
  135. return req_size - size;
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_read_guest);
  138. int kvm_write_guest(struct kvm_vcpu *vcpu,
  139. gva_t addr,
  140. unsigned long size,
  141. void *data)
  142. {
  143. unsigned char *host_buf = data;
  144. unsigned long req_size = size;
  145. while (size) {
  146. hpa_t paddr;
  147. unsigned now;
  148. unsigned offset;
  149. hva_t guest_buf;
  150. paddr = gva_to_hpa(vcpu, addr);
  151. if (is_error_hpa(paddr))
  152. break;
  153. guest_buf = (hva_t)kmap_atomic(
  154. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  155. offset = addr & ~PAGE_MASK;
  156. guest_buf |= offset;
  157. now = min(size, PAGE_SIZE - offset);
  158. memcpy((void*)guest_buf, host_buf, now);
  159. host_buf += now;
  160. addr += now;
  161. size -= now;
  162. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  163. }
  164. return req_size - size;
  165. }
  166. EXPORT_SYMBOL_GPL(kvm_write_guest);
  167. static int vcpu_slot(struct kvm_vcpu *vcpu)
  168. {
  169. return vcpu - vcpu->kvm->vcpus;
  170. }
  171. /*
  172. * Switches to specified vcpu, until a matching vcpu_put()
  173. */
  174. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  175. {
  176. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  177. mutex_lock(&vcpu->mutex);
  178. if (unlikely(!vcpu->vmcs)) {
  179. mutex_unlock(&vcpu->mutex);
  180. return 0;
  181. }
  182. return kvm_arch_ops->vcpu_load(vcpu);
  183. }
  184. static void vcpu_put(struct kvm_vcpu *vcpu)
  185. {
  186. kvm_arch_ops->vcpu_put(vcpu);
  187. put_cpu();
  188. mutex_unlock(&vcpu->mutex);
  189. }
  190. static int kvm_dev_open(struct inode *inode, struct file *filp)
  191. {
  192. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  193. int i;
  194. if (!kvm)
  195. return -ENOMEM;
  196. spin_lock_init(&kvm->lock);
  197. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  198. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  199. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  200. mutex_init(&vcpu->mutex);
  201. vcpu->mmu.root_hpa = INVALID_PAGE;
  202. INIT_LIST_HEAD(&vcpu->free_pages);
  203. }
  204. filp->private_data = kvm;
  205. return 0;
  206. }
  207. /*
  208. * Free any memory in @free but not in @dont.
  209. */
  210. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  211. struct kvm_memory_slot *dont)
  212. {
  213. int i;
  214. if (!dont || free->phys_mem != dont->phys_mem)
  215. if (free->phys_mem) {
  216. for (i = 0; i < free->npages; ++i)
  217. __free_page(free->phys_mem[i]);
  218. vfree(free->phys_mem);
  219. }
  220. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  221. vfree(free->dirty_bitmap);
  222. free->phys_mem = 0;
  223. free->npages = 0;
  224. free->dirty_bitmap = 0;
  225. }
  226. static void kvm_free_physmem(struct kvm *kvm)
  227. {
  228. int i;
  229. for (i = 0; i < kvm->nmemslots; ++i)
  230. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  231. }
  232. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  233. {
  234. kvm_arch_ops->vcpu_free(vcpu);
  235. kvm_mmu_destroy(vcpu);
  236. }
  237. static void kvm_free_vcpus(struct kvm *kvm)
  238. {
  239. unsigned int i;
  240. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  241. kvm_free_vcpu(&kvm->vcpus[i]);
  242. }
  243. static int kvm_dev_release(struct inode *inode, struct file *filp)
  244. {
  245. struct kvm *kvm = filp->private_data;
  246. kvm_free_vcpus(kvm);
  247. kvm_free_physmem(kvm);
  248. kfree(kvm);
  249. return 0;
  250. }
  251. static void inject_gp(struct kvm_vcpu *vcpu)
  252. {
  253. kvm_arch_ops->inject_gp(vcpu, 0);
  254. }
  255. static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
  256. unsigned long cr3)
  257. {
  258. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  259. unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
  260. int i;
  261. u64 pdpte;
  262. u64 *pdpt;
  263. struct kvm_memory_slot *memslot;
  264. spin_lock(&vcpu->kvm->lock);
  265. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  266. /* FIXME: !memslot - emulate? 0xff? */
  267. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  268. for (i = 0; i < 4; ++i) {
  269. pdpte = pdpt[offset + i];
  270. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
  271. break;
  272. }
  273. kunmap_atomic(pdpt, KM_USER0);
  274. spin_unlock(&vcpu->kvm->lock);
  275. return i != 4;
  276. }
  277. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  278. {
  279. if (cr0 & CR0_RESEVED_BITS) {
  280. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  281. cr0, vcpu->cr0);
  282. inject_gp(vcpu);
  283. return;
  284. }
  285. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  286. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  287. inject_gp(vcpu);
  288. return;
  289. }
  290. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  291. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  292. "and a clear PE flag\n");
  293. inject_gp(vcpu);
  294. return;
  295. }
  296. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  297. #ifdef __x86_64__
  298. if ((vcpu->shadow_efer & EFER_LME)) {
  299. int cs_db, cs_l;
  300. if (!is_pae(vcpu)) {
  301. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  302. "in long mode while PAE is disabled\n");
  303. inject_gp(vcpu);
  304. return;
  305. }
  306. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  307. if (cs_l) {
  308. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  309. "in long mode while CS.L == 1\n");
  310. inject_gp(vcpu);
  311. return;
  312. }
  313. } else
  314. #endif
  315. if (is_pae(vcpu) &&
  316. pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  317. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  318. "reserved bits\n");
  319. inject_gp(vcpu);
  320. return;
  321. }
  322. }
  323. kvm_arch_ops->set_cr0(vcpu, cr0);
  324. vcpu->cr0 = cr0;
  325. spin_lock(&vcpu->kvm->lock);
  326. kvm_mmu_reset_context(vcpu);
  327. spin_unlock(&vcpu->kvm->lock);
  328. return;
  329. }
  330. EXPORT_SYMBOL_GPL(set_cr0);
  331. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  332. {
  333. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  334. }
  335. EXPORT_SYMBOL_GPL(lmsw);
  336. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  337. {
  338. if (cr4 & CR4_RESEVED_BITS) {
  339. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  340. inject_gp(vcpu);
  341. return;
  342. }
  343. if (kvm_arch_ops->is_long_mode(vcpu)) {
  344. if (!(cr4 & CR4_PAE_MASK)) {
  345. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  346. "in long mode\n");
  347. inject_gp(vcpu);
  348. return;
  349. }
  350. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  351. && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  352. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  353. inject_gp(vcpu);
  354. }
  355. if (cr4 & CR4_VMXE_MASK) {
  356. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  357. inject_gp(vcpu);
  358. return;
  359. }
  360. kvm_arch_ops->set_cr4(vcpu, cr4);
  361. spin_lock(&vcpu->kvm->lock);
  362. kvm_mmu_reset_context(vcpu);
  363. spin_unlock(&vcpu->kvm->lock);
  364. }
  365. EXPORT_SYMBOL_GPL(set_cr4);
  366. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  367. {
  368. if (kvm_arch_ops->is_long_mode(vcpu)) {
  369. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  370. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  371. inject_gp(vcpu);
  372. return;
  373. }
  374. } else {
  375. if (cr3 & CR3_RESEVED_BITS) {
  376. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  377. inject_gp(vcpu);
  378. return;
  379. }
  380. if (is_paging(vcpu) && is_pae(vcpu) &&
  381. pdptrs_have_reserved_bits_set(vcpu, cr3)) {
  382. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  383. "reserved bits\n");
  384. inject_gp(vcpu);
  385. return;
  386. }
  387. }
  388. vcpu->cr3 = cr3;
  389. spin_lock(&vcpu->kvm->lock);
  390. vcpu->mmu.new_cr3(vcpu);
  391. spin_unlock(&vcpu->kvm->lock);
  392. }
  393. EXPORT_SYMBOL_GPL(set_cr3);
  394. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  395. {
  396. if ( cr8 & CR8_RESEVED_BITS) {
  397. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  398. inject_gp(vcpu);
  399. return;
  400. }
  401. vcpu->cr8 = cr8;
  402. }
  403. EXPORT_SYMBOL_GPL(set_cr8);
  404. void fx_init(struct kvm_vcpu *vcpu)
  405. {
  406. struct __attribute__ ((__packed__)) fx_image_s {
  407. u16 control; //fcw
  408. u16 status; //fsw
  409. u16 tag; // ftw
  410. u16 opcode; //fop
  411. u64 ip; // fpu ip
  412. u64 operand;// fpu dp
  413. u32 mxcsr;
  414. u32 mxcsr_mask;
  415. } *fx_image;
  416. fx_save(vcpu->host_fx_image);
  417. fpu_init();
  418. fx_save(vcpu->guest_fx_image);
  419. fx_restore(vcpu->host_fx_image);
  420. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  421. fx_image->mxcsr = 0x1f80;
  422. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  423. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  424. }
  425. EXPORT_SYMBOL_GPL(fx_init);
  426. /*
  427. * Creates some virtual cpus. Good luck creating more than one.
  428. */
  429. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  430. {
  431. int r;
  432. struct kvm_vcpu *vcpu;
  433. r = -EINVAL;
  434. if (n < 0 || n >= KVM_MAX_VCPUS)
  435. goto out;
  436. vcpu = &kvm->vcpus[n];
  437. mutex_lock(&vcpu->mutex);
  438. if (vcpu->vmcs) {
  439. mutex_unlock(&vcpu->mutex);
  440. return -EEXIST;
  441. }
  442. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  443. FX_IMAGE_ALIGN);
  444. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  445. vcpu->cpu = -1; /* First load will set up TR */
  446. vcpu->kvm = kvm;
  447. r = kvm_arch_ops->vcpu_create(vcpu);
  448. if (r < 0)
  449. goto out_free_vcpus;
  450. kvm_arch_ops->vcpu_load(vcpu);
  451. r = kvm_arch_ops->vcpu_setup(vcpu);
  452. if (r >= 0)
  453. r = kvm_mmu_init(vcpu);
  454. vcpu_put(vcpu);
  455. if (r < 0)
  456. goto out_free_vcpus;
  457. return 0;
  458. out_free_vcpus:
  459. kvm_free_vcpu(vcpu);
  460. mutex_unlock(&vcpu->mutex);
  461. out:
  462. return r;
  463. }
  464. /*
  465. * Allocate some memory and give it an address in the guest physical address
  466. * space.
  467. *
  468. * Discontiguous memory is allowed, mostly for framebuffers.
  469. */
  470. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  471. struct kvm_memory_region *mem)
  472. {
  473. int r;
  474. gfn_t base_gfn;
  475. unsigned long npages;
  476. unsigned long i;
  477. struct kvm_memory_slot *memslot;
  478. struct kvm_memory_slot old, new;
  479. int memory_config_version;
  480. r = -EINVAL;
  481. /* General sanity checks */
  482. if (mem->memory_size & (PAGE_SIZE - 1))
  483. goto out;
  484. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  485. goto out;
  486. if (mem->slot >= KVM_MEMORY_SLOTS)
  487. goto out;
  488. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  489. goto out;
  490. memslot = &kvm->memslots[mem->slot];
  491. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  492. npages = mem->memory_size >> PAGE_SHIFT;
  493. if (!npages)
  494. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  495. raced:
  496. spin_lock(&kvm->lock);
  497. memory_config_version = kvm->memory_config_version;
  498. new = old = *memslot;
  499. new.base_gfn = base_gfn;
  500. new.npages = npages;
  501. new.flags = mem->flags;
  502. /* Disallow changing a memory slot's size. */
  503. r = -EINVAL;
  504. if (npages && old.npages && npages != old.npages)
  505. goto out_unlock;
  506. /* Check for overlaps */
  507. r = -EEXIST;
  508. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  509. struct kvm_memory_slot *s = &kvm->memslots[i];
  510. if (s == memslot)
  511. continue;
  512. if (!((base_gfn + npages <= s->base_gfn) ||
  513. (base_gfn >= s->base_gfn + s->npages)))
  514. goto out_unlock;
  515. }
  516. /*
  517. * Do memory allocations outside lock. memory_config_version will
  518. * detect any races.
  519. */
  520. spin_unlock(&kvm->lock);
  521. /* Deallocate if slot is being removed */
  522. if (!npages)
  523. new.phys_mem = 0;
  524. /* Free page dirty bitmap if unneeded */
  525. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  526. new.dirty_bitmap = 0;
  527. r = -ENOMEM;
  528. /* Allocate if a slot is being created */
  529. if (npages && !new.phys_mem) {
  530. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  531. if (!new.phys_mem)
  532. goto out_free;
  533. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  534. for (i = 0; i < npages; ++i) {
  535. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  536. | __GFP_ZERO);
  537. if (!new.phys_mem[i])
  538. goto out_free;
  539. }
  540. }
  541. /* Allocate page dirty bitmap if needed */
  542. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  543. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  544. new.dirty_bitmap = vmalloc(dirty_bytes);
  545. if (!new.dirty_bitmap)
  546. goto out_free;
  547. memset(new.dirty_bitmap, 0, dirty_bytes);
  548. }
  549. spin_lock(&kvm->lock);
  550. if (memory_config_version != kvm->memory_config_version) {
  551. spin_unlock(&kvm->lock);
  552. kvm_free_physmem_slot(&new, &old);
  553. goto raced;
  554. }
  555. r = -EAGAIN;
  556. if (kvm->busy)
  557. goto out_unlock;
  558. if (mem->slot >= kvm->nmemslots)
  559. kvm->nmemslots = mem->slot + 1;
  560. *memslot = new;
  561. ++kvm->memory_config_version;
  562. spin_unlock(&kvm->lock);
  563. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  564. struct kvm_vcpu *vcpu;
  565. vcpu = vcpu_load(kvm, i);
  566. if (!vcpu)
  567. continue;
  568. kvm_mmu_reset_context(vcpu);
  569. vcpu_put(vcpu);
  570. }
  571. kvm_free_physmem_slot(&old, &new);
  572. return 0;
  573. out_unlock:
  574. spin_unlock(&kvm->lock);
  575. out_free:
  576. kvm_free_physmem_slot(&new, &old);
  577. out:
  578. return r;
  579. }
  580. /*
  581. * Get (and clear) the dirty memory log for a memory slot.
  582. */
  583. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  584. struct kvm_dirty_log *log)
  585. {
  586. struct kvm_memory_slot *memslot;
  587. int r, i;
  588. int n;
  589. unsigned long any = 0;
  590. spin_lock(&kvm->lock);
  591. /*
  592. * Prevent changes to guest memory configuration even while the lock
  593. * is not taken.
  594. */
  595. ++kvm->busy;
  596. spin_unlock(&kvm->lock);
  597. r = -EINVAL;
  598. if (log->slot >= KVM_MEMORY_SLOTS)
  599. goto out;
  600. memslot = &kvm->memslots[log->slot];
  601. r = -ENOENT;
  602. if (!memslot->dirty_bitmap)
  603. goto out;
  604. n = ALIGN(memslot->npages, 8) / 8;
  605. for (i = 0; !any && i < n; ++i)
  606. any = memslot->dirty_bitmap[i];
  607. r = -EFAULT;
  608. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  609. goto out;
  610. if (any) {
  611. spin_lock(&kvm->lock);
  612. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  613. spin_unlock(&kvm->lock);
  614. memset(memslot->dirty_bitmap, 0, n);
  615. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  616. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  617. if (!vcpu)
  618. continue;
  619. kvm_arch_ops->tlb_flush(vcpu);
  620. vcpu_put(vcpu);
  621. }
  622. }
  623. r = 0;
  624. out:
  625. spin_lock(&kvm->lock);
  626. --kvm->busy;
  627. spin_unlock(&kvm->lock);
  628. return r;
  629. }
  630. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  631. {
  632. int i;
  633. for (i = 0; i < kvm->nmemslots; ++i) {
  634. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  635. if (gfn >= memslot->base_gfn
  636. && gfn < memslot->base_gfn + memslot->npages)
  637. return memslot;
  638. }
  639. return 0;
  640. }
  641. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  642. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  643. {
  644. int i;
  645. struct kvm_memory_slot *memslot = 0;
  646. unsigned long rel_gfn;
  647. for (i = 0; i < kvm->nmemslots; ++i) {
  648. memslot = &kvm->memslots[i];
  649. if (gfn >= memslot->base_gfn
  650. && gfn < memslot->base_gfn + memslot->npages) {
  651. if (!memslot || !memslot->dirty_bitmap)
  652. return;
  653. rel_gfn = gfn - memslot->base_gfn;
  654. /* avoid RMW */
  655. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  656. set_bit(rel_gfn, memslot->dirty_bitmap);
  657. return;
  658. }
  659. }
  660. }
  661. static int emulator_read_std(unsigned long addr,
  662. unsigned long *val,
  663. unsigned int bytes,
  664. struct x86_emulate_ctxt *ctxt)
  665. {
  666. struct kvm_vcpu *vcpu = ctxt->vcpu;
  667. void *data = val;
  668. while (bytes) {
  669. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  670. unsigned offset = addr & (PAGE_SIZE-1);
  671. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  672. unsigned long pfn;
  673. struct kvm_memory_slot *memslot;
  674. void *page;
  675. if (gpa == UNMAPPED_GVA)
  676. return X86EMUL_PROPAGATE_FAULT;
  677. pfn = gpa >> PAGE_SHIFT;
  678. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  679. if (!memslot)
  680. return X86EMUL_UNHANDLEABLE;
  681. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  682. memcpy(data, page + offset, tocopy);
  683. kunmap_atomic(page, KM_USER0);
  684. bytes -= tocopy;
  685. data += tocopy;
  686. addr += tocopy;
  687. }
  688. return X86EMUL_CONTINUE;
  689. }
  690. static int emulator_write_std(unsigned long addr,
  691. unsigned long val,
  692. unsigned int bytes,
  693. struct x86_emulate_ctxt *ctxt)
  694. {
  695. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  696. addr, bytes);
  697. return X86EMUL_UNHANDLEABLE;
  698. }
  699. static int emulator_read_emulated(unsigned long addr,
  700. unsigned long *val,
  701. unsigned int bytes,
  702. struct x86_emulate_ctxt *ctxt)
  703. {
  704. struct kvm_vcpu *vcpu = ctxt->vcpu;
  705. if (vcpu->mmio_read_completed) {
  706. memcpy(val, vcpu->mmio_data, bytes);
  707. vcpu->mmio_read_completed = 0;
  708. return X86EMUL_CONTINUE;
  709. } else if (emulator_read_std(addr, val, bytes, ctxt)
  710. == X86EMUL_CONTINUE)
  711. return X86EMUL_CONTINUE;
  712. else {
  713. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  714. if (gpa == UNMAPPED_GVA)
  715. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  716. vcpu->mmio_needed = 1;
  717. vcpu->mmio_phys_addr = gpa;
  718. vcpu->mmio_size = bytes;
  719. vcpu->mmio_is_write = 0;
  720. return X86EMUL_UNHANDLEABLE;
  721. }
  722. }
  723. static int emulator_write_emulated(unsigned long addr,
  724. unsigned long val,
  725. unsigned int bytes,
  726. struct x86_emulate_ctxt *ctxt)
  727. {
  728. struct kvm_vcpu *vcpu = ctxt->vcpu;
  729. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  730. if (gpa == UNMAPPED_GVA)
  731. return X86EMUL_PROPAGATE_FAULT;
  732. vcpu->mmio_needed = 1;
  733. vcpu->mmio_phys_addr = gpa;
  734. vcpu->mmio_size = bytes;
  735. vcpu->mmio_is_write = 1;
  736. memcpy(vcpu->mmio_data, &val, bytes);
  737. return X86EMUL_CONTINUE;
  738. }
  739. static int emulator_cmpxchg_emulated(unsigned long addr,
  740. unsigned long old,
  741. unsigned long new,
  742. unsigned int bytes,
  743. struct x86_emulate_ctxt *ctxt)
  744. {
  745. static int reported;
  746. if (!reported) {
  747. reported = 1;
  748. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  749. }
  750. return emulator_write_emulated(addr, new, bytes, ctxt);
  751. }
  752. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  753. {
  754. return kvm_arch_ops->get_segment_base(vcpu, seg);
  755. }
  756. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  757. {
  758. spin_lock(&vcpu->kvm->lock);
  759. vcpu->mmu.inval_page(vcpu, address);
  760. spin_unlock(&vcpu->kvm->lock);
  761. kvm_arch_ops->invlpg(vcpu, address);
  762. return X86EMUL_CONTINUE;
  763. }
  764. int emulate_clts(struct kvm_vcpu *vcpu)
  765. {
  766. unsigned long cr0 = vcpu->cr0;
  767. cr0 &= ~CR0_TS_MASK;
  768. kvm_arch_ops->set_cr0(vcpu, cr0);
  769. return X86EMUL_CONTINUE;
  770. }
  771. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  772. {
  773. struct kvm_vcpu *vcpu = ctxt->vcpu;
  774. switch (dr) {
  775. case 0 ... 3:
  776. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  777. return X86EMUL_CONTINUE;
  778. default:
  779. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  780. __FUNCTION__, dr);
  781. return X86EMUL_UNHANDLEABLE;
  782. }
  783. }
  784. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  785. {
  786. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  787. int exception;
  788. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  789. if (exception) {
  790. /* FIXME: better handling */
  791. return X86EMUL_UNHANDLEABLE;
  792. }
  793. return X86EMUL_CONTINUE;
  794. }
  795. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  796. {
  797. static int reported;
  798. u8 opcodes[4];
  799. unsigned long rip = ctxt->vcpu->rip;
  800. unsigned long rip_linear;
  801. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  802. if (reported)
  803. return;
  804. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  805. printk(KERN_ERR "emulation failed but !mmio_needed?"
  806. " rip %lx %02x %02x %02x %02x\n",
  807. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  808. reported = 1;
  809. }
  810. struct x86_emulate_ops emulate_ops = {
  811. .read_std = emulator_read_std,
  812. .write_std = emulator_write_std,
  813. .read_emulated = emulator_read_emulated,
  814. .write_emulated = emulator_write_emulated,
  815. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  816. };
  817. int emulate_instruction(struct kvm_vcpu *vcpu,
  818. struct kvm_run *run,
  819. unsigned long cr2,
  820. u16 error_code)
  821. {
  822. struct x86_emulate_ctxt emulate_ctxt;
  823. int r;
  824. int cs_db, cs_l;
  825. kvm_arch_ops->cache_regs(vcpu);
  826. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  827. emulate_ctxt.vcpu = vcpu;
  828. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  829. emulate_ctxt.cr2 = cr2;
  830. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  831. ? X86EMUL_MODE_REAL : cs_l
  832. ? X86EMUL_MODE_PROT64 : cs_db
  833. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  834. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  835. emulate_ctxt.cs_base = 0;
  836. emulate_ctxt.ds_base = 0;
  837. emulate_ctxt.es_base = 0;
  838. emulate_ctxt.ss_base = 0;
  839. } else {
  840. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  841. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  842. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  843. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  844. }
  845. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  846. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  847. vcpu->mmio_is_write = 0;
  848. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  849. if ((r || vcpu->mmio_is_write) && run) {
  850. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  851. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  852. run->mmio.len = vcpu->mmio_size;
  853. run->mmio.is_write = vcpu->mmio_is_write;
  854. }
  855. if (r) {
  856. if (!vcpu->mmio_needed) {
  857. report_emulation_failure(&emulate_ctxt);
  858. return EMULATE_FAIL;
  859. }
  860. return EMULATE_DO_MMIO;
  861. }
  862. kvm_arch_ops->decache_regs(vcpu);
  863. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  864. if (vcpu->mmio_is_write)
  865. return EMULATE_DO_MMIO;
  866. return EMULATE_DONE;
  867. }
  868. EXPORT_SYMBOL_GPL(emulate_instruction);
  869. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  870. {
  871. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  872. }
  873. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  874. {
  875. struct descriptor_table dt = { limit, base };
  876. kvm_arch_ops->set_gdt(vcpu, &dt);
  877. }
  878. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  879. {
  880. struct descriptor_table dt = { limit, base };
  881. kvm_arch_ops->set_idt(vcpu, &dt);
  882. }
  883. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  884. unsigned long *rflags)
  885. {
  886. lmsw(vcpu, msw);
  887. *rflags = kvm_arch_ops->get_rflags(vcpu);
  888. }
  889. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  890. {
  891. switch (cr) {
  892. case 0:
  893. return vcpu->cr0;
  894. case 2:
  895. return vcpu->cr2;
  896. case 3:
  897. return vcpu->cr3;
  898. case 4:
  899. return vcpu->cr4;
  900. default:
  901. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  902. return 0;
  903. }
  904. }
  905. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  906. unsigned long *rflags)
  907. {
  908. switch (cr) {
  909. case 0:
  910. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  911. *rflags = kvm_arch_ops->get_rflags(vcpu);
  912. break;
  913. case 2:
  914. vcpu->cr2 = val;
  915. break;
  916. case 3:
  917. set_cr3(vcpu, val);
  918. break;
  919. case 4:
  920. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  921. break;
  922. default:
  923. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  924. }
  925. }
  926. /*
  927. * Reads an msr value (of 'msr_index') into 'pdata'.
  928. * Returns 0 on success, non-0 otherwise.
  929. * Assumes vcpu_load() was already called.
  930. */
  931. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  932. {
  933. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  934. }
  935. #ifdef __x86_64__
  936. void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  937. {
  938. struct vmx_msr_entry *msr;
  939. if (efer & EFER_RESERVED_BITS) {
  940. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  941. efer);
  942. inject_gp(vcpu);
  943. return;
  944. }
  945. if (is_paging(vcpu)
  946. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  947. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  948. inject_gp(vcpu);
  949. return;
  950. }
  951. efer &= ~EFER_LMA;
  952. efer |= vcpu->shadow_efer & EFER_LMA;
  953. vcpu->shadow_efer = efer;
  954. msr = find_msr_entry(vcpu, MSR_EFER);
  955. if (!(efer & EFER_LMA))
  956. efer &= ~EFER_LME;
  957. msr->data = efer;
  958. }
  959. EXPORT_SYMBOL_GPL(set_efer);
  960. #endif
  961. /*
  962. * Writes msr value into into the appropriate "register".
  963. * Returns 0 on success, non-0 otherwise.
  964. * Assumes vcpu_load() was already called.
  965. */
  966. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  967. {
  968. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  969. }
  970. void kvm_resched(struct kvm_vcpu *vcpu)
  971. {
  972. vcpu_put(vcpu);
  973. cond_resched();
  974. /* Cannot fail - no vcpu unplug yet. */
  975. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  976. }
  977. EXPORT_SYMBOL_GPL(kvm_resched);
  978. void load_msrs(struct vmx_msr_entry *e, int n)
  979. {
  980. int i;
  981. for (i = 0; i < n; ++i)
  982. wrmsrl(e[i].index, e[i].data);
  983. }
  984. EXPORT_SYMBOL_GPL(load_msrs);
  985. void save_msrs(struct vmx_msr_entry *e, int n)
  986. {
  987. int i;
  988. for (i = 0; i < n; ++i)
  989. rdmsrl(e[i].index, e[i].data);
  990. }
  991. EXPORT_SYMBOL_GPL(save_msrs);
  992. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  993. {
  994. struct kvm_vcpu *vcpu;
  995. int r;
  996. if (kvm_run->vcpu < 0 || kvm_run->vcpu >= KVM_MAX_VCPUS)
  997. return -EINVAL;
  998. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  999. if (!vcpu)
  1000. return -ENOENT;
  1001. if (kvm_run->emulated) {
  1002. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1003. kvm_run->emulated = 0;
  1004. }
  1005. if (kvm_run->mmio_completed) {
  1006. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1007. vcpu->mmio_read_completed = 1;
  1008. }
  1009. vcpu->mmio_needed = 0;
  1010. r = kvm_arch_ops->run(vcpu, kvm_run);
  1011. vcpu_put(vcpu);
  1012. return r;
  1013. }
  1014. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1015. {
  1016. struct kvm_vcpu *vcpu;
  1017. if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS)
  1018. return -EINVAL;
  1019. vcpu = vcpu_load(kvm, regs->vcpu);
  1020. if (!vcpu)
  1021. return -ENOENT;
  1022. kvm_arch_ops->cache_regs(vcpu);
  1023. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1024. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1025. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1026. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1027. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1028. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1029. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1030. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1031. #ifdef __x86_64__
  1032. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1033. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1034. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1035. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1036. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1037. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1038. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1039. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1040. #endif
  1041. regs->rip = vcpu->rip;
  1042. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1043. /*
  1044. * Don't leak debug flags in case they were set for guest debugging
  1045. */
  1046. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1047. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1048. vcpu_put(vcpu);
  1049. return 0;
  1050. }
  1051. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1052. {
  1053. struct kvm_vcpu *vcpu;
  1054. if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS)
  1055. return -EINVAL;
  1056. vcpu = vcpu_load(kvm, regs->vcpu);
  1057. if (!vcpu)
  1058. return -ENOENT;
  1059. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1060. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1061. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1062. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1063. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1064. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1065. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1066. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1067. #ifdef __x86_64__
  1068. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1069. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1070. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1071. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1072. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1073. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1074. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1075. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1076. #endif
  1077. vcpu->rip = regs->rip;
  1078. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1079. kvm_arch_ops->decache_regs(vcpu);
  1080. vcpu_put(vcpu);
  1081. return 0;
  1082. }
  1083. static void get_segment(struct kvm_vcpu *vcpu,
  1084. struct kvm_segment *var, int seg)
  1085. {
  1086. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1087. }
  1088. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1089. {
  1090. struct kvm_vcpu *vcpu;
  1091. struct descriptor_table dt;
  1092. if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS)
  1093. return -EINVAL;
  1094. vcpu = vcpu_load(kvm, sregs->vcpu);
  1095. if (!vcpu)
  1096. return -ENOENT;
  1097. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1098. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1099. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1100. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1101. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1102. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1103. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1104. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1105. kvm_arch_ops->get_idt(vcpu, &dt);
  1106. sregs->idt.limit = dt.limit;
  1107. sregs->idt.base = dt.base;
  1108. kvm_arch_ops->get_gdt(vcpu, &dt);
  1109. sregs->gdt.limit = dt.limit;
  1110. sregs->gdt.base = dt.base;
  1111. sregs->cr0 = vcpu->cr0;
  1112. sregs->cr2 = vcpu->cr2;
  1113. sregs->cr3 = vcpu->cr3;
  1114. sregs->cr4 = vcpu->cr4;
  1115. sregs->cr8 = vcpu->cr8;
  1116. sregs->efer = vcpu->shadow_efer;
  1117. sregs->apic_base = vcpu->apic_base;
  1118. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1119. sizeof sregs->interrupt_bitmap);
  1120. vcpu_put(vcpu);
  1121. return 0;
  1122. }
  1123. static void set_segment(struct kvm_vcpu *vcpu,
  1124. struct kvm_segment *var, int seg)
  1125. {
  1126. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1127. }
  1128. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1129. {
  1130. struct kvm_vcpu *vcpu;
  1131. int mmu_reset_needed = 0;
  1132. int i;
  1133. struct descriptor_table dt;
  1134. if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS)
  1135. return -EINVAL;
  1136. vcpu = vcpu_load(kvm, sregs->vcpu);
  1137. if (!vcpu)
  1138. return -ENOENT;
  1139. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1140. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1141. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1142. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1143. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1144. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1145. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1146. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1147. dt.limit = sregs->idt.limit;
  1148. dt.base = sregs->idt.base;
  1149. kvm_arch_ops->set_idt(vcpu, &dt);
  1150. dt.limit = sregs->gdt.limit;
  1151. dt.base = sregs->gdt.base;
  1152. kvm_arch_ops->set_gdt(vcpu, &dt);
  1153. vcpu->cr2 = sregs->cr2;
  1154. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1155. vcpu->cr3 = sregs->cr3;
  1156. vcpu->cr8 = sregs->cr8;
  1157. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1158. #ifdef __x86_64__
  1159. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1160. #endif
  1161. vcpu->apic_base = sregs->apic_base;
  1162. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1163. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1164. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1165. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1166. if (mmu_reset_needed)
  1167. kvm_mmu_reset_context(vcpu);
  1168. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1169. sizeof vcpu->irq_pending);
  1170. vcpu->irq_summary = 0;
  1171. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1172. if (vcpu->irq_pending[i])
  1173. __set_bit(i, &vcpu->irq_summary);
  1174. vcpu_put(vcpu);
  1175. return 0;
  1176. }
  1177. /*
  1178. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1179. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1180. */
  1181. static u32 msrs_to_save[] = {
  1182. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1183. MSR_K6_STAR,
  1184. #ifdef __x86_64__
  1185. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1186. #endif
  1187. MSR_IA32_TIME_STAMP_COUNTER,
  1188. };
  1189. /*
  1190. * Adapt set_msr() to msr_io()'s calling convention
  1191. */
  1192. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1193. {
  1194. return set_msr(vcpu, index, *data);
  1195. }
  1196. /*
  1197. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1198. *
  1199. * @return number of msrs set successfully.
  1200. */
  1201. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1202. struct kvm_msr_entry *entries,
  1203. int (*do_msr)(struct kvm_vcpu *vcpu,
  1204. unsigned index, u64 *data))
  1205. {
  1206. struct kvm_vcpu *vcpu;
  1207. int i;
  1208. if (msrs->vcpu < 0 || msrs->vcpu >= KVM_MAX_VCPUS)
  1209. return -EINVAL;
  1210. vcpu = vcpu_load(kvm, msrs->vcpu);
  1211. if (!vcpu)
  1212. return -ENOENT;
  1213. for (i = 0; i < msrs->nmsrs; ++i)
  1214. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1215. break;
  1216. vcpu_put(vcpu);
  1217. return i;
  1218. }
  1219. /*
  1220. * Read or write a bunch of msrs. Parameters are user addresses.
  1221. *
  1222. * @return number of msrs set successfully.
  1223. */
  1224. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1225. int (*do_msr)(struct kvm_vcpu *vcpu,
  1226. unsigned index, u64 *data),
  1227. int writeback)
  1228. {
  1229. struct kvm_msrs msrs;
  1230. struct kvm_msr_entry *entries;
  1231. int r, n;
  1232. unsigned size;
  1233. r = -EFAULT;
  1234. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1235. goto out;
  1236. r = -E2BIG;
  1237. if (msrs.nmsrs >= MAX_IO_MSRS)
  1238. goto out;
  1239. r = -ENOMEM;
  1240. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1241. entries = vmalloc(size);
  1242. if (!entries)
  1243. goto out;
  1244. r = -EFAULT;
  1245. if (copy_from_user(entries, user_msrs->entries, size))
  1246. goto out_free;
  1247. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1248. if (r < 0)
  1249. goto out_free;
  1250. r = -EFAULT;
  1251. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1252. goto out_free;
  1253. r = n;
  1254. out_free:
  1255. vfree(entries);
  1256. out:
  1257. return r;
  1258. }
  1259. /*
  1260. * Translate a guest virtual address to a guest physical address.
  1261. */
  1262. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1263. {
  1264. unsigned long vaddr = tr->linear_address;
  1265. struct kvm_vcpu *vcpu;
  1266. gpa_t gpa;
  1267. vcpu = vcpu_load(kvm, tr->vcpu);
  1268. if (!vcpu)
  1269. return -ENOENT;
  1270. spin_lock(&kvm->lock);
  1271. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1272. tr->physical_address = gpa;
  1273. tr->valid = gpa != UNMAPPED_GVA;
  1274. tr->writeable = 1;
  1275. tr->usermode = 0;
  1276. spin_unlock(&kvm->lock);
  1277. vcpu_put(vcpu);
  1278. return 0;
  1279. }
  1280. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1281. {
  1282. struct kvm_vcpu *vcpu;
  1283. if (irq->vcpu < 0 || irq->vcpu >= KVM_MAX_VCPUS)
  1284. return -EINVAL;
  1285. if (irq->irq < 0 || irq->irq >= 256)
  1286. return -EINVAL;
  1287. vcpu = vcpu_load(kvm, irq->vcpu);
  1288. if (!vcpu)
  1289. return -ENOENT;
  1290. set_bit(irq->irq, vcpu->irq_pending);
  1291. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1292. vcpu_put(vcpu);
  1293. return 0;
  1294. }
  1295. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1296. struct kvm_debug_guest *dbg)
  1297. {
  1298. struct kvm_vcpu *vcpu;
  1299. int r;
  1300. if (dbg->vcpu < 0 || dbg->vcpu >= KVM_MAX_VCPUS)
  1301. return -EINVAL;
  1302. vcpu = vcpu_load(kvm, dbg->vcpu);
  1303. if (!vcpu)
  1304. return -ENOENT;
  1305. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1306. vcpu_put(vcpu);
  1307. return r;
  1308. }
  1309. static long kvm_dev_ioctl(struct file *filp,
  1310. unsigned int ioctl, unsigned long arg)
  1311. {
  1312. struct kvm *kvm = filp->private_data;
  1313. int r = -EINVAL;
  1314. switch (ioctl) {
  1315. case KVM_CREATE_VCPU: {
  1316. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1317. if (r)
  1318. goto out;
  1319. break;
  1320. }
  1321. case KVM_RUN: {
  1322. struct kvm_run kvm_run;
  1323. r = -EFAULT;
  1324. if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
  1325. goto out;
  1326. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1327. if (r < 0)
  1328. goto out;
  1329. r = -EFAULT;
  1330. if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run))
  1331. goto out;
  1332. r = 0;
  1333. break;
  1334. }
  1335. case KVM_GET_REGS: {
  1336. struct kvm_regs kvm_regs;
  1337. r = -EFAULT;
  1338. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1339. goto out;
  1340. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1341. if (r)
  1342. goto out;
  1343. r = -EFAULT;
  1344. if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
  1345. goto out;
  1346. r = 0;
  1347. break;
  1348. }
  1349. case KVM_SET_REGS: {
  1350. struct kvm_regs kvm_regs;
  1351. r = -EFAULT;
  1352. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1353. goto out;
  1354. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1355. if (r)
  1356. goto out;
  1357. r = 0;
  1358. break;
  1359. }
  1360. case KVM_GET_SREGS: {
  1361. struct kvm_sregs kvm_sregs;
  1362. r = -EFAULT;
  1363. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1364. goto out;
  1365. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1366. if (r)
  1367. goto out;
  1368. r = -EFAULT;
  1369. if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
  1370. goto out;
  1371. r = 0;
  1372. break;
  1373. }
  1374. case KVM_SET_SREGS: {
  1375. struct kvm_sregs kvm_sregs;
  1376. r = -EFAULT;
  1377. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1378. goto out;
  1379. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1380. if (r)
  1381. goto out;
  1382. r = 0;
  1383. break;
  1384. }
  1385. case KVM_TRANSLATE: {
  1386. struct kvm_translation tr;
  1387. r = -EFAULT;
  1388. if (copy_from_user(&tr, (void *)arg, sizeof tr))
  1389. goto out;
  1390. r = kvm_dev_ioctl_translate(kvm, &tr);
  1391. if (r)
  1392. goto out;
  1393. r = -EFAULT;
  1394. if (copy_to_user((void *)arg, &tr, sizeof tr))
  1395. goto out;
  1396. r = 0;
  1397. break;
  1398. }
  1399. case KVM_INTERRUPT: {
  1400. struct kvm_interrupt irq;
  1401. r = -EFAULT;
  1402. if (copy_from_user(&irq, (void *)arg, sizeof irq))
  1403. goto out;
  1404. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1405. if (r)
  1406. goto out;
  1407. r = 0;
  1408. break;
  1409. }
  1410. case KVM_DEBUG_GUEST: {
  1411. struct kvm_debug_guest dbg;
  1412. r = -EFAULT;
  1413. if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
  1414. goto out;
  1415. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1416. if (r)
  1417. goto out;
  1418. r = 0;
  1419. break;
  1420. }
  1421. case KVM_SET_MEMORY_REGION: {
  1422. struct kvm_memory_region kvm_mem;
  1423. r = -EFAULT;
  1424. if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
  1425. goto out;
  1426. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1427. if (r)
  1428. goto out;
  1429. break;
  1430. }
  1431. case KVM_GET_DIRTY_LOG: {
  1432. struct kvm_dirty_log log;
  1433. r = -EFAULT;
  1434. if (copy_from_user(&log, (void *)arg, sizeof log))
  1435. goto out;
  1436. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1437. if (r)
  1438. goto out;
  1439. break;
  1440. }
  1441. case KVM_GET_MSRS:
  1442. r = msr_io(kvm, (void __user *)arg, get_msr, 1);
  1443. break;
  1444. case KVM_SET_MSRS:
  1445. r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
  1446. break;
  1447. case KVM_GET_MSR_INDEX_LIST: {
  1448. struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
  1449. struct kvm_msr_list msr_list;
  1450. unsigned n;
  1451. r = -EFAULT;
  1452. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1453. goto out;
  1454. n = msr_list.nmsrs;
  1455. msr_list.nmsrs = ARRAY_SIZE(msrs_to_save);
  1456. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1457. goto out;
  1458. r = -E2BIG;
  1459. if (n < ARRAY_SIZE(msrs_to_save))
  1460. goto out;
  1461. r = -EFAULT;
  1462. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1463. sizeof msrs_to_save))
  1464. goto out;
  1465. r = 0;
  1466. }
  1467. default:
  1468. ;
  1469. }
  1470. out:
  1471. return r;
  1472. }
  1473. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1474. unsigned long address,
  1475. int *type)
  1476. {
  1477. struct kvm *kvm = vma->vm_file->private_data;
  1478. unsigned long pgoff;
  1479. struct kvm_memory_slot *slot;
  1480. struct page *page;
  1481. *type = VM_FAULT_MINOR;
  1482. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1483. slot = gfn_to_memslot(kvm, pgoff);
  1484. if (!slot)
  1485. return NOPAGE_SIGBUS;
  1486. page = gfn_to_page(slot, pgoff);
  1487. if (!page)
  1488. return NOPAGE_SIGBUS;
  1489. get_page(page);
  1490. return page;
  1491. }
  1492. static struct vm_operations_struct kvm_dev_vm_ops = {
  1493. .nopage = kvm_dev_nopage,
  1494. };
  1495. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1496. {
  1497. vma->vm_ops = &kvm_dev_vm_ops;
  1498. return 0;
  1499. }
  1500. static struct file_operations kvm_chardev_ops = {
  1501. .open = kvm_dev_open,
  1502. .release = kvm_dev_release,
  1503. .unlocked_ioctl = kvm_dev_ioctl,
  1504. .compat_ioctl = kvm_dev_ioctl,
  1505. .mmap = kvm_dev_mmap,
  1506. };
  1507. static struct miscdevice kvm_dev = {
  1508. MISC_DYNAMIC_MINOR,
  1509. "kvm",
  1510. &kvm_chardev_ops,
  1511. };
  1512. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1513. void *v)
  1514. {
  1515. if (val == SYS_RESTART) {
  1516. /*
  1517. * Some (well, at least mine) BIOSes hang on reboot if
  1518. * in vmx root mode.
  1519. */
  1520. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1521. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1522. }
  1523. return NOTIFY_OK;
  1524. }
  1525. static struct notifier_block kvm_reboot_notifier = {
  1526. .notifier_call = kvm_reboot,
  1527. .priority = 0,
  1528. };
  1529. static __init void kvm_init_debug(void)
  1530. {
  1531. struct kvm_stats_debugfs_item *p;
  1532. debugfs_dir = debugfs_create_dir("kvm", 0);
  1533. for (p = debugfs_entries; p->name; ++p)
  1534. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1535. p->data);
  1536. }
  1537. static void kvm_exit_debug(void)
  1538. {
  1539. struct kvm_stats_debugfs_item *p;
  1540. for (p = debugfs_entries; p->name; ++p)
  1541. debugfs_remove(p->dentry);
  1542. debugfs_remove(debugfs_dir);
  1543. }
  1544. hpa_t bad_page_address;
  1545. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1546. {
  1547. int r;
  1548. kvm_arch_ops = ops;
  1549. if (!kvm_arch_ops->cpu_has_kvm_support()) {
  1550. printk(KERN_ERR "kvm: no hardware support\n");
  1551. return -EOPNOTSUPP;
  1552. }
  1553. if (kvm_arch_ops->disabled_by_bios()) {
  1554. printk(KERN_ERR "kvm: disabled by bios\n");
  1555. return -EOPNOTSUPP;
  1556. }
  1557. r = kvm_arch_ops->hardware_setup();
  1558. if (r < 0)
  1559. return r;
  1560. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1561. register_reboot_notifier(&kvm_reboot_notifier);
  1562. kvm_chardev_ops.owner = module;
  1563. r = misc_register(&kvm_dev);
  1564. if (r) {
  1565. printk (KERN_ERR "kvm: misc device register failed\n");
  1566. goto out_free;
  1567. }
  1568. return r;
  1569. out_free:
  1570. unregister_reboot_notifier(&kvm_reboot_notifier);
  1571. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1572. kvm_arch_ops->hardware_unsetup();
  1573. return r;
  1574. }
  1575. void kvm_exit_arch(void)
  1576. {
  1577. misc_deregister(&kvm_dev);
  1578. unregister_reboot_notifier(&kvm_reboot_notifier);
  1579. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1580. kvm_arch_ops->hardware_unsetup();
  1581. }
  1582. static __init int kvm_init(void)
  1583. {
  1584. static struct page *bad_page;
  1585. int r = 0;
  1586. kvm_init_debug();
  1587. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1588. r = -ENOMEM;
  1589. goto out;
  1590. }
  1591. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1592. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1593. return r;
  1594. out:
  1595. kvm_exit_debug();
  1596. return r;
  1597. }
  1598. static __exit void kvm_exit(void)
  1599. {
  1600. kvm_exit_debug();
  1601. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1602. }
  1603. module_init(kvm_init)
  1604. module_exit(kvm_exit)
  1605. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1606. EXPORT_SYMBOL_GPL(kvm_exit_arch);