xmit.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb,
  64. bool dequeue);
  65. enum {
  66. MCS_HT20,
  67. MCS_HT20_SGI,
  68. MCS_HT40,
  69. MCS_HT40_SGI,
  70. };
  71. /*********************/
  72. /* Aggregation logic */
  73. /*********************/
  74. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  75. __acquires(&txq->axq_lock)
  76. {
  77. spin_lock_bh(&txq->axq_lock);
  78. }
  79. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  80. __releases(&txq->axq_lock)
  81. {
  82. spin_unlock_bh(&txq->axq_lock);
  83. }
  84. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  85. __releases(&txq->axq_lock)
  86. {
  87. struct sk_buff_head q;
  88. struct sk_buff *skb;
  89. __skb_queue_head_init(&q);
  90. skb_queue_splice_init(&txq->complete_q, &q);
  91. spin_unlock_bh(&txq->axq_lock);
  92. while ((skb = __skb_dequeue(&q)))
  93. ieee80211_tx_status(sc->hw, skb);
  94. }
  95. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  96. {
  97. struct ath_atx_ac *ac = tid->ac;
  98. if (tid->paused)
  99. return;
  100. if (tid->sched)
  101. return;
  102. tid->sched = true;
  103. list_add_tail(&tid->list, &ac->tid_q);
  104. if (ac->sched)
  105. return;
  106. ac->sched = true;
  107. list_add_tail(&ac->list, &txq->axq_acq);
  108. }
  109. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  110. {
  111. struct ath_txq *txq = tid->ac->txq;
  112. WARN_ON(!tid->paused);
  113. ath_txq_lock(sc, txq);
  114. tid->paused = false;
  115. if (skb_queue_empty(&tid->buf_q))
  116. goto unlock;
  117. ath_tx_queue_tid(txq, tid);
  118. ath_txq_schedule(sc, txq);
  119. unlock:
  120. ath_txq_unlock_complete(sc, txq);
  121. }
  122. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  123. {
  124. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  125. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  126. sizeof(tx_info->rate_driver_data));
  127. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  128. }
  129. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  130. {
  131. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  132. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  133. }
  134. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  135. {
  136. struct ath_txq *txq = tid->ac->txq;
  137. struct sk_buff *skb;
  138. struct ath_buf *bf;
  139. struct list_head bf_head;
  140. struct ath_tx_status ts;
  141. struct ath_frame_info *fi;
  142. bool sendbar = false;
  143. INIT_LIST_HEAD(&bf_head);
  144. memset(&ts, 0, sizeof(ts));
  145. while ((skb = __skb_dequeue(&tid->buf_q))) {
  146. fi = get_frame_info(skb);
  147. bf = fi->bf;
  148. if (bf && fi->retries) {
  149. list_add_tail(&bf->list, &bf_head);
  150. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  151. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  152. sendbar = true;
  153. } else {
  154. ath_tx_send_normal(sc, txq, NULL, skb);
  155. }
  156. }
  157. if (tid->baw_head == tid->baw_tail) {
  158. tid->state &= ~AGGR_ADDBA_COMPLETE;
  159. tid->state &= ~AGGR_CLEANUP;
  160. }
  161. if (sendbar) {
  162. ath_txq_unlock(sc, txq);
  163. ath_send_bar(tid, tid->seq_start);
  164. ath_txq_lock(sc, txq);
  165. }
  166. }
  167. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  168. int seqno)
  169. {
  170. int index, cindex;
  171. index = ATH_BA_INDEX(tid->seq_start, seqno);
  172. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  173. __clear_bit(cindex, tid->tx_buf);
  174. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  175. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  176. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  177. if (tid->bar_index >= 0)
  178. tid->bar_index--;
  179. }
  180. }
  181. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  182. u16 seqno)
  183. {
  184. int index, cindex;
  185. index = ATH_BA_INDEX(tid->seq_start, seqno);
  186. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  187. __set_bit(cindex, tid->tx_buf);
  188. if (index >= ((tid->baw_tail - tid->baw_head) &
  189. (ATH_TID_MAX_BUFS - 1))) {
  190. tid->baw_tail = cindex;
  191. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  192. }
  193. }
  194. /*
  195. * TODO: For frame(s) that are in the retry state, we will reuse the
  196. * sequence number(s) without setting the retry bit. The
  197. * alternative is to give up on these and BAR the receiver's window
  198. * forward.
  199. */
  200. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  201. struct ath_atx_tid *tid)
  202. {
  203. struct sk_buff *skb;
  204. struct ath_buf *bf;
  205. struct list_head bf_head;
  206. struct ath_tx_status ts;
  207. struct ath_frame_info *fi;
  208. memset(&ts, 0, sizeof(ts));
  209. INIT_LIST_HEAD(&bf_head);
  210. while ((skb = __skb_dequeue(&tid->buf_q))) {
  211. fi = get_frame_info(skb);
  212. bf = fi->bf;
  213. if (!bf) {
  214. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  215. continue;
  216. }
  217. list_add_tail(&bf->list, &bf_head);
  218. if (fi->retries)
  219. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  220. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  221. }
  222. tid->seq_next = tid->seq_start;
  223. tid->baw_tail = tid->baw_head;
  224. tid->bar_index = -1;
  225. }
  226. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  227. struct sk_buff *skb, int count)
  228. {
  229. struct ath_frame_info *fi = get_frame_info(skb);
  230. struct ath_buf *bf = fi->bf;
  231. struct ieee80211_hdr *hdr;
  232. int prev = fi->retries;
  233. TX_STAT_INC(txq->axq_qnum, a_retries);
  234. fi->retries += count;
  235. if (prev > 0)
  236. return;
  237. hdr = (struct ieee80211_hdr *)skb->data;
  238. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  239. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  240. sizeof(*hdr), DMA_TO_DEVICE);
  241. }
  242. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  243. {
  244. struct ath_buf *bf = NULL;
  245. spin_lock_bh(&sc->tx.txbuflock);
  246. if (unlikely(list_empty(&sc->tx.txbuf))) {
  247. spin_unlock_bh(&sc->tx.txbuflock);
  248. return NULL;
  249. }
  250. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  251. list_del(&bf->list);
  252. spin_unlock_bh(&sc->tx.txbuflock);
  253. return bf;
  254. }
  255. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  256. {
  257. spin_lock_bh(&sc->tx.txbuflock);
  258. list_add_tail(&bf->list, &sc->tx.txbuf);
  259. spin_unlock_bh(&sc->tx.txbuflock);
  260. }
  261. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  262. {
  263. struct ath_buf *tbf;
  264. tbf = ath_tx_get_buffer(sc);
  265. if (WARN_ON(!tbf))
  266. return NULL;
  267. ATH_TXBUF_RESET(tbf);
  268. tbf->bf_mpdu = bf->bf_mpdu;
  269. tbf->bf_buf_addr = bf->bf_buf_addr;
  270. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  271. tbf->bf_state = bf->bf_state;
  272. return tbf;
  273. }
  274. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  275. struct ath_tx_status *ts, int txok,
  276. int *nframes, int *nbad)
  277. {
  278. struct ath_frame_info *fi;
  279. u16 seq_st = 0;
  280. u32 ba[WME_BA_BMP_SIZE >> 5];
  281. int ba_index;
  282. int isaggr = 0;
  283. *nbad = 0;
  284. *nframes = 0;
  285. isaggr = bf_isaggr(bf);
  286. if (isaggr) {
  287. seq_st = ts->ts_seqnum;
  288. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  289. }
  290. while (bf) {
  291. fi = get_frame_info(bf->bf_mpdu);
  292. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  293. (*nframes)++;
  294. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  295. (*nbad)++;
  296. bf = bf->bf_next;
  297. }
  298. }
  299. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  300. struct ath_buf *bf, struct list_head *bf_q,
  301. struct ath_tx_status *ts, int txok, bool retry)
  302. {
  303. struct ath_node *an = NULL;
  304. struct sk_buff *skb;
  305. struct ieee80211_sta *sta;
  306. struct ieee80211_hw *hw = sc->hw;
  307. struct ieee80211_hdr *hdr;
  308. struct ieee80211_tx_info *tx_info;
  309. struct ath_atx_tid *tid = NULL;
  310. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  311. struct list_head bf_head;
  312. struct sk_buff_head bf_pending;
  313. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  314. u32 ba[WME_BA_BMP_SIZE >> 5];
  315. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  316. bool rc_update = true;
  317. struct ieee80211_tx_rate rates[4];
  318. struct ath_frame_info *fi;
  319. int nframes;
  320. u8 tidno;
  321. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  322. int i, retries;
  323. int bar_index = -1;
  324. skb = bf->bf_mpdu;
  325. hdr = (struct ieee80211_hdr *)skb->data;
  326. tx_info = IEEE80211_SKB_CB(skb);
  327. memcpy(rates, tx_info->control.rates, sizeof(rates));
  328. retries = ts->ts_longretry + 1;
  329. for (i = 0; i < ts->ts_rateindex; i++)
  330. retries += rates[i].count;
  331. rcu_read_lock();
  332. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  333. if (!sta) {
  334. rcu_read_unlock();
  335. INIT_LIST_HEAD(&bf_head);
  336. while (bf) {
  337. bf_next = bf->bf_next;
  338. if (!bf->bf_stale || bf_next != NULL)
  339. list_move_tail(&bf->list, &bf_head);
  340. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  341. bf = bf_next;
  342. }
  343. return;
  344. }
  345. an = (struct ath_node *)sta->drv_priv;
  346. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  347. tid = ATH_AN_2_TID(an, tidno);
  348. seq_first = tid->seq_start;
  349. /*
  350. * The hardware occasionally sends a tx status for the wrong TID.
  351. * In this case, the BA status cannot be considered valid and all
  352. * subframes need to be retransmitted
  353. */
  354. if (tidno != ts->tid)
  355. txok = false;
  356. isaggr = bf_isaggr(bf);
  357. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  358. if (isaggr && txok) {
  359. if (ts->ts_flags & ATH9K_TX_BA) {
  360. seq_st = ts->ts_seqnum;
  361. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  362. } else {
  363. /*
  364. * AR5416 can become deaf/mute when BA
  365. * issue happens. Chip needs to be reset.
  366. * But AP code may have sychronization issues
  367. * when perform internal reset in this routine.
  368. * Only enable reset in STA mode for now.
  369. */
  370. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  371. needreset = 1;
  372. }
  373. }
  374. __skb_queue_head_init(&bf_pending);
  375. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  376. while (bf) {
  377. u16 seqno = bf->bf_state.seqno;
  378. txfail = txpending = sendbar = 0;
  379. bf_next = bf->bf_next;
  380. skb = bf->bf_mpdu;
  381. tx_info = IEEE80211_SKB_CB(skb);
  382. fi = get_frame_info(skb);
  383. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  384. /* transmit completion, subframe is
  385. * acked by block ack */
  386. acked_cnt++;
  387. } else if (!isaggr && txok) {
  388. /* transmit completion */
  389. acked_cnt++;
  390. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  391. /*
  392. * cleanup in progress, just fail
  393. * the un-acked sub-frames
  394. */
  395. txfail = 1;
  396. } else if (flush) {
  397. txpending = 1;
  398. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  399. if (txok || !an->sleeping)
  400. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  401. retries);
  402. txpending = 1;
  403. } else {
  404. txfail = 1;
  405. txfail_cnt++;
  406. bar_index = max_t(int, bar_index,
  407. ATH_BA_INDEX(seq_first, seqno));
  408. }
  409. /*
  410. * Make sure the last desc is reclaimed if it
  411. * not a holding desc.
  412. */
  413. INIT_LIST_HEAD(&bf_head);
  414. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  415. bf_next != NULL || !bf_last->bf_stale)
  416. list_move_tail(&bf->list, &bf_head);
  417. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  418. /*
  419. * complete the acked-ones/xretried ones; update
  420. * block-ack window
  421. */
  422. ath_tx_update_baw(sc, tid, seqno);
  423. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  424. memcpy(tx_info->control.rates, rates, sizeof(rates));
  425. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  426. rc_update = false;
  427. }
  428. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  429. !txfail);
  430. } else {
  431. /* retry the un-acked ones */
  432. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  433. bf->bf_next == NULL && bf_last->bf_stale) {
  434. struct ath_buf *tbf;
  435. tbf = ath_clone_txbuf(sc, bf_last);
  436. /*
  437. * Update tx baw and complete the
  438. * frame with failed status if we
  439. * run out of tx buf.
  440. */
  441. if (!tbf) {
  442. ath_tx_update_baw(sc, tid, seqno);
  443. ath_tx_complete_buf(sc, bf, txq,
  444. &bf_head, ts, 0);
  445. bar_index = max_t(int, bar_index,
  446. ATH_BA_INDEX(seq_first, seqno));
  447. break;
  448. }
  449. fi->bf = tbf;
  450. }
  451. /*
  452. * Put this buffer to the temporary pending
  453. * queue to retain ordering
  454. */
  455. __skb_queue_tail(&bf_pending, skb);
  456. }
  457. bf = bf_next;
  458. }
  459. /* prepend un-acked frames to the beginning of the pending frame queue */
  460. if (!skb_queue_empty(&bf_pending)) {
  461. if (an->sleeping)
  462. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  463. skb_queue_splice(&bf_pending, &tid->buf_q);
  464. if (!an->sleeping) {
  465. ath_tx_queue_tid(txq, tid);
  466. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  467. tid->ac->clear_ps_filter = true;
  468. }
  469. }
  470. if (bar_index >= 0) {
  471. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  472. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  473. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  474. ath_txq_unlock(sc, txq);
  475. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  476. ath_txq_lock(sc, txq);
  477. }
  478. if (tid->state & AGGR_CLEANUP)
  479. ath_tx_flush_tid(sc, tid);
  480. rcu_read_unlock();
  481. if (needreset)
  482. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  483. }
  484. static bool ath_lookup_legacy(struct ath_buf *bf)
  485. {
  486. struct sk_buff *skb;
  487. struct ieee80211_tx_info *tx_info;
  488. struct ieee80211_tx_rate *rates;
  489. int i;
  490. skb = bf->bf_mpdu;
  491. tx_info = IEEE80211_SKB_CB(skb);
  492. rates = tx_info->control.rates;
  493. for (i = 0; i < 4; i++) {
  494. if (!rates[i].count || rates[i].idx < 0)
  495. break;
  496. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  497. return true;
  498. }
  499. return false;
  500. }
  501. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  502. struct ath_atx_tid *tid)
  503. {
  504. struct sk_buff *skb;
  505. struct ieee80211_tx_info *tx_info;
  506. struct ieee80211_tx_rate *rates;
  507. u32 max_4ms_framelen, frmlen;
  508. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  509. int q = tid->ac->txq->mac80211_qnum;
  510. int i;
  511. skb = bf->bf_mpdu;
  512. tx_info = IEEE80211_SKB_CB(skb);
  513. rates = tx_info->control.rates;
  514. /*
  515. * Find the lowest frame length among the rate series that will have a
  516. * 4ms (or TXOP limited) transmit duration.
  517. */
  518. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  519. for (i = 0; i < 4; i++) {
  520. int modeidx;
  521. if (!rates[i].count)
  522. continue;
  523. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  524. legacy = 1;
  525. break;
  526. }
  527. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  528. modeidx = MCS_HT40;
  529. else
  530. modeidx = MCS_HT20;
  531. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  532. modeidx++;
  533. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  534. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  535. }
  536. /*
  537. * limit aggregate size by the minimum rate if rate selected is
  538. * not a probe rate, if rate selected is a probe rate then
  539. * avoid aggregation of this packet.
  540. */
  541. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  542. return 0;
  543. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  544. /*
  545. * Override the default aggregation limit for BTCOEX.
  546. */
  547. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  548. if (bt_aggr_limit)
  549. aggr_limit = bt_aggr_limit;
  550. /*
  551. * h/w can accept aggregates up to 16 bit lengths (65535).
  552. * The IE, however can hold up to 65536, which shows up here
  553. * as zero. Ignore 65536 since we are constrained by hw.
  554. */
  555. if (tid->an->maxampdu)
  556. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  557. return aggr_limit;
  558. }
  559. /*
  560. * Returns the number of delimiters to be added to
  561. * meet the minimum required mpdudensity.
  562. */
  563. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  564. struct ath_buf *bf, u16 frmlen,
  565. bool first_subfrm)
  566. {
  567. #define FIRST_DESC_NDELIMS 60
  568. struct sk_buff *skb = bf->bf_mpdu;
  569. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  570. u32 nsymbits, nsymbols;
  571. u16 minlen;
  572. u8 flags, rix;
  573. int width, streams, half_gi, ndelim, mindelim;
  574. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  575. /* Select standard number of delimiters based on frame length alone */
  576. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  577. /*
  578. * If encryption enabled, hardware requires some more padding between
  579. * subframes.
  580. * TODO - this could be improved to be dependent on the rate.
  581. * The hardware can keep up at lower rates, but not higher rates
  582. */
  583. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  584. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  585. ndelim += ATH_AGGR_ENCRYPTDELIM;
  586. /*
  587. * Add delimiter when using RTS/CTS with aggregation
  588. * and non enterprise AR9003 card
  589. */
  590. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  591. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  592. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  593. /*
  594. * Convert desired mpdu density from microeconds to bytes based
  595. * on highest rate in rate series (i.e. first rate) to determine
  596. * required minimum length for subframe. Take into account
  597. * whether high rate is 20 or 40Mhz and half or full GI.
  598. *
  599. * If there is no mpdu density restriction, no further calculation
  600. * is needed.
  601. */
  602. if (tid->an->mpdudensity == 0)
  603. return ndelim;
  604. rix = tx_info->control.rates[0].idx;
  605. flags = tx_info->control.rates[0].flags;
  606. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  607. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  608. if (half_gi)
  609. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  610. else
  611. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  612. if (nsymbols == 0)
  613. nsymbols = 1;
  614. streams = HT_RC_2_STREAMS(rix);
  615. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  616. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  617. if (frmlen < minlen) {
  618. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  619. ndelim = max(mindelim, ndelim);
  620. }
  621. return ndelim;
  622. }
  623. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  624. struct ath_txq *txq,
  625. struct ath_atx_tid *tid,
  626. struct list_head *bf_q,
  627. int *aggr_len)
  628. {
  629. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  630. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  631. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  632. u16 aggr_limit = 0, al = 0, bpad = 0,
  633. al_delta, h_baw = tid->baw_size / 2;
  634. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  635. struct ieee80211_tx_info *tx_info;
  636. struct ath_frame_info *fi;
  637. struct sk_buff *skb;
  638. u16 seqno;
  639. do {
  640. skb = skb_peek(&tid->buf_q);
  641. fi = get_frame_info(skb);
  642. bf = fi->bf;
  643. if (!fi->bf)
  644. bf = ath_tx_setup_buffer(sc, txq, tid, skb, true);
  645. if (!bf)
  646. continue;
  647. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  648. seqno = bf->bf_state.seqno;
  649. /* do not step over block-ack window */
  650. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  651. status = ATH_AGGR_BAW_CLOSED;
  652. break;
  653. }
  654. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  655. struct ath_tx_status ts = {};
  656. struct list_head bf_head;
  657. INIT_LIST_HEAD(&bf_head);
  658. list_add(&bf->list, &bf_head);
  659. __skb_unlink(skb, &tid->buf_q);
  660. ath_tx_update_baw(sc, tid, seqno);
  661. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  662. continue;
  663. }
  664. if (!bf_first)
  665. bf_first = bf;
  666. if (!rl) {
  667. aggr_limit = ath_lookup_rate(sc, bf, tid);
  668. rl = 1;
  669. }
  670. /* do not exceed aggregation limit */
  671. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  672. if (nframes &&
  673. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  674. ath_lookup_legacy(bf))) {
  675. status = ATH_AGGR_LIMITED;
  676. break;
  677. }
  678. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  679. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  680. break;
  681. /* do not exceed subframe limit */
  682. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  683. status = ATH_AGGR_LIMITED;
  684. break;
  685. }
  686. /* add padding for previous frame to aggregation length */
  687. al += bpad + al_delta;
  688. /*
  689. * Get the delimiters needed to meet the MPDU
  690. * density for this node.
  691. */
  692. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  693. !nframes);
  694. bpad = PADBYTES(al_delta) + (ndelim << 2);
  695. nframes++;
  696. bf->bf_next = NULL;
  697. /* link buffers of this frame to the aggregate */
  698. if (!fi->retries)
  699. ath_tx_addto_baw(sc, tid, seqno);
  700. bf->bf_state.ndelim = ndelim;
  701. __skb_unlink(skb, &tid->buf_q);
  702. list_add_tail(&bf->list, bf_q);
  703. if (bf_prev)
  704. bf_prev->bf_next = bf;
  705. bf_prev = bf;
  706. } while (!skb_queue_empty(&tid->buf_q));
  707. *aggr_len = al;
  708. return status;
  709. #undef PADBYTES
  710. }
  711. /*
  712. * rix - rate index
  713. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  714. * width - 0 for 20 MHz, 1 for 40 MHz
  715. * half_gi - to use 4us v/s 3.6 us for symbol time
  716. */
  717. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  718. int width, int half_gi, bool shortPreamble)
  719. {
  720. u32 nbits, nsymbits, duration, nsymbols;
  721. int streams;
  722. /* find number of symbols: PLCP + data */
  723. streams = HT_RC_2_STREAMS(rix);
  724. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  725. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  726. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  727. if (!half_gi)
  728. duration = SYMBOL_TIME(nsymbols);
  729. else
  730. duration = SYMBOL_TIME_HALFGI(nsymbols);
  731. /* addup duration for legacy/ht training and signal fields */
  732. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  733. return duration;
  734. }
  735. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  736. {
  737. int streams = HT_RC_2_STREAMS(mcs);
  738. int symbols, bits;
  739. int bytes = 0;
  740. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  741. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  742. bits -= OFDM_PLCP_BITS;
  743. bytes = bits / 8;
  744. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  745. if (bytes > 65532)
  746. bytes = 65532;
  747. return bytes;
  748. }
  749. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  750. {
  751. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  752. int mcs;
  753. /* 4ms is the default (and maximum) duration */
  754. if (!txop || txop > 4096)
  755. txop = 4096;
  756. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  757. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  758. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  759. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  760. for (mcs = 0; mcs < 32; mcs++) {
  761. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  762. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  763. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  764. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  765. }
  766. }
  767. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  768. struct ath_tx_info *info, int len)
  769. {
  770. struct ath_hw *ah = sc->sc_ah;
  771. struct sk_buff *skb;
  772. struct ieee80211_tx_info *tx_info;
  773. struct ieee80211_tx_rate *rates;
  774. const struct ieee80211_rate *rate;
  775. struct ieee80211_hdr *hdr;
  776. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  777. int i;
  778. u8 rix = 0;
  779. skb = bf->bf_mpdu;
  780. tx_info = IEEE80211_SKB_CB(skb);
  781. rates = tx_info->control.rates;
  782. hdr = (struct ieee80211_hdr *)skb->data;
  783. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  784. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  785. info->rtscts_rate = fi->rtscts_rate;
  786. for (i = 0; i < 4; i++) {
  787. bool is_40, is_sgi, is_sp;
  788. int phy;
  789. if (!rates[i].count || (rates[i].idx < 0))
  790. continue;
  791. rix = rates[i].idx;
  792. info->rates[i].Tries = rates[i].count;
  793. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  794. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  795. info->flags |= ATH9K_TXDESC_RTSENA;
  796. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  797. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  798. info->flags |= ATH9K_TXDESC_CTSENA;
  799. }
  800. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  801. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  802. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  803. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  804. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  805. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  806. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  807. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  808. /* MCS rates */
  809. info->rates[i].Rate = rix | 0x80;
  810. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  811. ah->txchainmask, info->rates[i].Rate);
  812. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  813. is_40, is_sgi, is_sp);
  814. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  815. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  816. continue;
  817. }
  818. /* legacy rates */
  819. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  820. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  821. !(rate->flags & IEEE80211_RATE_ERP_G))
  822. phy = WLAN_RC_PHY_CCK;
  823. else
  824. phy = WLAN_RC_PHY_OFDM;
  825. info->rates[i].Rate = rate->hw_value;
  826. if (rate->hw_value_short) {
  827. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  828. info->rates[i].Rate |= rate->hw_value_short;
  829. } else {
  830. is_sp = false;
  831. }
  832. if (bf->bf_state.bfs_paprd)
  833. info->rates[i].ChSel = ah->txchainmask;
  834. else
  835. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  836. ah->txchainmask, info->rates[i].Rate);
  837. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  838. phy, rate->bitrate * 100, len, rix, is_sp);
  839. }
  840. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  841. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  842. info->flags &= ~ATH9K_TXDESC_RTSENA;
  843. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  844. if (info->flags & ATH9K_TXDESC_RTSENA)
  845. info->flags &= ~ATH9K_TXDESC_CTSENA;
  846. }
  847. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  848. {
  849. struct ieee80211_hdr *hdr;
  850. enum ath9k_pkt_type htype;
  851. __le16 fc;
  852. hdr = (struct ieee80211_hdr *)skb->data;
  853. fc = hdr->frame_control;
  854. if (ieee80211_is_beacon(fc))
  855. htype = ATH9K_PKT_TYPE_BEACON;
  856. else if (ieee80211_is_probe_resp(fc))
  857. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  858. else if (ieee80211_is_atim(fc))
  859. htype = ATH9K_PKT_TYPE_ATIM;
  860. else if (ieee80211_is_pspoll(fc))
  861. htype = ATH9K_PKT_TYPE_PSPOLL;
  862. else
  863. htype = ATH9K_PKT_TYPE_NORMAL;
  864. return htype;
  865. }
  866. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  867. struct ath_txq *txq, int len)
  868. {
  869. struct ath_hw *ah = sc->sc_ah;
  870. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  871. struct ath_buf *bf_first = bf;
  872. struct ath_tx_info info;
  873. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  874. memset(&info, 0, sizeof(info));
  875. info.is_first = true;
  876. info.is_last = true;
  877. info.txpower = MAX_RATE_POWER;
  878. info.qcu = txq->axq_qnum;
  879. info.flags = ATH9K_TXDESC_INTREQ;
  880. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  881. info.flags |= ATH9K_TXDESC_NOACK;
  882. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  883. info.flags |= ATH9K_TXDESC_LDPC;
  884. ath_buf_set_rate(sc, bf, &info, len);
  885. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  886. info.flags |= ATH9K_TXDESC_CLRDMASK;
  887. if (bf->bf_state.bfs_paprd)
  888. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  889. while (bf) {
  890. struct sk_buff *skb = bf->bf_mpdu;
  891. struct ath_frame_info *fi = get_frame_info(skb);
  892. info.type = get_hw_packet_type(skb);
  893. if (bf->bf_next)
  894. info.link = bf->bf_next->bf_daddr;
  895. else
  896. info.link = 0;
  897. info.buf_addr[0] = bf->bf_buf_addr;
  898. info.buf_len[0] = skb->len;
  899. info.pkt_len = fi->framelen;
  900. info.keyix = fi->keyix;
  901. info.keytype = fi->keytype;
  902. if (aggr) {
  903. if (bf == bf_first)
  904. info.aggr = AGGR_BUF_FIRST;
  905. else if (!bf->bf_next)
  906. info.aggr = AGGR_BUF_LAST;
  907. else
  908. info.aggr = AGGR_BUF_MIDDLE;
  909. info.ndelim = bf->bf_state.ndelim;
  910. info.aggr_len = len;
  911. }
  912. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  913. bf = bf->bf_next;
  914. }
  915. }
  916. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  917. struct ath_atx_tid *tid)
  918. {
  919. struct ath_buf *bf;
  920. enum ATH_AGGR_STATUS status;
  921. struct ieee80211_tx_info *tx_info;
  922. struct list_head bf_q;
  923. int aggr_len;
  924. do {
  925. if (skb_queue_empty(&tid->buf_q))
  926. return;
  927. INIT_LIST_HEAD(&bf_q);
  928. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  929. /*
  930. * no frames picked up to be aggregated;
  931. * block-ack window is not open.
  932. */
  933. if (list_empty(&bf_q))
  934. break;
  935. bf = list_first_entry(&bf_q, struct ath_buf, list);
  936. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  937. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  938. if (tid->ac->clear_ps_filter) {
  939. tid->ac->clear_ps_filter = false;
  940. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  941. } else {
  942. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  943. }
  944. /* if only one frame, send as non-aggregate */
  945. if (bf == bf->bf_lastbf) {
  946. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  947. bf->bf_state.bf_type = BUF_AMPDU;
  948. } else {
  949. TX_STAT_INC(txq->axq_qnum, a_aggr);
  950. }
  951. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  952. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  953. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  954. status != ATH_AGGR_BAW_CLOSED);
  955. }
  956. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  957. u16 tid, u16 *ssn)
  958. {
  959. struct ath_atx_tid *txtid;
  960. struct ath_node *an;
  961. u8 density;
  962. an = (struct ath_node *)sta->drv_priv;
  963. txtid = ATH_AN_2_TID(an, tid);
  964. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  965. return -EAGAIN;
  966. /* update ampdu factor/density, they may have changed. This may happen
  967. * in HT IBSS when a beacon with HT-info is received after the station
  968. * has already been added.
  969. */
  970. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  971. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  972. sta->ht_cap.ampdu_factor);
  973. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  974. an->mpdudensity = density;
  975. }
  976. txtid->state |= AGGR_ADDBA_PROGRESS;
  977. txtid->paused = true;
  978. *ssn = txtid->seq_start = txtid->seq_next;
  979. txtid->bar_index = -1;
  980. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  981. txtid->baw_head = txtid->baw_tail = 0;
  982. return 0;
  983. }
  984. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  985. {
  986. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  987. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  988. struct ath_txq *txq = txtid->ac->txq;
  989. if (txtid->state & AGGR_CLEANUP)
  990. return;
  991. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  992. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  993. return;
  994. }
  995. ath_txq_lock(sc, txq);
  996. txtid->paused = true;
  997. /*
  998. * If frames are still being transmitted for this TID, they will be
  999. * cleaned up during tx completion. To prevent race conditions, this
  1000. * TID can only be reused after all in-progress subframes have been
  1001. * completed.
  1002. */
  1003. if (txtid->baw_head != txtid->baw_tail)
  1004. txtid->state |= AGGR_CLEANUP;
  1005. else
  1006. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  1007. ath_tx_flush_tid(sc, txtid);
  1008. ath_txq_unlock_complete(sc, txq);
  1009. }
  1010. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1011. struct ath_node *an)
  1012. {
  1013. struct ath_atx_tid *tid;
  1014. struct ath_atx_ac *ac;
  1015. struct ath_txq *txq;
  1016. bool buffered;
  1017. int tidno;
  1018. for (tidno = 0, tid = &an->tid[tidno];
  1019. tidno < WME_NUM_TID; tidno++, tid++) {
  1020. if (!tid->sched)
  1021. continue;
  1022. ac = tid->ac;
  1023. txq = ac->txq;
  1024. ath_txq_lock(sc, txq);
  1025. buffered = !skb_queue_empty(&tid->buf_q);
  1026. tid->sched = false;
  1027. list_del(&tid->list);
  1028. if (ac->sched) {
  1029. ac->sched = false;
  1030. list_del(&ac->list);
  1031. }
  1032. ath_txq_unlock(sc, txq);
  1033. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1034. }
  1035. }
  1036. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1037. {
  1038. struct ath_atx_tid *tid;
  1039. struct ath_atx_ac *ac;
  1040. struct ath_txq *txq;
  1041. int tidno;
  1042. for (tidno = 0, tid = &an->tid[tidno];
  1043. tidno < WME_NUM_TID; tidno++, tid++) {
  1044. ac = tid->ac;
  1045. txq = ac->txq;
  1046. ath_txq_lock(sc, txq);
  1047. ac->clear_ps_filter = true;
  1048. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1049. ath_tx_queue_tid(txq, tid);
  1050. ath_txq_schedule(sc, txq);
  1051. }
  1052. ath_txq_unlock_complete(sc, txq);
  1053. }
  1054. }
  1055. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1056. {
  1057. struct ath_atx_tid *txtid;
  1058. struct ath_node *an;
  1059. an = (struct ath_node *)sta->drv_priv;
  1060. txtid = ATH_AN_2_TID(an, tid);
  1061. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1062. txtid->state |= AGGR_ADDBA_COMPLETE;
  1063. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1064. ath_tx_resume_tid(sc, txtid);
  1065. }
  1066. /********************/
  1067. /* Queue Management */
  1068. /********************/
  1069. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1070. struct ath_txq *txq)
  1071. {
  1072. struct ath_atx_ac *ac, *ac_tmp;
  1073. struct ath_atx_tid *tid, *tid_tmp;
  1074. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1075. list_del(&ac->list);
  1076. ac->sched = false;
  1077. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1078. list_del(&tid->list);
  1079. tid->sched = false;
  1080. ath_tid_drain(sc, txq, tid);
  1081. }
  1082. }
  1083. }
  1084. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1085. {
  1086. struct ath_hw *ah = sc->sc_ah;
  1087. struct ath9k_tx_queue_info qi;
  1088. static const int subtype_txq_to_hwq[] = {
  1089. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1090. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1091. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1092. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1093. };
  1094. int axq_qnum, i;
  1095. memset(&qi, 0, sizeof(qi));
  1096. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1097. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1098. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1099. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1100. qi.tqi_physCompBuf = 0;
  1101. /*
  1102. * Enable interrupts only for EOL and DESC conditions.
  1103. * We mark tx descriptors to receive a DESC interrupt
  1104. * when a tx queue gets deep; otherwise waiting for the
  1105. * EOL to reap descriptors. Note that this is done to
  1106. * reduce interrupt load and this only defers reaping
  1107. * descriptors, never transmitting frames. Aside from
  1108. * reducing interrupts this also permits more concurrency.
  1109. * The only potential downside is if the tx queue backs
  1110. * up in which case the top half of the kernel may backup
  1111. * due to a lack of tx descriptors.
  1112. *
  1113. * The UAPSD queue is an exception, since we take a desc-
  1114. * based intr on the EOSP frames.
  1115. */
  1116. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1117. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1118. } else {
  1119. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1120. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1121. else
  1122. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1123. TXQ_FLAG_TXDESCINT_ENABLE;
  1124. }
  1125. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1126. if (axq_qnum == -1) {
  1127. /*
  1128. * NB: don't print a message, this happens
  1129. * normally on parts with too few tx queues
  1130. */
  1131. return NULL;
  1132. }
  1133. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1134. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1135. txq->axq_qnum = axq_qnum;
  1136. txq->mac80211_qnum = -1;
  1137. txq->axq_link = NULL;
  1138. __skb_queue_head_init(&txq->complete_q);
  1139. INIT_LIST_HEAD(&txq->axq_q);
  1140. INIT_LIST_HEAD(&txq->axq_acq);
  1141. spin_lock_init(&txq->axq_lock);
  1142. txq->axq_depth = 0;
  1143. txq->axq_ampdu_depth = 0;
  1144. txq->axq_tx_inprogress = false;
  1145. sc->tx.txqsetup |= 1<<axq_qnum;
  1146. txq->txq_headidx = txq->txq_tailidx = 0;
  1147. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1148. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1149. }
  1150. return &sc->tx.txq[axq_qnum];
  1151. }
  1152. int ath_txq_update(struct ath_softc *sc, int qnum,
  1153. struct ath9k_tx_queue_info *qinfo)
  1154. {
  1155. struct ath_hw *ah = sc->sc_ah;
  1156. int error = 0;
  1157. struct ath9k_tx_queue_info qi;
  1158. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1159. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1160. qi.tqi_aifs = qinfo->tqi_aifs;
  1161. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1162. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1163. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1164. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1165. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1166. ath_err(ath9k_hw_common(sc->sc_ah),
  1167. "Unable to update hardware queue %u!\n", qnum);
  1168. error = -EIO;
  1169. } else {
  1170. ath9k_hw_resettxqueue(ah, qnum);
  1171. }
  1172. return error;
  1173. }
  1174. int ath_cabq_update(struct ath_softc *sc)
  1175. {
  1176. struct ath9k_tx_queue_info qi;
  1177. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1178. int qnum = sc->beacon.cabq->axq_qnum;
  1179. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1180. /*
  1181. * Ensure the readytime % is within the bounds.
  1182. */
  1183. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1184. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1185. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1186. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1187. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1188. sc->config.cabqReadytime) / 100;
  1189. ath_txq_update(sc, qnum, &qi);
  1190. return 0;
  1191. }
  1192. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1193. {
  1194. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1195. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1196. }
  1197. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1198. struct list_head *list, bool retry_tx)
  1199. {
  1200. struct ath_buf *bf, *lastbf;
  1201. struct list_head bf_head;
  1202. struct ath_tx_status ts;
  1203. memset(&ts, 0, sizeof(ts));
  1204. ts.ts_status = ATH9K_TX_FLUSH;
  1205. INIT_LIST_HEAD(&bf_head);
  1206. while (!list_empty(list)) {
  1207. bf = list_first_entry(list, struct ath_buf, list);
  1208. if (bf->bf_stale) {
  1209. list_del(&bf->list);
  1210. ath_tx_return_buffer(sc, bf);
  1211. continue;
  1212. }
  1213. lastbf = bf->bf_lastbf;
  1214. list_cut_position(&bf_head, list, &lastbf->list);
  1215. txq->axq_depth--;
  1216. if (bf_is_ampdu_not_probing(bf))
  1217. txq->axq_ampdu_depth--;
  1218. if (bf_isampdu(bf))
  1219. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1220. retry_tx);
  1221. else
  1222. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1223. }
  1224. }
  1225. /*
  1226. * Drain a given TX queue (could be Beacon or Data)
  1227. *
  1228. * This assumes output has been stopped and
  1229. * we do not need to block ath_tx_tasklet.
  1230. */
  1231. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1232. {
  1233. ath_txq_lock(sc, txq);
  1234. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1235. int idx = txq->txq_tailidx;
  1236. while (!list_empty(&txq->txq_fifo[idx])) {
  1237. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1238. retry_tx);
  1239. INCR(idx, ATH_TXFIFO_DEPTH);
  1240. }
  1241. txq->txq_tailidx = idx;
  1242. }
  1243. txq->axq_link = NULL;
  1244. txq->axq_tx_inprogress = false;
  1245. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1246. /* flush any pending frames if aggregation is enabled */
  1247. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
  1248. ath_txq_drain_pending_buffers(sc, txq);
  1249. ath_txq_unlock_complete(sc, txq);
  1250. }
  1251. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1252. {
  1253. struct ath_hw *ah = sc->sc_ah;
  1254. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1255. struct ath_txq *txq;
  1256. int i;
  1257. u32 npend = 0;
  1258. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1259. return true;
  1260. ath9k_hw_abort_tx_dma(ah);
  1261. /* Check if any queue remains active */
  1262. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1263. if (!ATH_TXQ_SETUP(sc, i))
  1264. continue;
  1265. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1266. npend |= BIT(i);
  1267. }
  1268. if (npend)
  1269. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1270. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1271. if (!ATH_TXQ_SETUP(sc, i))
  1272. continue;
  1273. /*
  1274. * The caller will resume queues with ieee80211_wake_queues.
  1275. * Mark the queue as not stopped to prevent ath_tx_complete
  1276. * from waking the queue too early.
  1277. */
  1278. txq = &sc->tx.txq[i];
  1279. txq->stopped = false;
  1280. ath_draintxq(sc, txq, retry_tx);
  1281. }
  1282. return !npend;
  1283. }
  1284. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1285. {
  1286. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1287. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1288. }
  1289. /* For each axq_acq entry, for each tid, try to schedule packets
  1290. * for transmit until ampdu_depth has reached min Q depth.
  1291. */
  1292. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1293. {
  1294. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1295. struct ath_atx_tid *tid, *last_tid;
  1296. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1297. list_empty(&txq->axq_acq) ||
  1298. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1299. return;
  1300. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1301. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1302. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1303. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1304. list_del(&ac->list);
  1305. ac->sched = false;
  1306. while (!list_empty(&ac->tid_q)) {
  1307. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1308. list);
  1309. list_del(&tid->list);
  1310. tid->sched = false;
  1311. if (tid->paused)
  1312. continue;
  1313. ath_tx_sched_aggr(sc, txq, tid);
  1314. /*
  1315. * add tid to round-robin queue if more frames
  1316. * are pending for the tid
  1317. */
  1318. if (!skb_queue_empty(&tid->buf_q))
  1319. ath_tx_queue_tid(txq, tid);
  1320. if (tid == last_tid ||
  1321. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1322. break;
  1323. }
  1324. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1325. ac->sched = true;
  1326. list_add_tail(&ac->list, &txq->axq_acq);
  1327. }
  1328. if (ac == last_ac ||
  1329. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1330. return;
  1331. }
  1332. }
  1333. /***********/
  1334. /* TX, DMA */
  1335. /***********/
  1336. /*
  1337. * Insert a chain of ath_buf (descriptors) on a txq and
  1338. * assume the descriptors are already chained together by caller.
  1339. */
  1340. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1341. struct list_head *head, bool internal)
  1342. {
  1343. struct ath_hw *ah = sc->sc_ah;
  1344. struct ath_common *common = ath9k_hw_common(ah);
  1345. struct ath_buf *bf, *bf_last;
  1346. bool puttxbuf = false;
  1347. bool edma;
  1348. /*
  1349. * Insert the frame on the outbound list and
  1350. * pass it on to the hardware.
  1351. */
  1352. if (list_empty(head))
  1353. return;
  1354. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1355. bf = list_first_entry(head, struct ath_buf, list);
  1356. bf_last = list_entry(head->prev, struct ath_buf, list);
  1357. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1358. txq->axq_qnum, txq->axq_depth);
  1359. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1360. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1361. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1362. puttxbuf = true;
  1363. } else {
  1364. list_splice_tail_init(head, &txq->axq_q);
  1365. if (txq->axq_link) {
  1366. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1367. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1368. txq->axq_qnum, txq->axq_link,
  1369. ito64(bf->bf_daddr), bf->bf_desc);
  1370. } else if (!edma)
  1371. puttxbuf = true;
  1372. txq->axq_link = bf_last->bf_desc;
  1373. }
  1374. if (puttxbuf) {
  1375. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1376. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1377. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1378. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1379. }
  1380. if (!edma) {
  1381. TX_STAT_INC(txq->axq_qnum, txstart);
  1382. ath9k_hw_txstart(ah, txq->axq_qnum);
  1383. }
  1384. if (!internal) {
  1385. txq->axq_depth++;
  1386. if (bf_is_ampdu_not_probing(bf))
  1387. txq->axq_ampdu_depth++;
  1388. }
  1389. }
  1390. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1391. struct sk_buff *skb, struct ath_tx_control *txctl)
  1392. {
  1393. struct ath_frame_info *fi = get_frame_info(skb);
  1394. struct list_head bf_head;
  1395. struct ath_buf *bf;
  1396. /*
  1397. * Do not queue to h/w when any of the following conditions is true:
  1398. * - there are pending frames in software queue
  1399. * - the TID is currently paused for ADDBA/BAR request
  1400. * - seqno is not within block-ack window
  1401. * - h/w queue depth exceeds low water mark
  1402. */
  1403. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1404. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1405. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1406. /*
  1407. * Add this frame to software queue for scheduling later
  1408. * for aggregation.
  1409. */
  1410. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1411. __skb_queue_tail(&tid->buf_q, skb);
  1412. if (!txctl->an || !txctl->an->sleeping)
  1413. ath_tx_queue_tid(txctl->txq, tid);
  1414. return;
  1415. }
  1416. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
  1417. if (!bf)
  1418. return;
  1419. bf->bf_state.bf_type = BUF_AMPDU;
  1420. INIT_LIST_HEAD(&bf_head);
  1421. list_add(&bf->list, &bf_head);
  1422. /* Add sub-frame to BAW */
  1423. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1424. /* Queue to h/w without aggregation */
  1425. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1426. bf->bf_lastbf = bf;
  1427. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1428. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1429. }
  1430. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1431. struct ath_atx_tid *tid, struct sk_buff *skb)
  1432. {
  1433. struct ath_frame_info *fi = get_frame_info(skb);
  1434. struct list_head bf_head;
  1435. struct ath_buf *bf;
  1436. bf = fi->bf;
  1437. if (!bf)
  1438. bf = ath_tx_setup_buffer(sc, txq, tid, skb, false);
  1439. if (!bf)
  1440. return;
  1441. INIT_LIST_HEAD(&bf_head);
  1442. list_add_tail(&bf->list, &bf_head);
  1443. bf->bf_state.bf_type = 0;
  1444. bf->bf_lastbf = bf;
  1445. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1446. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1447. TX_STAT_INC(txq->axq_qnum, queued);
  1448. }
  1449. static void setup_frame_info(struct ieee80211_hw *hw,
  1450. struct ieee80211_sta *sta,
  1451. struct sk_buff *skb,
  1452. int framelen)
  1453. {
  1454. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1455. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1456. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1457. const struct ieee80211_rate *rate;
  1458. struct ath_frame_info *fi = get_frame_info(skb);
  1459. struct ath_node *an = NULL;
  1460. enum ath9k_key_type keytype;
  1461. bool short_preamble = false;
  1462. /*
  1463. * We check if Short Preamble is needed for the CTS rate by
  1464. * checking the BSS's global flag.
  1465. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1466. */
  1467. if (tx_info->control.vif &&
  1468. tx_info->control.vif->bss_conf.use_short_preamble)
  1469. short_preamble = true;
  1470. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1471. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1472. if (sta)
  1473. an = (struct ath_node *) sta->drv_priv;
  1474. memset(fi, 0, sizeof(*fi));
  1475. if (hw_key)
  1476. fi->keyix = hw_key->hw_key_idx;
  1477. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1478. fi->keyix = an->ps_key;
  1479. else
  1480. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1481. fi->keytype = keytype;
  1482. fi->framelen = framelen;
  1483. fi->rtscts_rate = rate->hw_value;
  1484. if (short_preamble)
  1485. fi->rtscts_rate |= rate->hw_value_short;
  1486. }
  1487. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1488. {
  1489. struct ath_hw *ah = sc->sc_ah;
  1490. struct ath9k_channel *curchan = ah->curchan;
  1491. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1492. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1493. (chainmask == 0x7) && (rate < 0x90))
  1494. return 0x3;
  1495. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1496. IS_CCK_RATE(rate))
  1497. return 0x2;
  1498. else
  1499. return chainmask;
  1500. }
  1501. /*
  1502. * Assign a descriptor (and sequence number if necessary,
  1503. * and map buffer for DMA. Frees skb on error
  1504. */
  1505. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1506. struct ath_txq *txq,
  1507. struct ath_atx_tid *tid,
  1508. struct sk_buff *skb,
  1509. bool dequeue)
  1510. {
  1511. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1512. struct ath_frame_info *fi = get_frame_info(skb);
  1513. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1514. struct ath_buf *bf;
  1515. int fragno;
  1516. u16 seqno;
  1517. bf = ath_tx_get_buffer(sc);
  1518. if (!bf) {
  1519. ath_dbg(common, XMIT, "TX buffers are full\n");
  1520. goto error;
  1521. }
  1522. ATH_TXBUF_RESET(bf);
  1523. if (tid) {
  1524. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1525. seqno = tid->seq_next;
  1526. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1527. if (fragno)
  1528. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1529. if (!ieee80211_has_morefrags(hdr->frame_control))
  1530. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1531. bf->bf_state.seqno = seqno;
  1532. }
  1533. bf->bf_mpdu = skb;
  1534. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1535. skb->len, DMA_TO_DEVICE);
  1536. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1537. bf->bf_mpdu = NULL;
  1538. bf->bf_buf_addr = 0;
  1539. ath_err(ath9k_hw_common(sc->sc_ah),
  1540. "dma_mapping_error() on TX\n");
  1541. ath_tx_return_buffer(sc, bf);
  1542. goto error;
  1543. }
  1544. fi->bf = bf;
  1545. return bf;
  1546. error:
  1547. if (dequeue)
  1548. __skb_unlink(skb, &tid->buf_q);
  1549. dev_kfree_skb_any(skb);
  1550. return NULL;
  1551. }
  1552. /* FIXME: tx power */
  1553. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1554. struct ath_tx_control *txctl)
  1555. {
  1556. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1557. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1558. struct ath_atx_tid *tid = NULL;
  1559. struct ath_buf *bf;
  1560. u8 tidno;
  1561. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
  1562. ieee80211_is_data_qos(hdr->frame_control)) {
  1563. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1564. IEEE80211_QOS_CTL_TID_MASK;
  1565. tid = ATH_AN_2_TID(txctl->an, tidno);
  1566. WARN_ON(tid->ac->txq != txctl->txq);
  1567. }
  1568. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1569. /*
  1570. * Try aggregation if it's a unicast data frame
  1571. * and the destination is HT capable.
  1572. */
  1573. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1574. } else {
  1575. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
  1576. if (!bf)
  1577. return;
  1578. bf->bf_state.bfs_paprd = txctl->paprd;
  1579. if (txctl->paprd)
  1580. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1581. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1582. }
  1583. }
  1584. /* Upon failure caller should free skb */
  1585. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1586. struct ath_tx_control *txctl)
  1587. {
  1588. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1589. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1590. struct ieee80211_sta *sta = txctl->sta;
  1591. struct ieee80211_vif *vif = info->control.vif;
  1592. struct ath_softc *sc = hw->priv;
  1593. struct ath_txq *txq = txctl->txq;
  1594. int padpos, padsize;
  1595. int frmlen = skb->len + FCS_LEN;
  1596. int q;
  1597. /* NOTE: sta can be NULL according to net/mac80211.h */
  1598. if (sta)
  1599. txctl->an = (struct ath_node *)sta->drv_priv;
  1600. if (info->control.hw_key)
  1601. frmlen += info->control.hw_key->icv_len;
  1602. /*
  1603. * As a temporary workaround, assign seq# here; this will likely need
  1604. * to be cleaned up to work better with Beacon transmission and virtual
  1605. * BSSes.
  1606. */
  1607. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1608. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1609. sc->tx.seq_no += 0x10;
  1610. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1611. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1612. }
  1613. /* Add the padding after the header if this is not already done */
  1614. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1615. padsize = padpos & 3;
  1616. if (padsize && skb->len > padpos) {
  1617. if (skb_headroom(skb) < padsize)
  1618. return -ENOMEM;
  1619. skb_push(skb, padsize);
  1620. memmove(skb->data, skb->data + padsize, padpos);
  1621. hdr = (struct ieee80211_hdr *) skb->data;
  1622. }
  1623. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1624. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1625. !ieee80211_is_data(hdr->frame_control))
  1626. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1627. setup_frame_info(hw, sta, skb, frmlen);
  1628. /*
  1629. * At this point, the vif, hw_key and sta pointers in the tx control
  1630. * info are no longer valid (overwritten by the ath_frame_info data.
  1631. */
  1632. q = skb_get_queue_mapping(skb);
  1633. ath_txq_lock(sc, txq);
  1634. if (txq == sc->tx.txq_map[q] &&
  1635. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1636. !txq->stopped) {
  1637. ieee80211_stop_queue(sc->hw, q);
  1638. txq->stopped = true;
  1639. }
  1640. ath_tx_start_dma(sc, skb, txctl);
  1641. ath_txq_unlock(sc, txq);
  1642. return 0;
  1643. }
  1644. /*****************/
  1645. /* TX Completion */
  1646. /*****************/
  1647. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1648. int tx_flags, struct ath_txq *txq)
  1649. {
  1650. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1651. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1652. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1653. int q, padpos, padsize;
  1654. unsigned long flags;
  1655. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1656. if (sc->sc_ah->caldata)
  1657. sc->sc_ah->caldata->paprd_packet_sent = true;
  1658. if (!(tx_flags & ATH_TX_ERROR))
  1659. /* Frame was ACKed */
  1660. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1661. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1662. padsize = padpos & 3;
  1663. if (padsize && skb->len>padpos+padsize) {
  1664. /*
  1665. * Remove MAC header padding before giving the frame back to
  1666. * mac80211.
  1667. */
  1668. memmove(skb->data + padsize, skb->data, padpos);
  1669. skb_pull(skb, padsize);
  1670. }
  1671. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1672. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1673. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1674. ath_dbg(common, PS,
  1675. "Going back to sleep after having received TX status (0x%lx)\n",
  1676. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1677. PS_WAIT_FOR_CAB |
  1678. PS_WAIT_FOR_PSPOLL_DATA |
  1679. PS_WAIT_FOR_TX_ACK));
  1680. }
  1681. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1682. q = skb_get_queue_mapping(skb);
  1683. if (txq == sc->tx.txq_map[q]) {
  1684. if (WARN_ON(--txq->pending_frames < 0))
  1685. txq->pending_frames = 0;
  1686. if (txq->stopped &&
  1687. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1688. ieee80211_wake_queue(sc->hw, q);
  1689. txq->stopped = false;
  1690. }
  1691. }
  1692. __skb_queue_tail(&txq->complete_q, skb);
  1693. }
  1694. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1695. struct ath_txq *txq, struct list_head *bf_q,
  1696. struct ath_tx_status *ts, int txok)
  1697. {
  1698. struct sk_buff *skb = bf->bf_mpdu;
  1699. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1700. unsigned long flags;
  1701. int tx_flags = 0;
  1702. if (!txok)
  1703. tx_flags |= ATH_TX_ERROR;
  1704. if (ts->ts_status & ATH9K_TXERR_FILT)
  1705. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1706. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1707. bf->bf_buf_addr = 0;
  1708. if (bf->bf_state.bfs_paprd) {
  1709. if (time_after(jiffies,
  1710. bf->bf_state.bfs_paprd_timestamp +
  1711. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1712. dev_kfree_skb_any(skb);
  1713. else
  1714. complete(&sc->paprd_complete);
  1715. } else {
  1716. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1717. ath_tx_complete(sc, skb, tx_flags, txq);
  1718. }
  1719. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1720. * accidentally reference it later.
  1721. */
  1722. bf->bf_mpdu = NULL;
  1723. /*
  1724. * Return the list of ath_buf of this mpdu to free queue
  1725. */
  1726. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1727. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1728. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1729. }
  1730. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1731. struct ath_tx_status *ts, int nframes, int nbad,
  1732. int txok)
  1733. {
  1734. struct sk_buff *skb = bf->bf_mpdu;
  1735. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1736. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1737. struct ieee80211_hw *hw = sc->hw;
  1738. struct ath_hw *ah = sc->sc_ah;
  1739. u8 i, tx_rateindex;
  1740. if (txok)
  1741. tx_info->status.ack_signal = ts->ts_rssi;
  1742. tx_rateindex = ts->ts_rateindex;
  1743. WARN_ON(tx_rateindex >= hw->max_rates);
  1744. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1745. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1746. BUG_ON(nbad > nframes);
  1747. }
  1748. tx_info->status.ampdu_len = nframes;
  1749. tx_info->status.ampdu_ack_len = nframes - nbad;
  1750. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1751. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1752. /*
  1753. * If an underrun error is seen assume it as an excessive
  1754. * retry only if max frame trigger level has been reached
  1755. * (2 KB for single stream, and 4 KB for dual stream).
  1756. * Adjust the long retry as if the frame was tried
  1757. * hw->max_rate_tries times to affect how rate control updates
  1758. * PER for the failed rate.
  1759. * In case of congestion on the bus penalizing this type of
  1760. * underruns should help hardware actually transmit new frames
  1761. * successfully by eventually preferring slower rates.
  1762. * This itself should also alleviate congestion on the bus.
  1763. */
  1764. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1765. ATH9K_TX_DELIM_UNDERRUN)) &&
  1766. ieee80211_is_data(hdr->frame_control) &&
  1767. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1768. tx_info->status.rates[tx_rateindex].count =
  1769. hw->max_rate_tries;
  1770. }
  1771. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1772. tx_info->status.rates[i].count = 0;
  1773. tx_info->status.rates[i].idx = -1;
  1774. }
  1775. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1776. }
  1777. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1778. struct ath_tx_status *ts, struct ath_buf *bf,
  1779. struct list_head *bf_head)
  1780. {
  1781. int txok;
  1782. txq->axq_depth--;
  1783. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1784. txq->axq_tx_inprogress = false;
  1785. if (bf_is_ampdu_not_probing(bf))
  1786. txq->axq_ampdu_depth--;
  1787. if (!bf_isampdu(bf)) {
  1788. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1789. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1790. } else
  1791. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1792. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1793. ath_txq_schedule(sc, txq);
  1794. }
  1795. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1796. {
  1797. struct ath_hw *ah = sc->sc_ah;
  1798. struct ath_common *common = ath9k_hw_common(ah);
  1799. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1800. struct list_head bf_head;
  1801. struct ath_desc *ds;
  1802. struct ath_tx_status ts;
  1803. int status;
  1804. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1805. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1806. txq->axq_link);
  1807. ath_txq_lock(sc, txq);
  1808. for (;;) {
  1809. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1810. break;
  1811. if (list_empty(&txq->axq_q)) {
  1812. txq->axq_link = NULL;
  1813. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1814. ath_txq_schedule(sc, txq);
  1815. break;
  1816. }
  1817. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1818. /*
  1819. * There is a race condition that a BH gets scheduled
  1820. * after sw writes TxE and before hw re-load the last
  1821. * descriptor to get the newly chained one.
  1822. * Software must keep the last DONE descriptor as a
  1823. * holding descriptor - software does so by marking
  1824. * it with the STALE flag.
  1825. */
  1826. bf_held = NULL;
  1827. if (bf->bf_stale) {
  1828. bf_held = bf;
  1829. if (list_is_last(&bf_held->list, &txq->axq_q))
  1830. break;
  1831. bf = list_entry(bf_held->list.next, struct ath_buf,
  1832. list);
  1833. }
  1834. lastbf = bf->bf_lastbf;
  1835. ds = lastbf->bf_desc;
  1836. memset(&ts, 0, sizeof(ts));
  1837. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1838. if (status == -EINPROGRESS)
  1839. break;
  1840. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1841. /*
  1842. * Remove ath_buf's of the same transmit unit from txq,
  1843. * however leave the last descriptor back as the holding
  1844. * descriptor for hw.
  1845. */
  1846. lastbf->bf_stale = true;
  1847. INIT_LIST_HEAD(&bf_head);
  1848. if (!list_is_singular(&lastbf->list))
  1849. list_cut_position(&bf_head,
  1850. &txq->axq_q, lastbf->list.prev);
  1851. if (bf_held) {
  1852. list_del(&bf_held->list);
  1853. ath_tx_return_buffer(sc, bf_held);
  1854. }
  1855. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1856. }
  1857. ath_txq_unlock_complete(sc, txq);
  1858. }
  1859. void ath_tx_tasklet(struct ath_softc *sc)
  1860. {
  1861. struct ath_hw *ah = sc->sc_ah;
  1862. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1863. int i;
  1864. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1865. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1866. ath_tx_processq(sc, &sc->tx.txq[i]);
  1867. }
  1868. }
  1869. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1870. {
  1871. struct ath_tx_status ts;
  1872. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1873. struct ath_hw *ah = sc->sc_ah;
  1874. struct ath_txq *txq;
  1875. struct ath_buf *bf, *lastbf;
  1876. struct list_head bf_head;
  1877. int status;
  1878. for (;;) {
  1879. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1880. break;
  1881. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1882. if (status == -EINPROGRESS)
  1883. break;
  1884. if (status == -EIO) {
  1885. ath_dbg(common, XMIT, "Error processing tx status\n");
  1886. break;
  1887. }
  1888. /* Process beacon completions separately */
  1889. if (ts.qid == sc->beacon.beaconq) {
  1890. sc->beacon.tx_processed = true;
  1891. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1892. continue;
  1893. }
  1894. txq = &sc->tx.txq[ts.qid];
  1895. ath_txq_lock(sc, txq);
  1896. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1897. ath_txq_unlock(sc, txq);
  1898. return;
  1899. }
  1900. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1901. struct ath_buf, list);
  1902. lastbf = bf->bf_lastbf;
  1903. INIT_LIST_HEAD(&bf_head);
  1904. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1905. &lastbf->list);
  1906. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1907. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1908. if (!list_empty(&txq->axq_q)) {
  1909. struct list_head bf_q;
  1910. INIT_LIST_HEAD(&bf_q);
  1911. txq->axq_link = NULL;
  1912. list_splice_tail_init(&txq->axq_q, &bf_q);
  1913. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1914. }
  1915. }
  1916. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1917. ath_txq_unlock_complete(sc, txq);
  1918. }
  1919. }
  1920. /*****************/
  1921. /* Init, Cleanup */
  1922. /*****************/
  1923. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1924. {
  1925. struct ath_descdma *dd = &sc->txsdma;
  1926. u8 txs_len = sc->sc_ah->caps.txs_len;
  1927. dd->dd_desc_len = size * txs_len;
  1928. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1929. &dd->dd_desc_paddr, GFP_KERNEL);
  1930. if (!dd->dd_desc)
  1931. return -ENOMEM;
  1932. return 0;
  1933. }
  1934. static int ath_tx_edma_init(struct ath_softc *sc)
  1935. {
  1936. int err;
  1937. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1938. if (!err)
  1939. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1940. sc->txsdma.dd_desc_paddr,
  1941. ATH_TXSTATUS_RING_SIZE);
  1942. return err;
  1943. }
  1944. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1945. {
  1946. struct ath_descdma *dd = &sc->txsdma;
  1947. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1948. dd->dd_desc_paddr);
  1949. }
  1950. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1951. {
  1952. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1953. int error = 0;
  1954. spin_lock_init(&sc->tx.txbuflock);
  1955. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1956. "tx", nbufs, 1, 1);
  1957. if (error != 0) {
  1958. ath_err(common,
  1959. "Failed to allocate tx descriptors: %d\n", error);
  1960. goto err;
  1961. }
  1962. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1963. "beacon", ATH_BCBUF, 1, 1);
  1964. if (error != 0) {
  1965. ath_err(common,
  1966. "Failed to allocate beacon descriptors: %d\n", error);
  1967. goto err;
  1968. }
  1969. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1970. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1971. error = ath_tx_edma_init(sc);
  1972. if (error)
  1973. goto err;
  1974. }
  1975. err:
  1976. if (error != 0)
  1977. ath_tx_cleanup(sc);
  1978. return error;
  1979. }
  1980. void ath_tx_cleanup(struct ath_softc *sc)
  1981. {
  1982. if (sc->beacon.bdma.dd_desc_len != 0)
  1983. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1984. if (sc->tx.txdma.dd_desc_len != 0)
  1985. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1986. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1987. ath_tx_edma_cleanup(sc);
  1988. }
  1989. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1990. {
  1991. struct ath_atx_tid *tid;
  1992. struct ath_atx_ac *ac;
  1993. int tidno, acno;
  1994. for (tidno = 0, tid = &an->tid[tidno];
  1995. tidno < WME_NUM_TID;
  1996. tidno++, tid++) {
  1997. tid->an = an;
  1998. tid->tidno = tidno;
  1999. tid->seq_start = tid->seq_next = 0;
  2000. tid->baw_size = WME_MAX_BA;
  2001. tid->baw_head = tid->baw_tail = 0;
  2002. tid->sched = false;
  2003. tid->paused = false;
  2004. tid->state &= ~AGGR_CLEANUP;
  2005. __skb_queue_head_init(&tid->buf_q);
  2006. acno = TID_TO_WME_AC(tidno);
  2007. tid->ac = &an->ac[acno];
  2008. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2009. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2010. }
  2011. for (acno = 0, ac = &an->ac[acno];
  2012. acno < WME_NUM_AC; acno++, ac++) {
  2013. ac->sched = false;
  2014. ac->txq = sc->tx.txq_map[acno];
  2015. INIT_LIST_HEAD(&ac->tid_q);
  2016. }
  2017. }
  2018. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2019. {
  2020. struct ath_atx_ac *ac;
  2021. struct ath_atx_tid *tid;
  2022. struct ath_txq *txq;
  2023. int tidno;
  2024. for (tidno = 0, tid = &an->tid[tidno];
  2025. tidno < WME_NUM_TID; tidno++, tid++) {
  2026. ac = tid->ac;
  2027. txq = ac->txq;
  2028. ath_txq_lock(sc, txq);
  2029. if (tid->sched) {
  2030. list_del(&tid->list);
  2031. tid->sched = false;
  2032. }
  2033. if (ac->sched) {
  2034. list_del(&ac->list);
  2035. tid->ac->sched = false;
  2036. }
  2037. ath_tid_drain(sc, txq, tid);
  2038. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2039. tid->state &= ~AGGR_CLEANUP;
  2040. ath_txq_unlock(sc, txq);
  2041. }
  2042. }