hw.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "ar9003_phy.h"
  26. #include "debug.h"
  27. #include "ath9k.h"
  28. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /* Private hardware callbacks */
  44. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  45. {
  46. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  47. }
  48. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  49. {
  50. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  51. }
  52. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  53. struct ath9k_channel *chan)
  54. {
  55. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  56. }
  57. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  58. {
  59. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  60. return;
  61. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  62. }
  63. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  64. {
  65. /* You will not have this callback if using the old ANI */
  66. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  67. return;
  68. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  69. }
  70. /********************/
  71. /* Helper Functions */
  72. /********************/
  73. #ifdef CONFIG_ATH9K_DEBUGFS
  74. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  75. {
  76. struct ath_softc *sc = common->priv;
  77. if (sync_cause)
  78. sc->debug.stats.istats.sync_cause_all++;
  79. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  80. sc->debug.stats.istats.sync_rtc_irq++;
  81. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  82. sc->debug.stats.istats.sync_mac_irq++;
  83. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  84. sc->debug.stats.istats.eeprom_illegal_access++;
  85. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  86. sc->debug.stats.istats.apb_timeout++;
  87. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  88. sc->debug.stats.istats.pci_mode_conflict++;
  89. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  90. sc->debug.stats.istats.host1_fatal++;
  91. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  92. sc->debug.stats.istats.host1_perr++;
  93. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  94. sc->debug.stats.istats.trcv_fifo_perr++;
  95. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  96. sc->debug.stats.istats.radm_cpl_ep++;
  97. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  98. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  99. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  100. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  101. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  102. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  103. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  104. sc->debug.stats.istats.radm_cpl_timeout++;
  105. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  106. sc->debug.stats.istats.local_timeout++;
  107. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  108. sc->debug.stats.istats.pm_access++;
  109. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  110. sc->debug.stats.istats.mac_awake++;
  111. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  112. sc->debug.stats.istats.mac_asleep++;
  113. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  114. sc->debug.stats.istats.mac_sleep_access++;
  115. }
  116. #endif
  117. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  118. {
  119. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  120. struct ath_common *common = ath9k_hw_common(ah);
  121. unsigned int clockrate;
  122. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  123. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  124. clockrate = 117;
  125. else if (!ah->curchan) /* should really check for CCK instead */
  126. clockrate = ATH9K_CLOCK_RATE_CCK;
  127. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  128. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  129. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  130. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  131. else
  132. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  133. if (conf_is_ht40(conf))
  134. clockrate *= 2;
  135. if (ah->curchan) {
  136. if (IS_CHAN_HALF_RATE(ah->curchan))
  137. clockrate /= 2;
  138. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  139. clockrate /= 4;
  140. }
  141. common->clockrate = clockrate;
  142. }
  143. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  144. {
  145. struct ath_common *common = ath9k_hw_common(ah);
  146. return usecs * common->clockrate;
  147. }
  148. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  149. {
  150. int i;
  151. BUG_ON(timeout < AH_TIME_QUANTUM);
  152. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  153. if ((REG_READ(ah, reg) & mask) == val)
  154. return true;
  155. udelay(AH_TIME_QUANTUM);
  156. }
  157. ath_dbg(ath9k_hw_common(ah), ANY,
  158. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  159. timeout, reg, REG_READ(ah, reg), mask, val);
  160. return false;
  161. }
  162. EXPORT_SYMBOL(ath9k_hw_wait);
  163. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  164. int hw_delay)
  165. {
  166. if (IS_CHAN_B(chan))
  167. hw_delay = (4 * hw_delay) / 22;
  168. else
  169. hw_delay /= 10;
  170. if (IS_CHAN_HALF_RATE(chan))
  171. hw_delay *= 2;
  172. else if (IS_CHAN_QUARTER_RATE(chan))
  173. hw_delay *= 4;
  174. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  175. }
  176. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  177. int column, unsigned int *writecnt)
  178. {
  179. int r;
  180. ENABLE_REGWRITE_BUFFER(ah);
  181. for (r = 0; r < array->ia_rows; r++) {
  182. REG_WRITE(ah, INI_RA(array, r, 0),
  183. INI_RA(array, r, column));
  184. DO_DELAY(*writecnt);
  185. }
  186. REGWRITE_BUFFER_FLUSH(ah);
  187. }
  188. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  189. {
  190. u32 retval;
  191. int i;
  192. for (i = 0, retval = 0; i < n; i++) {
  193. retval = (retval << 1) | (val & 1);
  194. val >>= 1;
  195. }
  196. return retval;
  197. }
  198. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  199. u8 phy, int kbps,
  200. u32 frameLen, u16 rateix,
  201. bool shortPreamble)
  202. {
  203. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  204. if (kbps == 0)
  205. return 0;
  206. switch (phy) {
  207. case WLAN_RC_PHY_CCK:
  208. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  209. if (shortPreamble)
  210. phyTime >>= 1;
  211. numBits = frameLen << 3;
  212. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  213. break;
  214. case WLAN_RC_PHY_OFDM:
  215. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  216. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  217. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  218. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  219. txTime = OFDM_SIFS_TIME_QUARTER
  220. + OFDM_PREAMBLE_TIME_QUARTER
  221. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  222. } else if (ah->curchan &&
  223. IS_CHAN_HALF_RATE(ah->curchan)) {
  224. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  225. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  226. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  227. txTime = OFDM_SIFS_TIME_HALF +
  228. OFDM_PREAMBLE_TIME_HALF
  229. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  230. } else {
  231. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  232. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  233. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  234. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  235. + (numSymbols * OFDM_SYMBOL_TIME);
  236. }
  237. break;
  238. default:
  239. ath_err(ath9k_hw_common(ah),
  240. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  241. txTime = 0;
  242. break;
  243. }
  244. return txTime;
  245. }
  246. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  247. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  248. struct ath9k_channel *chan,
  249. struct chan_centers *centers)
  250. {
  251. int8_t extoff;
  252. if (!IS_CHAN_HT40(chan)) {
  253. centers->ctl_center = centers->ext_center =
  254. centers->synth_center = chan->channel;
  255. return;
  256. }
  257. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  258. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  259. centers->synth_center =
  260. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  261. extoff = 1;
  262. } else {
  263. centers->synth_center =
  264. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  265. extoff = -1;
  266. }
  267. centers->ctl_center =
  268. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  269. /* 25 MHz spacing is supported by hw but not on upper layers */
  270. centers->ext_center =
  271. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  272. }
  273. /******************/
  274. /* Chip Revisions */
  275. /******************/
  276. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  277. {
  278. u32 val;
  279. switch (ah->hw_version.devid) {
  280. case AR5416_AR9100_DEVID:
  281. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  282. break;
  283. case AR9300_DEVID_AR9330:
  284. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  285. if (ah->get_mac_revision) {
  286. ah->hw_version.macRev = ah->get_mac_revision();
  287. } else {
  288. val = REG_READ(ah, AR_SREV);
  289. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  290. }
  291. return;
  292. case AR9300_DEVID_AR9340:
  293. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  294. val = REG_READ(ah, AR_SREV);
  295. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  296. return;
  297. case AR9300_DEVID_QCA955X:
  298. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  299. return;
  300. }
  301. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  302. if (val == 0xFF) {
  303. val = REG_READ(ah, AR_SREV);
  304. ah->hw_version.macVersion =
  305. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  306. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  307. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  308. ah->is_pciexpress = true;
  309. else
  310. ah->is_pciexpress = (val &
  311. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  312. } else {
  313. if (!AR_SREV_9100(ah))
  314. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  315. ah->hw_version.macRev = val & AR_SREV_REVISION;
  316. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  317. ah->is_pciexpress = true;
  318. }
  319. }
  320. /************************************/
  321. /* HW Attach, Detach, Init Routines */
  322. /************************************/
  323. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  324. {
  325. if (!AR_SREV_5416(ah))
  326. return;
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  332. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  333. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  334. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  335. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  336. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  337. }
  338. /* This should work for all families including legacy */
  339. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  340. {
  341. struct ath_common *common = ath9k_hw_common(ah);
  342. u32 regAddr[2] = { AR_STA_ID0 };
  343. u32 regHold[2];
  344. static const u32 patternData[4] = {
  345. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  346. };
  347. int i, j, loop_max;
  348. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  349. loop_max = 2;
  350. regAddr[1] = AR_PHY_BASE + (8 << 2);
  351. } else
  352. loop_max = 1;
  353. for (i = 0; i < loop_max; i++) {
  354. u32 addr = regAddr[i];
  355. u32 wrData, rdData;
  356. regHold[i] = REG_READ(ah, addr);
  357. for (j = 0; j < 0x100; j++) {
  358. wrData = (j << 16) | j;
  359. REG_WRITE(ah, addr, wrData);
  360. rdData = REG_READ(ah, addr);
  361. if (rdData != wrData) {
  362. ath_err(common,
  363. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  364. addr, wrData, rdData);
  365. return false;
  366. }
  367. }
  368. for (j = 0; j < 4; j++) {
  369. wrData = patternData[j];
  370. REG_WRITE(ah, addr, wrData);
  371. rdData = REG_READ(ah, addr);
  372. if (wrData != rdData) {
  373. ath_err(common,
  374. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  375. addr, wrData, rdData);
  376. return false;
  377. }
  378. }
  379. REG_WRITE(ah, regAddr[i], regHold[i]);
  380. }
  381. udelay(100);
  382. return true;
  383. }
  384. static void ath9k_hw_init_config(struct ath_hw *ah)
  385. {
  386. int i;
  387. ah->config.dma_beacon_response_time = 1;
  388. ah->config.sw_beacon_response_time = 6;
  389. ah->config.additional_swba_backoff = 0;
  390. ah->config.ack_6mb = 0x0;
  391. ah->config.cwm_ignore_extcca = 0;
  392. ah->config.pcie_clock_req = 0;
  393. ah->config.pcie_waen = 0;
  394. ah->config.analog_shiftreg = 1;
  395. ah->config.enable_ani = true;
  396. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  397. ah->config.spurchans[i][0] = AR_NO_SPUR;
  398. ah->config.spurchans[i][1] = AR_NO_SPUR;
  399. }
  400. ah->config.rx_intr_mitigation = true;
  401. ah->config.pcieSerDesWrite = true;
  402. /*
  403. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  404. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  405. * This means we use it for all AR5416 devices, and the few
  406. * minor PCI AR9280 devices out there.
  407. *
  408. * Serialization is required because these devices do not handle
  409. * well the case of two concurrent reads/writes due to the latency
  410. * involved. During one read/write another read/write can be issued
  411. * on another CPU while the previous read/write may still be working
  412. * on our hardware, if we hit this case the hardware poops in a loop.
  413. * We prevent this by serializing reads and writes.
  414. *
  415. * This issue is not present on PCI-Express devices or pre-AR5416
  416. * devices (legacy, 802.11abg).
  417. */
  418. if (num_possible_cpus() > 1)
  419. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  420. }
  421. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  422. {
  423. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  424. regulatory->country_code = CTRY_DEFAULT;
  425. regulatory->power_limit = MAX_RATE_POWER;
  426. ah->hw_version.magic = AR5416_MAGIC;
  427. ah->hw_version.subvendorid = 0;
  428. ah->atim_window = 0;
  429. ah->sta_id1_defaults =
  430. AR_STA_ID1_CRPT_MIC_ENABLE |
  431. AR_STA_ID1_MCAST_KSRCH;
  432. if (AR_SREV_9100(ah))
  433. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  434. ah->slottime = ATH9K_SLOT_TIME_9;
  435. ah->globaltxtimeout = (u32) -1;
  436. ah->power_mode = ATH9K_PM_UNDEFINED;
  437. ah->htc_reset_init = true;
  438. }
  439. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  440. {
  441. struct ath_common *common = ath9k_hw_common(ah);
  442. u32 sum;
  443. int i;
  444. u16 eeval;
  445. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  446. sum = 0;
  447. for (i = 0; i < 3; i++) {
  448. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  449. sum += eeval;
  450. common->macaddr[2 * i] = eeval >> 8;
  451. common->macaddr[2 * i + 1] = eeval & 0xff;
  452. }
  453. if (sum == 0 || sum == 0xffff * 3)
  454. return -EADDRNOTAVAIL;
  455. return 0;
  456. }
  457. static int ath9k_hw_post_init(struct ath_hw *ah)
  458. {
  459. struct ath_common *common = ath9k_hw_common(ah);
  460. int ecode;
  461. if (common->bus_ops->ath_bus_type != ATH_USB) {
  462. if (!ath9k_hw_chip_test(ah))
  463. return -ENODEV;
  464. }
  465. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  466. ecode = ar9002_hw_rf_claim(ah);
  467. if (ecode != 0)
  468. return ecode;
  469. }
  470. ecode = ath9k_hw_eeprom_init(ah);
  471. if (ecode != 0)
  472. return ecode;
  473. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  474. ah->eep_ops->get_eeprom_ver(ah),
  475. ah->eep_ops->get_eeprom_rev(ah));
  476. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  477. if (ecode) {
  478. ath_err(ath9k_hw_common(ah),
  479. "Failed allocating banks for external radio\n");
  480. ath9k_hw_rf_free_ext_banks(ah);
  481. return ecode;
  482. }
  483. if (ah->config.enable_ani) {
  484. ath9k_hw_ani_setup(ah);
  485. ath9k_hw_ani_init(ah);
  486. }
  487. return 0;
  488. }
  489. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  490. {
  491. if (AR_SREV_9300_20_OR_LATER(ah))
  492. ar9003_hw_attach_ops(ah);
  493. else
  494. ar9002_hw_attach_ops(ah);
  495. }
  496. /* Called for all hardware families */
  497. static int __ath9k_hw_init(struct ath_hw *ah)
  498. {
  499. struct ath_common *common = ath9k_hw_common(ah);
  500. int r = 0;
  501. ath9k_hw_read_revisions(ah);
  502. /*
  503. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  504. * We need to do this to avoid RMW of this register. We cannot
  505. * read the reg when chip is asleep.
  506. */
  507. ah->WARegVal = REG_READ(ah, AR_WA);
  508. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  509. AR_WA_ASPM_TIMER_BASED_DISABLE);
  510. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  511. ath_err(common, "Couldn't reset chip\n");
  512. return -EIO;
  513. }
  514. if (AR_SREV_9462(ah))
  515. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  516. if (AR_SREV_9565(ah)) {
  517. ah->WARegVal |= AR_WA_BIT22;
  518. REG_WRITE(ah, AR_WA, ah->WARegVal);
  519. }
  520. ath9k_hw_init_defaults(ah);
  521. ath9k_hw_init_config(ah);
  522. ath9k_hw_attach_ops(ah);
  523. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  524. ath_err(common, "Couldn't wakeup chip\n");
  525. return -EIO;
  526. }
  527. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  528. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  529. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  530. !ah->is_pciexpress)) {
  531. ah->config.serialize_regmode =
  532. SER_REG_MODE_ON;
  533. } else {
  534. ah->config.serialize_regmode =
  535. SER_REG_MODE_OFF;
  536. }
  537. }
  538. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  539. ah->config.serialize_regmode);
  540. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  541. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  542. else
  543. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  544. switch (ah->hw_version.macVersion) {
  545. case AR_SREV_VERSION_5416_PCI:
  546. case AR_SREV_VERSION_5416_PCIE:
  547. case AR_SREV_VERSION_9160:
  548. case AR_SREV_VERSION_9100:
  549. case AR_SREV_VERSION_9280:
  550. case AR_SREV_VERSION_9285:
  551. case AR_SREV_VERSION_9287:
  552. case AR_SREV_VERSION_9271:
  553. case AR_SREV_VERSION_9300:
  554. case AR_SREV_VERSION_9330:
  555. case AR_SREV_VERSION_9485:
  556. case AR_SREV_VERSION_9340:
  557. case AR_SREV_VERSION_9462:
  558. case AR_SREV_VERSION_9550:
  559. case AR_SREV_VERSION_9565:
  560. break;
  561. default:
  562. ath_err(common,
  563. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  564. ah->hw_version.macVersion, ah->hw_version.macRev);
  565. return -EOPNOTSUPP;
  566. }
  567. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  568. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  569. ah->is_pciexpress = false;
  570. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  571. ath9k_hw_init_cal_settings(ah);
  572. ah->ani_function = ATH9K_ANI_ALL;
  573. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  574. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  575. if (!AR_SREV_9300_20_OR_LATER(ah))
  576. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  577. ath9k_hw_init_mode_regs(ah);
  578. if (!ah->is_pciexpress)
  579. ath9k_hw_disablepcie(ah);
  580. r = ath9k_hw_post_init(ah);
  581. if (r)
  582. return r;
  583. ath9k_hw_init_mode_gain_regs(ah);
  584. r = ath9k_hw_fill_cap_info(ah);
  585. if (r)
  586. return r;
  587. r = ath9k_hw_init_macaddr(ah);
  588. if (r) {
  589. ath_err(common, "Failed to initialize MAC address\n");
  590. return r;
  591. }
  592. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  593. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  594. else
  595. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  596. if (AR_SREV_9330(ah))
  597. ah->bb_watchdog_timeout_ms = 85;
  598. else
  599. ah->bb_watchdog_timeout_ms = 25;
  600. common->state = ATH_HW_INITIALIZED;
  601. return 0;
  602. }
  603. int ath9k_hw_init(struct ath_hw *ah)
  604. {
  605. int ret;
  606. struct ath_common *common = ath9k_hw_common(ah);
  607. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  608. switch (ah->hw_version.devid) {
  609. case AR5416_DEVID_PCI:
  610. case AR5416_DEVID_PCIE:
  611. case AR5416_AR9100_DEVID:
  612. case AR9160_DEVID_PCI:
  613. case AR9280_DEVID_PCI:
  614. case AR9280_DEVID_PCIE:
  615. case AR9285_DEVID_PCIE:
  616. case AR9287_DEVID_PCI:
  617. case AR9287_DEVID_PCIE:
  618. case AR2427_DEVID_PCIE:
  619. case AR9300_DEVID_PCIE:
  620. case AR9300_DEVID_AR9485_PCIE:
  621. case AR9300_DEVID_AR9330:
  622. case AR9300_DEVID_AR9340:
  623. case AR9300_DEVID_QCA955X:
  624. case AR9300_DEVID_AR9580:
  625. case AR9300_DEVID_AR9462:
  626. case AR9485_DEVID_AR1111:
  627. case AR9300_DEVID_AR9565:
  628. break;
  629. default:
  630. if (common->bus_ops->ath_bus_type == ATH_USB)
  631. break;
  632. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  633. ah->hw_version.devid);
  634. return -EOPNOTSUPP;
  635. }
  636. ret = __ath9k_hw_init(ah);
  637. if (ret) {
  638. ath_err(common,
  639. "Unable to initialize hardware; initialization status: %d\n",
  640. ret);
  641. return ret;
  642. }
  643. return 0;
  644. }
  645. EXPORT_SYMBOL(ath9k_hw_init);
  646. static void ath9k_hw_init_qos(struct ath_hw *ah)
  647. {
  648. ENABLE_REGWRITE_BUFFER(ah);
  649. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  650. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  651. REG_WRITE(ah, AR_QOS_NO_ACK,
  652. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  653. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  654. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  655. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  656. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  657. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  658. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  659. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  660. REGWRITE_BUFFER_FLUSH(ah);
  661. }
  662. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  663. {
  664. struct ath_common *common = ath9k_hw_common(ah);
  665. int i = 0;
  666. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  667. udelay(100);
  668. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  669. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  670. udelay(100);
  671. if (WARN_ON_ONCE(i >= 100)) {
  672. ath_err(common, "PLL4 meaurement not done\n");
  673. break;
  674. }
  675. i++;
  676. }
  677. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  678. }
  679. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  680. static void ath9k_hw_init_pll(struct ath_hw *ah,
  681. struct ath9k_channel *chan)
  682. {
  683. u32 pll;
  684. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  685. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  687. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  689. AR_CH0_DPLL2_KD, 0x40);
  690. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  691. AR_CH0_DPLL2_KI, 0x4);
  692. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  693. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  694. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  695. AR_CH0_BB_DPLL1_NINI, 0x58);
  696. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  697. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  698. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  699. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  700. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  701. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  702. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  703. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  704. /* program BB PLL phase_shift to 0x6 */
  705. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  706. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  707. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  708. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  709. udelay(1000);
  710. } else if (AR_SREV_9330(ah)) {
  711. u32 ddr_dpll2, pll_control2, kd;
  712. if (ah->is_clk_25mhz) {
  713. ddr_dpll2 = 0x18e82f01;
  714. pll_control2 = 0xe04a3d;
  715. kd = 0x1d;
  716. } else {
  717. ddr_dpll2 = 0x19e82f01;
  718. pll_control2 = 0x886666;
  719. kd = 0x3d;
  720. }
  721. /* program DDR PLL ki and kd value */
  722. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  723. /* program DDR PLL phase_shift */
  724. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  725. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  726. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  727. udelay(1000);
  728. /* program refdiv, nint, frac to RTC register */
  729. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  730. /* program BB PLL kd and ki value */
  731. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  732. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  733. /* program BB PLL phase_shift */
  734. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  735. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  736. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  737. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  738. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  739. udelay(1000);
  740. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  741. udelay(100);
  742. if (ah->is_clk_25mhz) {
  743. pll2_divint = 0x54;
  744. pll2_divfrac = 0x1eb85;
  745. refdiv = 3;
  746. } else {
  747. if (AR_SREV_9340(ah)) {
  748. pll2_divint = 88;
  749. pll2_divfrac = 0;
  750. refdiv = 5;
  751. } else {
  752. pll2_divint = 0x11;
  753. pll2_divfrac = 0x26666;
  754. refdiv = 1;
  755. }
  756. }
  757. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  758. regval |= (0x1 << 16);
  759. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  760. udelay(100);
  761. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  762. (pll2_divint << 18) | pll2_divfrac);
  763. udelay(100);
  764. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  765. if (AR_SREV_9340(ah))
  766. regval = (regval & 0x80071fff) | (0x1 << 30) |
  767. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  768. else
  769. regval = (regval & 0x80071fff) | (0x3 << 30) |
  770. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  771. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  772. REG_WRITE(ah, AR_PHY_PLL_MODE,
  773. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  774. udelay(1000);
  775. }
  776. pll = ath9k_hw_compute_pll_control(ah, chan);
  777. if (AR_SREV_9565(ah))
  778. pll |= 0x40000;
  779. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  780. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  781. AR_SREV_9550(ah))
  782. udelay(1000);
  783. /* Switch the core clock for ar9271 to 117Mhz */
  784. if (AR_SREV_9271(ah)) {
  785. udelay(500);
  786. REG_WRITE(ah, 0x50040, 0x304);
  787. }
  788. udelay(RTC_PLL_SETTLE_DELAY);
  789. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  790. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  791. if (ah->is_clk_25mhz) {
  792. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  793. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  794. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  795. } else {
  796. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  797. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  798. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  799. }
  800. udelay(100);
  801. }
  802. }
  803. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  804. enum nl80211_iftype opmode)
  805. {
  806. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  807. u32 imr_reg = AR_IMR_TXERR |
  808. AR_IMR_TXURN |
  809. AR_IMR_RXERR |
  810. AR_IMR_RXORN |
  811. AR_IMR_BCNMISC;
  812. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  813. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  814. if (AR_SREV_9300_20_OR_LATER(ah)) {
  815. imr_reg |= AR_IMR_RXOK_HP;
  816. if (ah->config.rx_intr_mitigation)
  817. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  818. else
  819. imr_reg |= AR_IMR_RXOK_LP;
  820. } else {
  821. if (ah->config.rx_intr_mitigation)
  822. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  823. else
  824. imr_reg |= AR_IMR_RXOK;
  825. }
  826. if (ah->config.tx_intr_mitigation)
  827. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  828. else
  829. imr_reg |= AR_IMR_TXOK;
  830. ENABLE_REGWRITE_BUFFER(ah);
  831. REG_WRITE(ah, AR_IMR, imr_reg);
  832. ah->imrs2_reg |= AR_IMR_S2_GTT;
  833. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  834. if (!AR_SREV_9100(ah)) {
  835. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  836. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  837. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  838. }
  839. REGWRITE_BUFFER_FLUSH(ah);
  840. if (AR_SREV_9300_20_OR_LATER(ah)) {
  841. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  842. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  843. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  844. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  845. }
  846. }
  847. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  848. {
  849. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  850. val = min(val, (u32) 0xFFFF);
  851. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  852. }
  853. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  854. {
  855. u32 val = ath9k_hw_mac_to_clks(ah, us);
  856. val = min(val, (u32) 0xFFFF);
  857. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  858. }
  859. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  860. {
  861. u32 val = ath9k_hw_mac_to_clks(ah, us);
  862. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  863. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  864. }
  865. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  866. {
  867. u32 val = ath9k_hw_mac_to_clks(ah, us);
  868. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  869. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  870. }
  871. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  872. {
  873. if (tu > 0xFFFF) {
  874. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  875. tu);
  876. ah->globaltxtimeout = (u32) -1;
  877. return false;
  878. } else {
  879. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  880. ah->globaltxtimeout = tu;
  881. return true;
  882. }
  883. }
  884. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  885. {
  886. struct ath_common *common = ath9k_hw_common(ah);
  887. struct ieee80211_conf *conf = &common->hw->conf;
  888. const struct ath9k_channel *chan = ah->curchan;
  889. int acktimeout, ctstimeout, ack_offset = 0;
  890. int slottime;
  891. int sifstime;
  892. int rx_lat = 0, tx_lat = 0, eifs = 0;
  893. u32 reg;
  894. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  895. ah->misc_mode);
  896. if (!chan)
  897. return;
  898. if (ah->misc_mode != 0)
  899. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  900. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  901. rx_lat = 41;
  902. else
  903. rx_lat = 37;
  904. tx_lat = 54;
  905. if (IS_CHAN_5GHZ(chan))
  906. sifstime = 16;
  907. else
  908. sifstime = 10;
  909. if (IS_CHAN_HALF_RATE(chan)) {
  910. eifs = 175;
  911. rx_lat *= 2;
  912. tx_lat *= 2;
  913. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  914. tx_lat += 11;
  915. sifstime *= 2;
  916. ack_offset = 16;
  917. slottime = 13;
  918. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  919. eifs = 340;
  920. rx_lat = (rx_lat * 4) - 1;
  921. tx_lat *= 4;
  922. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  923. tx_lat += 22;
  924. sifstime *= 4;
  925. ack_offset = 32;
  926. slottime = 21;
  927. } else {
  928. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  929. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  930. reg = AR_USEC_ASYNC_FIFO;
  931. } else {
  932. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  933. common->clockrate;
  934. reg = REG_READ(ah, AR_USEC);
  935. }
  936. rx_lat = MS(reg, AR_USEC_RX_LAT);
  937. tx_lat = MS(reg, AR_USEC_TX_LAT);
  938. slottime = ah->slottime;
  939. }
  940. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  941. acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
  942. ctstimeout = acktimeout;
  943. /*
  944. * Workaround for early ACK timeouts, add an offset to match the
  945. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  946. * This was initially only meant to work around an issue with delayed
  947. * BA frames in some implementations, but it has been found to fix ACK
  948. * timeout issues in other cases as well.
  949. */
  950. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
  951. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  952. acktimeout += 64 - sifstime - ah->slottime;
  953. ctstimeout += 48 - sifstime - ah->slottime;
  954. }
  955. ath9k_hw_set_sifs_time(ah, sifstime);
  956. ath9k_hw_setslottime(ah, slottime);
  957. ath9k_hw_set_ack_timeout(ah, acktimeout);
  958. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  959. if (ah->globaltxtimeout != (u32) -1)
  960. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  961. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  962. REG_RMW(ah, AR_USEC,
  963. (common->clockrate - 1) |
  964. SM(rx_lat, AR_USEC_RX_LAT) |
  965. SM(tx_lat, AR_USEC_TX_LAT),
  966. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  967. }
  968. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  969. void ath9k_hw_deinit(struct ath_hw *ah)
  970. {
  971. struct ath_common *common = ath9k_hw_common(ah);
  972. if (common->state < ATH_HW_INITIALIZED)
  973. goto free_hw;
  974. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  975. free_hw:
  976. ath9k_hw_rf_free_ext_banks(ah);
  977. }
  978. EXPORT_SYMBOL(ath9k_hw_deinit);
  979. /*******/
  980. /* INI */
  981. /*******/
  982. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  983. {
  984. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  985. if (IS_CHAN_B(chan))
  986. ctl |= CTL_11B;
  987. else if (IS_CHAN_G(chan))
  988. ctl |= CTL_11G;
  989. else
  990. ctl |= CTL_11A;
  991. return ctl;
  992. }
  993. /****************************************/
  994. /* Reset and Channel Switching Routines */
  995. /****************************************/
  996. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  997. {
  998. struct ath_common *common = ath9k_hw_common(ah);
  999. ENABLE_REGWRITE_BUFFER(ah);
  1000. /*
  1001. * set AHB_MODE not to do cacheline prefetches
  1002. */
  1003. if (!AR_SREV_9300_20_OR_LATER(ah))
  1004. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  1005. /*
  1006. * let mac dma reads be in 128 byte chunks
  1007. */
  1008. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  1009. REGWRITE_BUFFER_FLUSH(ah);
  1010. /*
  1011. * Restore TX Trigger Level to its pre-reset value.
  1012. * The initial value depends on whether aggregation is enabled, and is
  1013. * adjusted whenever underruns are detected.
  1014. */
  1015. if (!AR_SREV_9300_20_OR_LATER(ah))
  1016. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1017. ENABLE_REGWRITE_BUFFER(ah);
  1018. /*
  1019. * let mac dma writes be in 128 byte chunks
  1020. */
  1021. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1022. /*
  1023. * Setup receive FIFO threshold to hold off TX activities
  1024. */
  1025. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1026. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1027. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1028. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1029. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1030. ah->caps.rx_status_len);
  1031. }
  1032. /*
  1033. * reduce the number of usable entries in PCU TXBUF to avoid
  1034. * wrap around issues.
  1035. */
  1036. if (AR_SREV_9285(ah)) {
  1037. /* For AR9285 the number of Fifos are reduced to half.
  1038. * So set the usable tx buf size also to half to
  1039. * avoid data/delimiter underruns
  1040. */
  1041. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1042. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1043. } else if (!AR_SREV_9271(ah)) {
  1044. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1045. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1046. }
  1047. REGWRITE_BUFFER_FLUSH(ah);
  1048. if (AR_SREV_9300_20_OR_LATER(ah))
  1049. ath9k_hw_reset_txstatus_ring(ah);
  1050. }
  1051. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1052. {
  1053. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1054. u32 set = AR_STA_ID1_KSRCH_MODE;
  1055. switch (opmode) {
  1056. case NL80211_IFTYPE_ADHOC:
  1057. case NL80211_IFTYPE_MESH_POINT:
  1058. set |= AR_STA_ID1_ADHOC;
  1059. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1060. break;
  1061. case NL80211_IFTYPE_AP:
  1062. set |= AR_STA_ID1_STA_AP;
  1063. /* fall through */
  1064. case NL80211_IFTYPE_STATION:
  1065. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1066. break;
  1067. default:
  1068. if (!ah->is_monitoring)
  1069. set = 0;
  1070. break;
  1071. }
  1072. REG_RMW(ah, AR_STA_ID1, set, mask);
  1073. }
  1074. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1075. u32 *coef_mantissa, u32 *coef_exponent)
  1076. {
  1077. u32 coef_exp, coef_man;
  1078. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1079. if ((coef_scaled >> coef_exp) & 0x1)
  1080. break;
  1081. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1082. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1083. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1084. *coef_exponent = coef_exp - 16;
  1085. }
  1086. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1087. {
  1088. u32 rst_flags;
  1089. u32 tmpReg;
  1090. if (AR_SREV_9100(ah)) {
  1091. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1092. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1093. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1094. }
  1095. ENABLE_REGWRITE_BUFFER(ah);
  1096. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1097. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1098. udelay(10);
  1099. }
  1100. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1101. AR_RTC_FORCE_WAKE_ON_INT);
  1102. if (AR_SREV_9100(ah)) {
  1103. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1104. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1105. } else {
  1106. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1107. if (tmpReg &
  1108. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1109. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1110. u32 val;
  1111. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1112. val = AR_RC_HOSTIF;
  1113. if (!AR_SREV_9300_20_OR_LATER(ah))
  1114. val |= AR_RC_AHB;
  1115. REG_WRITE(ah, AR_RC, val);
  1116. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1117. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1118. rst_flags = AR_RTC_RC_MAC_WARM;
  1119. if (type == ATH9K_RESET_COLD)
  1120. rst_flags |= AR_RTC_RC_MAC_COLD;
  1121. }
  1122. if (AR_SREV_9330(ah)) {
  1123. int npend = 0;
  1124. int i;
  1125. /* AR9330 WAR:
  1126. * call external reset function to reset WMAC if:
  1127. * - doing a cold reset
  1128. * - we have pending frames in the TX queues
  1129. */
  1130. for (i = 0; i < AR_NUM_QCU; i++) {
  1131. npend = ath9k_hw_numtxpending(ah, i);
  1132. if (npend)
  1133. break;
  1134. }
  1135. if (ah->external_reset &&
  1136. (npend || type == ATH9K_RESET_COLD)) {
  1137. int reset_err = 0;
  1138. ath_dbg(ath9k_hw_common(ah), RESET,
  1139. "reset MAC via external reset\n");
  1140. reset_err = ah->external_reset();
  1141. if (reset_err) {
  1142. ath_err(ath9k_hw_common(ah),
  1143. "External reset failed, err=%d\n",
  1144. reset_err);
  1145. return false;
  1146. }
  1147. REG_WRITE(ah, AR_RTC_RESET, 1);
  1148. }
  1149. }
  1150. if (ath9k_hw_mci_is_enabled(ah))
  1151. ar9003_mci_check_gpm_offset(ah);
  1152. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1153. REGWRITE_BUFFER_FLUSH(ah);
  1154. udelay(50);
  1155. REG_WRITE(ah, AR_RTC_RC, 0);
  1156. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1157. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1158. return false;
  1159. }
  1160. if (!AR_SREV_9100(ah))
  1161. REG_WRITE(ah, AR_RC, 0);
  1162. if (AR_SREV_9100(ah))
  1163. udelay(50);
  1164. return true;
  1165. }
  1166. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1167. {
  1168. ENABLE_REGWRITE_BUFFER(ah);
  1169. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1170. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1171. udelay(10);
  1172. }
  1173. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1174. AR_RTC_FORCE_WAKE_ON_INT);
  1175. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1176. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1177. REG_WRITE(ah, AR_RTC_RESET, 0);
  1178. REGWRITE_BUFFER_FLUSH(ah);
  1179. if (!AR_SREV_9300_20_OR_LATER(ah))
  1180. udelay(2);
  1181. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1182. REG_WRITE(ah, AR_RC, 0);
  1183. REG_WRITE(ah, AR_RTC_RESET, 1);
  1184. if (!ath9k_hw_wait(ah,
  1185. AR_RTC_STATUS,
  1186. AR_RTC_STATUS_M,
  1187. AR_RTC_STATUS_ON,
  1188. AH_WAIT_TIMEOUT)) {
  1189. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1190. return false;
  1191. }
  1192. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1193. }
  1194. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1195. {
  1196. bool ret = false;
  1197. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1198. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1199. udelay(10);
  1200. }
  1201. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1202. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1203. switch (type) {
  1204. case ATH9K_RESET_POWER_ON:
  1205. ret = ath9k_hw_set_reset_power_on(ah);
  1206. break;
  1207. case ATH9K_RESET_WARM:
  1208. case ATH9K_RESET_COLD:
  1209. ret = ath9k_hw_set_reset(ah, type);
  1210. break;
  1211. default:
  1212. break;
  1213. }
  1214. return ret;
  1215. }
  1216. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1217. struct ath9k_channel *chan)
  1218. {
  1219. int reset_type = ATH9K_RESET_WARM;
  1220. if (AR_SREV_9280(ah)) {
  1221. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1222. reset_type = ATH9K_RESET_POWER_ON;
  1223. else
  1224. reset_type = ATH9K_RESET_COLD;
  1225. }
  1226. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1227. return false;
  1228. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1229. return false;
  1230. ah->chip_fullsleep = false;
  1231. if (AR_SREV_9330(ah))
  1232. ar9003_hw_internal_regulator_apply(ah);
  1233. ath9k_hw_init_pll(ah, chan);
  1234. ath9k_hw_set_rfmode(ah, chan);
  1235. return true;
  1236. }
  1237. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1238. struct ath9k_channel *chan)
  1239. {
  1240. struct ath_common *common = ath9k_hw_common(ah);
  1241. u32 qnum;
  1242. int r;
  1243. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1244. bool band_switch, mode_diff;
  1245. u8 ini_reloaded;
  1246. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1247. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1248. CHANNEL_5GHZ));
  1249. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1250. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1251. if (ath9k_hw_numtxpending(ah, qnum)) {
  1252. ath_dbg(common, QUEUE,
  1253. "Transmit frames pending on queue %d\n", qnum);
  1254. return false;
  1255. }
  1256. }
  1257. if (!ath9k_hw_rfbus_req(ah)) {
  1258. ath_err(common, "Could not kill baseband RX\n");
  1259. return false;
  1260. }
  1261. if (edma && (band_switch || mode_diff)) {
  1262. ath9k_hw_mark_phy_inactive(ah);
  1263. udelay(5);
  1264. ath9k_hw_init_pll(ah, NULL);
  1265. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1266. ath_err(common, "Failed to do fast channel change\n");
  1267. return false;
  1268. }
  1269. }
  1270. ath9k_hw_set_channel_regs(ah, chan);
  1271. r = ath9k_hw_rf_set_freq(ah, chan);
  1272. if (r) {
  1273. ath_err(common, "Failed to set channel\n");
  1274. return false;
  1275. }
  1276. ath9k_hw_set_clockrate(ah);
  1277. ath9k_hw_apply_txpower(ah, chan, false);
  1278. ath9k_hw_rfbus_done(ah);
  1279. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1280. ath9k_hw_set_delta_slope(ah, chan);
  1281. ath9k_hw_spur_mitigate_freq(ah, chan);
  1282. if (edma && (band_switch || mode_diff)) {
  1283. ah->ah_flags |= AH_FASTCC;
  1284. if (band_switch || ini_reloaded)
  1285. ah->eep_ops->set_board_values(ah, chan);
  1286. ath9k_hw_init_bb(ah, chan);
  1287. if (band_switch || ini_reloaded)
  1288. ath9k_hw_init_cal(ah, chan);
  1289. ah->ah_flags &= ~AH_FASTCC;
  1290. }
  1291. return true;
  1292. }
  1293. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1294. {
  1295. u32 gpio_mask = ah->gpio_mask;
  1296. int i;
  1297. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1298. if (!(gpio_mask & 1))
  1299. continue;
  1300. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1301. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1302. }
  1303. }
  1304. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1305. int *hang_state, int *hang_pos)
  1306. {
  1307. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1308. u32 chain_state, dcs_pos, i;
  1309. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1310. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1311. for (i = 0; i < 3; i++) {
  1312. if (chain_state == dcu_chain_state[i]) {
  1313. *hang_state = chain_state;
  1314. *hang_pos = dcs_pos;
  1315. return true;
  1316. }
  1317. }
  1318. }
  1319. return false;
  1320. }
  1321. #define DCU_COMPLETE_STATE 1
  1322. #define DCU_COMPLETE_STATE_MASK 0x3
  1323. #define NUM_STATUS_READS 50
  1324. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1325. {
  1326. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1327. u32 i, hang_pos, hang_state, num_state = 6;
  1328. comp_state = REG_READ(ah, AR_DMADBG_6);
  1329. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1330. ath_dbg(ath9k_hw_common(ah), RESET,
  1331. "MAC Hang signature not found at DCU complete\n");
  1332. return false;
  1333. }
  1334. chain_state = REG_READ(ah, dcs_reg);
  1335. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1336. goto hang_check_iter;
  1337. dcs_reg = AR_DMADBG_5;
  1338. num_state = 4;
  1339. chain_state = REG_READ(ah, dcs_reg);
  1340. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1341. goto hang_check_iter;
  1342. ath_dbg(ath9k_hw_common(ah), RESET,
  1343. "MAC Hang signature 1 not found\n");
  1344. return false;
  1345. hang_check_iter:
  1346. ath_dbg(ath9k_hw_common(ah), RESET,
  1347. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1348. chain_state, comp_state, hang_state, hang_pos);
  1349. for (i = 0; i < NUM_STATUS_READS; i++) {
  1350. chain_state = REG_READ(ah, dcs_reg);
  1351. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1352. comp_state = REG_READ(ah, AR_DMADBG_6);
  1353. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1354. DCU_COMPLETE_STATE) ||
  1355. (chain_state != hang_state))
  1356. return false;
  1357. }
  1358. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1359. return true;
  1360. }
  1361. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1362. {
  1363. int count = 50;
  1364. u32 reg;
  1365. if (AR_SREV_9300(ah))
  1366. return !ath9k_hw_detect_mac_hang(ah);
  1367. if (AR_SREV_9285_12_OR_LATER(ah))
  1368. return true;
  1369. do {
  1370. reg = REG_READ(ah, AR_OBS_BUS_1);
  1371. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1372. continue;
  1373. switch (reg & 0x7E000B00) {
  1374. case 0x1E000000:
  1375. case 0x52000B00:
  1376. case 0x18000B00:
  1377. continue;
  1378. default:
  1379. return true;
  1380. }
  1381. } while (count-- > 0);
  1382. return false;
  1383. }
  1384. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1385. /*
  1386. * Fast channel change:
  1387. * (Change synthesizer based on channel freq without resetting chip)
  1388. *
  1389. * Don't do FCC when
  1390. * - Flag is not set
  1391. * - Chip is just coming out of full sleep
  1392. * - Channel to be set is same as current channel
  1393. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1394. */
  1395. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1396. {
  1397. struct ath_common *common = ath9k_hw_common(ah);
  1398. int ret;
  1399. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1400. goto fail;
  1401. if (ah->chip_fullsleep)
  1402. goto fail;
  1403. if (!ah->curchan)
  1404. goto fail;
  1405. if (chan->channel == ah->curchan->channel)
  1406. goto fail;
  1407. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1408. (CHANNEL_HALF | CHANNEL_QUARTER))
  1409. goto fail;
  1410. if ((chan->channelFlags & CHANNEL_ALL) !=
  1411. (ah->curchan->channelFlags & CHANNEL_ALL))
  1412. goto fail;
  1413. if (!ath9k_hw_check_alive(ah))
  1414. goto fail;
  1415. /*
  1416. * For AR9462, make sure that calibration data for
  1417. * re-using are present.
  1418. */
  1419. if (AR_SREV_9462(ah) && (ah->caldata &&
  1420. (!ah->caldata->done_txiqcal_once ||
  1421. !ah->caldata->done_txclcal_once ||
  1422. !ah->caldata->rtt_done)))
  1423. goto fail;
  1424. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1425. ah->curchan->channel, chan->channel);
  1426. ret = ath9k_hw_channel_change(ah, chan);
  1427. if (!ret)
  1428. goto fail;
  1429. if (ath9k_hw_mci_is_enabled(ah))
  1430. ar9003_mci_2g5g_switch(ah, false);
  1431. ath9k_hw_loadnf(ah, ah->curchan);
  1432. ath9k_hw_start_nfcal(ah, true);
  1433. if (AR_SREV_9271(ah))
  1434. ar9002_hw_load_ani_reg(ah, chan);
  1435. return 0;
  1436. fail:
  1437. return -EINVAL;
  1438. }
  1439. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1440. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1441. {
  1442. struct ath_common *common = ath9k_hw_common(ah);
  1443. u32 saveLedState;
  1444. u32 saveDefAntenna;
  1445. u32 macStaId1;
  1446. u64 tsf = 0;
  1447. int i, r;
  1448. bool start_mci_reset = false;
  1449. bool save_fullsleep = ah->chip_fullsleep;
  1450. if (ath9k_hw_mci_is_enabled(ah)) {
  1451. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1452. if (start_mci_reset)
  1453. return 0;
  1454. }
  1455. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1456. return -EIO;
  1457. if (ah->curchan && !ah->chip_fullsleep)
  1458. ath9k_hw_getnf(ah, ah->curchan);
  1459. ah->caldata = caldata;
  1460. if (caldata &&
  1461. (chan->channel != caldata->channel ||
  1462. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1463. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1464. /* Operating channel changed, reset channel calibration data */
  1465. memset(caldata, 0, sizeof(*caldata));
  1466. ath9k_init_nfcal_hist_buffer(ah, chan);
  1467. } else if (caldata) {
  1468. caldata->paprd_packet_sent = false;
  1469. }
  1470. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1471. if (fastcc) {
  1472. r = ath9k_hw_do_fastcc(ah, chan);
  1473. if (!r)
  1474. return r;
  1475. }
  1476. if (ath9k_hw_mci_is_enabled(ah))
  1477. ar9003_mci_stop_bt(ah, save_fullsleep);
  1478. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1479. if (saveDefAntenna == 0)
  1480. saveDefAntenna = 1;
  1481. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1482. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1483. if (AR_SREV_9100(ah) ||
  1484. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1485. tsf = ath9k_hw_gettsf64(ah);
  1486. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1487. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1488. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1489. ath9k_hw_mark_phy_inactive(ah);
  1490. ah->paprd_table_write_done = false;
  1491. /* Only required on the first reset */
  1492. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1493. REG_WRITE(ah,
  1494. AR9271_RESET_POWER_DOWN_CONTROL,
  1495. AR9271_RADIO_RF_RST);
  1496. udelay(50);
  1497. }
  1498. if (!ath9k_hw_chip_reset(ah, chan)) {
  1499. ath_err(common, "Chip reset failed\n");
  1500. return -EINVAL;
  1501. }
  1502. /* Only required on the first reset */
  1503. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1504. ah->htc_reset_init = false;
  1505. REG_WRITE(ah,
  1506. AR9271_RESET_POWER_DOWN_CONTROL,
  1507. AR9271_GATE_MAC_CTL);
  1508. udelay(50);
  1509. }
  1510. /* Restore TSF */
  1511. if (tsf)
  1512. ath9k_hw_settsf64(ah, tsf);
  1513. if (AR_SREV_9280_20_OR_LATER(ah))
  1514. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1515. if (!AR_SREV_9300_20_OR_LATER(ah))
  1516. ar9002_hw_enable_async_fifo(ah);
  1517. r = ath9k_hw_process_ini(ah, chan);
  1518. if (r)
  1519. return r;
  1520. if (ath9k_hw_mci_is_enabled(ah))
  1521. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1522. /*
  1523. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1524. * right after the chip reset. When that happens, write a new
  1525. * value after the initvals have been applied, with an offset
  1526. * based on measured time difference
  1527. */
  1528. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1529. tsf += 1500;
  1530. ath9k_hw_settsf64(ah, tsf);
  1531. }
  1532. /* Setup MFP options for CCMP */
  1533. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1534. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1535. * frames when constructing CCMP AAD. */
  1536. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1537. 0xc7ff);
  1538. ah->sw_mgmt_crypto = false;
  1539. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1540. /* Disable hardware crypto for management frames */
  1541. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1542. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1543. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1544. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1545. ah->sw_mgmt_crypto = true;
  1546. } else
  1547. ah->sw_mgmt_crypto = true;
  1548. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1549. ath9k_hw_set_delta_slope(ah, chan);
  1550. ath9k_hw_spur_mitigate_freq(ah, chan);
  1551. ah->eep_ops->set_board_values(ah, chan);
  1552. ENABLE_REGWRITE_BUFFER(ah);
  1553. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1554. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1555. | macStaId1
  1556. | AR_STA_ID1_RTS_USE_DEF
  1557. | (ah->config.
  1558. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1559. | ah->sta_id1_defaults);
  1560. ath_hw_setbssidmask(common);
  1561. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1562. ath9k_hw_write_associd(ah);
  1563. REG_WRITE(ah, AR_ISR, ~0);
  1564. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1565. REGWRITE_BUFFER_FLUSH(ah);
  1566. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1567. r = ath9k_hw_rf_set_freq(ah, chan);
  1568. if (r)
  1569. return r;
  1570. ath9k_hw_set_clockrate(ah);
  1571. ENABLE_REGWRITE_BUFFER(ah);
  1572. for (i = 0; i < AR_NUM_DCU; i++)
  1573. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1574. REGWRITE_BUFFER_FLUSH(ah);
  1575. ah->intr_txqs = 0;
  1576. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1577. ath9k_hw_resettxqueue(ah, i);
  1578. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1579. ath9k_hw_ani_cache_ini_regs(ah);
  1580. ath9k_hw_init_qos(ah);
  1581. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1582. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1583. ath9k_hw_init_global_settings(ah);
  1584. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1585. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1586. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1587. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1588. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1589. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1590. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1591. }
  1592. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1593. ath9k_hw_set_dma(ah);
  1594. if (!ath9k_hw_mci_is_enabled(ah))
  1595. REG_WRITE(ah, AR_OBS, 8);
  1596. if (ah->config.rx_intr_mitigation) {
  1597. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1598. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1599. }
  1600. if (ah->config.tx_intr_mitigation) {
  1601. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1602. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1603. }
  1604. ath9k_hw_init_bb(ah, chan);
  1605. if (caldata) {
  1606. caldata->done_txiqcal_once = false;
  1607. caldata->done_txclcal_once = false;
  1608. }
  1609. if (!ath9k_hw_init_cal(ah, chan))
  1610. return -EIO;
  1611. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1612. return -EIO;
  1613. ENABLE_REGWRITE_BUFFER(ah);
  1614. ath9k_hw_restore_chainmask(ah);
  1615. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1616. REGWRITE_BUFFER_FLUSH(ah);
  1617. /*
  1618. * For big endian systems turn on swapping for descriptors
  1619. */
  1620. if (AR_SREV_9100(ah)) {
  1621. u32 mask;
  1622. mask = REG_READ(ah, AR_CFG);
  1623. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1624. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1625. mask);
  1626. } else {
  1627. mask =
  1628. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1629. REG_WRITE(ah, AR_CFG, mask);
  1630. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1631. REG_READ(ah, AR_CFG));
  1632. }
  1633. } else {
  1634. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1635. /* Configure AR9271 target WLAN */
  1636. if (AR_SREV_9271(ah))
  1637. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1638. else
  1639. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1640. }
  1641. #ifdef __BIG_ENDIAN
  1642. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1643. AR_SREV_9550(ah))
  1644. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1645. else
  1646. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1647. #endif
  1648. }
  1649. if (ath9k_hw_btcoex_is_enabled(ah))
  1650. ath9k_hw_btcoex_enable(ah);
  1651. if (ath9k_hw_mci_is_enabled(ah))
  1652. ar9003_mci_check_bt(ah);
  1653. ath9k_hw_loadnf(ah, chan);
  1654. ath9k_hw_start_nfcal(ah, true);
  1655. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1656. ar9003_hw_bb_watchdog_config(ah);
  1657. ar9003_hw_disable_phy_restart(ah);
  1658. }
  1659. ath9k_hw_apply_gpio_override(ah);
  1660. if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
  1661. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1662. return 0;
  1663. }
  1664. EXPORT_SYMBOL(ath9k_hw_reset);
  1665. /******************************/
  1666. /* Power Management (Chipset) */
  1667. /******************************/
  1668. /*
  1669. * Notify Power Mgt is disabled in self-generated frames.
  1670. * If requested, force chip to sleep.
  1671. */
  1672. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1673. {
  1674. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1675. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1676. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1677. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1678. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1679. /* xxx Required for WLAN only case ? */
  1680. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1681. udelay(100);
  1682. }
  1683. /*
  1684. * Clear the RTC force wake bit to allow the
  1685. * mac to go to sleep.
  1686. */
  1687. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1688. if (ath9k_hw_mci_is_enabled(ah))
  1689. udelay(100);
  1690. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1691. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1692. /* Shutdown chip. Active low */
  1693. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1694. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1695. udelay(2);
  1696. }
  1697. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1698. if (AR_SREV_9300_20_OR_LATER(ah))
  1699. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1700. }
  1701. /*
  1702. * Notify Power Management is enabled in self-generating
  1703. * frames. If request, set power mode of chip to
  1704. * auto/normal. Duration in units of 128us (1/8 TU).
  1705. */
  1706. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1707. {
  1708. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1709. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1710. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1711. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1712. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1713. AR_RTC_FORCE_WAKE_ON_INT);
  1714. } else {
  1715. /* When chip goes into network sleep, it could be waken
  1716. * up by MCI_INT interrupt caused by BT's HW messages
  1717. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1718. * rate (~100us). This will cause chip to leave and
  1719. * re-enter network sleep mode frequently, which in
  1720. * consequence will have WLAN MCI HW to generate lots of
  1721. * SYS_WAKING and SYS_SLEEPING messages which will make
  1722. * BT CPU to busy to process.
  1723. */
  1724. if (ath9k_hw_mci_is_enabled(ah))
  1725. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1726. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1727. /*
  1728. * Clear the RTC force wake bit to allow the
  1729. * mac to go to sleep.
  1730. */
  1731. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1732. if (ath9k_hw_mci_is_enabled(ah))
  1733. udelay(30);
  1734. }
  1735. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1736. if (AR_SREV_9300_20_OR_LATER(ah))
  1737. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1738. }
  1739. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1740. {
  1741. u32 val;
  1742. int i;
  1743. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1744. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1745. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1746. udelay(10);
  1747. }
  1748. if ((REG_READ(ah, AR_RTC_STATUS) &
  1749. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1750. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1751. return false;
  1752. }
  1753. if (!AR_SREV_9300_20_OR_LATER(ah))
  1754. ath9k_hw_init_pll(ah, NULL);
  1755. }
  1756. if (AR_SREV_9100(ah))
  1757. REG_SET_BIT(ah, AR_RTC_RESET,
  1758. AR_RTC_RESET_EN);
  1759. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1760. AR_RTC_FORCE_WAKE_EN);
  1761. udelay(50);
  1762. if (ath9k_hw_mci_is_enabled(ah))
  1763. ar9003_mci_set_power_awake(ah);
  1764. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1765. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1766. if (val == AR_RTC_STATUS_ON)
  1767. break;
  1768. udelay(50);
  1769. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1770. AR_RTC_FORCE_WAKE_EN);
  1771. }
  1772. if (i == 0) {
  1773. ath_err(ath9k_hw_common(ah),
  1774. "Failed to wakeup in %uus\n",
  1775. POWER_UP_TIME / 20);
  1776. return false;
  1777. }
  1778. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1779. return true;
  1780. }
  1781. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1782. {
  1783. struct ath_common *common = ath9k_hw_common(ah);
  1784. int status = true;
  1785. static const char *modes[] = {
  1786. "AWAKE",
  1787. "FULL-SLEEP",
  1788. "NETWORK SLEEP",
  1789. "UNDEFINED"
  1790. };
  1791. if (ah->power_mode == mode)
  1792. return status;
  1793. ath_dbg(common, RESET, "%s -> %s\n",
  1794. modes[ah->power_mode], modes[mode]);
  1795. switch (mode) {
  1796. case ATH9K_PM_AWAKE:
  1797. status = ath9k_hw_set_power_awake(ah);
  1798. break;
  1799. case ATH9K_PM_FULL_SLEEP:
  1800. if (ath9k_hw_mci_is_enabled(ah))
  1801. ar9003_mci_set_full_sleep(ah);
  1802. ath9k_set_power_sleep(ah);
  1803. ah->chip_fullsleep = true;
  1804. break;
  1805. case ATH9K_PM_NETWORK_SLEEP:
  1806. ath9k_set_power_network_sleep(ah);
  1807. break;
  1808. default:
  1809. ath_err(common, "Unknown power mode %u\n", mode);
  1810. return false;
  1811. }
  1812. ah->power_mode = mode;
  1813. /*
  1814. * XXX: If this warning never comes up after a while then
  1815. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1816. * ath9k_hw_setpower() return type void.
  1817. */
  1818. if (!(ah->ah_flags & AH_UNPLUGGED))
  1819. ATH_DBG_WARN_ON_ONCE(!status);
  1820. return status;
  1821. }
  1822. EXPORT_SYMBOL(ath9k_hw_setpower);
  1823. /*******************/
  1824. /* Beacon Handling */
  1825. /*******************/
  1826. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1827. {
  1828. int flags = 0;
  1829. ENABLE_REGWRITE_BUFFER(ah);
  1830. switch (ah->opmode) {
  1831. case NL80211_IFTYPE_ADHOC:
  1832. case NL80211_IFTYPE_MESH_POINT:
  1833. REG_SET_BIT(ah, AR_TXCFG,
  1834. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1835. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1836. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1837. flags |= AR_NDP_TIMER_EN;
  1838. case NL80211_IFTYPE_AP:
  1839. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1840. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1841. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1842. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1843. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1844. flags |=
  1845. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1846. break;
  1847. default:
  1848. ath_dbg(ath9k_hw_common(ah), BEACON,
  1849. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1850. return;
  1851. break;
  1852. }
  1853. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1854. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1855. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1856. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1857. REGWRITE_BUFFER_FLUSH(ah);
  1858. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1859. }
  1860. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1861. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1862. const struct ath9k_beacon_state *bs)
  1863. {
  1864. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1865. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1866. struct ath_common *common = ath9k_hw_common(ah);
  1867. ENABLE_REGWRITE_BUFFER(ah);
  1868. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1869. REG_WRITE(ah, AR_BEACON_PERIOD,
  1870. TU_TO_USEC(bs->bs_intval));
  1871. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1872. TU_TO_USEC(bs->bs_intval));
  1873. REGWRITE_BUFFER_FLUSH(ah);
  1874. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1875. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1876. beaconintval = bs->bs_intval;
  1877. if (bs->bs_sleepduration > beaconintval)
  1878. beaconintval = bs->bs_sleepduration;
  1879. dtimperiod = bs->bs_dtimperiod;
  1880. if (bs->bs_sleepduration > dtimperiod)
  1881. dtimperiod = bs->bs_sleepduration;
  1882. if (beaconintval == dtimperiod)
  1883. nextTbtt = bs->bs_nextdtim;
  1884. else
  1885. nextTbtt = bs->bs_nexttbtt;
  1886. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1887. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1888. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1889. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1890. ENABLE_REGWRITE_BUFFER(ah);
  1891. REG_WRITE(ah, AR_NEXT_DTIM,
  1892. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1893. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1894. REG_WRITE(ah, AR_SLEEP1,
  1895. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1896. | AR_SLEEP1_ASSUME_DTIM);
  1897. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1898. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1899. else
  1900. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1901. REG_WRITE(ah, AR_SLEEP2,
  1902. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1903. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1904. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1905. REGWRITE_BUFFER_FLUSH(ah);
  1906. REG_SET_BIT(ah, AR_TIMER_MODE,
  1907. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1908. AR_DTIM_TIMER_EN);
  1909. /* TSF Out of Range Threshold */
  1910. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1911. }
  1912. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1913. /*******************/
  1914. /* HW Capabilities */
  1915. /*******************/
  1916. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1917. {
  1918. eeprom_chainmask &= chip_chainmask;
  1919. if (eeprom_chainmask)
  1920. return eeprom_chainmask;
  1921. else
  1922. return chip_chainmask;
  1923. }
  1924. /**
  1925. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1926. * @ah: the atheros hardware data structure
  1927. *
  1928. * We enable DFS support upstream on chipsets which have passed a series
  1929. * of tests. The testing requirements are going to be documented. Desired
  1930. * test requirements are documented at:
  1931. *
  1932. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1933. *
  1934. * Once a new chipset gets properly tested an individual commit can be used
  1935. * to document the testing for DFS for that chipset.
  1936. */
  1937. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1938. {
  1939. switch (ah->hw_version.macVersion) {
  1940. /* AR9580 will likely be our first target to get testing on */
  1941. case AR_SREV_VERSION_9580:
  1942. default:
  1943. return false;
  1944. }
  1945. }
  1946. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1947. {
  1948. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1949. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1950. struct ath_common *common = ath9k_hw_common(ah);
  1951. unsigned int chip_chainmask;
  1952. u16 eeval;
  1953. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1954. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1955. regulatory->current_rd = eeval;
  1956. if (ah->opmode != NL80211_IFTYPE_AP &&
  1957. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1958. if (regulatory->current_rd == 0x64 ||
  1959. regulatory->current_rd == 0x65)
  1960. regulatory->current_rd += 5;
  1961. else if (regulatory->current_rd == 0x41)
  1962. regulatory->current_rd = 0x43;
  1963. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1964. regulatory->current_rd);
  1965. }
  1966. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1967. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1968. ath_err(common,
  1969. "no band has been marked as supported in EEPROM\n");
  1970. return -EINVAL;
  1971. }
  1972. if (eeval & AR5416_OPFLAGS_11A)
  1973. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1974. if (eeval & AR5416_OPFLAGS_11G)
  1975. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1976. if (AR_SREV_9485(ah) ||
  1977. AR_SREV_9285(ah) ||
  1978. AR_SREV_9330(ah) ||
  1979. AR_SREV_9565(ah))
  1980. chip_chainmask = 1;
  1981. else if (AR_SREV_9462(ah))
  1982. chip_chainmask = 3;
  1983. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1984. chip_chainmask = 7;
  1985. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1986. chip_chainmask = 3;
  1987. else
  1988. chip_chainmask = 7;
  1989. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1990. /*
  1991. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1992. * the EEPROM.
  1993. */
  1994. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1995. !(eeval & AR5416_OPFLAGS_11A) &&
  1996. !(AR_SREV_9271(ah)))
  1997. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1998. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1999. else if (AR_SREV_9100(ah))
  2000. pCap->rx_chainmask = 0x7;
  2001. else
  2002. /* Use rx_chainmask from EEPROM. */
  2003. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2004. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  2005. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  2006. ah->txchainmask = pCap->tx_chainmask;
  2007. ah->rxchainmask = pCap->rx_chainmask;
  2008. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2009. /* enable key search for every frame in an aggregate */
  2010. if (AR_SREV_9300_20_OR_LATER(ah))
  2011. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2012. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2013. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2014. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2015. else
  2016. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2017. if (AR_SREV_9271(ah))
  2018. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2019. else if (AR_DEVID_7010(ah))
  2020. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2021. else if (AR_SREV_9300_20_OR_LATER(ah))
  2022. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2023. else if (AR_SREV_9287_11_OR_LATER(ah))
  2024. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2025. else if (AR_SREV_9285_12_OR_LATER(ah))
  2026. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2027. else if (AR_SREV_9280_20_OR_LATER(ah))
  2028. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2029. else
  2030. pCap->num_gpio_pins = AR_NUM_GPIO;
  2031. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2032. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2033. else
  2034. pCap->rts_aggr_limit = (8 * 1024);
  2035. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2036. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2037. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2038. ah->rfkill_gpio =
  2039. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2040. ah->rfkill_polarity =
  2041. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2042. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2043. }
  2044. #endif
  2045. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2046. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2047. else
  2048. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2049. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2050. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2051. else
  2052. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2053. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2054. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2055. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  2056. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2057. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2058. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2059. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2060. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2061. pCap->txs_len = sizeof(struct ar9003_txs);
  2062. if (!ah->config.paprd_disable &&
  2063. ah->eep_ops->get_eeprom(ah, EEP_PAPRD) &&
  2064. !AR_SREV_9462(ah))
  2065. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2066. } else {
  2067. pCap->tx_desc_len = sizeof(struct ath_desc);
  2068. if (AR_SREV_9280_20(ah))
  2069. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2070. }
  2071. if (AR_SREV_9300_20_OR_LATER(ah))
  2072. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2073. if (AR_SREV_9300_20_OR_LATER(ah))
  2074. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2075. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2076. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2077. if (AR_SREV_9285(ah))
  2078. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2079. ant_div_ctl1 =
  2080. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2081. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2082. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2083. }
  2084. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2085. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2086. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2087. }
  2088. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  2089. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2090. /*
  2091. * enable the diversity-combining algorithm only when
  2092. * both enable_lna_div and enable_fast_div are set
  2093. * Table for Diversity
  2094. * ant_div_alt_lnaconf bit 0-1
  2095. * ant_div_main_lnaconf bit 2-3
  2096. * ant_div_alt_gaintb bit 4
  2097. * ant_div_main_gaintb bit 5
  2098. * enable_ant_div_lnadiv bit 6
  2099. * enable_ant_fast_div bit 7
  2100. */
  2101. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2102. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2103. }
  2104. if (AR_SREV_9485_10(ah)) {
  2105. pCap->pcie_lcr_extsync_en = true;
  2106. pCap->pcie_lcr_offset = 0x80;
  2107. }
  2108. if (ath9k_hw_dfs_tested(ah))
  2109. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2110. tx_chainmask = pCap->tx_chainmask;
  2111. rx_chainmask = pCap->rx_chainmask;
  2112. while (tx_chainmask || rx_chainmask) {
  2113. if (tx_chainmask & BIT(0))
  2114. pCap->max_txchains++;
  2115. if (rx_chainmask & BIT(0))
  2116. pCap->max_rxchains++;
  2117. tx_chainmask >>= 1;
  2118. rx_chainmask >>= 1;
  2119. }
  2120. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2121. ah->enabled_cals |= TX_IQ_CAL;
  2122. if (AR_SREV_9485_OR_LATER(ah))
  2123. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2124. }
  2125. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2126. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2127. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2128. if (AR_SREV_9462_20(ah))
  2129. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2130. }
  2131. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2132. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
  2133. ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
  2134. if (AR_SREV_9280(ah))
  2135. pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
  2136. }
  2137. return 0;
  2138. }
  2139. /****************************/
  2140. /* GPIO / RFKILL / Antennae */
  2141. /****************************/
  2142. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2143. u32 gpio, u32 type)
  2144. {
  2145. int addr;
  2146. u32 gpio_shift, tmp;
  2147. if (gpio > 11)
  2148. addr = AR_GPIO_OUTPUT_MUX3;
  2149. else if (gpio > 5)
  2150. addr = AR_GPIO_OUTPUT_MUX2;
  2151. else
  2152. addr = AR_GPIO_OUTPUT_MUX1;
  2153. gpio_shift = (gpio % 6) * 5;
  2154. if (AR_SREV_9280_20_OR_LATER(ah)
  2155. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2156. REG_RMW(ah, addr, (type << gpio_shift),
  2157. (0x1f << gpio_shift));
  2158. } else {
  2159. tmp = REG_READ(ah, addr);
  2160. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2161. tmp &= ~(0x1f << gpio_shift);
  2162. tmp |= (type << gpio_shift);
  2163. REG_WRITE(ah, addr, tmp);
  2164. }
  2165. }
  2166. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2167. {
  2168. u32 gpio_shift;
  2169. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2170. if (AR_DEVID_7010(ah)) {
  2171. gpio_shift = gpio;
  2172. REG_RMW(ah, AR7010_GPIO_OE,
  2173. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2174. (AR7010_GPIO_OE_MASK << gpio_shift));
  2175. return;
  2176. }
  2177. gpio_shift = gpio << 1;
  2178. REG_RMW(ah,
  2179. AR_GPIO_OE_OUT,
  2180. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2181. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2182. }
  2183. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2184. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2185. {
  2186. #define MS_REG_READ(x, y) \
  2187. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2188. if (gpio >= ah->caps.num_gpio_pins)
  2189. return 0xffffffff;
  2190. if (AR_DEVID_7010(ah)) {
  2191. u32 val;
  2192. val = REG_READ(ah, AR7010_GPIO_IN);
  2193. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2194. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2195. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2196. AR_GPIO_BIT(gpio)) != 0;
  2197. else if (AR_SREV_9271(ah))
  2198. return MS_REG_READ(AR9271, gpio) != 0;
  2199. else if (AR_SREV_9287_11_OR_LATER(ah))
  2200. return MS_REG_READ(AR9287, gpio) != 0;
  2201. else if (AR_SREV_9285_12_OR_LATER(ah))
  2202. return MS_REG_READ(AR9285, gpio) != 0;
  2203. else if (AR_SREV_9280_20_OR_LATER(ah))
  2204. return MS_REG_READ(AR928X, gpio) != 0;
  2205. else
  2206. return MS_REG_READ(AR, gpio) != 0;
  2207. }
  2208. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2209. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2210. u32 ah_signal_type)
  2211. {
  2212. u32 gpio_shift;
  2213. if (AR_DEVID_7010(ah)) {
  2214. gpio_shift = gpio;
  2215. REG_RMW(ah, AR7010_GPIO_OE,
  2216. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2217. (AR7010_GPIO_OE_MASK << gpio_shift));
  2218. return;
  2219. }
  2220. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2221. gpio_shift = 2 * gpio;
  2222. REG_RMW(ah,
  2223. AR_GPIO_OE_OUT,
  2224. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2225. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2226. }
  2227. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2228. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2229. {
  2230. if (AR_DEVID_7010(ah)) {
  2231. val = val ? 0 : 1;
  2232. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2233. AR_GPIO_BIT(gpio));
  2234. return;
  2235. }
  2236. if (AR_SREV_9271(ah))
  2237. val = ~val;
  2238. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2239. AR_GPIO_BIT(gpio));
  2240. }
  2241. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2242. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2243. {
  2244. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2245. }
  2246. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2247. /*********************/
  2248. /* General Operation */
  2249. /*********************/
  2250. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2251. {
  2252. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2253. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2254. if (phybits & AR_PHY_ERR_RADAR)
  2255. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2256. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2257. bits |= ATH9K_RX_FILTER_PHYERR;
  2258. return bits;
  2259. }
  2260. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2261. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2262. {
  2263. u32 phybits;
  2264. ENABLE_REGWRITE_BUFFER(ah);
  2265. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2266. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2267. REG_WRITE(ah, AR_RX_FILTER, bits);
  2268. phybits = 0;
  2269. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2270. phybits |= AR_PHY_ERR_RADAR;
  2271. if (bits & ATH9K_RX_FILTER_PHYERR)
  2272. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2273. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2274. if (phybits)
  2275. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2276. else
  2277. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2278. REGWRITE_BUFFER_FLUSH(ah);
  2279. }
  2280. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2281. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2282. {
  2283. if (ath9k_hw_mci_is_enabled(ah))
  2284. ar9003_mci_bt_gain_ctrl(ah);
  2285. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2286. return false;
  2287. ath9k_hw_init_pll(ah, NULL);
  2288. ah->htc_reset_init = true;
  2289. return true;
  2290. }
  2291. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2292. bool ath9k_hw_disable(struct ath_hw *ah)
  2293. {
  2294. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2295. return false;
  2296. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2297. return false;
  2298. ath9k_hw_init_pll(ah, NULL);
  2299. return true;
  2300. }
  2301. EXPORT_SYMBOL(ath9k_hw_disable);
  2302. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2303. {
  2304. enum eeprom_param gain_param;
  2305. if (IS_CHAN_2GHZ(chan))
  2306. gain_param = EEP_ANTENNA_GAIN_2G;
  2307. else
  2308. gain_param = EEP_ANTENNA_GAIN_5G;
  2309. return ah->eep_ops->get_eeprom(ah, gain_param);
  2310. }
  2311. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2312. bool test)
  2313. {
  2314. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2315. struct ieee80211_channel *channel;
  2316. int chan_pwr, new_pwr, max_gain;
  2317. int ant_gain, ant_reduction = 0;
  2318. if (!chan)
  2319. return;
  2320. channel = chan->chan;
  2321. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2322. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2323. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2324. ant_gain = get_antenna_gain(ah, chan);
  2325. if (ant_gain > max_gain)
  2326. ant_reduction = ant_gain - max_gain;
  2327. ah->eep_ops->set_txpower(ah, chan,
  2328. ath9k_regd_get_ctl(reg, chan),
  2329. ant_reduction, new_pwr, test);
  2330. }
  2331. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2332. {
  2333. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2334. struct ath9k_channel *chan = ah->curchan;
  2335. struct ieee80211_channel *channel = chan->chan;
  2336. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2337. if (test)
  2338. channel->max_power = MAX_RATE_POWER / 2;
  2339. ath9k_hw_apply_txpower(ah, chan, test);
  2340. if (test)
  2341. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2342. }
  2343. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2344. void ath9k_hw_setopmode(struct ath_hw *ah)
  2345. {
  2346. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2347. }
  2348. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2349. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2350. {
  2351. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2352. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2353. }
  2354. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2355. void ath9k_hw_write_associd(struct ath_hw *ah)
  2356. {
  2357. struct ath_common *common = ath9k_hw_common(ah);
  2358. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2359. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2360. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2361. }
  2362. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2363. #define ATH9K_MAX_TSF_READ 10
  2364. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2365. {
  2366. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2367. int i;
  2368. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2369. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2370. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2371. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2372. if (tsf_upper2 == tsf_upper1)
  2373. break;
  2374. tsf_upper1 = tsf_upper2;
  2375. }
  2376. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2377. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2378. }
  2379. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2380. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2381. {
  2382. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2383. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2384. }
  2385. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2386. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2387. {
  2388. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2389. AH_TSF_WRITE_TIMEOUT))
  2390. ath_dbg(ath9k_hw_common(ah), RESET,
  2391. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2392. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2393. }
  2394. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2395. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2396. {
  2397. if (set)
  2398. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2399. else
  2400. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2401. }
  2402. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2403. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2404. {
  2405. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2406. u32 macmode;
  2407. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2408. macmode = AR_2040_JOINED_RX_CLEAR;
  2409. else
  2410. macmode = 0;
  2411. REG_WRITE(ah, AR_2040_MODE, macmode);
  2412. }
  2413. /* HW Generic timers configuration */
  2414. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2415. {
  2416. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2417. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2418. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2419. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2420. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2421. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2422. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2423. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2424. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2425. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2426. AR_NDP2_TIMER_MODE, 0x0002},
  2427. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2428. AR_NDP2_TIMER_MODE, 0x0004},
  2429. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2430. AR_NDP2_TIMER_MODE, 0x0008},
  2431. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2432. AR_NDP2_TIMER_MODE, 0x0010},
  2433. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2434. AR_NDP2_TIMER_MODE, 0x0020},
  2435. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2436. AR_NDP2_TIMER_MODE, 0x0040},
  2437. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2438. AR_NDP2_TIMER_MODE, 0x0080}
  2439. };
  2440. /* HW generic timer primitives */
  2441. /* compute and clear index of rightmost 1 */
  2442. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2443. {
  2444. u32 b;
  2445. b = *mask;
  2446. b &= (0-b);
  2447. *mask &= ~b;
  2448. b *= debruijn32;
  2449. b >>= 27;
  2450. return timer_table->gen_timer_index[b];
  2451. }
  2452. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2453. {
  2454. return REG_READ(ah, AR_TSF_L32);
  2455. }
  2456. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2457. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2458. void (*trigger)(void *),
  2459. void (*overflow)(void *),
  2460. void *arg,
  2461. u8 timer_index)
  2462. {
  2463. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2464. struct ath_gen_timer *timer;
  2465. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2466. if (timer == NULL) {
  2467. ath_err(ath9k_hw_common(ah),
  2468. "Failed to allocate memory for hw timer[%d]\n",
  2469. timer_index);
  2470. return NULL;
  2471. }
  2472. /* allocate a hardware generic timer slot */
  2473. timer_table->timers[timer_index] = timer;
  2474. timer->index = timer_index;
  2475. timer->trigger = trigger;
  2476. timer->overflow = overflow;
  2477. timer->arg = arg;
  2478. return timer;
  2479. }
  2480. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2481. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2482. struct ath_gen_timer *timer,
  2483. u32 trig_timeout,
  2484. u32 timer_period)
  2485. {
  2486. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2487. u32 tsf, timer_next;
  2488. BUG_ON(!timer_period);
  2489. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2490. tsf = ath9k_hw_gettsf32(ah);
  2491. timer_next = tsf + trig_timeout;
  2492. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2493. "current tsf %x period %x timer_next %x\n",
  2494. tsf, timer_period, timer_next);
  2495. /*
  2496. * Program generic timer registers
  2497. */
  2498. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2499. timer_next);
  2500. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2501. timer_period);
  2502. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2503. gen_tmr_configuration[timer->index].mode_mask);
  2504. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2505. /*
  2506. * Starting from AR9462, each generic timer can select which tsf
  2507. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2508. * 8 - 15 use tsf2.
  2509. */
  2510. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2511. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2512. (1 << timer->index));
  2513. else
  2514. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2515. (1 << timer->index));
  2516. }
  2517. /* Enable both trigger and thresh interrupt masks */
  2518. REG_SET_BIT(ah, AR_IMR_S5,
  2519. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2520. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2521. }
  2522. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2523. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2524. {
  2525. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2526. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2527. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2528. return;
  2529. }
  2530. /* Clear generic timer enable bits. */
  2531. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2532. gen_tmr_configuration[timer->index].mode_mask);
  2533. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2534. /*
  2535. * Need to switch back to TSF if it was using TSF2.
  2536. */
  2537. if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
  2538. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2539. (1 << timer->index));
  2540. }
  2541. }
  2542. /* Disable both trigger and thresh interrupt masks */
  2543. REG_CLR_BIT(ah, AR_IMR_S5,
  2544. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2545. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2546. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2547. }
  2548. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2549. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2550. {
  2551. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2552. /* free the hardware generic timer slot */
  2553. timer_table->timers[timer->index] = NULL;
  2554. kfree(timer);
  2555. }
  2556. EXPORT_SYMBOL(ath_gen_timer_free);
  2557. /*
  2558. * Generic Timer Interrupts handling
  2559. */
  2560. void ath_gen_timer_isr(struct ath_hw *ah)
  2561. {
  2562. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2563. struct ath_gen_timer *timer;
  2564. struct ath_common *common = ath9k_hw_common(ah);
  2565. u32 trigger_mask, thresh_mask, index;
  2566. /* get hardware generic timer interrupt status */
  2567. trigger_mask = ah->intr_gen_timer_trigger;
  2568. thresh_mask = ah->intr_gen_timer_thresh;
  2569. trigger_mask &= timer_table->timer_mask.val;
  2570. thresh_mask &= timer_table->timer_mask.val;
  2571. trigger_mask &= ~thresh_mask;
  2572. while (thresh_mask) {
  2573. index = rightmost_index(timer_table, &thresh_mask);
  2574. timer = timer_table->timers[index];
  2575. BUG_ON(!timer);
  2576. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2577. index);
  2578. timer->overflow(timer->arg);
  2579. }
  2580. while (trigger_mask) {
  2581. index = rightmost_index(timer_table, &trigger_mask);
  2582. timer = timer_table->timers[index];
  2583. BUG_ON(!timer);
  2584. ath_dbg(common, HWTIMER,
  2585. "Gen timer[%d] trigger\n", index);
  2586. timer->trigger(timer->arg);
  2587. }
  2588. }
  2589. EXPORT_SYMBOL(ath_gen_timer_isr);
  2590. /********/
  2591. /* HTC */
  2592. /********/
  2593. static struct {
  2594. u32 version;
  2595. const char * name;
  2596. } ath_mac_bb_names[] = {
  2597. /* Devices with external radios */
  2598. { AR_SREV_VERSION_5416_PCI, "5416" },
  2599. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2600. { AR_SREV_VERSION_9100, "9100" },
  2601. { AR_SREV_VERSION_9160, "9160" },
  2602. /* Single-chip solutions */
  2603. { AR_SREV_VERSION_9280, "9280" },
  2604. { AR_SREV_VERSION_9285, "9285" },
  2605. { AR_SREV_VERSION_9287, "9287" },
  2606. { AR_SREV_VERSION_9271, "9271" },
  2607. { AR_SREV_VERSION_9300, "9300" },
  2608. { AR_SREV_VERSION_9330, "9330" },
  2609. { AR_SREV_VERSION_9340, "9340" },
  2610. { AR_SREV_VERSION_9485, "9485" },
  2611. { AR_SREV_VERSION_9462, "9462" },
  2612. { AR_SREV_VERSION_9550, "9550" },
  2613. { AR_SREV_VERSION_9565, "9565" },
  2614. };
  2615. /* For devices with external radios */
  2616. static struct {
  2617. u16 version;
  2618. const char * name;
  2619. } ath_rf_names[] = {
  2620. { 0, "5133" },
  2621. { AR_RAD5133_SREV_MAJOR, "5133" },
  2622. { AR_RAD5122_SREV_MAJOR, "5122" },
  2623. { AR_RAD2133_SREV_MAJOR, "2133" },
  2624. { AR_RAD2122_SREV_MAJOR, "2122" }
  2625. };
  2626. /*
  2627. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2628. */
  2629. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2630. {
  2631. int i;
  2632. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2633. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2634. return ath_mac_bb_names[i].name;
  2635. }
  2636. }
  2637. return "????";
  2638. }
  2639. /*
  2640. * Return the RF name. "????" is returned if the RF is unknown.
  2641. * Used for devices with external radios.
  2642. */
  2643. static const char *ath9k_hw_rf_name(u16 rf_version)
  2644. {
  2645. int i;
  2646. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2647. if (ath_rf_names[i].version == rf_version) {
  2648. return ath_rf_names[i].name;
  2649. }
  2650. }
  2651. return "????";
  2652. }
  2653. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2654. {
  2655. int used;
  2656. /* chipsets >= AR9280 are single-chip */
  2657. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2658. used = snprintf(hw_name, len,
  2659. "Atheros AR%s Rev:%x",
  2660. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2661. ah->hw_version.macRev);
  2662. }
  2663. else {
  2664. used = snprintf(hw_name, len,
  2665. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2666. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2667. ah->hw_version.macRev,
  2668. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2669. AR_RADIO_SREV_MAJOR)),
  2670. ah->hw_version.phyRev);
  2671. }
  2672. hw_name[used] = '\0';
  2673. }
  2674. EXPORT_SYMBOL(ath9k_hw_name);