ixp4xx_eth.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282
  1. /*
  2. * Intel IXP4xx Ethernet driver for Linux
  3. *
  4. * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. * Ethernet port config (0x00 is not present on IXP42X):
  11. *
  12. * logical port 0x00 0x10 0x20
  13. * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
  14. * physical PortId 2 0 1
  15. * TX queue 23 24 25
  16. * RX-free queue 26 27 28
  17. * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
  18. *
  19. *
  20. * Queue entries:
  21. * bits 0 -> 1 - NPE ID (RX and TX-done)
  22. * bits 0 -> 2 - priority (TX, per 802.1D)
  23. * bits 3 -> 4 - port ID (user-set?)
  24. * bits 5 -> 31 - physical descriptor address
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/io.h>
  31. #include <linux/kernel.h>
  32. #include <linux/phy.h>
  33. #include <linux/platform_device.h>
  34. #include <mach/npe.h>
  35. #include <mach/qmgr.h>
  36. #define DEBUG_DESC 0
  37. #define DEBUG_RX 0
  38. #define DEBUG_TX 0
  39. #define DEBUG_PKT_BYTES 0
  40. #define DEBUG_MDIO 0
  41. #define DEBUG_CLOSE 0
  42. #define DRV_NAME "ixp4xx_eth"
  43. #define MAX_NPES 3
  44. #define RX_DESCS 64 /* also length of all RX queues */
  45. #define TX_DESCS 16 /* also length of all TX queues */
  46. #define TXDONE_QUEUE_LEN 64 /* dwords */
  47. #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  48. #define REGS_SIZE 0x1000
  49. #define MAX_MRU 1536 /* 0x600 */
  50. #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
  51. #define NAPI_WEIGHT 16
  52. #define MDIO_INTERVAL (3 * HZ)
  53. #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
  54. #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
  55. #define NPE_ID(port_id) ((port_id) >> 4)
  56. #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
  57. #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
  58. #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
  59. #define TXDONE_QUEUE 31
  60. /* TX Control Registers */
  61. #define TX_CNTRL0_TX_EN 0x01
  62. #define TX_CNTRL0_HALFDUPLEX 0x02
  63. #define TX_CNTRL0_RETRY 0x04
  64. #define TX_CNTRL0_PAD_EN 0x08
  65. #define TX_CNTRL0_APPEND_FCS 0x10
  66. #define TX_CNTRL0_2DEFER 0x20
  67. #define TX_CNTRL0_RMII 0x40 /* reduced MII */
  68. #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
  69. /* RX Control Registers */
  70. #define RX_CNTRL0_RX_EN 0x01
  71. #define RX_CNTRL0_PADSTRIP_EN 0x02
  72. #define RX_CNTRL0_SEND_FCS 0x04
  73. #define RX_CNTRL0_PAUSE_EN 0x08
  74. #define RX_CNTRL0_LOOP_EN 0x10
  75. #define RX_CNTRL0_ADDR_FLTR_EN 0x20
  76. #define RX_CNTRL0_RX_RUNT_EN 0x40
  77. #define RX_CNTRL0_BCAST_DIS 0x80
  78. #define RX_CNTRL1_DEFER_EN 0x01
  79. /* Core Control Register */
  80. #define CORE_RESET 0x01
  81. #define CORE_RX_FIFO_FLUSH 0x02
  82. #define CORE_TX_FIFO_FLUSH 0x04
  83. #define CORE_SEND_JAM 0x08
  84. #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
  85. #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
  86. TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
  87. TX_CNTRL0_2DEFER)
  88. #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
  89. #define DEFAULT_CORE_CNTRL CORE_MDC_EN
  90. /* NPE message codes */
  91. #define NPE_GETSTATUS 0x00
  92. #define NPE_EDB_SETPORTADDRESS 0x01
  93. #define NPE_EDB_GETMACADDRESSDATABASE 0x02
  94. #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
  95. #define NPE_GETSTATS 0x04
  96. #define NPE_RESETSTATS 0x05
  97. #define NPE_SETMAXFRAMELENGTHS 0x06
  98. #define NPE_VLAN_SETRXTAGMODE 0x07
  99. #define NPE_VLAN_SETDEFAULTRXVID 0x08
  100. #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
  101. #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
  102. #define NPE_VLAN_SETRXQOSENTRY 0x0B
  103. #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
  104. #define NPE_STP_SETBLOCKINGSTATE 0x0D
  105. #define NPE_FW_SETFIREWALLMODE 0x0E
  106. #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
  107. #define NPE_PC_SETAPMACTABLE 0x11
  108. #define NPE_SETLOOPBACK_MODE 0x12
  109. #define NPE_PC_SETBSSIDTABLE 0x13
  110. #define NPE_ADDRESS_FILTER_CONFIG 0x14
  111. #define NPE_APPENDFCSCONFIG 0x15
  112. #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
  113. #define NPE_MAC_RECOVERY_START 0x17
  114. #ifdef __ARMEB__
  115. typedef struct sk_buff buffer_t;
  116. #define free_buffer dev_kfree_skb
  117. #define free_buffer_irq dev_kfree_skb_irq
  118. #else
  119. typedef void buffer_t;
  120. #define free_buffer kfree
  121. #define free_buffer_irq kfree
  122. #endif
  123. struct eth_regs {
  124. u32 tx_control[2], __res1[2]; /* 000 */
  125. u32 rx_control[2], __res2[2]; /* 010 */
  126. u32 random_seed, __res3[3]; /* 020 */
  127. u32 partial_empty_threshold, __res4; /* 030 */
  128. u32 partial_full_threshold, __res5; /* 038 */
  129. u32 tx_start_bytes, __res6[3]; /* 040 */
  130. u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
  131. u32 tx_2part_deferral[2], __res8[2]; /* 060 */
  132. u32 slot_time, __res9[3]; /* 070 */
  133. u32 mdio_command[4]; /* 080 */
  134. u32 mdio_status[4]; /* 090 */
  135. u32 mcast_mask[6], __res10[2]; /* 0A0 */
  136. u32 mcast_addr[6], __res11[2]; /* 0C0 */
  137. u32 int_clock_threshold, __res12[3]; /* 0E0 */
  138. u32 hw_addr[6], __res13[61]; /* 0F0 */
  139. u32 core_control; /* 1FC */
  140. };
  141. struct port {
  142. struct resource *mem_res;
  143. struct eth_regs __iomem *regs;
  144. struct npe *npe;
  145. struct net_device *netdev;
  146. struct napi_struct napi;
  147. struct phy_device *phydev;
  148. struct eth_plat_info *plat;
  149. buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
  150. struct desc *desc_tab; /* coherent */
  151. u32 desc_tab_phys;
  152. int id; /* logical port ID */
  153. int speed, duplex;
  154. u8 firmware[4];
  155. };
  156. /* NPE message structure */
  157. struct msg {
  158. #ifdef __ARMEB__
  159. u8 cmd, eth_id, byte2, byte3;
  160. u8 byte4, byte5, byte6, byte7;
  161. #else
  162. u8 byte3, byte2, eth_id, cmd;
  163. u8 byte7, byte6, byte5, byte4;
  164. #endif
  165. };
  166. /* Ethernet packet descriptor */
  167. struct desc {
  168. u32 next; /* pointer to next buffer, unused */
  169. #ifdef __ARMEB__
  170. u16 buf_len; /* buffer length */
  171. u16 pkt_len; /* packet length */
  172. u32 data; /* pointer to data buffer in RAM */
  173. u8 dest_id;
  174. u8 src_id;
  175. u16 flags;
  176. u8 qos;
  177. u8 padlen;
  178. u16 vlan_tci;
  179. #else
  180. u16 pkt_len; /* packet length */
  181. u16 buf_len; /* buffer length */
  182. u32 data; /* pointer to data buffer in RAM */
  183. u16 flags;
  184. u8 src_id;
  185. u8 dest_id;
  186. u16 vlan_tci;
  187. u8 padlen;
  188. u8 qos;
  189. #endif
  190. #ifdef __ARMEB__
  191. u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
  192. u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
  193. u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
  194. #else
  195. u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
  196. u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
  197. u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
  198. #endif
  199. };
  200. #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
  201. (n) * sizeof(struct desc))
  202. #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
  203. #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
  204. ((n) + RX_DESCS) * sizeof(struct desc))
  205. #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
  206. #ifndef __ARMEB__
  207. static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
  208. {
  209. int i;
  210. for (i = 0; i < cnt; i++)
  211. dest[i] = swab32(src[i]);
  212. }
  213. #endif
  214. static spinlock_t mdio_lock;
  215. static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
  216. struct mii_bus *mdio_bus;
  217. static int ports_open;
  218. static struct port *npe_port_tab[MAX_NPES];
  219. static struct dma_pool *dma_pool;
  220. static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
  221. int write, u16 cmd)
  222. {
  223. int cycles = 0;
  224. if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
  225. printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
  226. return -1;
  227. }
  228. if (write) {
  229. __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
  230. __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
  231. }
  232. __raw_writel(((phy_id << 5) | location) & 0xFF,
  233. &mdio_regs->mdio_command[2]);
  234. __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
  235. &mdio_regs->mdio_command[3]);
  236. while ((cycles < MAX_MDIO_RETRIES) &&
  237. (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
  238. udelay(1);
  239. cycles++;
  240. }
  241. if (cycles == MAX_MDIO_RETRIES) {
  242. printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
  243. phy_id);
  244. return -1;
  245. }
  246. #if DEBUG_MDIO
  247. printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
  248. phy_id, write ? "write" : "read", cycles);
  249. #endif
  250. if (write)
  251. return 0;
  252. if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
  253. #if DEBUG_MDIO
  254. printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
  255. phy_id);
  256. #endif
  257. return 0xFFFF; /* don't return error */
  258. }
  259. return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
  260. ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
  261. }
  262. static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
  263. {
  264. unsigned long flags;
  265. int ret;
  266. spin_lock_irqsave(&mdio_lock, flags);
  267. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
  268. spin_unlock_irqrestore(&mdio_lock, flags);
  269. #if DEBUG_MDIO
  270. printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
  271. phy_id, location, ret);
  272. #endif
  273. return ret;
  274. }
  275. static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
  276. u16 val)
  277. {
  278. unsigned long flags;
  279. int ret;
  280. spin_lock_irqsave(&mdio_lock, flags);
  281. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
  282. spin_unlock_irqrestore(&mdio_lock, flags);
  283. #if DEBUG_MDIO
  284. printk(KERN_DEBUG "%s #%i: MII read [%i] <- 0x%X, err = %i\n",
  285. bus->name, phy_id, location, val, ret);
  286. #endif
  287. return ret;
  288. }
  289. static int ixp4xx_mdio_register(void)
  290. {
  291. int err;
  292. if (!(mdio_bus = mdiobus_alloc()))
  293. return -ENOMEM;
  294. if (cpu_is_ixp43x()) {
  295. /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
  296. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
  297. return -ENODEV;
  298. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  299. } else {
  300. /* All MII PHY accesses use NPE-B Ethernet registers */
  301. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
  302. return -ENODEV;
  303. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  304. }
  305. __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
  306. spin_lock_init(&mdio_lock);
  307. mdio_bus->name = "IXP4xx MII Bus";
  308. mdio_bus->read = &ixp4xx_mdio_read;
  309. mdio_bus->write = &ixp4xx_mdio_write;
  310. strcpy(mdio_bus->id, "0");
  311. if ((err = mdiobus_register(mdio_bus)))
  312. mdiobus_free(mdio_bus);
  313. return err;
  314. }
  315. static void ixp4xx_mdio_remove(void)
  316. {
  317. mdiobus_unregister(mdio_bus);
  318. mdiobus_free(mdio_bus);
  319. }
  320. static void ixp4xx_adjust_link(struct net_device *dev)
  321. {
  322. struct port *port = netdev_priv(dev);
  323. struct phy_device *phydev = port->phydev;
  324. if (!phydev->link) {
  325. if (port->speed) {
  326. port->speed = 0;
  327. printk(KERN_INFO "%s: link down\n", dev->name);
  328. }
  329. return;
  330. }
  331. if (port->speed == phydev->speed && port->duplex == phydev->duplex)
  332. return;
  333. port->speed = phydev->speed;
  334. port->duplex = phydev->duplex;
  335. if (port->duplex)
  336. __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
  337. &port->regs->tx_control[0]);
  338. else
  339. __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
  340. &port->regs->tx_control[0]);
  341. printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
  342. dev->name, port->speed, port->duplex ? "full" : "half");
  343. }
  344. static inline void debug_pkt(struct net_device *dev, const char *func,
  345. u8 *data, int len)
  346. {
  347. #if DEBUG_PKT_BYTES
  348. int i;
  349. printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
  350. for (i = 0; i < len; i++) {
  351. if (i >= DEBUG_PKT_BYTES)
  352. break;
  353. printk("%s%02X",
  354. ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
  355. data[i]);
  356. }
  357. printk("\n");
  358. #endif
  359. }
  360. static inline void debug_desc(u32 phys, struct desc *desc)
  361. {
  362. #if DEBUG_DESC
  363. printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
  364. " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
  365. phys, desc->next, desc->buf_len, desc->pkt_len,
  366. desc->data, desc->dest_id, desc->src_id, desc->flags,
  367. desc->qos, desc->padlen, desc->vlan_tci,
  368. desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
  369. desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
  370. desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
  371. desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
  372. #endif
  373. }
  374. static inline int queue_get_desc(unsigned int queue, struct port *port,
  375. int is_tx)
  376. {
  377. u32 phys, tab_phys, n_desc;
  378. struct desc *tab;
  379. if (!(phys = qmgr_get_entry(queue)))
  380. return -1;
  381. phys &= ~0x1F; /* mask out non-address bits */
  382. tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
  383. tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
  384. n_desc = (phys - tab_phys) / sizeof(struct desc);
  385. BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
  386. debug_desc(phys, &tab[n_desc]);
  387. BUG_ON(tab[n_desc].next);
  388. return n_desc;
  389. }
  390. static inline void queue_put_desc(unsigned int queue, u32 phys,
  391. struct desc *desc)
  392. {
  393. debug_desc(phys, desc);
  394. BUG_ON(phys & 0x1F);
  395. qmgr_put_entry(queue, phys);
  396. /* Don't check for queue overflow here, we've allocated sufficient
  397. length and queues >= 32 don't support this check anyway. */
  398. }
  399. static inline void dma_unmap_tx(struct port *port, struct desc *desc)
  400. {
  401. #ifdef __ARMEB__
  402. dma_unmap_single(&port->netdev->dev, desc->data,
  403. desc->buf_len, DMA_TO_DEVICE);
  404. #else
  405. dma_unmap_single(&port->netdev->dev, desc->data & ~3,
  406. ALIGN((desc->data & 3) + desc->buf_len, 4),
  407. DMA_TO_DEVICE);
  408. #endif
  409. }
  410. static void eth_rx_irq(void *pdev)
  411. {
  412. struct net_device *dev = pdev;
  413. struct port *port = netdev_priv(dev);
  414. #if DEBUG_RX
  415. printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
  416. #endif
  417. qmgr_disable_irq(port->plat->rxq);
  418. napi_schedule(&port->napi);
  419. }
  420. static int eth_poll(struct napi_struct *napi, int budget)
  421. {
  422. struct port *port = container_of(napi, struct port, napi);
  423. struct net_device *dev = port->netdev;
  424. unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
  425. int received = 0;
  426. #if DEBUG_RX
  427. printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
  428. #endif
  429. while (received < budget) {
  430. struct sk_buff *skb;
  431. struct desc *desc;
  432. int n;
  433. #ifdef __ARMEB__
  434. struct sk_buff *temp;
  435. u32 phys;
  436. #endif
  437. if ((n = queue_get_desc(rxq, port, 0)) < 0) {
  438. #if DEBUG_RX
  439. printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
  440. dev->name);
  441. #endif
  442. napi_complete(napi);
  443. qmgr_enable_irq(rxq);
  444. if (!qmgr_stat_nearly_empty(rxq) &&
  445. napi_reschedule(napi)) { /* really empty in fact */
  446. #if DEBUG_RX
  447. printk(KERN_DEBUG "%s: eth_poll"
  448. " napi_reschedule successed\n",
  449. dev->name);
  450. #endif
  451. qmgr_disable_irq(rxq);
  452. continue;
  453. }
  454. #if DEBUG_RX
  455. printk(KERN_DEBUG "%s: eth_poll all done\n",
  456. dev->name);
  457. #endif
  458. return received; /* all work done */
  459. }
  460. desc = rx_desc_ptr(port, n);
  461. #ifdef __ARMEB__
  462. if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
  463. phys = dma_map_single(&dev->dev, skb->data,
  464. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  465. if (dma_mapping_error(&dev->dev, phys)) {
  466. dev_kfree_skb(skb);
  467. skb = NULL;
  468. }
  469. }
  470. #else
  471. skb = netdev_alloc_skb(dev,
  472. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
  473. #endif
  474. if (!skb) {
  475. dev->stats.rx_dropped++;
  476. /* put the desc back on RX-ready queue */
  477. desc->buf_len = MAX_MRU;
  478. desc->pkt_len = 0;
  479. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  480. continue;
  481. }
  482. /* process received frame */
  483. #ifdef __ARMEB__
  484. temp = skb;
  485. skb = port->rx_buff_tab[n];
  486. dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
  487. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  488. #else
  489. dma_sync_single(&dev->dev, desc->data - NET_IP_ALIGN,
  490. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  491. memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
  492. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
  493. #endif
  494. skb_reserve(skb, NET_IP_ALIGN);
  495. skb_put(skb, desc->pkt_len);
  496. debug_pkt(dev, "eth_poll", skb->data, skb->len);
  497. skb->protocol = eth_type_trans(skb, dev);
  498. dev->stats.rx_packets++;
  499. dev->stats.rx_bytes += skb->len;
  500. netif_receive_skb(skb);
  501. /* put the new buffer on RX-free queue */
  502. #ifdef __ARMEB__
  503. port->rx_buff_tab[n] = temp;
  504. desc->data = phys + NET_IP_ALIGN;
  505. #endif
  506. desc->buf_len = MAX_MRU;
  507. desc->pkt_len = 0;
  508. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  509. received++;
  510. }
  511. #if DEBUG_RX
  512. printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
  513. #endif
  514. return received; /* not all work done */
  515. }
  516. static void eth_txdone_irq(void *unused)
  517. {
  518. u32 phys;
  519. #if DEBUG_TX
  520. printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
  521. #endif
  522. while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
  523. u32 npe_id, n_desc;
  524. struct port *port;
  525. struct desc *desc;
  526. int start;
  527. npe_id = phys & 3;
  528. BUG_ON(npe_id >= MAX_NPES);
  529. port = npe_port_tab[npe_id];
  530. BUG_ON(!port);
  531. phys &= ~0x1F; /* mask out non-address bits */
  532. n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
  533. BUG_ON(n_desc >= TX_DESCS);
  534. desc = tx_desc_ptr(port, n_desc);
  535. debug_desc(phys, desc);
  536. if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
  537. port->netdev->stats.tx_packets++;
  538. port->netdev->stats.tx_bytes += desc->pkt_len;
  539. dma_unmap_tx(port, desc);
  540. #if DEBUG_TX
  541. printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
  542. port->netdev->name, port->tx_buff_tab[n_desc]);
  543. #endif
  544. free_buffer_irq(port->tx_buff_tab[n_desc]);
  545. port->tx_buff_tab[n_desc] = NULL;
  546. }
  547. /* really empty in fact */
  548. start = qmgr_stat_nearly_empty(port->plat->txreadyq);
  549. queue_put_desc(port->plat->txreadyq, phys, desc);
  550. if (start) {
  551. #if DEBUG_TX
  552. printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
  553. port->netdev->name);
  554. #endif
  555. netif_wake_queue(port->netdev);
  556. }
  557. }
  558. }
  559. static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
  560. {
  561. struct port *port = netdev_priv(dev);
  562. unsigned int txreadyq = port->plat->txreadyq;
  563. int len, offset, bytes, n;
  564. void *mem;
  565. u32 phys;
  566. struct desc *desc;
  567. #if DEBUG_TX
  568. printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
  569. #endif
  570. if (unlikely(skb->len > MAX_MRU)) {
  571. dev_kfree_skb(skb);
  572. dev->stats.tx_errors++;
  573. return NETDEV_TX_OK;
  574. }
  575. debug_pkt(dev, "eth_xmit", skb->data, skb->len);
  576. len = skb->len;
  577. #ifdef __ARMEB__
  578. offset = 0; /* no need to keep alignment */
  579. bytes = len;
  580. mem = skb->data;
  581. #else
  582. offset = (int)skb->data & 3; /* keep 32-bit alignment */
  583. bytes = ALIGN(offset + len, 4);
  584. if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
  585. dev_kfree_skb(skb);
  586. dev->stats.tx_dropped++;
  587. return NETDEV_TX_OK;
  588. }
  589. memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
  590. dev_kfree_skb(skb);
  591. #endif
  592. phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
  593. if (dma_mapping_error(&dev->dev, phys)) {
  594. #ifdef __ARMEB__
  595. dev_kfree_skb(skb);
  596. #else
  597. kfree(mem);
  598. #endif
  599. dev->stats.tx_dropped++;
  600. return NETDEV_TX_OK;
  601. }
  602. n = queue_get_desc(txreadyq, port, 1);
  603. BUG_ON(n < 0);
  604. desc = tx_desc_ptr(port, n);
  605. #ifdef __ARMEB__
  606. port->tx_buff_tab[n] = skb;
  607. #else
  608. port->tx_buff_tab[n] = mem;
  609. #endif
  610. desc->data = phys + offset;
  611. desc->buf_len = desc->pkt_len = len;
  612. /* NPE firmware pads short frames with zeros internally */
  613. wmb();
  614. queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
  615. dev->trans_start = jiffies;
  616. if (qmgr_stat_nearly_empty(txreadyq)) { /* really empty in fact */
  617. #if DEBUG_TX
  618. printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
  619. #endif
  620. netif_stop_queue(dev);
  621. /* we could miss TX ready interrupt */
  622. /* really empty in fact */
  623. if (!qmgr_stat_nearly_empty(txreadyq)) {
  624. #if DEBUG_TX
  625. printk(KERN_DEBUG "%s: eth_xmit ready again\n",
  626. dev->name);
  627. #endif
  628. netif_wake_queue(dev);
  629. }
  630. }
  631. #if DEBUG_TX
  632. printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
  633. #endif
  634. return NETDEV_TX_OK;
  635. }
  636. static void eth_set_mcast_list(struct net_device *dev)
  637. {
  638. struct port *port = netdev_priv(dev);
  639. struct dev_mc_list *mclist = dev->mc_list;
  640. u8 diffs[ETH_ALEN], *addr;
  641. int cnt = dev->mc_count, i;
  642. if ((dev->flags & IFF_PROMISC) || !mclist || !cnt) {
  643. __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
  644. &port->regs->rx_control[0]);
  645. return;
  646. }
  647. memset(diffs, 0, ETH_ALEN);
  648. addr = mclist->dmi_addr; /* first MAC address */
  649. while (--cnt && (mclist = mclist->next))
  650. for (i = 0; i < ETH_ALEN; i++)
  651. diffs[i] |= addr[i] ^ mclist->dmi_addr[i];
  652. for (i = 0; i < ETH_ALEN; i++) {
  653. __raw_writel(addr[i], &port->regs->mcast_addr[i]);
  654. __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
  655. }
  656. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  657. &port->regs->rx_control[0]);
  658. }
  659. static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  660. {
  661. struct port *port = netdev_priv(dev);
  662. if (!netif_running(dev))
  663. return -EINVAL;
  664. return phy_mii_ioctl(port->phydev, if_mii(req), cmd);
  665. }
  666. /* ethtool support */
  667. static void ixp4xx_get_drvinfo(struct net_device *dev,
  668. struct ethtool_drvinfo *info)
  669. {
  670. struct port *port = netdev_priv(dev);
  671. strcpy(info->driver, DRV_NAME);
  672. snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
  673. port->firmware[0], port->firmware[1],
  674. port->firmware[2], port->firmware[3]);
  675. strcpy(info->bus_info, "internal");
  676. }
  677. static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  678. {
  679. struct port *port = netdev_priv(dev);
  680. return phy_ethtool_gset(port->phydev, cmd);
  681. }
  682. static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  683. {
  684. struct port *port = netdev_priv(dev);
  685. return phy_ethtool_sset(port->phydev, cmd);
  686. }
  687. static int ixp4xx_nway_reset(struct net_device *dev)
  688. {
  689. struct port *port = netdev_priv(dev);
  690. return phy_start_aneg(port->phydev);
  691. }
  692. static struct ethtool_ops ixp4xx_ethtool_ops = {
  693. .get_drvinfo = ixp4xx_get_drvinfo,
  694. .get_settings = ixp4xx_get_settings,
  695. .set_settings = ixp4xx_set_settings,
  696. .nway_reset = ixp4xx_nway_reset,
  697. .get_link = ethtool_op_get_link,
  698. };
  699. static int request_queues(struct port *port)
  700. {
  701. int err;
  702. err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
  703. "%s:RX-free", port->netdev->name);
  704. if (err)
  705. return err;
  706. err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
  707. "%s:RX", port->netdev->name);
  708. if (err)
  709. goto rel_rxfree;
  710. err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
  711. "%s:TX", port->netdev->name);
  712. if (err)
  713. goto rel_rx;
  714. err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
  715. "%s:TX-ready", port->netdev->name);
  716. if (err)
  717. goto rel_tx;
  718. /* TX-done queue handles skbs sent out by the NPEs */
  719. if (!ports_open) {
  720. err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
  721. "%s:TX-done", DRV_NAME);
  722. if (err)
  723. goto rel_txready;
  724. }
  725. return 0;
  726. rel_txready:
  727. qmgr_release_queue(port->plat->txreadyq);
  728. rel_tx:
  729. qmgr_release_queue(TX_QUEUE(port->id));
  730. rel_rx:
  731. qmgr_release_queue(port->plat->rxq);
  732. rel_rxfree:
  733. qmgr_release_queue(RXFREE_QUEUE(port->id));
  734. printk(KERN_DEBUG "%s: unable to request hardware queues\n",
  735. port->netdev->name);
  736. return err;
  737. }
  738. static void release_queues(struct port *port)
  739. {
  740. qmgr_release_queue(RXFREE_QUEUE(port->id));
  741. qmgr_release_queue(port->plat->rxq);
  742. qmgr_release_queue(TX_QUEUE(port->id));
  743. qmgr_release_queue(port->plat->txreadyq);
  744. if (!ports_open)
  745. qmgr_release_queue(TXDONE_QUEUE);
  746. }
  747. static int init_queues(struct port *port)
  748. {
  749. int i;
  750. if (!ports_open)
  751. if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
  752. POOL_ALLOC_SIZE, 32, 0)))
  753. return -ENOMEM;
  754. if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
  755. &port->desc_tab_phys)))
  756. return -ENOMEM;
  757. memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
  758. memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
  759. memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
  760. /* Setup RX buffers */
  761. for (i = 0; i < RX_DESCS; i++) {
  762. struct desc *desc = rx_desc_ptr(port, i);
  763. buffer_t *buff; /* skb or kmalloc()ated memory */
  764. void *data;
  765. #ifdef __ARMEB__
  766. if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
  767. return -ENOMEM;
  768. data = buff->data;
  769. #else
  770. if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
  771. return -ENOMEM;
  772. data = buff;
  773. #endif
  774. desc->buf_len = MAX_MRU;
  775. desc->data = dma_map_single(&port->netdev->dev, data,
  776. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  777. if (dma_mapping_error(&port->netdev->dev, desc->data)) {
  778. free_buffer(buff);
  779. return -EIO;
  780. }
  781. desc->data += NET_IP_ALIGN;
  782. port->rx_buff_tab[i] = buff;
  783. }
  784. return 0;
  785. }
  786. static void destroy_queues(struct port *port)
  787. {
  788. int i;
  789. if (port->desc_tab) {
  790. for (i = 0; i < RX_DESCS; i++) {
  791. struct desc *desc = rx_desc_ptr(port, i);
  792. buffer_t *buff = port->rx_buff_tab[i];
  793. if (buff) {
  794. dma_unmap_single(&port->netdev->dev,
  795. desc->data - NET_IP_ALIGN,
  796. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  797. free_buffer(buff);
  798. }
  799. }
  800. for (i = 0; i < TX_DESCS; i++) {
  801. struct desc *desc = tx_desc_ptr(port, i);
  802. buffer_t *buff = port->tx_buff_tab[i];
  803. if (buff) {
  804. dma_unmap_tx(port, desc);
  805. free_buffer(buff);
  806. }
  807. }
  808. dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
  809. port->desc_tab = NULL;
  810. }
  811. if (!ports_open && dma_pool) {
  812. dma_pool_destroy(dma_pool);
  813. dma_pool = NULL;
  814. }
  815. }
  816. static int eth_open(struct net_device *dev)
  817. {
  818. struct port *port = netdev_priv(dev);
  819. struct npe *npe = port->npe;
  820. struct msg msg;
  821. int i, err;
  822. if (!npe_running(npe)) {
  823. err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
  824. if (err)
  825. return err;
  826. if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
  827. printk(KERN_ERR "%s: %s not responding\n", dev->name,
  828. npe_name(npe));
  829. return -EIO;
  830. }
  831. port->firmware[0] = msg.byte4;
  832. port->firmware[1] = msg.byte5;
  833. port->firmware[2] = msg.byte6;
  834. port->firmware[3] = msg.byte7;
  835. }
  836. memset(&msg, 0, sizeof(msg));
  837. msg.cmd = NPE_VLAN_SETRXQOSENTRY;
  838. msg.eth_id = port->id;
  839. msg.byte5 = port->plat->rxq | 0x80;
  840. msg.byte7 = port->plat->rxq << 4;
  841. for (i = 0; i < 8; i++) {
  842. msg.byte3 = i;
  843. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
  844. return -EIO;
  845. }
  846. msg.cmd = NPE_EDB_SETPORTADDRESS;
  847. msg.eth_id = PHYSICAL_ID(port->id);
  848. msg.byte2 = dev->dev_addr[0];
  849. msg.byte3 = dev->dev_addr[1];
  850. msg.byte4 = dev->dev_addr[2];
  851. msg.byte5 = dev->dev_addr[3];
  852. msg.byte6 = dev->dev_addr[4];
  853. msg.byte7 = dev->dev_addr[5];
  854. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
  855. return -EIO;
  856. memset(&msg, 0, sizeof(msg));
  857. msg.cmd = NPE_FW_SETFIREWALLMODE;
  858. msg.eth_id = port->id;
  859. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
  860. return -EIO;
  861. if ((err = request_queues(port)) != 0)
  862. return err;
  863. if ((err = init_queues(port)) != 0) {
  864. destroy_queues(port);
  865. release_queues(port);
  866. return err;
  867. }
  868. port->speed = 0; /* force "link up" message */
  869. phy_start(port->phydev);
  870. for (i = 0; i < ETH_ALEN; i++)
  871. __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
  872. __raw_writel(0x08, &port->regs->random_seed);
  873. __raw_writel(0x12, &port->regs->partial_empty_threshold);
  874. __raw_writel(0x30, &port->regs->partial_full_threshold);
  875. __raw_writel(0x08, &port->regs->tx_start_bytes);
  876. __raw_writel(0x15, &port->regs->tx_deferral);
  877. __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
  878. __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
  879. __raw_writel(0x80, &port->regs->slot_time);
  880. __raw_writel(0x01, &port->regs->int_clock_threshold);
  881. /* Populate queues with buffers, no failure after this point */
  882. for (i = 0; i < TX_DESCS; i++)
  883. queue_put_desc(port->plat->txreadyq,
  884. tx_desc_phys(port, i), tx_desc_ptr(port, i));
  885. for (i = 0; i < RX_DESCS; i++)
  886. queue_put_desc(RXFREE_QUEUE(port->id),
  887. rx_desc_phys(port, i), rx_desc_ptr(port, i));
  888. __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
  889. __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
  890. __raw_writel(0, &port->regs->rx_control[1]);
  891. __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
  892. napi_enable(&port->napi);
  893. eth_set_mcast_list(dev);
  894. netif_start_queue(dev);
  895. qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
  896. eth_rx_irq, dev);
  897. if (!ports_open) {
  898. qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
  899. eth_txdone_irq, NULL);
  900. qmgr_enable_irq(TXDONE_QUEUE);
  901. }
  902. ports_open++;
  903. /* we may already have RX data, enables IRQ */
  904. napi_schedule(&port->napi);
  905. return 0;
  906. }
  907. static int eth_close(struct net_device *dev)
  908. {
  909. struct port *port = netdev_priv(dev);
  910. struct msg msg;
  911. int buffs = RX_DESCS; /* allocated RX buffers */
  912. int i;
  913. ports_open--;
  914. qmgr_disable_irq(port->plat->rxq);
  915. napi_disable(&port->napi);
  916. netif_stop_queue(dev);
  917. while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
  918. buffs--;
  919. memset(&msg, 0, sizeof(msg));
  920. msg.cmd = NPE_SETLOOPBACK_MODE;
  921. msg.eth_id = port->id;
  922. msg.byte3 = 1;
  923. if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
  924. printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
  925. i = 0;
  926. do { /* drain RX buffers */
  927. while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
  928. buffs--;
  929. if (!buffs)
  930. break;
  931. if (qmgr_stat_empty(TX_QUEUE(port->id))) {
  932. /* we have to inject some packet */
  933. struct desc *desc;
  934. u32 phys;
  935. int n = queue_get_desc(port->plat->txreadyq, port, 1);
  936. BUG_ON(n < 0);
  937. desc = tx_desc_ptr(port, n);
  938. phys = tx_desc_phys(port, n);
  939. desc->buf_len = desc->pkt_len = 1;
  940. wmb();
  941. queue_put_desc(TX_QUEUE(port->id), phys, desc);
  942. }
  943. udelay(1);
  944. } while (++i < MAX_CLOSE_WAIT);
  945. if (buffs)
  946. printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
  947. " left in NPE\n", dev->name, buffs);
  948. #if DEBUG_CLOSE
  949. if (!buffs)
  950. printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
  951. #endif
  952. buffs = TX_DESCS;
  953. while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
  954. buffs--; /* cancel TX */
  955. i = 0;
  956. do {
  957. while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
  958. buffs--;
  959. if (!buffs)
  960. break;
  961. } while (++i < MAX_CLOSE_WAIT);
  962. if (buffs)
  963. printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
  964. "left in NPE\n", dev->name, buffs);
  965. #if DEBUG_CLOSE
  966. if (!buffs)
  967. printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
  968. #endif
  969. msg.byte3 = 0;
  970. if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
  971. printk(KERN_CRIT "%s: unable to disable loopback\n",
  972. dev->name);
  973. phy_stop(port->phydev);
  974. if (!ports_open)
  975. qmgr_disable_irq(TXDONE_QUEUE);
  976. destroy_queues(port);
  977. release_queues(port);
  978. return 0;
  979. }
  980. static const struct net_device_ops ixp4xx_netdev_ops = {
  981. .ndo_open = eth_open,
  982. .ndo_stop = eth_close,
  983. .ndo_start_xmit = eth_xmit,
  984. .ndo_set_multicast_list = eth_set_mcast_list,
  985. .ndo_do_ioctl = eth_ioctl,
  986. };
  987. static int __devinit eth_init_one(struct platform_device *pdev)
  988. {
  989. struct port *port;
  990. struct net_device *dev;
  991. struct eth_plat_info *plat = pdev->dev.platform_data;
  992. u32 regs_phys;
  993. char phy_id[BUS_ID_SIZE];
  994. int err;
  995. if (!(dev = alloc_etherdev(sizeof(struct port))))
  996. return -ENOMEM;
  997. SET_NETDEV_DEV(dev, &pdev->dev);
  998. port = netdev_priv(dev);
  999. port->netdev = dev;
  1000. port->id = pdev->id;
  1001. switch (port->id) {
  1002. case IXP4XX_ETH_NPEA:
  1003. port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
  1004. regs_phys = IXP4XX_EthA_BASE_PHYS;
  1005. break;
  1006. case IXP4XX_ETH_NPEB:
  1007. port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  1008. regs_phys = IXP4XX_EthB_BASE_PHYS;
  1009. break;
  1010. case IXP4XX_ETH_NPEC:
  1011. port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  1012. regs_phys = IXP4XX_EthC_BASE_PHYS;
  1013. break;
  1014. default:
  1015. err = -ENODEV;
  1016. goto err_free;
  1017. }
  1018. dev->netdev_ops = &ixp4xx_netdev_ops;
  1019. dev->ethtool_ops = &ixp4xx_ethtool_ops;
  1020. dev->tx_queue_len = 100;
  1021. netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
  1022. if (!(port->npe = npe_request(NPE_ID(port->id)))) {
  1023. err = -EIO;
  1024. goto err_free;
  1025. }
  1026. port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
  1027. if (!port->mem_res) {
  1028. err = -EBUSY;
  1029. goto err_npe_rel;
  1030. }
  1031. port->plat = plat;
  1032. npe_port_tab[NPE_ID(port->id)] = port;
  1033. memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
  1034. platform_set_drvdata(pdev, dev);
  1035. __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
  1036. &port->regs->core_control);
  1037. udelay(50);
  1038. __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
  1039. udelay(50);
  1040. snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, "0", plat->phy);
  1041. port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
  1042. PHY_INTERFACE_MODE_MII);
  1043. if ((err = IS_ERR(port->phydev)))
  1044. goto err_free_mem;
  1045. port->phydev->irq = PHY_POLL;
  1046. if ((err = register_netdev(dev)))
  1047. goto err_phy_dis;
  1048. printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
  1049. npe_name(port->npe));
  1050. return 0;
  1051. err_phy_dis:
  1052. phy_disconnect(port->phydev);
  1053. err_free_mem:
  1054. npe_port_tab[NPE_ID(port->id)] = NULL;
  1055. platform_set_drvdata(pdev, NULL);
  1056. release_resource(port->mem_res);
  1057. err_npe_rel:
  1058. npe_release(port->npe);
  1059. err_free:
  1060. free_netdev(dev);
  1061. return err;
  1062. }
  1063. static int __devexit eth_remove_one(struct platform_device *pdev)
  1064. {
  1065. struct net_device *dev = platform_get_drvdata(pdev);
  1066. struct port *port = netdev_priv(dev);
  1067. unregister_netdev(dev);
  1068. phy_disconnect(port->phydev);
  1069. npe_port_tab[NPE_ID(port->id)] = NULL;
  1070. platform_set_drvdata(pdev, NULL);
  1071. npe_release(port->npe);
  1072. release_resource(port->mem_res);
  1073. free_netdev(dev);
  1074. return 0;
  1075. }
  1076. static struct platform_driver ixp4xx_eth_driver = {
  1077. .driver.name = DRV_NAME,
  1078. .probe = eth_init_one,
  1079. .remove = eth_remove_one,
  1080. };
  1081. static int __init eth_init_module(void)
  1082. {
  1083. int err;
  1084. if ((err = ixp4xx_mdio_register()))
  1085. return err;
  1086. return platform_driver_register(&ixp4xx_eth_driver);
  1087. }
  1088. static void __exit eth_cleanup_module(void)
  1089. {
  1090. platform_driver_unregister(&ixp4xx_eth_driver);
  1091. ixp4xx_mdio_remove();
  1092. }
  1093. MODULE_AUTHOR("Krzysztof Halasa");
  1094. MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
  1095. MODULE_LICENSE("GPL v2");
  1096. MODULE_ALIAS("platform:ixp4xx_eth");
  1097. module_init(eth_init_module);
  1098. module_exit(eth_cleanup_module);