xfs_inode.c 122 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_btree_trace.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_bmap.h"
  43. #include "xfs_error.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_quota.h"
  46. #include "xfs_filestream.h"
  47. #include "xfs_vnodeops.h"
  48. #include "xfs_trace.h"
  49. kmem_zone_t *xfs_ifork_zone;
  50. kmem_zone_t *xfs_inode_zone;
  51. /*
  52. * Used in xfs_itruncate(). This is the maximum number of extents
  53. * freed from a file in a single transaction.
  54. */
  55. #define XFS_ITRUNC_MAX_EXTENTS 2
  56. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  57. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  58. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  59. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  60. #ifdef DEBUG
  61. /*
  62. * Make sure that the extents in the given memory buffer
  63. * are valid.
  64. */
  65. STATIC void
  66. xfs_validate_extents(
  67. xfs_ifork_t *ifp,
  68. int nrecs,
  69. xfs_exntfmt_t fmt)
  70. {
  71. xfs_bmbt_irec_t irec;
  72. xfs_bmbt_rec_host_t rec;
  73. int i;
  74. for (i = 0; i < nrecs; i++) {
  75. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  76. rec.l0 = get_unaligned(&ep->l0);
  77. rec.l1 = get_unaligned(&ep->l1);
  78. xfs_bmbt_get_all(&rec, &irec);
  79. if (fmt == XFS_EXTFMT_NOSTATE)
  80. ASSERT(irec.br_state == XFS_EXT_NORM);
  81. }
  82. }
  83. #else /* DEBUG */
  84. #define xfs_validate_extents(ifp, nrecs, fmt)
  85. #endif /* DEBUG */
  86. /*
  87. * Check that none of the inode's in the buffer have a next
  88. * unlinked field of 0.
  89. */
  90. #if defined(DEBUG)
  91. void
  92. xfs_inobp_check(
  93. xfs_mount_t *mp,
  94. xfs_buf_t *bp)
  95. {
  96. int i;
  97. int j;
  98. xfs_dinode_t *dip;
  99. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  100. for (i = 0; i < j; i++) {
  101. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  102. i * mp->m_sb.sb_inodesize);
  103. if (!dip->di_next_unlinked) {
  104. xfs_fs_cmn_err(CE_ALERT, mp,
  105. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  106. bp);
  107. ASSERT(dip->di_next_unlinked);
  108. }
  109. }
  110. }
  111. #endif
  112. /*
  113. * Find the buffer associated with the given inode map
  114. * We do basic validation checks on the buffer once it has been
  115. * retrieved from disk.
  116. */
  117. STATIC int
  118. xfs_imap_to_bp(
  119. xfs_mount_t *mp,
  120. xfs_trans_t *tp,
  121. struct xfs_imap *imap,
  122. xfs_buf_t **bpp,
  123. uint buf_flags,
  124. uint iget_flags)
  125. {
  126. int error;
  127. int i;
  128. int ni;
  129. xfs_buf_t *bp;
  130. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  131. (int)imap->im_len, buf_flags, &bp);
  132. if (error) {
  133. if (error != EAGAIN) {
  134. cmn_err(CE_WARN,
  135. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  136. "an error %d on %s. Returning error.",
  137. error, mp->m_fsname);
  138. } else {
  139. ASSERT(buf_flags & XBF_TRYLOCK);
  140. }
  141. return error;
  142. }
  143. /*
  144. * Validate the magic number and version of every inode in the buffer
  145. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  146. */
  147. #ifdef DEBUG
  148. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  149. #else /* usual case */
  150. ni = 1;
  151. #endif
  152. for (i = 0; i < ni; i++) {
  153. int di_ok;
  154. xfs_dinode_t *dip;
  155. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  156. (i << mp->m_sb.sb_inodelog));
  157. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  158. XFS_DINODE_GOOD_VERSION(dip->di_version);
  159. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  160. XFS_ERRTAG_ITOBP_INOTOBP,
  161. XFS_RANDOM_ITOBP_INOTOBP))) {
  162. if (iget_flags & XFS_IGET_UNTRUSTED) {
  163. xfs_trans_brelse(tp, bp);
  164. return XFS_ERROR(EINVAL);
  165. }
  166. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  167. XFS_ERRLEVEL_HIGH, mp, dip);
  168. #ifdef DEBUG
  169. cmn_err(CE_PANIC,
  170. "Device %s - bad inode magic/vsn "
  171. "daddr %lld #%d (magic=%x)",
  172. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  173. (unsigned long long)imap->im_blkno, i,
  174. be16_to_cpu(dip->di_magic));
  175. #endif
  176. xfs_trans_brelse(tp, bp);
  177. return XFS_ERROR(EFSCORRUPTED);
  178. }
  179. }
  180. xfs_inobp_check(mp, bp);
  181. /*
  182. * Mark the buffer as an inode buffer now that it looks good
  183. */
  184. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  185. *bpp = bp;
  186. return 0;
  187. }
  188. /*
  189. * This routine is called to map an inode number within a file
  190. * system to the buffer containing the on-disk version of the
  191. * inode. It returns a pointer to the buffer containing the
  192. * on-disk inode in the bpp parameter, and in the dip parameter
  193. * it returns a pointer to the on-disk inode within that buffer.
  194. *
  195. * If a non-zero error is returned, then the contents of bpp and
  196. * dipp are undefined.
  197. *
  198. * Use xfs_imap() to determine the size and location of the
  199. * buffer to read from disk.
  200. */
  201. int
  202. xfs_inotobp(
  203. xfs_mount_t *mp,
  204. xfs_trans_t *tp,
  205. xfs_ino_t ino,
  206. xfs_dinode_t **dipp,
  207. xfs_buf_t **bpp,
  208. int *offset,
  209. uint imap_flags)
  210. {
  211. struct xfs_imap imap;
  212. xfs_buf_t *bp;
  213. int error;
  214. imap.im_blkno = 0;
  215. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  216. if (error)
  217. return error;
  218. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  219. if (error)
  220. return error;
  221. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  222. *bpp = bp;
  223. *offset = imap.im_boffset;
  224. return 0;
  225. }
  226. /*
  227. * This routine is called to map an inode to the buffer containing
  228. * the on-disk version of the inode. It returns a pointer to the
  229. * buffer containing the on-disk inode in the bpp parameter, and in
  230. * the dip parameter it returns a pointer to the on-disk inode within
  231. * that buffer.
  232. *
  233. * If a non-zero error is returned, then the contents of bpp and
  234. * dipp are undefined.
  235. *
  236. * The inode is expected to already been mapped to its buffer and read
  237. * in once, thus we can use the mapping information stored in the inode
  238. * rather than calling xfs_imap(). This allows us to avoid the overhead
  239. * of looking at the inode btree for small block file systems
  240. * (see xfs_imap()).
  241. */
  242. int
  243. xfs_itobp(
  244. xfs_mount_t *mp,
  245. xfs_trans_t *tp,
  246. xfs_inode_t *ip,
  247. xfs_dinode_t **dipp,
  248. xfs_buf_t **bpp,
  249. uint buf_flags)
  250. {
  251. xfs_buf_t *bp;
  252. int error;
  253. ASSERT(ip->i_imap.im_blkno != 0);
  254. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  255. if (error)
  256. return error;
  257. if (!bp) {
  258. ASSERT(buf_flags & XBF_TRYLOCK);
  259. ASSERT(tp == NULL);
  260. *bpp = NULL;
  261. return EAGAIN;
  262. }
  263. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  264. *bpp = bp;
  265. return 0;
  266. }
  267. /*
  268. * Move inode type and inode format specific information from the
  269. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  270. * this means set if_rdev to the proper value. For files, directories,
  271. * and symlinks this means to bring in the in-line data or extent
  272. * pointers. For a file in B-tree format, only the root is immediately
  273. * brought in-core. The rest will be in-lined in if_extents when it
  274. * is first referenced (see xfs_iread_extents()).
  275. */
  276. STATIC int
  277. xfs_iformat(
  278. xfs_inode_t *ip,
  279. xfs_dinode_t *dip)
  280. {
  281. xfs_attr_shortform_t *atp;
  282. int size;
  283. int error;
  284. xfs_fsize_t di_size;
  285. ip->i_df.if_ext_max =
  286. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  287. error = 0;
  288. if (unlikely(be32_to_cpu(dip->di_nextents) +
  289. be16_to_cpu(dip->di_anextents) >
  290. be64_to_cpu(dip->di_nblocks))) {
  291. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  292. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  293. (unsigned long long)ip->i_ino,
  294. (int)(be32_to_cpu(dip->di_nextents) +
  295. be16_to_cpu(dip->di_anextents)),
  296. (unsigned long long)
  297. be64_to_cpu(dip->di_nblocks));
  298. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  299. ip->i_mount, dip);
  300. return XFS_ERROR(EFSCORRUPTED);
  301. }
  302. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  303. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  304. "corrupt dinode %Lu, forkoff = 0x%x.",
  305. (unsigned long long)ip->i_ino,
  306. dip->di_forkoff);
  307. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  308. ip->i_mount, dip);
  309. return XFS_ERROR(EFSCORRUPTED);
  310. }
  311. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  312. !ip->i_mount->m_rtdev_targp)) {
  313. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  314. "corrupt dinode %Lu, has realtime flag set.",
  315. ip->i_ino);
  316. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  317. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  318. return XFS_ERROR(EFSCORRUPTED);
  319. }
  320. switch (ip->i_d.di_mode & S_IFMT) {
  321. case S_IFIFO:
  322. case S_IFCHR:
  323. case S_IFBLK:
  324. case S_IFSOCK:
  325. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  326. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  327. ip->i_mount, dip);
  328. return XFS_ERROR(EFSCORRUPTED);
  329. }
  330. ip->i_d.di_size = 0;
  331. ip->i_size = 0;
  332. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  333. break;
  334. case S_IFREG:
  335. case S_IFLNK:
  336. case S_IFDIR:
  337. switch (dip->di_format) {
  338. case XFS_DINODE_FMT_LOCAL:
  339. /*
  340. * no local regular files yet
  341. */
  342. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  343. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  344. "corrupt inode %Lu "
  345. "(local format for regular file).",
  346. (unsigned long long) ip->i_ino);
  347. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  348. XFS_ERRLEVEL_LOW,
  349. ip->i_mount, dip);
  350. return XFS_ERROR(EFSCORRUPTED);
  351. }
  352. di_size = be64_to_cpu(dip->di_size);
  353. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  354. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  355. "corrupt inode %Lu "
  356. "(bad size %Ld for local inode).",
  357. (unsigned long long) ip->i_ino,
  358. (long long) di_size);
  359. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  360. XFS_ERRLEVEL_LOW,
  361. ip->i_mount, dip);
  362. return XFS_ERROR(EFSCORRUPTED);
  363. }
  364. size = (int)di_size;
  365. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  366. break;
  367. case XFS_DINODE_FMT_EXTENTS:
  368. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  369. break;
  370. case XFS_DINODE_FMT_BTREE:
  371. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  372. break;
  373. default:
  374. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  375. ip->i_mount);
  376. return XFS_ERROR(EFSCORRUPTED);
  377. }
  378. break;
  379. default:
  380. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  381. return XFS_ERROR(EFSCORRUPTED);
  382. }
  383. if (error) {
  384. return error;
  385. }
  386. if (!XFS_DFORK_Q(dip))
  387. return 0;
  388. ASSERT(ip->i_afp == NULL);
  389. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  390. ip->i_afp->if_ext_max =
  391. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  392. switch (dip->di_aformat) {
  393. case XFS_DINODE_FMT_LOCAL:
  394. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  395. size = be16_to_cpu(atp->hdr.totsize);
  396. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  397. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  398. "corrupt inode %Lu "
  399. "(bad attr fork size %Ld).",
  400. (unsigned long long) ip->i_ino,
  401. (long long) size);
  402. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  403. XFS_ERRLEVEL_LOW,
  404. ip->i_mount, dip);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  408. break;
  409. case XFS_DINODE_FMT_EXTENTS:
  410. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  411. break;
  412. case XFS_DINODE_FMT_BTREE:
  413. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  414. break;
  415. default:
  416. error = XFS_ERROR(EFSCORRUPTED);
  417. break;
  418. }
  419. if (error) {
  420. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  421. ip->i_afp = NULL;
  422. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  423. }
  424. return error;
  425. }
  426. /*
  427. * The file is in-lined in the on-disk inode.
  428. * If it fits into if_inline_data, then copy
  429. * it there, otherwise allocate a buffer for it
  430. * and copy the data there. Either way, set
  431. * if_data to point at the data.
  432. * If we allocate a buffer for the data, make
  433. * sure that its size is a multiple of 4 and
  434. * record the real size in i_real_bytes.
  435. */
  436. STATIC int
  437. xfs_iformat_local(
  438. xfs_inode_t *ip,
  439. xfs_dinode_t *dip,
  440. int whichfork,
  441. int size)
  442. {
  443. xfs_ifork_t *ifp;
  444. int real_size;
  445. /*
  446. * If the size is unreasonable, then something
  447. * is wrong and we just bail out rather than crash in
  448. * kmem_alloc() or memcpy() below.
  449. */
  450. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  451. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  452. "corrupt inode %Lu "
  453. "(bad size %d for local fork, size = %d).",
  454. (unsigned long long) ip->i_ino, size,
  455. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  456. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  457. ip->i_mount, dip);
  458. return XFS_ERROR(EFSCORRUPTED);
  459. }
  460. ifp = XFS_IFORK_PTR(ip, whichfork);
  461. real_size = 0;
  462. if (size == 0)
  463. ifp->if_u1.if_data = NULL;
  464. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  465. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  466. else {
  467. real_size = roundup(size, 4);
  468. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  469. }
  470. ifp->if_bytes = size;
  471. ifp->if_real_bytes = real_size;
  472. if (size)
  473. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  474. ifp->if_flags &= ~XFS_IFEXTENTS;
  475. ifp->if_flags |= XFS_IFINLINE;
  476. return 0;
  477. }
  478. /*
  479. * The file consists of a set of extents all
  480. * of which fit into the on-disk inode.
  481. * If there are few enough extents to fit into
  482. * the if_inline_ext, then copy them there.
  483. * Otherwise allocate a buffer for them and copy
  484. * them into it. Either way, set if_extents
  485. * to point at the extents.
  486. */
  487. STATIC int
  488. xfs_iformat_extents(
  489. xfs_inode_t *ip,
  490. xfs_dinode_t *dip,
  491. int whichfork)
  492. {
  493. xfs_bmbt_rec_t *dp;
  494. xfs_ifork_t *ifp;
  495. int nex;
  496. int size;
  497. int i;
  498. ifp = XFS_IFORK_PTR(ip, whichfork);
  499. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  500. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  501. /*
  502. * If the number of extents is unreasonable, then something
  503. * is wrong and we just bail out rather than crash in
  504. * kmem_alloc() or memcpy() below.
  505. */
  506. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  507. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  508. "corrupt inode %Lu ((a)extents = %d).",
  509. (unsigned long long) ip->i_ino, nex);
  510. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  511. ip->i_mount, dip);
  512. return XFS_ERROR(EFSCORRUPTED);
  513. }
  514. ifp->if_real_bytes = 0;
  515. if (nex == 0)
  516. ifp->if_u1.if_extents = NULL;
  517. else if (nex <= XFS_INLINE_EXTS)
  518. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  519. else
  520. xfs_iext_add(ifp, 0, nex);
  521. ifp->if_bytes = size;
  522. if (size) {
  523. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  524. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  525. for (i = 0; i < nex; i++, dp++) {
  526. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  527. ep->l0 = get_unaligned_be64(&dp->l0);
  528. ep->l1 = get_unaligned_be64(&dp->l1);
  529. }
  530. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  531. if (whichfork != XFS_DATA_FORK ||
  532. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  533. if (unlikely(xfs_check_nostate_extents(
  534. ifp, 0, nex))) {
  535. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  536. XFS_ERRLEVEL_LOW,
  537. ip->i_mount);
  538. return XFS_ERROR(EFSCORRUPTED);
  539. }
  540. }
  541. ifp->if_flags |= XFS_IFEXTENTS;
  542. return 0;
  543. }
  544. /*
  545. * The file has too many extents to fit into
  546. * the inode, so they are in B-tree format.
  547. * Allocate a buffer for the root of the B-tree
  548. * and copy the root into it. The i_extents
  549. * field will remain NULL until all of the
  550. * extents are read in (when they are needed).
  551. */
  552. STATIC int
  553. xfs_iformat_btree(
  554. xfs_inode_t *ip,
  555. xfs_dinode_t *dip,
  556. int whichfork)
  557. {
  558. xfs_bmdr_block_t *dfp;
  559. xfs_ifork_t *ifp;
  560. /* REFERENCED */
  561. int nrecs;
  562. int size;
  563. ifp = XFS_IFORK_PTR(ip, whichfork);
  564. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  565. size = XFS_BMAP_BROOT_SPACE(dfp);
  566. nrecs = be16_to_cpu(dfp->bb_numrecs);
  567. /*
  568. * blow out if -- fork has less extents than can fit in
  569. * fork (fork shouldn't be a btree format), root btree
  570. * block has more records than can fit into the fork,
  571. * or the number of extents is greater than the number of
  572. * blocks.
  573. */
  574. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  575. || XFS_BMDR_SPACE_CALC(nrecs) >
  576. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  577. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  578. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  579. "corrupt inode %Lu (btree).",
  580. (unsigned long long) ip->i_ino);
  581. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  582. ip->i_mount);
  583. return XFS_ERROR(EFSCORRUPTED);
  584. }
  585. ifp->if_broot_bytes = size;
  586. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  587. ASSERT(ifp->if_broot != NULL);
  588. /*
  589. * Copy and convert from the on-disk structure
  590. * to the in-memory structure.
  591. */
  592. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  593. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  594. ifp->if_broot, size);
  595. ifp->if_flags &= ~XFS_IFEXTENTS;
  596. ifp->if_flags |= XFS_IFBROOT;
  597. return 0;
  598. }
  599. STATIC void
  600. xfs_dinode_from_disk(
  601. xfs_icdinode_t *to,
  602. xfs_dinode_t *from)
  603. {
  604. to->di_magic = be16_to_cpu(from->di_magic);
  605. to->di_mode = be16_to_cpu(from->di_mode);
  606. to->di_version = from ->di_version;
  607. to->di_format = from->di_format;
  608. to->di_onlink = be16_to_cpu(from->di_onlink);
  609. to->di_uid = be32_to_cpu(from->di_uid);
  610. to->di_gid = be32_to_cpu(from->di_gid);
  611. to->di_nlink = be32_to_cpu(from->di_nlink);
  612. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  613. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  614. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  615. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  616. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  617. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  618. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  619. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  620. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  621. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  622. to->di_size = be64_to_cpu(from->di_size);
  623. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  624. to->di_extsize = be32_to_cpu(from->di_extsize);
  625. to->di_nextents = be32_to_cpu(from->di_nextents);
  626. to->di_anextents = be16_to_cpu(from->di_anextents);
  627. to->di_forkoff = from->di_forkoff;
  628. to->di_aformat = from->di_aformat;
  629. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  630. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  631. to->di_flags = be16_to_cpu(from->di_flags);
  632. to->di_gen = be32_to_cpu(from->di_gen);
  633. }
  634. void
  635. xfs_dinode_to_disk(
  636. xfs_dinode_t *to,
  637. xfs_icdinode_t *from)
  638. {
  639. to->di_magic = cpu_to_be16(from->di_magic);
  640. to->di_mode = cpu_to_be16(from->di_mode);
  641. to->di_version = from ->di_version;
  642. to->di_format = from->di_format;
  643. to->di_onlink = cpu_to_be16(from->di_onlink);
  644. to->di_uid = cpu_to_be32(from->di_uid);
  645. to->di_gid = cpu_to_be32(from->di_gid);
  646. to->di_nlink = cpu_to_be32(from->di_nlink);
  647. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  648. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  649. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  650. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  651. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  652. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  653. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  654. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  655. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  656. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  657. to->di_size = cpu_to_be64(from->di_size);
  658. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  659. to->di_extsize = cpu_to_be32(from->di_extsize);
  660. to->di_nextents = cpu_to_be32(from->di_nextents);
  661. to->di_anextents = cpu_to_be16(from->di_anextents);
  662. to->di_forkoff = from->di_forkoff;
  663. to->di_aformat = from->di_aformat;
  664. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  665. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  666. to->di_flags = cpu_to_be16(from->di_flags);
  667. to->di_gen = cpu_to_be32(from->di_gen);
  668. }
  669. STATIC uint
  670. _xfs_dic2xflags(
  671. __uint16_t di_flags)
  672. {
  673. uint flags = 0;
  674. if (di_flags & XFS_DIFLAG_ANY) {
  675. if (di_flags & XFS_DIFLAG_REALTIME)
  676. flags |= XFS_XFLAG_REALTIME;
  677. if (di_flags & XFS_DIFLAG_PREALLOC)
  678. flags |= XFS_XFLAG_PREALLOC;
  679. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  680. flags |= XFS_XFLAG_IMMUTABLE;
  681. if (di_flags & XFS_DIFLAG_APPEND)
  682. flags |= XFS_XFLAG_APPEND;
  683. if (di_flags & XFS_DIFLAG_SYNC)
  684. flags |= XFS_XFLAG_SYNC;
  685. if (di_flags & XFS_DIFLAG_NOATIME)
  686. flags |= XFS_XFLAG_NOATIME;
  687. if (di_flags & XFS_DIFLAG_NODUMP)
  688. flags |= XFS_XFLAG_NODUMP;
  689. if (di_flags & XFS_DIFLAG_RTINHERIT)
  690. flags |= XFS_XFLAG_RTINHERIT;
  691. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  692. flags |= XFS_XFLAG_PROJINHERIT;
  693. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  694. flags |= XFS_XFLAG_NOSYMLINKS;
  695. if (di_flags & XFS_DIFLAG_EXTSIZE)
  696. flags |= XFS_XFLAG_EXTSIZE;
  697. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  698. flags |= XFS_XFLAG_EXTSZINHERIT;
  699. if (di_flags & XFS_DIFLAG_NODEFRAG)
  700. flags |= XFS_XFLAG_NODEFRAG;
  701. if (di_flags & XFS_DIFLAG_FILESTREAM)
  702. flags |= XFS_XFLAG_FILESTREAM;
  703. }
  704. return flags;
  705. }
  706. uint
  707. xfs_ip2xflags(
  708. xfs_inode_t *ip)
  709. {
  710. xfs_icdinode_t *dic = &ip->i_d;
  711. return _xfs_dic2xflags(dic->di_flags) |
  712. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  713. }
  714. uint
  715. xfs_dic2xflags(
  716. xfs_dinode_t *dip)
  717. {
  718. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  719. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  720. }
  721. /*
  722. * Read the disk inode attributes into the in-core inode structure.
  723. */
  724. int
  725. xfs_iread(
  726. xfs_mount_t *mp,
  727. xfs_trans_t *tp,
  728. xfs_inode_t *ip,
  729. uint iget_flags)
  730. {
  731. xfs_buf_t *bp;
  732. xfs_dinode_t *dip;
  733. int error;
  734. /*
  735. * Fill in the location information in the in-core inode.
  736. */
  737. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  738. if (error)
  739. return error;
  740. /*
  741. * Get pointers to the on-disk inode and the buffer containing it.
  742. */
  743. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  744. XBF_LOCK, iget_flags);
  745. if (error)
  746. return error;
  747. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  748. /*
  749. * If we got something that isn't an inode it means someone
  750. * (nfs or dmi) has a stale handle.
  751. */
  752. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  753. #ifdef DEBUG
  754. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  755. "dip->di_magic (0x%x) != "
  756. "XFS_DINODE_MAGIC (0x%x)",
  757. be16_to_cpu(dip->di_magic),
  758. XFS_DINODE_MAGIC);
  759. #endif /* DEBUG */
  760. error = XFS_ERROR(EINVAL);
  761. goto out_brelse;
  762. }
  763. /*
  764. * If the on-disk inode is already linked to a directory
  765. * entry, copy all of the inode into the in-core inode.
  766. * xfs_iformat() handles copying in the inode format
  767. * specific information.
  768. * Otherwise, just get the truly permanent information.
  769. */
  770. if (dip->di_mode) {
  771. xfs_dinode_from_disk(&ip->i_d, dip);
  772. error = xfs_iformat(ip, dip);
  773. if (error) {
  774. #ifdef DEBUG
  775. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  776. "xfs_iformat() returned error %d",
  777. error);
  778. #endif /* DEBUG */
  779. goto out_brelse;
  780. }
  781. } else {
  782. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  783. ip->i_d.di_version = dip->di_version;
  784. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  785. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  786. /*
  787. * Make sure to pull in the mode here as well in
  788. * case the inode is released without being used.
  789. * This ensures that xfs_inactive() will see that
  790. * the inode is already free and not try to mess
  791. * with the uninitialized part of it.
  792. */
  793. ip->i_d.di_mode = 0;
  794. /*
  795. * Initialize the per-fork minima and maxima for a new
  796. * inode here. xfs_iformat will do it for old inodes.
  797. */
  798. ip->i_df.if_ext_max =
  799. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  800. }
  801. /*
  802. * The inode format changed when we moved the link count and
  803. * made it 32 bits long. If this is an old format inode,
  804. * convert it in memory to look like a new one. If it gets
  805. * flushed to disk we will convert back before flushing or
  806. * logging it. We zero out the new projid field and the old link
  807. * count field. We'll handle clearing the pad field (the remains
  808. * of the old uuid field) when we actually convert the inode to
  809. * the new format. We don't change the version number so that we
  810. * can distinguish this from a real new format inode.
  811. */
  812. if (ip->i_d.di_version == 1) {
  813. ip->i_d.di_nlink = ip->i_d.di_onlink;
  814. ip->i_d.di_onlink = 0;
  815. xfs_set_projid(ip, 0);
  816. }
  817. ip->i_delayed_blks = 0;
  818. ip->i_size = ip->i_d.di_size;
  819. /*
  820. * Mark the buffer containing the inode as something to keep
  821. * around for a while. This helps to keep recently accessed
  822. * meta-data in-core longer.
  823. */
  824. xfs_buf_set_ref(bp, XFS_INO_REF);
  825. /*
  826. * Use xfs_trans_brelse() to release the buffer containing the
  827. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  828. * in xfs_itobp() above. If tp is NULL, this is just a normal
  829. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  830. * will only release the buffer if it is not dirty within the
  831. * transaction. It will be OK to release the buffer in this case,
  832. * because inodes on disk are never destroyed and we will be
  833. * locking the new in-core inode before putting it in the hash
  834. * table where other processes can find it. Thus we don't have
  835. * to worry about the inode being changed just because we released
  836. * the buffer.
  837. */
  838. out_brelse:
  839. xfs_trans_brelse(tp, bp);
  840. return error;
  841. }
  842. /*
  843. * Read in extents from a btree-format inode.
  844. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  845. */
  846. int
  847. xfs_iread_extents(
  848. xfs_trans_t *tp,
  849. xfs_inode_t *ip,
  850. int whichfork)
  851. {
  852. int error;
  853. xfs_ifork_t *ifp;
  854. xfs_extnum_t nextents;
  855. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  856. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  857. ip->i_mount);
  858. return XFS_ERROR(EFSCORRUPTED);
  859. }
  860. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  861. ifp = XFS_IFORK_PTR(ip, whichfork);
  862. /*
  863. * We know that the size is valid (it's checked in iformat_btree)
  864. */
  865. ifp->if_lastex = NULLEXTNUM;
  866. ifp->if_bytes = ifp->if_real_bytes = 0;
  867. ifp->if_flags |= XFS_IFEXTENTS;
  868. xfs_iext_add(ifp, 0, nextents);
  869. error = xfs_bmap_read_extents(tp, ip, whichfork);
  870. if (error) {
  871. xfs_iext_destroy(ifp);
  872. ifp->if_flags &= ~XFS_IFEXTENTS;
  873. return error;
  874. }
  875. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  876. return 0;
  877. }
  878. /*
  879. * Allocate an inode on disk and return a copy of its in-core version.
  880. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  881. * appropriately within the inode. The uid and gid for the inode are
  882. * set according to the contents of the given cred structure.
  883. *
  884. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  885. * has a free inode available, call xfs_iget()
  886. * to obtain the in-core version of the allocated inode. Finally,
  887. * fill in the inode and log its initial contents. In this case,
  888. * ialloc_context would be set to NULL and call_again set to false.
  889. *
  890. * If xfs_dialloc() does not have an available inode,
  891. * it will replenish its supply by doing an allocation. Since we can
  892. * only do one allocation within a transaction without deadlocks, we
  893. * must commit the current transaction before returning the inode itself.
  894. * In this case, therefore, we will set call_again to true and return.
  895. * The caller should then commit the current transaction, start a new
  896. * transaction, and call xfs_ialloc() again to actually get the inode.
  897. *
  898. * To ensure that some other process does not grab the inode that
  899. * was allocated during the first call to xfs_ialloc(), this routine
  900. * also returns the [locked] bp pointing to the head of the freelist
  901. * as ialloc_context. The caller should hold this buffer across
  902. * the commit and pass it back into this routine on the second call.
  903. *
  904. * If we are allocating quota inodes, we do not have a parent inode
  905. * to attach to or associate with (i.e. pip == NULL) because they
  906. * are not linked into the directory structure - they are attached
  907. * directly to the superblock - and so have no parent.
  908. */
  909. int
  910. xfs_ialloc(
  911. xfs_trans_t *tp,
  912. xfs_inode_t *pip,
  913. mode_t mode,
  914. xfs_nlink_t nlink,
  915. xfs_dev_t rdev,
  916. prid_t prid,
  917. int okalloc,
  918. xfs_buf_t **ialloc_context,
  919. boolean_t *call_again,
  920. xfs_inode_t **ipp)
  921. {
  922. xfs_ino_t ino;
  923. xfs_inode_t *ip;
  924. uint flags;
  925. int error;
  926. timespec_t tv;
  927. int filestreams = 0;
  928. /*
  929. * Call the space management code to pick
  930. * the on-disk inode to be allocated.
  931. */
  932. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  933. ialloc_context, call_again, &ino);
  934. if (error)
  935. return error;
  936. if (*call_again || ino == NULLFSINO) {
  937. *ipp = NULL;
  938. return 0;
  939. }
  940. ASSERT(*ialloc_context == NULL);
  941. /*
  942. * Get the in-core inode with the lock held exclusively.
  943. * This is because we're setting fields here we need
  944. * to prevent others from looking at until we're done.
  945. */
  946. error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
  947. XFS_ILOCK_EXCL, &ip);
  948. if (error)
  949. return error;
  950. ASSERT(ip != NULL);
  951. ip->i_d.di_mode = (__uint16_t)mode;
  952. ip->i_d.di_onlink = 0;
  953. ip->i_d.di_nlink = nlink;
  954. ASSERT(ip->i_d.di_nlink == nlink);
  955. ip->i_d.di_uid = current_fsuid();
  956. ip->i_d.di_gid = current_fsgid();
  957. xfs_set_projid(ip, prid);
  958. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  959. /*
  960. * If the superblock version is up to where we support new format
  961. * inodes and this is currently an old format inode, then change
  962. * the inode version number now. This way we only do the conversion
  963. * here rather than here and in the flush/logging code.
  964. */
  965. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  966. ip->i_d.di_version == 1) {
  967. ip->i_d.di_version = 2;
  968. /*
  969. * We've already zeroed the old link count, the projid field,
  970. * and the pad field.
  971. */
  972. }
  973. /*
  974. * Project ids won't be stored on disk if we are using a version 1 inode.
  975. */
  976. if ((prid != 0) && (ip->i_d.di_version == 1))
  977. xfs_bump_ino_vers2(tp, ip);
  978. if (pip && XFS_INHERIT_GID(pip)) {
  979. ip->i_d.di_gid = pip->i_d.di_gid;
  980. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  981. ip->i_d.di_mode |= S_ISGID;
  982. }
  983. }
  984. /*
  985. * If the group ID of the new file does not match the effective group
  986. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  987. * (and only if the irix_sgid_inherit compatibility variable is set).
  988. */
  989. if ((irix_sgid_inherit) &&
  990. (ip->i_d.di_mode & S_ISGID) &&
  991. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  992. ip->i_d.di_mode &= ~S_ISGID;
  993. }
  994. ip->i_d.di_size = 0;
  995. ip->i_size = 0;
  996. ip->i_d.di_nextents = 0;
  997. ASSERT(ip->i_d.di_nblocks == 0);
  998. nanotime(&tv);
  999. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1000. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1001. ip->i_d.di_atime = ip->i_d.di_mtime;
  1002. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1003. /*
  1004. * di_gen will have been taken care of in xfs_iread.
  1005. */
  1006. ip->i_d.di_extsize = 0;
  1007. ip->i_d.di_dmevmask = 0;
  1008. ip->i_d.di_dmstate = 0;
  1009. ip->i_d.di_flags = 0;
  1010. flags = XFS_ILOG_CORE;
  1011. switch (mode & S_IFMT) {
  1012. case S_IFIFO:
  1013. case S_IFCHR:
  1014. case S_IFBLK:
  1015. case S_IFSOCK:
  1016. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1017. ip->i_df.if_u2.if_rdev = rdev;
  1018. ip->i_df.if_flags = 0;
  1019. flags |= XFS_ILOG_DEV;
  1020. break;
  1021. case S_IFREG:
  1022. /*
  1023. * we can't set up filestreams until after the VFS inode
  1024. * is set up properly.
  1025. */
  1026. if (pip && xfs_inode_is_filestream(pip))
  1027. filestreams = 1;
  1028. /* fall through */
  1029. case S_IFDIR:
  1030. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1031. uint di_flags = 0;
  1032. if ((mode & S_IFMT) == S_IFDIR) {
  1033. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1034. di_flags |= XFS_DIFLAG_RTINHERIT;
  1035. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1036. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1037. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1038. }
  1039. } else if ((mode & S_IFMT) == S_IFREG) {
  1040. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1041. di_flags |= XFS_DIFLAG_REALTIME;
  1042. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1043. di_flags |= XFS_DIFLAG_EXTSIZE;
  1044. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1045. }
  1046. }
  1047. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1048. xfs_inherit_noatime)
  1049. di_flags |= XFS_DIFLAG_NOATIME;
  1050. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1051. xfs_inherit_nodump)
  1052. di_flags |= XFS_DIFLAG_NODUMP;
  1053. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1054. xfs_inherit_sync)
  1055. di_flags |= XFS_DIFLAG_SYNC;
  1056. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1057. xfs_inherit_nosymlinks)
  1058. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1059. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1060. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1061. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1062. xfs_inherit_nodefrag)
  1063. di_flags |= XFS_DIFLAG_NODEFRAG;
  1064. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1065. di_flags |= XFS_DIFLAG_FILESTREAM;
  1066. ip->i_d.di_flags |= di_flags;
  1067. }
  1068. /* FALLTHROUGH */
  1069. case S_IFLNK:
  1070. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1071. ip->i_df.if_flags = XFS_IFEXTENTS;
  1072. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1073. ip->i_df.if_u1.if_extents = NULL;
  1074. break;
  1075. default:
  1076. ASSERT(0);
  1077. }
  1078. /*
  1079. * Attribute fork settings for new inode.
  1080. */
  1081. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1082. ip->i_d.di_anextents = 0;
  1083. /*
  1084. * Log the new values stuffed into the inode.
  1085. */
  1086. xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
  1087. xfs_trans_log_inode(tp, ip, flags);
  1088. /* now that we have an i_mode we can setup inode ops and unlock */
  1089. xfs_setup_inode(ip);
  1090. /* now we have set up the vfs inode we can associate the filestream */
  1091. if (filestreams) {
  1092. error = xfs_filestream_associate(pip, ip);
  1093. if (error < 0)
  1094. return -error;
  1095. if (!error)
  1096. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1097. }
  1098. *ipp = ip;
  1099. return 0;
  1100. }
  1101. /*
  1102. * Check to make sure that there are no blocks allocated to the
  1103. * file beyond the size of the file. We don't check this for
  1104. * files with fixed size extents or real time extents, but we
  1105. * at least do it for regular files.
  1106. */
  1107. #ifdef DEBUG
  1108. void
  1109. xfs_isize_check(
  1110. xfs_mount_t *mp,
  1111. xfs_inode_t *ip,
  1112. xfs_fsize_t isize)
  1113. {
  1114. xfs_fileoff_t map_first;
  1115. int nimaps;
  1116. xfs_bmbt_irec_t imaps[2];
  1117. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1118. return;
  1119. if (XFS_IS_REALTIME_INODE(ip))
  1120. return;
  1121. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1122. return;
  1123. nimaps = 2;
  1124. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1125. /*
  1126. * The filesystem could be shutting down, so bmapi may return
  1127. * an error.
  1128. */
  1129. if (xfs_bmapi(NULL, ip, map_first,
  1130. (XFS_B_TO_FSB(mp,
  1131. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1132. map_first),
  1133. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1134. NULL))
  1135. return;
  1136. ASSERT(nimaps == 1);
  1137. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1138. }
  1139. #endif /* DEBUG */
  1140. /*
  1141. * Calculate the last possible buffered byte in a file. This must
  1142. * include data that was buffered beyond the EOF by the write code.
  1143. * This also needs to deal with overflowing the xfs_fsize_t type
  1144. * which can happen for sizes near the limit.
  1145. *
  1146. * We also need to take into account any blocks beyond the EOF. It
  1147. * may be the case that they were buffered by a write which failed.
  1148. * In that case the pages will still be in memory, but the inode size
  1149. * will never have been updated.
  1150. */
  1151. STATIC xfs_fsize_t
  1152. xfs_file_last_byte(
  1153. xfs_inode_t *ip)
  1154. {
  1155. xfs_mount_t *mp;
  1156. xfs_fsize_t last_byte;
  1157. xfs_fileoff_t last_block;
  1158. xfs_fileoff_t size_last_block;
  1159. int error;
  1160. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1161. mp = ip->i_mount;
  1162. /*
  1163. * Only check for blocks beyond the EOF if the extents have
  1164. * been read in. This eliminates the need for the inode lock,
  1165. * and it also saves us from looking when it really isn't
  1166. * necessary.
  1167. */
  1168. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1169. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1170. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1171. XFS_DATA_FORK);
  1172. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1173. if (error) {
  1174. last_block = 0;
  1175. }
  1176. } else {
  1177. last_block = 0;
  1178. }
  1179. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1180. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1181. last_byte = XFS_FSB_TO_B(mp, last_block);
  1182. if (last_byte < 0) {
  1183. return XFS_MAXIOFFSET(mp);
  1184. }
  1185. last_byte += (1 << mp->m_writeio_log);
  1186. if (last_byte < 0) {
  1187. return XFS_MAXIOFFSET(mp);
  1188. }
  1189. return last_byte;
  1190. }
  1191. /*
  1192. * Start the truncation of the file to new_size. The new size
  1193. * must be smaller than the current size. This routine will
  1194. * clear the buffer and page caches of file data in the removed
  1195. * range, and xfs_itruncate_finish() will remove the underlying
  1196. * disk blocks.
  1197. *
  1198. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1199. * must NOT have the inode lock held at all. This is because we're
  1200. * calling into the buffer/page cache code and we can't hold the
  1201. * inode lock when we do so.
  1202. *
  1203. * We need to wait for any direct I/Os in flight to complete before we
  1204. * proceed with the truncate. This is needed to prevent the extents
  1205. * being read or written by the direct I/Os from being removed while the
  1206. * I/O is in flight as there is no other method of synchronising
  1207. * direct I/O with the truncate operation. Also, because we hold
  1208. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1209. * started until the truncate completes and drops the lock. Essentially,
  1210. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1211. * ordering between direct I/Os and the truncate operation.
  1212. *
  1213. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1214. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1215. * in the case that the caller is locking things out of order and
  1216. * may not be able to call xfs_itruncate_finish() with the inode lock
  1217. * held without dropping the I/O lock. If the caller must drop the
  1218. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1219. * must be called again with all the same restrictions as the initial
  1220. * call.
  1221. */
  1222. int
  1223. xfs_itruncate_start(
  1224. xfs_inode_t *ip,
  1225. uint flags,
  1226. xfs_fsize_t new_size)
  1227. {
  1228. xfs_fsize_t last_byte;
  1229. xfs_off_t toss_start;
  1230. xfs_mount_t *mp;
  1231. int error = 0;
  1232. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1233. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1234. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1235. (flags == XFS_ITRUNC_MAYBE));
  1236. mp = ip->i_mount;
  1237. /* wait for the completion of any pending DIOs */
  1238. if (new_size == 0 || new_size < ip->i_size)
  1239. xfs_ioend_wait(ip);
  1240. /*
  1241. * Call toss_pages or flushinval_pages to get rid of pages
  1242. * overlapping the region being removed. We have to use
  1243. * the less efficient flushinval_pages in the case that the
  1244. * caller may not be able to finish the truncate without
  1245. * dropping the inode's I/O lock. Make sure
  1246. * to catch any pages brought in by buffers overlapping
  1247. * the EOF by searching out beyond the isize by our
  1248. * block size. We round new_size up to a block boundary
  1249. * so that we don't toss things on the same block as
  1250. * new_size but before it.
  1251. *
  1252. * Before calling toss_page or flushinval_pages, make sure to
  1253. * call remapf() over the same region if the file is mapped.
  1254. * This frees up mapped file references to the pages in the
  1255. * given range and for the flushinval_pages case it ensures
  1256. * that we get the latest mapped changes flushed out.
  1257. */
  1258. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1259. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1260. if (toss_start < 0) {
  1261. /*
  1262. * The place to start tossing is beyond our maximum
  1263. * file size, so there is no way that the data extended
  1264. * out there.
  1265. */
  1266. return 0;
  1267. }
  1268. last_byte = xfs_file_last_byte(ip);
  1269. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1270. if (last_byte > toss_start) {
  1271. if (flags & XFS_ITRUNC_DEFINITE) {
  1272. xfs_tosspages(ip, toss_start,
  1273. -1, FI_REMAPF_LOCKED);
  1274. } else {
  1275. error = xfs_flushinval_pages(ip, toss_start,
  1276. -1, FI_REMAPF_LOCKED);
  1277. }
  1278. }
  1279. #ifdef DEBUG
  1280. if (new_size == 0) {
  1281. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1282. }
  1283. #endif
  1284. return error;
  1285. }
  1286. /*
  1287. * Shrink the file to the given new_size. The new size must be smaller than
  1288. * the current size. This will free up the underlying blocks in the removed
  1289. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1290. *
  1291. * The transaction passed to this routine must have made a permanent log
  1292. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1293. * given transaction and start new ones, so make sure everything involved in
  1294. * the transaction is tidy before calling here. Some transaction will be
  1295. * returned to the caller to be committed. The incoming transaction must
  1296. * already include the inode, and both inode locks must be held exclusively.
  1297. * The inode must also be "held" within the transaction. On return the inode
  1298. * will be "held" within the returned transaction. This routine does NOT
  1299. * require any disk space to be reserved for it within the transaction.
  1300. *
  1301. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1302. * indicates the fork which is to be truncated. For the attribute fork we only
  1303. * support truncation to size 0.
  1304. *
  1305. * We use the sync parameter to indicate whether or not the first transaction
  1306. * we perform might have to be synchronous. For the attr fork, it needs to be
  1307. * so if the unlink of the inode is not yet known to be permanent in the log.
  1308. * This keeps us from freeing and reusing the blocks of the attribute fork
  1309. * before the unlink of the inode becomes permanent.
  1310. *
  1311. * For the data fork, we normally have to run synchronously if we're being
  1312. * called out of the inactive path or we're being called out of the create path
  1313. * where we're truncating an existing file. Either way, the truncate needs to
  1314. * be sync so blocks don't reappear in the file with altered data in case of a
  1315. * crash. wsync filesystems can run the first case async because anything that
  1316. * shrinks the inode has to run sync so by the time we're called here from
  1317. * inactive, the inode size is permanently set to 0.
  1318. *
  1319. * Calls from the truncate path always need to be sync unless we're in a wsync
  1320. * filesystem and the file has already been unlinked.
  1321. *
  1322. * The caller is responsible for correctly setting the sync parameter. It gets
  1323. * too hard for us to guess here which path we're being called out of just
  1324. * based on inode state.
  1325. *
  1326. * If we get an error, we must return with the inode locked and linked into the
  1327. * current transaction. This keeps things simple for the higher level code,
  1328. * because it always knows that the inode is locked and held in the transaction
  1329. * that returns to it whether errors occur or not. We don't mark the inode
  1330. * dirty on error so that transactions can be easily aborted if possible.
  1331. */
  1332. int
  1333. xfs_itruncate_finish(
  1334. xfs_trans_t **tp,
  1335. xfs_inode_t *ip,
  1336. xfs_fsize_t new_size,
  1337. int fork,
  1338. int sync)
  1339. {
  1340. xfs_fsblock_t first_block;
  1341. xfs_fileoff_t first_unmap_block;
  1342. xfs_fileoff_t last_block;
  1343. xfs_filblks_t unmap_len=0;
  1344. xfs_mount_t *mp;
  1345. xfs_trans_t *ntp;
  1346. int done;
  1347. int committed;
  1348. xfs_bmap_free_t free_list;
  1349. int error;
  1350. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1351. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1352. ASSERT(*tp != NULL);
  1353. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1354. ASSERT(ip->i_transp == *tp);
  1355. ASSERT(ip->i_itemp != NULL);
  1356. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1357. ntp = *tp;
  1358. mp = (ntp)->t_mountp;
  1359. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1360. /*
  1361. * We only support truncating the entire attribute fork.
  1362. */
  1363. if (fork == XFS_ATTR_FORK) {
  1364. new_size = 0LL;
  1365. }
  1366. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1367. trace_xfs_itruncate_finish_start(ip, new_size);
  1368. /*
  1369. * The first thing we do is set the size to new_size permanently
  1370. * on disk. This way we don't have to worry about anyone ever
  1371. * being able to look at the data being freed even in the face
  1372. * of a crash. What we're getting around here is the case where
  1373. * we free a block, it is allocated to another file, it is written
  1374. * to, and then we crash. If the new data gets written to the
  1375. * file but the log buffers containing the free and reallocation
  1376. * don't, then we'd end up with garbage in the blocks being freed.
  1377. * As long as we make the new_size permanent before actually
  1378. * freeing any blocks it doesn't matter if they get writtten to.
  1379. *
  1380. * The callers must signal into us whether or not the size
  1381. * setting here must be synchronous. There are a few cases
  1382. * where it doesn't have to be synchronous. Those cases
  1383. * occur if the file is unlinked and we know the unlink is
  1384. * permanent or if the blocks being truncated are guaranteed
  1385. * to be beyond the inode eof (regardless of the link count)
  1386. * and the eof value is permanent. Both of these cases occur
  1387. * only on wsync-mounted filesystems. In those cases, we're
  1388. * guaranteed that no user will ever see the data in the blocks
  1389. * that are being truncated so the truncate can run async.
  1390. * In the free beyond eof case, the file may wind up with
  1391. * more blocks allocated to it than it needs if we crash
  1392. * and that won't get fixed until the next time the file
  1393. * is re-opened and closed but that's ok as that shouldn't
  1394. * be too many blocks.
  1395. *
  1396. * However, we can't just make all wsync xactions run async
  1397. * because there's one call out of the create path that needs
  1398. * to run sync where it's truncating an existing file to size
  1399. * 0 whose size is > 0.
  1400. *
  1401. * It's probably possible to come up with a test in this
  1402. * routine that would correctly distinguish all the above
  1403. * cases from the values of the function parameters and the
  1404. * inode state but for sanity's sake, I've decided to let the
  1405. * layers above just tell us. It's simpler to correctly figure
  1406. * out in the layer above exactly under what conditions we
  1407. * can run async and I think it's easier for others read and
  1408. * follow the logic in case something has to be changed.
  1409. * cscope is your friend -- rcc.
  1410. *
  1411. * The attribute fork is much simpler.
  1412. *
  1413. * For the attribute fork we allow the caller to tell us whether
  1414. * the unlink of the inode that led to this call is yet permanent
  1415. * in the on disk log. If it is not and we will be freeing extents
  1416. * in this inode then we make the first transaction synchronous
  1417. * to make sure that the unlink is permanent by the time we free
  1418. * the blocks.
  1419. */
  1420. if (fork == XFS_DATA_FORK) {
  1421. if (ip->i_d.di_nextents > 0) {
  1422. /*
  1423. * If we are not changing the file size then do
  1424. * not update the on-disk file size - we may be
  1425. * called from xfs_inactive_free_eofblocks(). If we
  1426. * update the on-disk file size and then the system
  1427. * crashes before the contents of the file are
  1428. * flushed to disk then the files may be full of
  1429. * holes (ie NULL files bug).
  1430. */
  1431. if (ip->i_size != new_size) {
  1432. ip->i_d.di_size = new_size;
  1433. ip->i_size = new_size;
  1434. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1435. }
  1436. }
  1437. } else if (sync) {
  1438. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1439. if (ip->i_d.di_anextents > 0)
  1440. xfs_trans_set_sync(ntp);
  1441. }
  1442. ASSERT(fork == XFS_DATA_FORK ||
  1443. (fork == XFS_ATTR_FORK &&
  1444. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1445. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1446. /*
  1447. * Since it is possible for space to become allocated beyond
  1448. * the end of the file (in a crash where the space is allocated
  1449. * but the inode size is not yet updated), simply remove any
  1450. * blocks which show up between the new EOF and the maximum
  1451. * possible file size. If the first block to be removed is
  1452. * beyond the maximum file size (ie it is the same as last_block),
  1453. * then there is nothing to do.
  1454. */
  1455. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1456. ASSERT(first_unmap_block <= last_block);
  1457. done = 0;
  1458. if (last_block == first_unmap_block) {
  1459. done = 1;
  1460. } else {
  1461. unmap_len = last_block - first_unmap_block + 1;
  1462. }
  1463. while (!done) {
  1464. /*
  1465. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1466. * will tell us whether it freed the entire range or
  1467. * not. If this is a synchronous mount (wsync),
  1468. * then we can tell bunmapi to keep all the
  1469. * transactions asynchronous since the unlink
  1470. * transaction that made this inode inactive has
  1471. * already hit the disk. There's no danger of
  1472. * the freed blocks being reused, there being a
  1473. * crash, and the reused blocks suddenly reappearing
  1474. * in this file with garbage in them once recovery
  1475. * runs.
  1476. */
  1477. xfs_bmap_init(&free_list, &first_block);
  1478. error = xfs_bunmapi(ntp, ip,
  1479. first_unmap_block, unmap_len,
  1480. xfs_bmapi_aflag(fork),
  1481. XFS_ITRUNC_MAX_EXTENTS,
  1482. &first_block, &free_list,
  1483. &done);
  1484. if (error) {
  1485. /*
  1486. * If the bunmapi call encounters an error,
  1487. * return to the caller where the transaction
  1488. * can be properly aborted. We just need to
  1489. * make sure we're not holding any resources
  1490. * that we were not when we came in.
  1491. */
  1492. xfs_bmap_cancel(&free_list);
  1493. return error;
  1494. }
  1495. /*
  1496. * Duplicate the transaction that has the permanent
  1497. * reservation and commit the old transaction.
  1498. */
  1499. error = xfs_bmap_finish(tp, &free_list, &committed);
  1500. ntp = *tp;
  1501. if (committed)
  1502. xfs_trans_ijoin(ntp, ip);
  1503. if (error) {
  1504. /*
  1505. * If the bmap finish call encounters an error, return
  1506. * to the caller where the transaction can be properly
  1507. * aborted. We just need to make sure we're not
  1508. * holding any resources that we were not when we came
  1509. * in.
  1510. *
  1511. * Aborting from this point might lose some blocks in
  1512. * the file system, but oh well.
  1513. */
  1514. xfs_bmap_cancel(&free_list);
  1515. return error;
  1516. }
  1517. if (committed) {
  1518. /*
  1519. * Mark the inode dirty so it will be logged and
  1520. * moved forward in the log as part of every commit.
  1521. */
  1522. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1523. }
  1524. ntp = xfs_trans_dup(ntp);
  1525. error = xfs_trans_commit(*tp, 0);
  1526. *tp = ntp;
  1527. xfs_trans_ijoin(ntp, ip);
  1528. if (error)
  1529. return error;
  1530. /*
  1531. * transaction commit worked ok so we can drop the extra ticket
  1532. * reference that we gained in xfs_trans_dup()
  1533. */
  1534. xfs_log_ticket_put(ntp->t_ticket);
  1535. error = xfs_trans_reserve(ntp, 0,
  1536. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1537. XFS_TRANS_PERM_LOG_RES,
  1538. XFS_ITRUNCATE_LOG_COUNT);
  1539. if (error)
  1540. return error;
  1541. }
  1542. /*
  1543. * Only update the size in the case of the data fork, but
  1544. * always re-log the inode so that our permanent transaction
  1545. * can keep on rolling it forward in the log.
  1546. */
  1547. if (fork == XFS_DATA_FORK) {
  1548. xfs_isize_check(mp, ip, new_size);
  1549. /*
  1550. * If we are not changing the file size then do
  1551. * not update the on-disk file size - we may be
  1552. * called from xfs_inactive_free_eofblocks(). If we
  1553. * update the on-disk file size and then the system
  1554. * crashes before the contents of the file are
  1555. * flushed to disk then the files may be full of
  1556. * holes (ie NULL files bug).
  1557. */
  1558. if (ip->i_size != new_size) {
  1559. ip->i_d.di_size = new_size;
  1560. ip->i_size = new_size;
  1561. }
  1562. }
  1563. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1564. ASSERT((new_size != 0) ||
  1565. (fork == XFS_ATTR_FORK) ||
  1566. (ip->i_delayed_blks == 0));
  1567. ASSERT((new_size != 0) ||
  1568. (fork == XFS_ATTR_FORK) ||
  1569. (ip->i_d.di_nextents == 0));
  1570. trace_xfs_itruncate_finish_end(ip, new_size);
  1571. return 0;
  1572. }
  1573. /*
  1574. * This is called when the inode's link count goes to 0.
  1575. * We place the on-disk inode on a list in the AGI. It
  1576. * will be pulled from this list when the inode is freed.
  1577. */
  1578. int
  1579. xfs_iunlink(
  1580. xfs_trans_t *tp,
  1581. xfs_inode_t *ip)
  1582. {
  1583. xfs_mount_t *mp;
  1584. xfs_agi_t *agi;
  1585. xfs_dinode_t *dip;
  1586. xfs_buf_t *agibp;
  1587. xfs_buf_t *ibp;
  1588. xfs_agino_t agino;
  1589. short bucket_index;
  1590. int offset;
  1591. int error;
  1592. ASSERT(ip->i_d.di_nlink == 0);
  1593. ASSERT(ip->i_d.di_mode != 0);
  1594. ASSERT(ip->i_transp == tp);
  1595. mp = tp->t_mountp;
  1596. /*
  1597. * Get the agi buffer first. It ensures lock ordering
  1598. * on the list.
  1599. */
  1600. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1601. if (error)
  1602. return error;
  1603. agi = XFS_BUF_TO_AGI(agibp);
  1604. /*
  1605. * Get the index into the agi hash table for the
  1606. * list this inode will go on.
  1607. */
  1608. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1609. ASSERT(agino != 0);
  1610. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1611. ASSERT(agi->agi_unlinked[bucket_index]);
  1612. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1613. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1614. /*
  1615. * There is already another inode in the bucket we need
  1616. * to add ourselves to. Add us at the front of the list.
  1617. * Here we put the head pointer into our next pointer,
  1618. * and then we fall through to point the head at us.
  1619. */
  1620. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1621. if (error)
  1622. return error;
  1623. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1624. /* both on-disk, don't endian flip twice */
  1625. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1626. offset = ip->i_imap.im_boffset +
  1627. offsetof(xfs_dinode_t, di_next_unlinked);
  1628. xfs_trans_inode_buf(tp, ibp);
  1629. xfs_trans_log_buf(tp, ibp, offset,
  1630. (offset + sizeof(xfs_agino_t) - 1));
  1631. xfs_inobp_check(mp, ibp);
  1632. }
  1633. /*
  1634. * Point the bucket head pointer at the inode being inserted.
  1635. */
  1636. ASSERT(agino != 0);
  1637. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1638. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1639. (sizeof(xfs_agino_t) * bucket_index);
  1640. xfs_trans_log_buf(tp, agibp, offset,
  1641. (offset + sizeof(xfs_agino_t) - 1));
  1642. return 0;
  1643. }
  1644. /*
  1645. * Pull the on-disk inode from the AGI unlinked list.
  1646. */
  1647. STATIC int
  1648. xfs_iunlink_remove(
  1649. xfs_trans_t *tp,
  1650. xfs_inode_t *ip)
  1651. {
  1652. xfs_ino_t next_ino;
  1653. xfs_mount_t *mp;
  1654. xfs_agi_t *agi;
  1655. xfs_dinode_t *dip;
  1656. xfs_buf_t *agibp;
  1657. xfs_buf_t *ibp;
  1658. xfs_agnumber_t agno;
  1659. xfs_agino_t agino;
  1660. xfs_agino_t next_agino;
  1661. xfs_buf_t *last_ibp;
  1662. xfs_dinode_t *last_dip = NULL;
  1663. short bucket_index;
  1664. int offset, last_offset = 0;
  1665. int error;
  1666. mp = tp->t_mountp;
  1667. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1668. /*
  1669. * Get the agi buffer first. It ensures lock ordering
  1670. * on the list.
  1671. */
  1672. error = xfs_read_agi(mp, tp, agno, &agibp);
  1673. if (error)
  1674. return error;
  1675. agi = XFS_BUF_TO_AGI(agibp);
  1676. /*
  1677. * Get the index into the agi hash table for the
  1678. * list this inode will go on.
  1679. */
  1680. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1681. ASSERT(agino != 0);
  1682. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1683. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1684. ASSERT(agi->agi_unlinked[bucket_index]);
  1685. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1686. /*
  1687. * We're at the head of the list. Get the inode's
  1688. * on-disk buffer to see if there is anyone after us
  1689. * on the list. Only modify our next pointer if it
  1690. * is not already NULLAGINO. This saves us the overhead
  1691. * of dealing with the buffer when there is no need to
  1692. * change it.
  1693. */
  1694. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1695. if (error) {
  1696. cmn_err(CE_WARN,
  1697. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1698. error, mp->m_fsname);
  1699. return error;
  1700. }
  1701. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1702. ASSERT(next_agino != 0);
  1703. if (next_agino != NULLAGINO) {
  1704. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1705. offset = ip->i_imap.im_boffset +
  1706. offsetof(xfs_dinode_t, di_next_unlinked);
  1707. xfs_trans_inode_buf(tp, ibp);
  1708. xfs_trans_log_buf(tp, ibp, offset,
  1709. (offset + sizeof(xfs_agino_t) - 1));
  1710. xfs_inobp_check(mp, ibp);
  1711. } else {
  1712. xfs_trans_brelse(tp, ibp);
  1713. }
  1714. /*
  1715. * Point the bucket head pointer at the next inode.
  1716. */
  1717. ASSERT(next_agino != 0);
  1718. ASSERT(next_agino != agino);
  1719. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1720. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1721. (sizeof(xfs_agino_t) * bucket_index);
  1722. xfs_trans_log_buf(tp, agibp, offset,
  1723. (offset + sizeof(xfs_agino_t) - 1));
  1724. } else {
  1725. /*
  1726. * We need to search the list for the inode being freed.
  1727. */
  1728. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1729. last_ibp = NULL;
  1730. while (next_agino != agino) {
  1731. /*
  1732. * If the last inode wasn't the one pointing to
  1733. * us, then release its buffer since we're not
  1734. * going to do anything with it.
  1735. */
  1736. if (last_ibp != NULL) {
  1737. xfs_trans_brelse(tp, last_ibp);
  1738. }
  1739. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1740. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1741. &last_ibp, &last_offset, 0);
  1742. if (error) {
  1743. cmn_err(CE_WARN,
  1744. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1745. error, mp->m_fsname);
  1746. return error;
  1747. }
  1748. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1749. ASSERT(next_agino != NULLAGINO);
  1750. ASSERT(next_agino != 0);
  1751. }
  1752. /*
  1753. * Now last_ibp points to the buffer previous to us on
  1754. * the unlinked list. Pull us from the list.
  1755. */
  1756. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1757. if (error) {
  1758. cmn_err(CE_WARN,
  1759. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1760. error, mp->m_fsname);
  1761. return error;
  1762. }
  1763. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1764. ASSERT(next_agino != 0);
  1765. ASSERT(next_agino != agino);
  1766. if (next_agino != NULLAGINO) {
  1767. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1768. offset = ip->i_imap.im_boffset +
  1769. offsetof(xfs_dinode_t, di_next_unlinked);
  1770. xfs_trans_inode_buf(tp, ibp);
  1771. xfs_trans_log_buf(tp, ibp, offset,
  1772. (offset + sizeof(xfs_agino_t) - 1));
  1773. xfs_inobp_check(mp, ibp);
  1774. } else {
  1775. xfs_trans_brelse(tp, ibp);
  1776. }
  1777. /*
  1778. * Point the previous inode on the list to the next inode.
  1779. */
  1780. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1781. ASSERT(next_agino != 0);
  1782. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1783. xfs_trans_inode_buf(tp, last_ibp);
  1784. xfs_trans_log_buf(tp, last_ibp, offset,
  1785. (offset + sizeof(xfs_agino_t) - 1));
  1786. xfs_inobp_check(mp, last_ibp);
  1787. }
  1788. return 0;
  1789. }
  1790. /*
  1791. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1792. * inodes that are in memory - they all must be marked stale and attached to
  1793. * the cluster buffer.
  1794. */
  1795. STATIC void
  1796. xfs_ifree_cluster(
  1797. xfs_inode_t *free_ip,
  1798. xfs_trans_t *tp,
  1799. xfs_ino_t inum)
  1800. {
  1801. xfs_mount_t *mp = free_ip->i_mount;
  1802. int blks_per_cluster;
  1803. int nbufs;
  1804. int ninodes;
  1805. int i, j;
  1806. xfs_daddr_t blkno;
  1807. xfs_buf_t *bp;
  1808. xfs_inode_t *ip;
  1809. xfs_inode_log_item_t *iip;
  1810. xfs_log_item_t *lip;
  1811. struct xfs_perag *pag;
  1812. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1813. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1814. blks_per_cluster = 1;
  1815. ninodes = mp->m_sb.sb_inopblock;
  1816. nbufs = XFS_IALLOC_BLOCKS(mp);
  1817. } else {
  1818. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1819. mp->m_sb.sb_blocksize;
  1820. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1821. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1822. }
  1823. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1824. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1825. XFS_INO_TO_AGBNO(mp, inum));
  1826. /*
  1827. * We obtain and lock the backing buffer first in the process
  1828. * here, as we have to ensure that any dirty inode that we
  1829. * can't get the flush lock on is attached to the buffer.
  1830. * If we scan the in-memory inodes first, then buffer IO can
  1831. * complete before we get a lock on it, and hence we may fail
  1832. * to mark all the active inodes on the buffer stale.
  1833. */
  1834. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1835. mp->m_bsize * blks_per_cluster,
  1836. XBF_LOCK);
  1837. /*
  1838. * Walk the inodes already attached to the buffer and mark them
  1839. * stale. These will all have the flush locks held, so an
  1840. * in-memory inode walk can't lock them. By marking them all
  1841. * stale first, we will not attempt to lock them in the loop
  1842. * below as the XFS_ISTALE flag will be set.
  1843. */
  1844. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1845. while (lip) {
  1846. if (lip->li_type == XFS_LI_INODE) {
  1847. iip = (xfs_inode_log_item_t *)lip;
  1848. ASSERT(iip->ili_logged == 1);
  1849. lip->li_cb = xfs_istale_done;
  1850. xfs_trans_ail_copy_lsn(mp->m_ail,
  1851. &iip->ili_flush_lsn,
  1852. &iip->ili_item.li_lsn);
  1853. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1854. }
  1855. lip = lip->li_bio_list;
  1856. }
  1857. /*
  1858. * For each inode in memory attempt to add it to the inode
  1859. * buffer and set it up for being staled on buffer IO
  1860. * completion. This is safe as we've locked out tail pushing
  1861. * and flushing by locking the buffer.
  1862. *
  1863. * We have already marked every inode that was part of a
  1864. * transaction stale above, which means there is no point in
  1865. * even trying to lock them.
  1866. */
  1867. for (i = 0; i < ninodes; i++) {
  1868. retry:
  1869. rcu_read_lock();
  1870. ip = radix_tree_lookup(&pag->pag_ici_root,
  1871. XFS_INO_TO_AGINO(mp, (inum + i)));
  1872. /* Inode not in memory, nothing to do */
  1873. if (!ip) {
  1874. rcu_read_unlock();
  1875. continue;
  1876. }
  1877. /*
  1878. * because this is an RCU protected lookup, we could
  1879. * find a recently freed or even reallocated inode
  1880. * during the lookup. We need to check under the
  1881. * i_flags_lock for a valid inode here. Skip it if it
  1882. * is not valid, the wrong inode or stale.
  1883. */
  1884. spin_lock(&ip->i_flags_lock);
  1885. if (ip->i_ino != inum + i ||
  1886. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1887. spin_unlock(&ip->i_flags_lock);
  1888. rcu_read_unlock();
  1889. continue;
  1890. }
  1891. spin_unlock(&ip->i_flags_lock);
  1892. /*
  1893. * Don't try to lock/unlock the current inode, but we
  1894. * _cannot_ skip the other inodes that we did not find
  1895. * in the list attached to the buffer and are not
  1896. * already marked stale. If we can't lock it, back off
  1897. * and retry.
  1898. */
  1899. if (ip != free_ip &&
  1900. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1901. rcu_read_unlock();
  1902. delay(1);
  1903. goto retry;
  1904. }
  1905. rcu_read_unlock();
  1906. xfs_iflock(ip);
  1907. xfs_iflags_set(ip, XFS_ISTALE);
  1908. /*
  1909. * we don't need to attach clean inodes or those only
  1910. * with unlogged changes (which we throw away, anyway).
  1911. */
  1912. iip = ip->i_itemp;
  1913. if (!iip || xfs_inode_clean(ip)) {
  1914. ASSERT(ip != free_ip);
  1915. ip->i_update_core = 0;
  1916. xfs_ifunlock(ip);
  1917. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1918. continue;
  1919. }
  1920. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1921. iip->ili_format.ilf_fields = 0;
  1922. iip->ili_logged = 1;
  1923. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1924. &iip->ili_item.li_lsn);
  1925. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1926. &iip->ili_item);
  1927. if (ip != free_ip)
  1928. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1929. }
  1930. xfs_trans_stale_inode_buf(tp, bp);
  1931. xfs_trans_binval(tp, bp);
  1932. }
  1933. xfs_perag_put(pag);
  1934. }
  1935. /*
  1936. * This is called to return an inode to the inode free list.
  1937. * The inode should already be truncated to 0 length and have
  1938. * no pages associated with it. This routine also assumes that
  1939. * the inode is already a part of the transaction.
  1940. *
  1941. * The on-disk copy of the inode will have been added to the list
  1942. * of unlinked inodes in the AGI. We need to remove the inode from
  1943. * that list atomically with respect to freeing it here.
  1944. */
  1945. int
  1946. xfs_ifree(
  1947. xfs_trans_t *tp,
  1948. xfs_inode_t *ip,
  1949. xfs_bmap_free_t *flist)
  1950. {
  1951. int error;
  1952. int delete;
  1953. xfs_ino_t first_ino;
  1954. xfs_dinode_t *dip;
  1955. xfs_buf_t *ibp;
  1956. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1957. ASSERT(ip->i_transp == tp);
  1958. ASSERT(ip->i_d.di_nlink == 0);
  1959. ASSERT(ip->i_d.di_nextents == 0);
  1960. ASSERT(ip->i_d.di_anextents == 0);
  1961. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1962. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1963. ASSERT(ip->i_d.di_nblocks == 0);
  1964. /*
  1965. * Pull the on-disk inode from the AGI unlinked list.
  1966. */
  1967. error = xfs_iunlink_remove(tp, ip);
  1968. if (error != 0) {
  1969. return error;
  1970. }
  1971. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1972. if (error != 0) {
  1973. return error;
  1974. }
  1975. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1976. ip->i_d.di_flags = 0;
  1977. ip->i_d.di_dmevmask = 0;
  1978. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1979. ip->i_df.if_ext_max =
  1980. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1981. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1982. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1983. /*
  1984. * Bump the generation count so no one will be confused
  1985. * by reincarnations of this inode.
  1986. */
  1987. ip->i_d.di_gen++;
  1988. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1989. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1990. if (error)
  1991. return error;
  1992. /*
  1993. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1994. * from picking up this inode when it is reclaimed (its incore state
  1995. * initialzed but not flushed to disk yet). The in-core di_mode is
  1996. * already cleared and a corresponding transaction logged.
  1997. * The hack here just synchronizes the in-core to on-disk
  1998. * di_mode value in advance before the actual inode sync to disk.
  1999. * This is OK because the inode is already unlinked and would never
  2000. * change its di_mode again for this inode generation.
  2001. * This is a temporary hack that would require a proper fix
  2002. * in the future.
  2003. */
  2004. dip->di_mode = 0;
  2005. if (delete) {
  2006. xfs_ifree_cluster(ip, tp, first_ino);
  2007. }
  2008. return 0;
  2009. }
  2010. /*
  2011. * Reallocate the space for if_broot based on the number of records
  2012. * being added or deleted as indicated in rec_diff. Move the records
  2013. * and pointers in if_broot to fit the new size. When shrinking this
  2014. * will eliminate holes between the records and pointers created by
  2015. * the caller. When growing this will create holes to be filled in
  2016. * by the caller.
  2017. *
  2018. * The caller must not request to add more records than would fit in
  2019. * the on-disk inode root. If the if_broot is currently NULL, then
  2020. * if we adding records one will be allocated. The caller must also
  2021. * not request that the number of records go below zero, although
  2022. * it can go to zero.
  2023. *
  2024. * ip -- the inode whose if_broot area is changing
  2025. * ext_diff -- the change in the number of records, positive or negative,
  2026. * requested for the if_broot array.
  2027. */
  2028. void
  2029. xfs_iroot_realloc(
  2030. xfs_inode_t *ip,
  2031. int rec_diff,
  2032. int whichfork)
  2033. {
  2034. struct xfs_mount *mp = ip->i_mount;
  2035. int cur_max;
  2036. xfs_ifork_t *ifp;
  2037. struct xfs_btree_block *new_broot;
  2038. int new_max;
  2039. size_t new_size;
  2040. char *np;
  2041. char *op;
  2042. /*
  2043. * Handle the degenerate case quietly.
  2044. */
  2045. if (rec_diff == 0) {
  2046. return;
  2047. }
  2048. ifp = XFS_IFORK_PTR(ip, whichfork);
  2049. if (rec_diff > 0) {
  2050. /*
  2051. * If there wasn't any memory allocated before, just
  2052. * allocate it now and get out.
  2053. */
  2054. if (ifp->if_broot_bytes == 0) {
  2055. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2056. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2057. ifp->if_broot_bytes = (int)new_size;
  2058. return;
  2059. }
  2060. /*
  2061. * If there is already an existing if_broot, then we need
  2062. * to realloc() it and shift the pointers to their new
  2063. * location. The records don't change location because
  2064. * they are kept butted up against the btree block header.
  2065. */
  2066. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2067. new_max = cur_max + rec_diff;
  2068. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2069. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2070. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2071. KM_SLEEP | KM_NOFS);
  2072. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2073. ifp->if_broot_bytes);
  2074. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2075. (int)new_size);
  2076. ifp->if_broot_bytes = (int)new_size;
  2077. ASSERT(ifp->if_broot_bytes <=
  2078. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2079. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2080. return;
  2081. }
  2082. /*
  2083. * rec_diff is less than 0. In this case, we are shrinking the
  2084. * if_broot buffer. It must already exist. If we go to zero
  2085. * records, just get rid of the root and clear the status bit.
  2086. */
  2087. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2088. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2089. new_max = cur_max + rec_diff;
  2090. ASSERT(new_max >= 0);
  2091. if (new_max > 0)
  2092. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2093. else
  2094. new_size = 0;
  2095. if (new_size > 0) {
  2096. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2097. /*
  2098. * First copy over the btree block header.
  2099. */
  2100. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2101. } else {
  2102. new_broot = NULL;
  2103. ifp->if_flags &= ~XFS_IFBROOT;
  2104. }
  2105. /*
  2106. * Only copy the records and pointers if there are any.
  2107. */
  2108. if (new_max > 0) {
  2109. /*
  2110. * First copy the records.
  2111. */
  2112. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2113. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2114. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2115. /*
  2116. * Then copy the pointers.
  2117. */
  2118. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2119. ifp->if_broot_bytes);
  2120. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2121. (int)new_size);
  2122. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2123. }
  2124. kmem_free(ifp->if_broot);
  2125. ifp->if_broot = new_broot;
  2126. ifp->if_broot_bytes = (int)new_size;
  2127. ASSERT(ifp->if_broot_bytes <=
  2128. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2129. return;
  2130. }
  2131. /*
  2132. * This is called when the amount of space needed for if_data
  2133. * is increased or decreased. The change in size is indicated by
  2134. * the number of bytes that need to be added or deleted in the
  2135. * byte_diff parameter.
  2136. *
  2137. * If the amount of space needed has decreased below the size of the
  2138. * inline buffer, then switch to using the inline buffer. Otherwise,
  2139. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2140. * to what is needed.
  2141. *
  2142. * ip -- the inode whose if_data area is changing
  2143. * byte_diff -- the change in the number of bytes, positive or negative,
  2144. * requested for the if_data array.
  2145. */
  2146. void
  2147. xfs_idata_realloc(
  2148. xfs_inode_t *ip,
  2149. int byte_diff,
  2150. int whichfork)
  2151. {
  2152. xfs_ifork_t *ifp;
  2153. int new_size;
  2154. int real_size;
  2155. if (byte_diff == 0) {
  2156. return;
  2157. }
  2158. ifp = XFS_IFORK_PTR(ip, whichfork);
  2159. new_size = (int)ifp->if_bytes + byte_diff;
  2160. ASSERT(new_size >= 0);
  2161. if (new_size == 0) {
  2162. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2163. kmem_free(ifp->if_u1.if_data);
  2164. }
  2165. ifp->if_u1.if_data = NULL;
  2166. real_size = 0;
  2167. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2168. /*
  2169. * If the valid extents/data can fit in if_inline_ext/data,
  2170. * copy them from the malloc'd vector and free it.
  2171. */
  2172. if (ifp->if_u1.if_data == NULL) {
  2173. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2174. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2175. ASSERT(ifp->if_real_bytes != 0);
  2176. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2177. new_size);
  2178. kmem_free(ifp->if_u1.if_data);
  2179. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2180. }
  2181. real_size = 0;
  2182. } else {
  2183. /*
  2184. * Stuck with malloc/realloc.
  2185. * For inline data, the underlying buffer must be
  2186. * a multiple of 4 bytes in size so that it can be
  2187. * logged and stay on word boundaries. We enforce
  2188. * that here.
  2189. */
  2190. real_size = roundup(new_size, 4);
  2191. if (ifp->if_u1.if_data == NULL) {
  2192. ASSERT(ifp->if_real_bytes == 0);
  2193. ifp->if_u1.if_data = kmem_alloc(real_size,
  2194. KM_SLEEP | KM_NOFS);
  2195. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2196. /*
  2197. * Only do the realloc if the underlying size
  2198. * is really changing.
  2199. */
  2200. if (ifp->if_real_bytes != real_size) {
  2201. ifp->if_u1.if_data =
  2202. kmem_realloc(ifp->if_u1.if_data,
  2203. real_size,
  2204. ifp->if_real_bytes,
  2205. KM_SLEEP | KM_NOFS);
  2206. }
  2207. } else {
  2208. ASSERT(ifp->if_real_bytes == 0);
  2209. ifp->if_u1.if_data = kmem_alloc(real_size,
  2210. KM_SLEEP | KM_NOFS);
  2211. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2212. ifp->if_bytes);
  2213. }
  2214. }
  2215. ifp->if_real_bytes = real_size;
  2216. ifp->if_bytes = new_size;
  2217. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2218. }
  2219. void
  2220. xfs_idestroy_fork(
  2221. xfs_inode_t *ip,
  2222. int whichfork)
  2223. {
  2224. xfs_ifork_t *ifp;
  2225. ifp = XFS_IFORK_PTR(ip, whichfork);
  2226. if (ifp->if_broot != NULL) {
  2227. kmem_free(ifp->if_broot);
  2228. ifp->if_broot = NULL;
  2229. }
  2230. /*
  2231. * If the format is local, then we can't have an extents
  2232. * array so just look for an inline data array. If we're
  2233. * not local then we may or may not have an extents list,
  2234. * so check and free it up if we do.
  2235. */
  2236. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2237. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2238. (ifp->if_u1.if_data != NULL)) {
  2239. ASSERT(ifp->if_real_bytes != 0);
  2240. kmem_free(ifp->if_u1.if_data);
  2241. ifp->if_u1.if_data = NULL;
  2242. ifp->if_real_bytes = 0;
  2243. }
  2244. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2245. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2246. ((ifp->if_u1.if_extents != NULL) &&
  2247. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2248. ASSERT(ifp->if_real_bytes != 0);
  2249. xfs_iext_destroy(ifp);
  2250. }
  2251. ASSERT(ifp->if_u1.if_extents == NULL ||
  2252. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2253. ASSERT(ifp->if_real_bytes == 0);
  2254. if (whichfork == XFS_ATTR_FORK) {
  2255. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2256. ip->i_afp = NULL;
  2257. }
  2258. }
  2259. /*
  2260. * This is called to unpin an inode. The caller must have the inode locked
  2261. * in at least shared mode so that the buffer cannot be subsequently pinned
  2262. * once someone is waiting for it to be unpinned.
  2263. */
  2264. static void
  2265. xfs_iunpin_nowait(
  2266. struct xfs_inode *ip)
  2267. {
  2268. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2269. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2270. /* Give the log a push to start the unpinning I/O */
  2271. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2272. }
  2273. void
  2274. xfs_iunpin_wait(
  2275. struct xfs_inode *ip)
  2276. {
  2277. if (xfs_ipincount(ip)) {
  2278. xfs_iunpin_nowait(ip);
  2279. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2280. }
  2281. }
  2282. /*
  2283. * xfs_iextents_copy()
  2284. *
  2285. * This is called to copy the REAL extents (as opposed to the delayed
  2286. * allocation extents) from the inode into the given buffer. It
  2287. * returns the number of bytes copied into the buffer.
  2288. *
  2289. * If there are no delayed allocation extents, then we can just
  2290. * memcpy() the extents into the buffer. Otherwise, we need to
  2291. * examine each extent in turn and skip those which are delayed.
  2292. */
  2293. int
  2294. xfs_iextents_copy(
  2295. xfs_inode_t *ip,
  2296. xfs_bmbt_rec_t *dp,
  2297. int whichfork)
  2298. {
  2299. int copied;
  2300. int i;
  2301. xfs_ifork_t *ifp;
  2302. int nrecs;
  2303. xfs_fsblock_t start_block;
  2304. ifp = XFS_IFORK_PTR(ip, whichfork);
  2305. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2306. ASSERT(ifp->if_bytes > 0);
  2307. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2308. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2309. ASSERT(nrecs > 0);
  2310. /*
  2311. * There are some delayed allocation extents in the
  2312. * inode, so copy the extents one at a time and skip
  2313. * the delayed ones. There must be at least one
  2314. * non-delayed extent.
  2315. */
  2316. copied = 0;
  2317. for (i = 0; i < nrecs; i++) {
  2318. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2319. start_block = xfs_bmbt_get_startblock(ep);
  2320. if (isnullstartblock(start_block)) {
  2321. /*
  2322. * It's a delayed allocation extent, so skip it.
  2323. */
  2324. continue;
  2325. }
  2326. /* Translate to on disk format */
  2327. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2328. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2329. dp++;
  2330. copied++;
  2331. }
  2332. ASSERT(copied != 0);
  2333. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2334. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2335. }
  2336. /*
  2337. * Each of the following cases stores data into the same region
  2338. * of the on-disk inode, so only one of them can be valid at
  2339. * any given time. While it is possible to have conflicting formats
  2340. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2341. * in EXTENTS format, this can only happen when the fork has
  2342. * changed formats after being modified but before being flushed.
  2343. * In these cases, the format always takes precedence, because the
  2344. * format indicates the current state of the fork.
  2345. */
  2346. /*ARGSUSED*/
  2347. STATIC void
  2348. xfs_iflush_fork(
  2349. xfs_inode_t *ip,
  2350. xfs_dinode_t *dip,
  2351. xfs_inode_log_item_t *iip,
  2352. int whichfork,
  2353. xfs_buf_t *bp)
  2354. {
  2355. char *cp;
  2356. xfs_ifork_t *ifp;
  2357. xfs_mount_t *mp;
  2358. #ifdef XFS_TRANS_DEBUG
  2359. int first;
  2360. #endif
  2361. static const short brootflag[2] =
  2362. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2363. static const short dataflag[2] =
  2364. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2365. static const short extflag[2] =
  2366. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2367. if (!iip)
  2368. return;
  2369. ifp = XFS_IFORK_PTR(ip, whichfork);
  2370. /*
  2371. * This can happen if we gave up in iformat in an error path,
  2372. * for the attribute fork.
  2373. */
  2374. if (!ifp) {
  2375. ASSERT(whichfork == XFS_ATTR_FORK);
  2376. return;
  2377. }
  2378. cp = XFS_DFORK_PTR(dip, whichfork);
  2379. mp = ip->i_mount;
  2380. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2381. case XFS_DINODE_FMT_LOCAL:
  2382. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2383. (ifp->if_bytes > 0)) {
  2384. ASSERT(ifp->if_u1.if_data != NULL);
  2385. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2386. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2387. }
  2388. break;
  2389. case XFS_DINODE_FMT_EXTENTS:
  2390. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2391. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2392. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2393. (ifp->if_bytes == 0));
  2394. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2395. (ifp->if_bytes > 0));
  2396. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2397. (ifp->if_bytes > 0)) {
  2398. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2399. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2400. whichfork);
  2401. }
  2402. break;
  2403. case XFS_DINODE_FMT_BTREE:
  2404. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2405. (ifp->if_broot_bytes > 0)) {
  2406. ASSERT(ifp->if_broot != NULL);
  2407. ASSERT(ifp->if_broot_bytes <=
  2408. (XFS_IFORK_SIZE(ip, whichfork) +
  2409. XFS_BROOT_SIZE_ADJ));
  2410. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2411. (xfs_bmdr_block_t *)cp,
  2412. XFS_DFORK_SIZE(dip, mp, whichfork));
  2413. }
  2414. break;
  2415. case XFS_DINODE_FMT_DEV:
  2416. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2417. ASSERT(whichfork == XFS_DATA_FORK);
  2418. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2419. }
  2420. break;
  2421. case XFS_DINODE_FMT_UUID:
  2422. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2423. ASSERT(whichfork == XFS_DATA_FORK);
  2424. memcpy(XFS_DFORK_DPTR(dip),
  2425. &ip->i_df.if_u2.if_uuid,
  2426. sizeof(uuid_t));
  2427. }
  2428. break;
  2429. default:
  2430. ASSERT(0);
  2431. break;
  2432. }
  2433. }
  2434. STATIC int
  2435. xfs_iflush_cluster(
  2436. xfs_inode_t *ip,
  2437. xfs_buf_t *bp)
  2438. {
  2439. xfs_mount_t *mp = ip->i_mount;
  2440. struct xfs_perag *pag;
  2441. unsigned long first_index, mask;
  2442. unsigned long inodes_per_cluster;
  2443. int ilist_size;
  2444. xfs_inode_t **ilist;
  2445. xfs_inode_t *iq;
  2446. int nr_found;
  2447. int clcount = 0;
  2448. int bufwasdelwri;
  2449. int i;
  2450. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2451. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2452. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2453. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2454. if (!ilist)
  2455. goto out_put;
  2456. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2457. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2458. rcu_read_lock();
  2459. /* really need a gang lookup range call here */
  2460. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2461. first_index, inodes_per_cluster);
  2462. if (nr_found == 0)
  2463. goto out_free;
  2464. for (i = 0; i < nr_found; i++) {
  2465. iq = ilist[i];
  2466. if (iq == ip)
  2467. continue;
  2468. /*
  2469. * because this is an RCU protected lookup, we could find a
  2470. * recently freed or even reallocated inode during the lookup.
  2471. * We need to check under the i_flags_lock for a valid inode
  2472. * here. Skip it if it is not valid or the wrong inode.
  2473. */
  2474. spin_lock(&ip->i_flags_lock);
  2475. if (!ip->i_ino ||
  2476. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2477. spin_unlock(&ip->i_flags_lock);
  2478. continue;
  2479. }
  2480. spin_unlock(&ip->i_flags_lock);
  2481. /*
  2482. * Do an un-protected check to see if the inode is dirty and
  2483. * is a candidate for flushing. These checks will be repeated
  2484. * later after the appropriate locks are acquired.
  2485. */
  2486. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2487. continue;
  2488. /*
  2489. * Try to get locks. If any are unavailable or it is pinned,
  2490. * then this inode cannot be flushed and is skipped.
  2491. */
  2492. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2493. continue;
  2494. if (!xfs_iflock_nowait(iq)) {
  2495. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2496. continue;
  2497. }
  2498. if (xfs_ipincount(iq)) {
  2499. xfs_ifunlock(iq);
  2500. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2501. continue;
  2502. }
  2503. /*
  2504. * arriving here means that this inode can be flushed. First
  2505. * re-check that it's dirty before flushing.
  2506. */
  2507. if (!xfs_inode_clean(iq)) {
  2508. int error;
  2509. error = xfs_iflush_int(iq, bp);
  2510. if (error) {
  2511. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2512. goto cluster_corrupt_out;
  2513. }
  2514. clcount++;
  2515. } else {
  2516. xfs_ifunlock(iq);
  2517. }
  2518. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2519. }
  2520. if (clcount) {
  2521. XFS_STATS_INC(xs_icluster_flushcnt);
  2522. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2523. }
  2524. out_free:
  2525. rcu_read_unlock();
  2526. kmem_free(ilist);
  2527. out_put:
  2528. xfs_perag_put(pag);
  2529. return 0;
  2530. cluster_corrupt_out:
  2531. /*
  2532. * Corruption detected in the clustering loop. Invalidate the
  2533. * inode buffer and shut down the filesystem.
  2534. */
  2535. rcu_read_unlock();
  2536. /*
  2537. * Clean up the buffer. If it was B_DELWRI, just release it --
  2538. * brelse can handle it with no problems. If not, shut down the
  2539. * filesystem before releasing the buffer.
  2540. */
  2541. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2542. if (bufwasdelwri)
  2543. xfs_buf_relse(bp);
  2544. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2545. if (!bufwasdelwri) {
  2546. /*
  2547. * Just like incore_relse: if we have b_iodone functions,
  2548. * mark the buffer as an error and call them. Otherwise
  2549. * mark it as stale and brelse.
  2550. */
  2551. if (XFS_BUF_IODONE_FUNC(bp)) {
  2552. XFS_BUF_UNDONE(bp);
  2553. XFS_BUF_STALE(bp);
  2554. XFS_BUF_ERROR(bp,EIO);
  2555. xfs_buf_ioend(bp, 0);
  2556. } else {
  2557. XFS_BUF_STALE(bp);
  2558. xfs_buf_relse(bp);
  2559. }
  2560. }
  2561. /*
  2562. * Unlocks the flush lock
  2563. */
  2564. xfs_iflush_abort(iq);
  2565. kmem_free(ilist);
  2566. xfs_perag_put(pag);
  2567. return XFS_ERROR(EFSCORRUPTED);
  2568. }
  2569. /*
  2570. * xfs_iflush() will write a modified inode's changes out to the
  2571. * inode's on disk home. The caller must have the inode lock held
  2572. * in at least shared mode and the inode flush completion must be
  2573. * active as well. The inode lock will still be held upon return from
  2574. * the call and the caller is free to unlock it.
  2575. * The inode flush will be completed when the inode reaches the disk.
  2576. * The flags indicate how the inode's buffer should be written out.
  2577. */
  2578. int
  2579. xfs_iflush(
  2580. xfs_inode_t *ip,
  2581. uint flags)
  2582. {
  2583. xfs_inode_log_item_t *iip;
  2584. xfs_buf_t *bp;
  2585. xfs_dinode_t *dip;
  2586. xfs_mount_t *mp;
  2587. int error;
  2588. XFS_STATS_INC(xs_iflush_count);
  2589. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2590. ASSERT(!completion_done(&ip->i_flush));
  2591. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2592. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2593. iip = ip->i_itemp;
  2594. mp = ip->i_mount;
  2595. /*
  2596. * We can't flush the inode until it is unpinned, so wait for it if we
  2597. * are allowed to block. We know noone new can pin it, because we are
  2598. * holding the inode lock shared and you need to hold it exclusively to
  2599. * pin the inode.
  2600. *
  2601. * If we are not allowed to block, force the log out asynchronously so
  2602. * that when we come back the inode will be unpinned. If other inodes
  2603. * in the same cluster are dirty, they will probably write the inode
  2604. * out for us if they occur after the log force completes.
  2605. */
  2606. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2607. xfs_iunpin_nowait(ip);
  2608. xfs_ifunlock(ip);
  2609. return EAGAIN;
  2610. }
  2611. xfs_iunpin_wait(ip);
  2612. /*
  2613. * For stale inodes we cannot rely on the backing buffer remaining
  2614. * stale in cache for the remaining life of the stale inode and so
  2615. * xfs_itobp() below may give us a buffer that no longer contains
  2616. * inodes below. We have to check this after ensuring the inode is
  2617. * unpinned so that it is safe to reclaim the stale inode after the
  2618. * flush call.
  2619. */
  2620. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2621. xfs_ifunlock(ip);
  2622. return 0;
  2623. }
  2624. /*
  2625. * This may have been unpinned because the filesystem is shutting
  2626. * down forcibly. If that's the case we must not write this inode
  2627. * to disk, because the log record didn't make it to disk!
  2628. */
  2629. if (XFS_FORCED_SHUTDOWN(mp)) {
  2630. ip->i_update_core = 0;
  2631. if (iip)
  2632. iip->ili_format.ilf_fields = 0;
  2633. xfs_ifunlock(ip);
  2634. return XFS_ERROR(EIO);
  2635. }
  2636. /*
  2637. * Get the buffer containing the on-disk inode.
  2638. */
  2639. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2640. (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
  2641. if (error || !bp) {
  2642. xfs_ifunlock(ip);
  2643. return error;
  2644. }
  2645. /*
  2646. * First flush out the inode that xfs_iflush was called with.
  2647. */
  2648. error = xfs_iflush_int(ip, bp);
  2649. if (error)
  2650. goto corrupt_out;
  2651. /*
  2652. * If the buffer is pinned then push on the log now so we won't
  2653. * get stuck waiting in the write for too long.
  2654. */
  2655. if (XFS_BUF_ISPINNED(bp))
  2656. xfs_log_force(mp, 0);
  2657. /*
  2658. * inode clustering:
  2659. * see if other inodes can be gathered into this write
  2660. */
  2661. error = xfs_iflush_cluster(ip, bp);
  2662. if (error)
  2663. goto cluster_corrupt_out;
  2664. if (flags & SYNC_WAIT)
  2665. error = xfs_bwrite(mp, bp);
  2666. else
  2667. xfs_bdwrite(mp, bp);
  2668. return error;
  2669. corrupt_out:
  2670. xfs_buf_relse(bp);
  2671. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2672. cluster_corrupt_out:
  2673. /*
  2674. * Unlocks the flush lock
  2675. */
  2676. xfs_iflush_abort(ip);
  2677. return XFS_ERROR(EFSCORRUPTED);
  2678. }
  2679. STATIC int
  2680. xfs_iflush_int(
  2681. xfs_inode_t *ip,
  2682. xfs_buf_t *bp)
  2683. {
  2684. xfs_inode_log_item_t *iip;
  2685. xfs_dinode_t *dip;
  2686. xfs_mount_t *mp;
  2687. #ifdef XFS_TRANS_DEBUG
  2688. int first;
  2689. #endif
  2690. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2691. ASSERT(!completion_done(&ip->i_flush));
  2692. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2693. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2694. iip = ip->i_itemp;
  2695. mp = ip->i_mount;
  2696. /* set *dip = inode's place in the buffer */
  2697. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2698. /*
  2699. * Clear i_update_core before copying out the data.
  2700. * This is for coordination with our timestamp updates
  2701. * that don't hold the inode lock. They will always
  2702. * update the timestamps BEFORE setting i_update_core,
  2703. * so if we clear i_update_core after they set it we
  2704. * are guaranteed to see their updates to the timestamps.
  2705. * I believe that this depends on strongly ordered memory
  2706. * semantics, but we have that. We use the SYNCHRONIZE
  2707. * macro to make sure that the compiler does not reorder
  2708. * the i_update_core access below the data copy below.
  2709. */
  2710. ip->i_update_core = 0;
  2711. SYNCHRONIZE();
  2712. /*
  2713. * Make sure to get the latest timestamps from the Linux inode.
  2714. */
  2715. xfs_synchronize_times(ip);
  2716. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2717. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2718. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2719. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2720. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2721. goto corrupt_out;
  2722. }
  2723. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2724. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2725. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2726. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2727. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2728. goto corrupt_out;
  2729. }
  2730. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2731. if (XFS_TEST_ERROR(
  2732. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2733. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2734. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2735. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2736. "%s: Bad regular inode %Lu, ptr 0x%p",
  2737. __func__, ip->i_ino, ip);
  2738. goto corrupt_out;
  2739. }
  2740. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2741. if (XFS_TEST_ERROR(
  2742. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2743. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2744. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2745. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2746. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2747. "%s: Bad directory inode %Lu, ptr 0x%p",
  2748. __func__, ip->i_ino, ip);
  2749. goto corrupt_out;
  2750. }
  2751. }
  2752. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2753. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2754. XFS_RANDOM_IFLUSH_5)) {
  2755. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2756. "%s: detected corrupt incore inode %Lu, "
  2757. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2758. __func__, ip->i_ino,
  2759. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2760. ip->i_d.di_nblocks, ip);
  2761. goto corrupt_out;
  2762. }
  2763. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2764. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2765. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2766. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2767. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2768. goto corrupt_out;
  2769. }
  2770. /*
  2771. * bump the flush iteration count, used to detect flushes which
  2772. * postdate a log record during recovery.
  2773. */
  2774. ip->i_d.di_flushiter++;
  2775. /*
  2776. * Copy the dirty parts of the inode into the on-disk
  2777. * inode. We always copy out the core of the inode,
  2778. * because if the inode is dirty at all the core must
  2779. * be.
  2780. */
  2781. xfs_dinode_to_disk(dip, &ip->i_d);
  2782. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2783. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2784. ip->i_d.di_flushiter = 0;
  2785. /*
  2786. * If this is really an old format inode and the superblock version
  2787. * has not been updated to support only new format inodes, then
  2788. * convert back to the old inode format. If the superblock version
  2789. * has been updated, then make the conversion permanent.
  2790. */
  2791. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2792. if (ip->i_d.di_version == 1) {
  2793. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2794. /*
  2795. * Convert it back.
  2796. */
  2797. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2798. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2799. } else {
  2800. /*
  2801. * The superblock version has already been bumped,
  2802. * so just make the conversion to the new inode
  2803. * format permanent.
  2804. */
  2805. ip->i_d.di_version = 2;
  2806. dip->di_version = 2;
  2807. ip->i_d.di_onlink = 0;
  2808. dip->di_onlink = 0;
  2809. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2810. memset(&(dip->di_pad[0]), 0,
  2811. sizeof(dip->di_pad));
  2812. ASSERT(xfs_get_projid(ip) == 0);
  2813. }
  2814. }
  2815. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2816. if (XFS_IFORK_Q(ip))
  2817. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2818. xfs_inobp_check(mp, bp);
  2819. /*
  2820. * We've recorded everything logged in the inode, so we'd
  2821. * like to clear the ilf_fields bits so we don't log and
  2822. * flush things unnecessarily. However, we can't stop
  2823. * logging all this information until the data we've copied
  2824. * into the disk buffer is written to disk. If we did we might
  2825. * overwrite the copy of the inode in the log with all the
  2826. * data after re-logging only part of it, and in the face of
  2827. * a crash we wouldn't have all the data we need to recover.
  2828. *
  2829. * What we do is move the bits to the ili_last_fields field.
  2830. * When logging the inode, these bits are moved back to the
  2831. * ilf_fields field. In the xfs_iflush_done() routine we
  2832. * clear ili_last_fields, since we know that the information
  2833. * those bits represent is permanently on disk. As long as
  2834. * the flush completes before the inode is logged again, then
  2835. * both ilf_fields and ili_last_fields will be cleared.
  2836. *
  2837. * We can play with the ilf_fields bits here, because the inode
  2838. * lock must be held exclusively in order to set bits there
  2839. * and the flush lock protects the ili_last_fields bits.
  2840. * Set ili_logged so the flush done
  2841. * routine can tell whether or not to look in the AIL.
  2842. * Also, store the current LSN of the inode so that we can tell
  2843. * whether the item has moved in the AIL from xfs_iflush_done().
  2844. * In order to read the lsn we need the AIL lock, because
  2845. * it is a 64 bit value that cannot be read atomically.
  2846. */
  2847. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2848. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2849. iip->ili_format.ilf_fields = 0;
  2850. iip->ili_logged = 1;
  2851. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2852. &iip->ili_item.li_lsn);
  2853. /*
  2854. * Attach the function xfs_iflush_done to the inode's
  2855. * buffer. This will remove the inode from the AIL
  2856. * and unlock the inode's flush lock when the inode is
  2857. * completely written to disk.
  2858. */
  2859. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2860. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2861. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2862. } else {
  2863. /*
  2864. * We're flushing an inode which is not in the AIL and has
  2865. * not been logged but has i_update_core set. For this
  2866. * case we can use a B_DELWRI flush and immediately drop
  2867. * the inode flush lock because we can avoid the whole
  2868. * AIL state thing. It's OK to drop the flush lock now,
  2869. * because we've already locked the buffer and to do anything
  2870. * you really need both.
  2871. */
  2872. if (iip != NULL) {
  2873. ASSERT(iip->ili_logged == 0);
  2874. ASSERT(iip->ili_last_fields == 0);
  2875. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2876. }
  2877. xfs_ifunlock(ip);
  2878. }
  2879. return 0;
  2880. corrupt_out:
  2881. return XFS_ERROR(EFSCORRUPTED);
  2882. }
  2883. /*
  2884. * Return a pointer to the extent record at file index idx.
  2885. */
  2886. xfs_bmbt_rec_host_t *
  2887. xfs_iext_get_ext(
  2888. xfs_ifork_t *ifp, /* inode fork pointer */
  2889. xfs_extnum_t idx) /* index of target extent */
  2890. {
  2891. ASSERT(idx >= 0);
  2892. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2893. return ifp->if_u1.if_ext_irec->er_extbuf;
  2894. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2895. xfs_ext_irec_t *erp; /* irec pointer */
  2896. int erp_idx = 0; /* irec index */
  2897. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2898. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2899. return &erp->er_extbuf[page_idx];
  2900. } else if (ifp->if_bytes) {
  2901. return &ifp->if_u1.if_extents[idx];
  2902. } else {
  2903. return NULL;
  2904. }
  2905. }
  2906. /*
  2907. * Insert new item(s) into the extent records for incore inode
  2908. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2909. */
  2910. void
  2911. xfs_iext_insert(
  2912. xfs_inode_t *ip, /* incore inode pointer */
  2913. xfs_extnum_t idx, /* starting index of new items */
  2914. xfs_extnum_t count, /* number of inserted items */
  2915. xfs_bmbt_irec_t *new, /* items to insert */
  2916. int state) /* type of extent conversion */
  2917. {
  2918. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2919. xfs_extnum_t i; /* extent record index */
  2920. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2921. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2922. xfs_iext_add(ifp, idx, count);
  2923. for (i = idx; i < idx + count; i++, new++)
  2924. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2925. }
  2926. /*
  2927. * This is called when the amount of space required for incore file
  2928. * extents needs to be increased. The ext_diff parameter stores the
  2929. * number of new extents being added and the idx parameter contains
  2930. * the extent index where the new extents will be added. If the new
  2931. * extents are being appended, then we just need to (re)allocate and
  2932. * initialize the space. Otherwise, if the new extents are being
  2933. * inserted into the middle of the existing entries, a bit more work
  2934. * is required to make room for the new extents to be inserted. The
  2935. * caller is responsible for filling in the new extent entries upon
  2936. * return.
  2937. */
  2938. void
  2939. xfs_iext_add(
  2940. xfs_ifork_t *ifp, /* inode fork pointer */
  2941. xfs_extnum_t idx, /* index to begin adding exts */
  2942. int ext_diff) /* number of extents to add */
  2943. {
  2944. int byte_diff; /* new bytes being added */
  2945. int new_size; /* size of extents after adding */
  2946. xfs_extnum_t nextents; /* number of extents in file */
  2947. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2948. ASSERT((idx >= 0) && (idx <= nextents));
  2949. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2950. new_size = ifp->if_bytes + byte_diff;
  2951. /*
  2952. * If the new number of extents (nextents + ext_diff)
  2953. * fits inside the inode, then continue to use the inline
  2954. * extent buffer.
  2955. */
  2956. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2957. if (idx < nextents) {
  2958. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2959. &ifp->if_u2.if_inline_ext[idx],
  2960. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2961. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2962. }
  2963. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2964. ifp->if_real_bytes = 0;
  2965. ifp->if_lastex = nextents + ext_diff;
  2966. }
  2967. /*
  2968. * Otherwise use a linear (direct) extent list.
  2969. * If the extents are currently inside the inode,
  2970. * xfs_iext_realloc_direct will switch us from
  2971. * inline to direct extent allocation mode.
  2972. */
  2973. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2974. xfs_iext_realloc_direct(ifp, new_size);
  2975. if (idx < nextents) {
  2976. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2977. &ifp->if_u1.if_extents[idx],
  2978. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2979. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2980. }
  2981. }
  2982. /* Indirection array */
  2983. else {
  2984. xfs_ext_irec_t *erp;
  2985. int erp_idx = 0;
  2986. int page_idx = idx;
  2987. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2988. if (ifp->if_flags & XFS_IFEXTIREC) {
  2989. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2990. } else {
  2991. xfs_iext_irec_init(ifp);
  2992. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2993. erp = ifp->if_u1.if_ext_irec;
  2994. }
  2995. /* Extents fit in target extent page */
  2996. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2997. if (page_idx < erp->er_extcount) {
  2998. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2999. &erp->er_extbuf[page_idx],
  3000. (erp->er_extcount - page_idx) *
  3001. sizeof(xfs_bmbt_rec_t));
  3002. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3003. }
  3004. erp->er_extcount += ext_diff;
  3005. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3006. }
  3007. /* Insert a new extent page */
  3008. else if (erp) {
  3009. xfs_iext_add_indirect_multi(ifp,
  3010. erp_idx, page_idx, ext_diff);
  3011. }
  3012. /*
  3013. * If extent(s) are being appended to the last page in
  3014. * the indirection array and the new extent(s) don't fit
  3015. * in the page, then erp is NULL and erp_idx is set to
  3016. * the next index needed in the indirection array.
  3017. */
  3018. else {
  3019. int count = ext_diff;
  3020. while (count) {
  3021. erp = xfs_iext_irec_new(ifp, erp_idx);
  3022. erp->er_extcount = count;
  3023. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3024. if (count) {
  3025. erp_idx++;
  3026. }
  3027. }
  3028. }
  3029. }
  3030. ifp->if_bytes = new_size;
  3031. }
  3032. /*
  3033. * This is called when incore extents are being added to the indirection
  3034. * array and the new extents do not fit in the target extent list. The
  3035. * erp_idx parameter contains the irec index for the target extent list
  3036. * in the indirection array, and the idx parameter contains the extent
  3037. * index within the list. The number of extents being added is stored
  3038. * in the count parameter.
  3039. *
  3040. * |-------| |-------|
  3041. * | | | | idx - number of extents before idx
  3042. * | idx | | count |
  3043. * | | | | count - number of extents being inserted at idx
  3044. * |-------| |-------|
  3045. * | count | | nex2 | nex2 - number of extents after idx + count
  3046. * |-------| |-------|
  3047. */
  3048. void
  3049. xfs_iext_add_indirect_multi(
  3050. xfs_ifork_t *ifp, /* inode fork pointer */
  3051. int erp_idx, /* target extent irec index */
  3052. xfs_extnum_t idx, /* index within target list */
  3053. int count) /* new extents being added */
  3054. {
  3055. int byte_diff; /* new bytes being added */
  3056. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3057. xfs_extnum_t ext_diff; /* number of extents to add */
  3058. xfs_extnum_t ext_cnt; /* new extents still needed */
  3059. xfs_extnum_t nex2; /* extents after idx + count */
  3060. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3061. int nlists; /* number of irec's (lists) */
  3062. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3063. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3064. nex2 = erp->er_extcount - idx;
  3065. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3066. /*
  3067. * Save second part of target extent list
  3068. * (all extents past */
  3069. if (nex2) {
  3070. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3071. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3072. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3073. erp->er_extcount -= nex2;
  3074. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3075. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3076. }
  3077. /*
  3078. * Add the new extents to the end of the target
  3079. * list, then allocate new irec record(s) and
  3080. * extent buffer(s) as needed to store the rest
  3081. * of the new extents.
  3082. */
  3083. ext_cnt = count;
  3084. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3085. if (ext_diff) {
  3086. erp->er_extcount += ext_diff;
  3087. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3088. ext_cnt -= ext_diff;
  3089. }
  3090. while (ext_cnt) {
  3091. erp_idx++;
  3092. erp = xfs_iext_irec_new(ifp, erp_idx);
  3093. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3094. erp->er_extcount = ext_diff;
  3095. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3096. ext_cnt -= ext_diff;
  3097. }
  3098. /* Add nex2 extents back to indirection array */
  3099. if (nex2) {
  3100. xfs_extnum_t ext_avail;
  3101. int i;
  3102. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3103. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3104. i = 0;
  3105. /*
  3106. * If nex2 extents fit in the current page, append
  3107. * nex2_ep after the new extents.
  3108. */
  3109. if (nex2 <= ext_avail) {
  3110. i = erp->er_extcount;
  3111. }
  3112. /*
  3113. * Otherwise, check if space is available in the
  3114. * next page.
  3115. */
  3116. else if ((erp_idx < nlists - 1) &&
  3117. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3118. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3119. erp_idx++;
  3120. erp++;
  3121. /* Create a hole for nex2 extents */
  3122. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3123. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3124. }
  3125. /*
  3126. * Final choice, create a new extent page for
  3127. * nex2 extents.
  3128. */
  3129. else {
  3130. erp_idx++;
  3131. erp = xfs_iext_irec_new(ifp, erp_idx);
  3132. }
  3133. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3134. kmem_free(nex2_ep);
  3135. erp->er_extcount += nex2;
  3136. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3137. }
  3138. }
  3139. /*
  3140. * This is called when the amount of space required for incore file
  3141. * extents needs to be decreased. The ext_diff parameter stores the
  3142. * number of extents to be removed and the idx parameter contains
  3143. * the extent index where the extents will be removed from.
  3144. *
  3145. * If the amount of space needed has decreased below the linear
  3146. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3147. * extent array. Otherwise, use kmem_realloc() to adjust the
  3148. * size to what is needed.
  3149. */
  3150. void
  3151. xfs_iext_remove(
  3152. xfs_inode_t *ip, /* incore inode pointer */
  3153. xfs_extnum_t idx, /* index to begin removing exts */
  3154. int ext_diff, /* number of extents to remove */
  3155. int state) /* type of extent conversion */
  3156. {
  3157. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3158. xfs_extnum_t nextents; /* number of extents in file */
  3159. int new_size; /* size of extents after removal */
  3160. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3161. ASSERT(ext_diff > 0);
  3162. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3163. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3164. if (new_size == 0) {
  3165. xfs_iext_destroy(ifp);
  3166. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3167. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3168. } else if (ifp->if_real_bytes) {
  3169. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3170. } else {
  3171. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3172. }
  3173. ifp->if_bytes = new_size;
  3174. }
  3175. /*
  3176. * This removes ext_diff extents from the inline buffer, beginning
  3177. * at extent index idx.
  3178. */
  3179. void
  3180. xfs_iext_remove_inline(
  3181. xfs_ifork_t *ifp, /* inode fork pointer */
  3182. xfs_extnum_t idx, /* index to begin removing exts */
  3183. int ext_diff) /* number of extents to remove */
  3184. {
  3185. int nextents; /* number of extents in file */
  3186. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3187. ASSERT(idx < XFS_INLINE_EXTS);
  3188. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3189. ASSERT(((nextents - ext_diff) > 0) &&
  3190. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3191. if (idx + ext_diff < nextents) {
  3192. memmove(&ifp->if_u2.if_inline_ext[idx],
  3193. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3194. (nextents - (idx + ext_diff)) *
  3195. sizeof(xfs_bmbt_rec_t));
  3196. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3197. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3198. } else {
  3199. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3200. ext_diff * sizeof(xfs_bmbt_rec_t));
  3201. }
  3202. }
  3203. /*
  3204. * This removes ext_diff extents from a linear (direct) extent list,
  3205. * beginning at extent index idx. If the extents are being removed
  3206. * from the end of the list (ie. truncate) then we just need to re-
  3207. * allocate the list to remove the extra space. Otherwise, if the
  3208. * extents are being removed from the middle of the existing extent
  3209. * entries, then we first need to move the extent records beginning
  3210. * at idx + ext_diff up in the list to overwrite the records being
  3211. * removed, then remove the extra space via kmem_realloc.
  3212. */
  3213. void
  3214. xfs_iext_remove_direct(
  3215. xfs_ifork_t *ifp, /* inode fork pointer */
  3216. xfs_extnum_t idx, /* index to begin removing exts */
  3217. int ext_diff) /* number of extents to remove */
  3218. {
  3219. xfs_extnum_t nextents; /* number of extents in file */
  3220. int new_size; /* size of extents after removal */
  3221. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3222. new_size = ifp->if_bytes -
  3223. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3224. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3225. if (new_size == 0) {
  3226. xfs_iext_destroy(ifp);
  3227. return;
  3228. }
  3229. /* Move extents up in the list (if needed) */
  3230. if (idx + ext_diff < nextents) {
  3231. memmove(&ifp->if_u1.if_extents[idx],
  3232. &ifp->if_u1.if_extents[idx + ext_diff],
  3233. (nextents - (idx + ext_diff)) *
  3234. sizeof(xfs_bmbt_rec_t));
  3235. }
  3236. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3237. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3238. /*
  3239. * Reallocate the direct extent list. If the extents
  3240. * will fit inside the inode then xfs_iext_realloc_direct
  3241. * will switch from direct to inline extent allocation
  3242. * mode for us.
  3243. */
  3244. xfs_iext_realloc_direct(ifp, new_size);
  3245. ifp->if_bytes = new_size;
  3246. }
  3247. /*
  3248. * This is called when incore extents are being removed from the
  3249. * indirection array and the extents being removed span multiple extent
  3250. * buffers. The idx parameter contains the file extent index where we
  3251. * want to begin removing extents, and the count parameter contains
  3252. * how many extents need to be removed.
  3253. *
  3254. * |-------| |-------|
  3255. * | nex1 | | | nex1 - number of extents before idx
  3256. * |-------| | count |
  3257. * | | | | count - number of extents being removed at idx
  3258. * | count | |-------|
  3259. * | | | nex2 | nex2 - number of extents after idx + count
  3260. * |-------| |-------|
  3261. */
  3262. void
  3263. xfs_iext_remove_indirect(
  3264. xfs_ifork_t *ifp, /* inode fork pointer */
  3265. xfs_extnum_t idx, /* index to begin removing extents */
  3266. int count) /* number of extents to remove */
  3267. {
  3268. xfs_ext_irec_t *erp; /* indirection array pointer */
  3269. int erp_idx = 0; /* indirection array index */
  3270. xfs_extnum_t ext_cnt; /* extents left to remove */
  3271. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3272. xfs_extnum_t nex1; /* number of extents before idx */
  3273. xfs_extnum_t nex2; /* extents after idx + count */
  3274. int page_idx = idx; /* index in target extent list */
  3275. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3276. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3277. ASSERT(erp != NULL);
  3278. nex1 = page_idx;
  3279. ext_cnt = count;
  3280. while (ext_cnt) {
  3281. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3282. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3283. /*
  3284. * Check for deletion of entire list;
  3285. * xfs_iext_irec_remove() updates extent offsets.
  3286. */
  3287. if (ext_diff == erp->er_extcount) {
  3288. xfs_iext_irec_remove(ifp, erp_idx);
  3289. ext_cnt -= ext_diff;
  3290. nex1 = 0;
  3291. if (ext_cnt) {
  3292. ASSERT(erp_idx < ifp->if_real_bytes /
  3293. XFS_IEXT_BUFSZ);
  3294. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3295. nex1 = 0;
  3296. continue;
  3297. } else {
  3298. break;
  3299. }
  3300. }
  3301. /* Move extents up (if needed) */
  3302. if (nex2) {
  3303. memmove(&erp->er_extbuf[nex1],
  3304. &erp->er_extbuf[nex1 + ext_diff],
  3305. nex2 * sizeof(xfs_bmbt_rec_t));
  3306. }
  3307. /* Zero out rest of page */
  3308. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3309. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3310. /* Update remaining counters */
  3311. erp->er_extcount -= ext_diff;
  3312. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3313. ext_cnt -= ext_diff;
  3314. nex1 = 0;
  3315. erp_idx++;
  3316. erp++;
  3317. }
  3318. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3319. xfs_iext_irec_compact(ifp);
  3320. }
  3321. /*
  3322. * Create, destroy, or resize a linear (direct) block of extents.
  3323. */
  3324. void
  3325. xfs_iext_realloc_direct(
  3326. xfs_ifork_t *ifp, /* inode fork pointer */
  3327. int new_size) /* new size of extents */
  3328. {
  3329. int rnew_size; /* real new size of extents */
  3330. rnew_size = new_size;
  3331. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3332. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3333. (new_size != ifp->if_real_bytes)));
  3334. /* Free extent records */
  3335. if (new_size == 0) {
  3336. xfs_iext_destroy(ifp);
  3337. }
  3338. /* Resize direct extent list and zero any new bytes */
  3339. else if (ifp->if_real_bytes) {
  3340. /* Check if extents will fit inside the inode */
  3341. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3342. xfs_iext_direct_to_inline(ifp, new_size /
  3343. (uint)sizeof(xfs_bmbt_rec_t));
  3344. ifp->if_bytes = new_size;
  3345. return;
  3346. }
  3347. if (!is_power_of_2(new_size)){
  3348. rnew_size = roundup_pow_of_two(new_size);
  3349. }
  3350. if (rnew_size != ifp->if_real_bytes) {
  3351. ifp->if_u1.if_extents =
  3352. kmem_realloc(ifp->if_u1.if_extents,
  3353. rnew_size,
  3354. ifp->if_real_bytes, KM_NOFS);
  3355. }
  3356. if (rnew_size > ifp->if_real_bytes) {
  3357. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3358. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3359. rnew_size - ifp->if_real_bytes);
  3360. }
  3361. }
  3362. /*
  3363. * Switch from the inline extent buffer to a direct
  3364. * extent list. Be sure to include the inline extent
  3365. * bytes in new_size.
  3366. */
  3367. else {
  3368. new_size += ifp->if_bytes;
  3369. if (!is_power_of_2(new_size)) {
  3370. rnew_size = roundup_pow_of_two(new_size);
  3371. }
  3372. xfs_iext_inline_to_direct(ifp, rnew_size);
  3373. }
  3374. ifp->if_real_bytes = rnew_size;
  3375. ifp->if_bytes = new_size;
  3376. }
  3377. /*
  3378. * Switch from linear (direct) extent records to inline buffer.
  3379. */
  3380. void
  3381. xfs_iext_direct_to_inline(
  3382. xfs_ifork_t *ifp, /* inode fork pointer */
  3383. xfs_extnum_t nextents) /* number of extents in file */
  3384. {
  3385. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3386. ASSERT(nextents <= XFS_INLINE_EXTS);
  3387. /*
  3388. * The inline buffer was zeroed when we switched
  3389. * from inline to direct extent allocation mode,
  3390. * so we don't need to clear it here.
  3391. */
  3392. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3393. nextents * sizeof(xfs_bmbt_rec_t));
  3394. kmem_free(ifp->if_u1.if_extents);
  3395. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3396. ifp->if_real_bytes = 0;
  3397. }
  3398. /*
  3399. * Switch from inline buffer to linear (direct) extent records.
  3400. * new_size should already be rounded up to the next power of 2
  3401. * by the caller (when appropriate), so use new_size as it is.
  3402. * However, since new_size may be rounded up, we can't update
  3403. * if_bytes here. It is the caller's responsibility to update
  3404. * if_bytes upon return.
  3405. */
  3406. void
  3407. xfs_iext_inline_to_direct(
  3408. xfs_ifork_t *ifp, /* inode fork pointer */
  3409. int new_size) /* number of extents in file */
  3410. {
  3411. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3412. memset(ifp->if_u1.if_extents, 0, new_size);
  3413. if (ifp->if_bytes) {
  3414. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3415. ifp->if_bytes);
  3416. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3417. sizeof(xfs_bmbt_rec_t));
  3418. }
  3419. ifp->if_real_bytes = new_size;
  3420. }
  3421. /*
  3422. * Resize an extent indirection array to new_size bytes.
  3423. */
  3424. STATIC void
  3425. xfs_iext_realloc_indirect(
  3426. xfs_ifork_t *ifp, /* inode fork pointer */
  3427. int new_size) /* new indirection array size */
  3428. {
  3429. int nlists; /* number of irec's (ex lists) */
  3430. int size; /* current indirection array size */
  3431. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3432. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3433. size = nlists * sizeof(xfs_ext_irec_t);
  3434. ASSERT(ifp->if_real_bytes);
  3435. ASSERT((new_size >= 0) && (new_size != size));
  3436. if (new_size == 0) {
  3437. xfs_iext_destroy(ifp);
  3438. } else {
  3439. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3440. kmem_realloc(ifp->if_u1.if_ext_irec,
  3441. new_size, size, KM_NOFS);
  3442. }
  3443. }
  3444. /*
  3445. * Switch from indirection array to linear (direct) extent allocations.
  3446. */
  3447. STATIC void
  3448. xfs_iext_indirect_to_direct(
  3449. xfs_ifork_t *ifp) /* inode fork pointer */
  3450. {
  3451. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3452. xfs_extnum_t nextents; /* number of extents in file */
  3453. int size; /* size of file extents */
  3454. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3455. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3456. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3457. size = nextents * sizeof(xfs_bmbt_rec_t);
  3458. xfs_iext_irec_compact_pages(ifp);
  3459. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3460. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3461. kmem_free(ifp->if_u1.if_ext_irec);
  3462. ifp->if_flags &= ~XFS_IFEXTIREC;
  3463. ifp->if_u1.if_extents = ep;
  3464. ifp->if_bytes = size;
  3465. if (nextents < XFS_LINEAR_EXTS) {
  3466. xfs_iext_realloc_direct(ifp, size);
  3467. }
  3468. }
  3469. /*
  3470. * Free incore file extents.
  3471. */
  3472. void
  3473. xfs_iext_destroy(
  3474. xfs_ifork_t *ifp) /* inode fork pointer */
  3475. {
  3476. if (ifp->if_flags & XFS_IFEXTIREC) {
  3477. int erp_idx;
  3478. int nlists;
  3479. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3480. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3481. xfs_iext_irec_remove(ifp, erp_idx);
  3482. }
  3483. ifp->if_flags &= ~XFS_IFEXTIREC;
  3484. } else if (ifp->if_real_bytes) {
  3485. kmem_free(ifp->if_u1.if_extents);
  3486. } else if (ifp->if_bytes) {
  3487. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3488. sizeof(xfs_bmbt_rec_t));
  3489. }
  3490. ifp->if_u1.if_extents = NULL;
  3491. ifp->if_real_bytes = 0;
  3492. ifp->if_bytes = 0;
  3493. }
  3494. /*
  3495. * Return a pointer to the extent record for file system block bno.
  3496. */
  3497. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3498. xfs_iext_bno_to_ext(
  3499. xfs_ifork_t *ifp, /* inode fork pointer */
  3500. xfs_fileoff_t bno, /* block number to search for */
  3501. xfs_extnum_t *idxp) /* index of target extent */
  3502. {
  3503. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3504. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3505. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3506. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3507. int high; /* upper boundary in search */
  3508. xfs_extnum_t idx = 0; /* index of target extent */
  3509. int low; /* lower boundary in search */
  3510. xfs_extnum_t nextents; /* number of file extents */
  3511. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3512. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3513. if (nextents == 0) {
  3514. *idxp = 0;
  3515. return NULL;
  3516. }
  3517. low = 0;
  3518. if (ifp->if_flags & XFS_IFEXTIREC) {
  3519. /* Find target extent list */
  3520. int erp_idx = 0;
  3521. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3522. base = erp->er_extbuf;
  3523. high = erp->er_extcount - 1;
  3524. } else {
  3525. base = ifp->if_u1.if_extents;
  3526. high = nextents - 1;
  3527. }
  3528. /* Binary search extent records */
  3529. while (low <= high) {
  3530. idx = (low + high) >> 1;
  3531. ep = base + idx;
  3532. startoff = xfs_bmbt_get_startoff(ep);
  3533. blockcount = xfs_bmbt_get_blockcount(ep);
  3534. if (bno < startoff) {
  3535. high = idx - 1;
  3536. } else if (bno >= startoff + blockcount) {
  3537. low = idx + 1;
  3538. } else {
  3539. /* Convert back to file-based extent index */
  3540. if (ifp->if_flags & XFS_IFEXTIREC) {
  3541. idx += erp->er_extoff;
  3542. }
  3543. *idxp = idx;
  3544. return ep;
  3545. }
  3546. }
  3547. /* Convert back to file-based extent index */
  3548. if (ifp->if_flags & XFS_IFEXTIREC) {
  3549. idx += erp->er_extoff;
  3550. }
  3551. if (bno >= startoff + blockcount) {
  3552. if (++idx == nextents) {
  3553. ep = NULL;
  3554. } else {
  3555. ep = xfs_iext_get_ext(ifp, idx);
  3556. }
  3557. }
  3558. *idxp = idx;
  3559. return ep;
  3560. }
  3561. /*
  3562. * Return a pointer to the indirection array entry containing the
  3563. * extent record for filesystem block bno. Store the index of the
  3564. * target irec in *erp_idxp.
  3565. */
  3566. xfs_ext_irec_t * /* pointer to found extent record */
  3567. xfs_iext_bno_to_irec(
  3568. xfs_ifork_t *ifp, /* inode fork pointer */
  3569. xfs_fileoff_t bno, /* block number to search for */
  3570. int *erp_idxp) /* irec index of target ext list */
  3571. {
  3572. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3573. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3574. int erp_idx; /* indirection array index */
  3575. int nlists; /* number of extent irec's (lists) */
  3576. int high; /* binary search upper limit */
  3577. int low; /* binary search lower limit */
  3578. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3579. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3580. erp_idx = 0;
  3581. low = 0;
  3582. high = nlists - 1;
  3583. while (low <= high) {
  3584. erp_idx = (low + high) >> 1;
  3585. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3586. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3587. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3588. high = erp_idx - 1;
  3589. } else if (erp_next && bno >=
  3590. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3591. low = erp_idx + 1;
  3592. } else {
  3593. break;
  3594. }
  3595. }
  3596. *erp_idxp = erp_idx;
  3597. return erp;
  3598. }
  3599. /*
  3600. * Return a pointer to the indirection array entry containing the
  3601. * extent record at file extent index *idxp. Store the index of the
  3602. * target irec in *erp_idxp and store the page index of the target
  3603. * extent record in *idxp.
  3604. */
  3605. xfs_ext_irec_t *
  3606. xfs_iext_idx_to_irec(
  3607. xfs_ifork_t *ifp, /* inode fork pointer */
  3608. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3609. int *erp_idxp, /* pointer to target irec */
  3610. int realloc) /* new bytes were just added */
  3611. {
  3612. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3613. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3614. int erp_idx; /* indirection array index */
  3615. int nlists; /* number of irec's (ex lists) */
  3616. int high; /* binary search upper limit */
  3617. int low; /* binary search lower limit */
  3618. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3619. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3620. ASSERT(page_idx >= 0 && page_idx <=
  3621. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3622. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3623. erp_idx = 0;
  3624. low = 0;
  3625. high = nlists - 1;
  3626. /* Binary search extent irec's */
  3627. while (low <= high) {
  3628. erp_idx = (low + high) >> 1;
  3629. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3630. prev = erp_idx > 0 ? erp - 1 : NULL;
  3631. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3632. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3633. high = erp_idx - 1;
  3634. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3635. (page_idx == erp->er_extoff + erp->er_extcount &&
  3636. !realloc)) {
  3637. low = erp_idx + 1;
  3638. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3639. erp->er_extcount == XFS_LINEAR_EXTS) {
  3640. ASSERT(realloc);
  3641. page_idx = 0;
  3642. erp_idx++;
  3643. erp = erp_idx < nlists ? erp + 1 : NULL;
  3644. break;
  3645. } else {
  3646. page_idx -= erp->er_extoff;
  3647. break;
  3648. }
  3649. }
  3650. *idxp = page_idx;
  3651. *erp_idxp = erp_idx;
  3652. return(erp);
  3653. }
  3654. /*
  3655. * Allocate and initialize an indirection array once the space needed
  3656. * for incore extents increases above XFS_IEXT_BUFSZ.
  3657. */
  3658. void
  3659. xfs_iext_irec_init(
  3660. xfs_ifork_t *ifp) /* inode fork pointer */
  3661. {
  3662. xfs_ext_irec_t *erp; /* indirection array pointer */
  3663. xfs_extnum_t nextents; /* number of extents in file */
  3664. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3665. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3666. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3667. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3668. if (nextents == 0) {
  3669. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3670. } else if (!ifp->if_real_bytes) {
  3671. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3672. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3673. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3674. }
  3675. erp->er_extbuf = ifp->if_u1.if_extents;
  3676. erp->er_extcount = nextents;
  3677. erp->er_extoff = 0;
  3678. ifp->if_flags |= XFS_IFEXTIREC;
  3679. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3680. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3681. ifp->if_u1.if_ext_irec = erp;
  3682. return;
  3683. }
  3684. /*
  3685. * Allocate and initialize a new entry in the indirection array.
  3686. */
  3687. xfs_ext_irec_t *
  3688. xfs_iext_irec_new(
  3689. xfs_ifork_t *ifp, /* inode fork pointer */
  3690. int erp_idx) /* index for new irec */
  3691. {
  3692. xfs_ext_irec_t *erp; /* indirection array pointer */
  3693. int i; /* loop counter */
  3694. int nlists; /* number of irec's (ex lists) */
  3695. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3696. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3697. /* Resize indirection array */
  3698. xfs_iext_realloc_indirect(ifp, ++nlists *
  3699. sizeof(xfs_ext_irec_t));
  3700. /*
  3701. * Move records down in the array so the
  3702. * new page can use erp_idx.
  3703. */
  3704. erp = ifp->if_u1.if_ext_irec;
  3705. for (i = nlists - 1; i > erp_idx; i--) {
  3706. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3707. }
  3708. ASSERT(i == erp_idx);
  3709. /* Initialize new extent record */
  3710. erp = ifp->if_u1.if_ext_irec;
  3711. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3712. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3713. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3714. erp[erp_idx].er_extcount = 0;
  3715. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3716. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3717. return (&erp[erp_idx]);
  3718. }
  3719. /*
  3720. * Remove a record from the indirection array.
  3721. */
  3722. void
  3723. xfs_iext_irec_remove(
  3724. xfs_ifork_t *ifp, /* inode fork pointer */
  3725. int erp_idx) /* irec index to remove */
  3726. {
  3727. xfs_ext_irec_t *erp; /* indirection array pointer */
  3728. int i; /* loop counter */
  3729. int nlists; /* number of irec's (ex lists) */
  3730. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3731. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3732. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3733. if (erp->er_extbuf) {
  3734. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3735. -erp->er_extcount);
  3736. kmem_free(erp->er_extbuf);
  3737. }
  3738. /* Compact extent records */
  3739. erp = ifp->if_u1.if_ext_irec;
  3740. for (i = erp_idx; i < nlists - 1; i++) {
  3741. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3742. }
  3743. /*
  3744. * Manually free the last extent record from the indirection
  3745. * array. A call to xfs_iext_realloc_indirect() with a size
  3746. * of zero would result in a call to xfs_iext_destroy() which
  3747. * would in turn call this function again, creating a nasty
  3748. * infinite loop.
  3749. */
  3750. if (--nlists) {
  3751. xfs_iext_realloc_indirect(ifp,
  3752. nlists * sizeof(xfs_ext_irec_t));
  3753. } else {
  3754. kmem_free(ifp->if_u1.if_ext_irec);
  3755. }
  3756. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3757. }
  3758. /*
  3759. * This is called to clean up large amounts of unused memory allocated
  3760. * by the indirection array. Before compacting anything though, verify
  3761. * that the indirection array is still needed and switch back to the
  3762. * linear extent list (or even the inline buffer) if possible. The
  3763. * compaction policy is as follows:
  3764. *
  3765. * Full Compaction: Extents fit into a single page (or inline buffer)
  3766. * Partial Compaction: Extents occupy less than 50% of allocated space
  3767. * No Compaction: Extents occupy at least 50% of allocated space
  3768. */
  3769. void
  3770. xfs_iext_irec_compact(
  3771. xfs_ifork_t *ifp) /* inode fork pointer */
  3772. {
  3773. xfs_extnum_t nextents; /* number of extents in file */
  3774. int nlists; /* number of irec's (ex lists) */
  3775. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3776. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3777. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3778. if (nextents == 0) {
  3779. xfs_iext_destroy(ifp);
  3780. } else if (nextents <= XFS_INLINE_EXTS) {
  3781. xfs_iext_indirect_to_direct(ifp);
  3782. xfs_iext_direct_to_inline(ifp, nextents);
  3783. } else if (nextents <= XFS_LINEAR_EXTS) {
  3784. xfs_iext_indirect_to_direct(ifp);
  3785. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3786. xfs_iext_irec_compact_pages(ifp);
  3787. }
  3788. }
  3789. /*
  3790. * Combine extents from neighboring extent pages.
  3791. */
  3792. void
  3793. xfs_iext_irec_compact_pages(
  3794. xfs_ifork_t *ifp) /* inode fork pointer */
  3795. {
  3796. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3797. int erp_idx = 0; /* indirection array index */
  3798. int nlists; /* number of irec's (ex lists) */
  3799. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3800. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3801. while (erp_idx < nlists - 1) {
  3802. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3803. erp_next = erp + 1;
  3804. if (erp_next->er_extcount <=
  3805. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3806. memcpy(&erp->er_extbuf[erp->er_extcount],
  3807. erp_next->er_extbuf, erp_next->er_extcount *
  3808. sizeof(xfs_bmbt_rec_t));
  3809. erp->er_extcount += erp_next->er_extcount;
  3810. /*
  3811. * Free page before removing extent record
  3812. * so er_extoffs don't get modified in
  3813. * xfs_iext_irec_remove.
  3814. */
  3815. kmem_free(erp_next->er_extbuf);
  3816. erp_next->er_extbuf = NULL;
  3817. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3818. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3819. } else {
  3820. erp_idx++;
  3821. }
  3822. }
  3823. }
  3824. /*
  3825. * This is called to update the er_extoff field in the indirection
  3826. * array when extents have been added or removed from one of the
  3827. * extent lists. erp_idx contains the irec index to begin updating
  3828. * at and ext_diff contains the number of extents that were added
  3829. * or removed.
  3830. */
  3831. void
  3832. xfs_iext_irec_update_extoffs(
  3833. xfs_ifork_t *ifp, /* inode fork pointer */
  3834. int erp_idx, /* irec index to update */
  3835. int ext_diff) /* number of new extents */
  3836. {
  3837. int i; /* loop counter */
  3838. int nlists; /* number of irec's (ex lists */
  3839. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3840. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3841. for (i = erp_idx; i < nlists; i++) {
  3842. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3843. }
  3844. }