ste_dma40.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946
  1. /*
  2. * Copyright (C) ST-Ericsson SA 2007-2010
  3. * Author: Per Friden <per.friden@stericsson.com> for ST-Ericsson
  4. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  5. * License terms: GNU General Public License (GPL) version 2
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <plat/ste_dma40.h>
  14. #include "ste_dma40_ll.h"
  15. #define D40_NAME "dma40"
  16. #define D40_PHY_CHAN -1
  17. /* For masking out/in 2 bit channel positions */
  18. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  19. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  20. /* Maximum iterations taken before giving up suspending a channel */
  21. #define D40_SUSPEND_MAX_IT 500
  22. /* Hardware requirement on LCLA alignment */
  23. #define LCLA_ALIGNMENT 0x40000
  24. /* Attempts before giving up to trying to get pages that are aligned */
  25. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  26. /* Bit markings for allocation map */
  27. #define D40_ALLOC_FREE (1 << 31)
  28. #define D40_ALLOC_PHY (1 << 30)
  29. #define D40_ALLOC_LOG_FREE 0
  30. /* Hardware designer of the block */
  31. #define D40_HW_DESIGNER 0x8
  32. /**
  33. * enum 40_command - The different commands and/or statuses.
  34. *
  35. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  36. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  37. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  38. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  39. */
  40. enum d40_command {
  41. D40_DMA_STOP = 0,
  42. D40_DMA_RUN = 1,
  43. D40_DMA_SUSPEND_REQ = 2,
  44. D40_DMA_SUSPENDED = 3
  45. };
  46. /**
  47. * struct d40_lli_pool - Structure for keeping LLIs in memory
  48. *
  49. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  50. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  51. * pre_alloc_lli is used.
  52. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  53. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  54. * one buffer to one buffer.
  55. */
  56. struct d40_lli_pool {
  57. void *base;
  58. int size;
  59. /* Space for dst and src, plus an extra for padding */
  60. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  61. };
  62. /**
  63. * struct d40_desc - A descriptor is one DMA job.
  64. *
  65. * @lli_phy: LLI settings for physical channel. Both src and dst=
  66. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  67. * lli_len equals one.
  68. * @lli_log: Same as above but for logical channels.
  69. * @lli_pool: The pool with two entries pre-allocated.
  70. * @lli_len: Number of llis of current descriptor.
  71. * @lli_count: Number of transfered llis.
  72. * @lli_tx_len: Max number of LLIs per transfer, there can be
  73. * many transfer for one descriptor.
  74. * @txd: DMA engine struct. Used for among other things for communication
  75. * during a transfer.
  76. * @node: List entry.
  77. * @is_in_client_list: true if the client owns this descriptor.
  78. * @is_hw_linked: true if this job will automatically be continued for
  79. * the previous one.
  80. *
  81. * This descriptor is used for both logical and physical transfers.
  82. */
  83. struct d40_desc {
  84. /* LLI physical */
  85. struct d40_phy_lli_bidir lli_phy;
  86. /* LLI logical */
  87. struct d40_log_lli_bidir lli_log;
  88. struct d40_lli_pool lli_pool;
  89. int lli_len;
  90. int lli_count;
  91. u32 lli_tx_len;
  92. struct dma_async_tx_descriptor txd;
  93. struct list_head node;
  94. bool is_in_client_list;
  95. bool is_hw_linked;
  96. };
  97. /**
  98. * struct d40_lcla_pool - LCLA pool settings and data.
  99. *
  100. * @base: The virtual address of LCLA. 18 bit aligned.
  101. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  102. * This pointer is only there for clean-up on error.
  103. * @pages: The number of pages needed for all physical channels.
  104. * Only used later for clean-up on error
  105. * @lock: Lock to protect the content in this struct.
  106. * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
  107. * @num_blocks: The number of entries of alloc_map. Equals to the
  108. * number of physical channels.
  109. */
  110. struct d40_lcla_pool {
  111. void *base;
  112. void *base_unaligned;
  113. int pages;
  114. spinlock_t lock;
  115. u32 *alloc_map;
  116. int num_blocks;
  117. };
  118. /**
  119. * struct d40_phy_res - struct for handling eventlines mapped to physical
  120. * channels.
  121. *
  122. * @lock: A lock protection this entity.
  123. * @num: The physical channel number of this entity.
  124. * @allocated_src: Bit mapped to show which src event line's are mapped to
  125. * this physical channel. Can also be free or physically allocated.
  126. * @allocated_dst: Same as for src but is dst.
  127. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  128. * event line number.
  129. */
  130. struct d40_phy_res {
  131. spinlock_t lock;
  132. int num;
  133. u32 allocated_src;
  134. u32 allocated_dst;
  135. };
  136. struct d40_base;
  137. /**
  138. * struct d40_chan - Struct that describes a channel.
  139. *
  140. * @lock: A spinlock to protect this struct.
  141. * @log_num: The logical number, if any of this channel.
  142. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  143. * current cookie.
  144. * @pending_tx: The number of pending transfers. Used between interrupt handler
  145. * and tasklet.
  146. * @busy: Set to true when transfer is ongoing on this channel.
  147. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  148. * point is NULL, then the channel is not allocated.
  149. * @chan: DMA engine handle.
  150. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  151. * transfer and call client callback.
  152. * @client: Cliented owned descriptor list.
  153. * @active: Active descriptor.
  154. * @queue: Queued jobs.
  155. * @dma_cfg: The client configuration of this dma channel.
  156. * @base: Pointer to the device instance struct.
  157. * @src_def_cfg: Default cfg register setting for src.
  158. * @dst_def_cfg: Default cfg register setting for dst.
  159. * @log_def: Default logical channel settings.
  160. * @lcla: Space for one dst src pair for logical channel transfers.
  161. * @lcpa: Pointer to dst and src lcpa settings.
  162. *
  163. * This struct can either "be" a logical or a physical channel.
  164. */
  165. struct d40_chan {
  166. spinlock_t lock;
  167. int log_num;
  168. /* ID of the most recent completed transfer */
  169. int completed;
  170. int pending_tx;
  171. bool busy;
  172. struct d40_phy_res *phy_chan;
  173. struct dma_chan chan;
  174. struct tasklet_struct tasklet;
  175. struct list_head client;
  176. struct list_head active;
  177. struct list_head queue;
  178. struct stedma40_chan_cfg dma_cfg;
  179. struct d40_base *base;
  180. /* Default register configurations */
  181. u32 src_def_cfg;
  182. u32 dst_def_cfg;
  183. struct d40_def_lcsp log_def;
  184. struct d40_lcla_elem lcla;
  185. struct d40_log_lli_full *lcpa;
  186. /* Runtime reconfiguration */
  187. dma_addr_t runtime_addr;
  188. enum dma_data_direction runtime_direction;
  189. };
  190. /**
  191. * struct d40_base - The big global struct, one for each probe'd instance.
  192. *
  193. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  194. * @execmd_lock: Lock for execute command usage since several channels share
  195. * the same physical register.
  196. * @dev: The device structure.
  197. * @virtbase: The virtual base address of the DMA's register.
  198. * @rev: silicon revision detected.
  199. * @clk: Pointer to the DMA clock structure.
  200. * @phy_start: Physical memory start of the DMA registers.
  201. * @phy_size: Size of the DMA register map.
  202. * @irq: The IRQ number.
  203. * @num_phy_chans: The number of physical channels. Read from HW. This
  204. * is the number of available channels for this driver, not counting "Secure
  205. * mode" allocated physical channels.
  206. * @num_log_chans: The number of logical channels. Calculated from
  207. * num_phy_chans.
  208. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  209. * @dma_slave: dma_device channels that can do only do slave transfers.
  210. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  211. * @log_chans: Room for all possible logical channels in system.
  212. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  213. * to log_chans entries.
  214. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  215. * to phy_chans entries.
  216. * @plat_data: Pointer to provided platform_data which is the driver
  217. * configuration.
  218. * @phy_res: Vector containing all physical channels.
  219. * @lcla_pool: lcla pool settings and data.
  220. * @lcpa_base: The virtual mapped address of LCPA.
  221. * @phy_lcpa: The physical address of the LCPA.
  222. * @lcpa_size: The size of the LCPA area.
  223. * @desc_slab: cache for descriptors.
  224. */
  225. struct d40_base {
  226. spinlock_t interrupt_lock;
  227. spinlock_t execmd_lock;
  228. struct device *dev;
  229. void __iomem *virtbase;
  230. u8 rev:4;
  231. struct clk *clk;
  232. phys_addr_t phy_start;
  233. resource_size_t phy_size;
  234. int irq;
  235. int num_phy_chans;
  236. int num_log_chans;
  237. struct dma_device dma_both;
  238. struct dma_device dma_slave;
  239. struct dma_device dma_memcpy;
  240. struct d40_chan *phy_chans;
  241. struct d40_chan *log_chans;
  242. struct d40_chan **lookup_log_chans;
  243. struct d40_chan **lookup_phy_chans;
  244. struct stedma40_platform_data *plat_data;
  245. /* Physical half channels */
  246. struct d40_phy_res *phy_res;
  247. struct d40_lcla_pool lcla_pool;
  248. void *lcpa_base;
  249. dma_addr_t phy_lcpa;
  250. resource_size_t lcpa_size;
  251. struct kmem_cache *desc_slab;
  252. };
  253. /**
  254. * struct d40_interrupt_lookup - lookup table for interrupt handler
  255. *
  256. * @src: Interrupt mask register.
  257. * @clr: Interrupt clear register.
  258. * @is_error: true if this is an error interrupt.
  259. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  260. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  261. */
  262. struct d40_interrupt_lookup {
  263. u32 src;
  264. u32 clr;
  265. bool is_error;
  266. int offset;
  267. };
  268. /**
  269. * struct d40_reg_val - simple lookup struct
  270. *
  271. * @reg: The register.
  272. * @val: The value that belongs to the register in reg.
  273. */
  274. struct d40_reg_val {
  275. unsigned int reg;
  276. unsigned int val;
  277. };
  278. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  279. int lli_len, bool is_log)
  280. {
  281. u32 align;
  282. void *base;
  283. if (is_log)
  284. align = sizeof(struct d40_log_lli);
  285. else
  286. align = sizeof(struct d40_phy_lli);
  287. if (lli_len == 1) {
  288. base = d40d->lli_pool.pre_alloc_lli;
  289. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  290. d40d->lli_pool.base = NULL;
  291. } else {
  292. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  293. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  294. d40d->lli_pool.base = base;
  295. if (d40d->lli_pool.base == NULL)
  296. return -ENOMEM;
  297. }
  298. if (is_log) {
  299. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  300. align);
  301. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  302. align);
  303. } else {
  304. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  305. align);
  306. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  307. align);
  308. }
  309. return 0;
  310. }
  311. static void d40_pool_lli_free(struct d40_desc *d40d)
  312. {
  313. kfree(d40d->lli_pool.base);
  314. d40d->lli_pool.base = NULL;
  315. d40d->lli_pool.size = 0;
  316. d40d->lli_log.src = NULL;
  317. d40d->lli_log.dst = NULL;
  318. d40d->lli_phy.src = NULL;
  319. d40d->lli_phy.dst = NULL;
  320. }
  321. static void d40_desc_remove(struct d40_desc *d40d)
  322. {
  323. list_del(&d40d->node);
  324. }
  325. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  326. {
  327. struct d40_desc *d;
  328. struct d40_desc *_d;
  329. if (!list_empty(&d40c->client)) {
  330. list_for_each_entry_safe(d, _d, &d40c->client, node)
  331. if (async_tx_test_ack(&d->txd)) {
  332. d40_pool_lli_free(d);
  333. d40_desc_remove(d);
  334. break;
  335. }
  336. } else {
  337. d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
  338. if (d != NULL) {
  339. memset(d, 0, sizeof(struct d40_desc));
  340. INIT_LIST_HEAD(&d->node);
  341. }
  342. }
  343. return d;
  344. }
  345. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  346. {
  347. kmem_cache_free(d40c->base->desc_slab, d40d);
  348. }
  349. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  350. {
  351. list_add_tail(&desc->node, &d40c->active);
  352. }
  353. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  354. {
  355. struct d40_desc *d;
  356. if (list_empty(&d40c->active))
  357. return NULL;
  358. d = list_first_entry(&d40c->active,
  359. struct d40_desc,
  360. node);
  361. return d;
  362. }
  363. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  364. {
  365. list_add_tail(&desc->node, &d40c->queue);
  366. }
  367. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  368. {
  369. struct d40_desc *d;
  370. if (list_empty(&d40c->queue))
  371. return NULL;
  372. d = list_first_entry(&d40c->queue,
  373. struct d40_desc,
  374. node);
  375. return d;
  376. }
  377. static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
  378. {
  379. struct d40_desc *d;
  380. if (list_empty(&d40c->queue))
  381. return NULL;
  382. list_for_each_entry(d, &d40c->queue, node)
  383. if (list_is_last(&d->node, &d40c->queue))
  384. break;
  385. return d;
  386. }
  387. /* Support functions for logical channels */
  388. static int d40_lcla_id_get(struct d40_chan *d40c)
  389. {
  390. int src_id = 0;
  391. int dst_id = 0;
  392. struct d40_log_lli *lcla_lidx_base =
  393. d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
  394. int i;
  395. int lli_per_log = d40c->base->plat_data->llis_per_log;
  396. unsigned long flags;
  397. if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
  398. return 0;
  399. if (d40c->base->lcla_pool.num_blocks > 32)
  400. return -EINVAL;
  401. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  402. for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
  403. if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
  404. (0x1 << i))) {
  405. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
  406. (0x1 << i);
  407. break;
  408. }
  409. }
  410. src_id = i;
  411. if (src_id >= d40c->base->lcla_pool.num_blocks)
  412. goto err;
  413. for (; i < d40c->base->lcla_pool.num_blocks; i++) {
  414. if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
  415. (0x1 << i))) {
  416. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
  417. (0x1 << i);
  418. break;
  419. }
  420. }
  421. dst_id = i;
  422. if (dst_id == src_id)
  423. goto err;
  424. d40c->lcla.src_id = src_id;
  425. d40c->lcla.dst_id = dst_id;
  426. d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
  427. d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
  428. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  429. return 0;
  430. err:
  431. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  432. return -EINVAL;
  433. }
  434. static int d40_channel_execute_command(struct d40_chan *d40c,
  435. enum d40_command command)
  436. {
  437. u32 status;
  438. int i;
  439. void __iomem *active_reg;
  440. int ret = 0;
  441. unsigned long flags;
  442. u32 wmask;
  443. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  444. if (d40c->phy_chan->num % 2 == 0)
  445. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  446. else
  447. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  448. if (command == D40_DMA_SUSPEND_REQ) {
  449. status = (readl(active_reg) &
  450. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  451. D40_CHAN_POS(d40c->phy_chan->num);
  452. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  453. goto done;
  454. }
  455. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  456. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  457. active_reg);
  458. if (command == D40_DMA_SUSPEND_REQ) {
  459. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  460. status = (readl(active_reg) &
  461. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  462. D40_CHAN_POS(d40c->phy_chan->num);
  463. cpu_relax();
  464. /*
  465. * Reduce the number of bus accesses while
  466. * waiting for the DMA to suspend.
  467. */
  468. udelay(3);
  469. if (status == D40_DMA_STOP ||
  470. status == D40_DMA_SUSPENDED)
  471. break;
  472. }
  473. if (i == D40_SUSPEND_MAX_IT) {
  474. dev_err(&d40c->chan.dev->device,
  475. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  476. __func__, d40c->phy_chan->num, d40c->log_num,
  477. status);
  478. dump_stack();
  479. ret = -EBUSY;
  480. }
  481. }
  482. done:
  483. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  484. return ret;
  485. }
  486. static void d40_term_all(struct d40_chan *d40c)
  487. {
  488. struct d40_desc *d40d;
  489. unsigned long flags;
  490. /* Release active descriptors */
  491. while ((d40d = d40_first_active_get(d40c))) {
  492. d40_desc_remove(d40d);
  493. d40_desc_free(d40c, d40d);
  494. }
  495. /* Release queued descriptors waiting for transfer */
  496. while ((d40d = d40_first_queued(d40c))) {
  497. d40_desc_remove(d40d);
  498. d40_desc_free(d40c, d40d);
  499. }
  500. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  501. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
  502. (~(0x1 << d40c->lcla.dst_id));
  503. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
  504. (~(0x1 << d40c->lcla.src_id));
  505. d40c->lcla.src_id = -1;
  506. d40c->lcla.dst_id = -1;
  507. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  508. d40c->pending_tx = 0;
  509. d40c->busy = false;
  510. }
  511. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  512. {
  513. u32 val;
  514. unsigned long flags;
  515. /* Notice, that disable requires the physical channel to be stopped */
  516. if (do_enable)
  517. val = D40_ACTIVATE_EVENTLINE;
  518. else
  519. val = D40_DEACTIVATE_EVENTLINE;
  520. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  521. /* Enable event line connected to device (or memcpy) */
  522. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  523. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  524. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  525. writel((val << D40_EVENTLINE_POS(event)) |
  526. ~D40_EVENTLINE_MASK(event),
  527. d40c->base->virtbase + D40_DREG_PCBASE +
  528. d40c->phy_chan->num * D40_DREG_PCDELTA +
  529. D40_CHAN_REG_SSLNK);
  530. }
  531. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  532. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  533. writel((val << D40_EVENTLINE_POS(event)) |
  534. ~D40_EVENTLINE_MASK(event),
  535. d40c->base->virtbase + D40_DREG_PCBASE +
  536. d40c->phy_chan->num * D40_DREG_PCDELTA +
  537. D40_CHAN_REG_SDLNK);
  538. }
  539. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  540. }
  541. static u32 d40_chan_has_events(struct d40_chan *d40c)
  542. {
  543. u32 val;
  544. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  545. d40c->phy_chan->num * D40_DREG_PCDELTA +
  546. D40_CHAN_REG_SSLNK);
  547. val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
  548. d40c->phy_chan->num * D40_DREG_PCDELTA +
  549. D40_CHAN_REG_SDLNK);
  550. return val;
  551. }
  552. static void d40_config_write(struct d40_chan *d40c)
  553. {
  554. u32 addr_base;
  555. u32 var;
  556. /* Odd addresses are even addresses + 4 */
  557. addr_base = (d40c->phy_chan->num % 2) * 4;
  558. /* Setup channel mode to logical or physical */
  559. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  560. D40_CHAN_POS(d40c->phy_chan->num);
  561. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  562. /* Setup operational mode option register */
  563. var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
  564. 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
  565. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  566. if (d40c->log_num != D40_PHY_CHAN) {
  567. /* Set default config for CFG reg */
  568. writel(d40c->src_def_cfg,
  569. d40c->base->virtbase + D40_DREG_PCBASE +
  570. d40c->phy_chan->num * D40_DREG_PCDELTA +
  571. D40_CHAN_REG_SSCFG);
  572. writel(d40c->dst_def_cfg,
  573. d40c->base->virtbase + D40_DREG_PCBASE +
  574. d40c->phy_chan->num * D40_DREG_PCDELTA +
  575. D40_CHAN_REG_SDCFG);
  576. /* Set LIDX for lcla */
  577. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  578. D40_SREG_ELEM_LOG_LIDX_MASK,
  579. d40c->base->virtbase + D40_DREG_PCBASE +
  580. d40c->phy_chan->num * D40_DREG_PCDELTA +
  581. D40_CHAN_REG_SDELT);
  582. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  583. D40_SREG_ELEM_LOG_LIDX_MASK,
  584. d40c->base->virtbase + D40_DREG_PCBASE +
  585. d40c->phy_chan->num * D40_DREG_PCDELTA +
  586. D40_CHAN_REG_SSELT);
  587. }
  588. }
  589. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  590. {
  591. if (d40c->log_num == D40_PHY_CHAN) {
  592. d40_phy_lli_write(d40c->base->virtbase,
  593. d40c->phy_chan->num,
  594. d40d->lli_phy.dst,
  595. d40d->lli_phy.src);
  596. } else {
  597. struct d40_log_lli *src = d40d->lli_log.src;
  598. struct d40_log_lli *dst = d40d->lli_log.dst;
  599. int s;
  600. src += d40d->lli_count;
  601. dst += d40d->lli_count;
  602. s = d40_log_lli_write(d40c->lcpa,
  603. d40c->lcla.src, d40c->lcla.dst,
  604. dst, src,
  605. d40c->base->plat_data->llis_per_log);
  606. /* If s equals to zero, the job is not linked */
  607. if (s > 0) {
  608. (void) dma_map_single(d40c->base->dev, d40c->lcla.src,
  609. s * sizeof(struct d40_log_lli),
  610. DMA_TO_DEVICE);
  611. (void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
  612. s * sizeof(struct d40_log_lli),
  613. DMA_TO_DEVICE);
  614. }
  615. }
  616. d40d->lli_count += d40d->lli_tx_len;
  617. }
  618. static u32 d40_residue(struct d40_chan *d40c)
  619. {
  620. u32 num_elt;
  621. if (d40c->log_num != D40_PHY_CHAN)
  622. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  623. >> D40_MEM_LCSP2_ECNT_POS;
  624. else
  625. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  626. d40c->phy_chan->num * D40_DREG_PCDELTA +
  627. D40_CHAN_REG_SDELT) &
  628. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  629. D40_SREG_ELEM_PHY_ECNT_POS;
  630. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  631. }
  632. static bool d40_tx_is_linked(struct d40_chan *d40c)
  633. {
  634. bool is_link;
  635. if (d40c->log_num != D40_PHY_CHAN)
  636. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  637. else
  638. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  639. d40c->phy_chan->num * D40_DREG_PCDELTA +
  640. D40_CHAN_REG_SDLNK) &
  641. D40_SREG_LNK_PHYS_LNK_MASK;
  642. return is_link;
  643. }
  644. static int d40_pause(struct dma_chan *chan)
  645. {
  646. struct d40_chan *d40c =
  647. container_of(chan, struct d40_chan, chan);
  648. int res = 0;
  649. unsigned long flags;
  650. spin_lock_irqsave(&d40c->lock, flags);
  651. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  652. if (res == 0) {
  653. if (d40c->log_num != D40_PHY_CHAN) {
  654. d40_config_set_event(d40c, false);
  655. /* Resume the other logical channels if any */
  656. if (d40_chan_has_events(d40c))
  657. res = d40_channel_execute_command(d40c,
  658. D40_DMA_RUN);
  659. }
  660. }
  661. spin_unlock_irqrestore(&d40c->lock, flags);
  662. return res;
  663. }
  664. static int d40_resume(struct dma_chan *chan)
  665. {
  666. struct d40_chan *d40c =
  667. container_of(chan, struct d40_chan, chan);
  668. int res = 0;
  669. unsigned long flags;
  670. spin_lock_irqsave(&d40c->lock, flags);
  671. if (d40c->base->rev == 0)
  672. if (d40c->log_num != D40_PHY_CHAN) {
  673. res = d40_channel_execute_command(d40c,
  674. D40_DMA_SUSPEND_REQ);
  675. goto no_suspend;
  676. }
  677. /* If bytes left to transfer or linked tx resume job */
  678. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  679. if (d40c->log_num != D40_PHY_CHAN)
  680. d40_config_set_event(d40c, true);
  681. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  682. }
  683. no_suspend:
  684. spin_unlock_irqrestore(&d40c->lock, flags);
  685. return res;
  686. }
  687. static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
  688. {
  689. /* TODO: Write */
  690. }
  691. static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
  692. {
  693. struct d40_desc *d40d_prev = NULL;
  694. int i;
  695. u32 val;
  696. if (!list_empty(&d40c->queue))
  697. d40d_prev = d40_last_queued(d40c);
  698. else if (!list_empty(&d40c->active))
  699. d40d_prev = d40_first_active_get(d40c);
  700. if (!d40d_prev)
  701. return;
  702. /* Here we try to join this job with previous jobs */
  703. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  704. d40c->phy_chan->num * D40_DREG_PCDELTA +
  705. D40_CHAN_REG_SSLNK);
  706. /* Figure out which link we're currently transmitting */
  707. for (i = 0; i < d40d_prev->lli_len; i++)
  708. if (val == d40d_prev->lli_phy.src[i].reg_lnk)
  709. break;
  710. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  711. d40c->phy_chan->num * D40_DREG_PCDELTA +
  712. D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
  713. if (i == (d40d_prev->lli_len - 1) && val > 0) {
  714. /* Change the current one */
  715. writel(virt_to_phys(d40d->lli_phy.src),
  716. d40c->base->virtbase + D40_DREG_PCBASE +
  717. d40c->phy_chan->num * D40_DREG_PCDELTA +
  718. D40_CHAN_REG_SSLNK);
  719. writel(virt_to_phys(d40d->lli_phy.dst),
  720. d40c->base->virtbase + D40_DREG_PCBASE +
  721. d40c->phy_chan->num * D40_DREG_PCDELTA +
  722. D40_CHAN_REG_SDLNK);
  723. d40d->is_hw_linked = true;
  724. } else if (i < d40d_prev->lli_len) {
  725. (void) dma_unmap_single(d40c->base->dev,
  726. virt_to_phys(d40d_prev->lli_phy.src),
  727. d40d_prev->lli_pool.size,
  728. DMA_TO_DEVICE);
  729. /* Keep the settings */
  730. val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
  731. ~D40_SREG_LNK_PHYS_LNK_MASK;
  732. d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
  733. val | virt_to_phys(d40d->lli_phy.src);
  734. val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
  735. ~D40_SREG_LNK_PHYS_LNK_MASK;
  736. d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
  737. val | virt_to_phys(d40d->lli_phy.dst);
  738. (void) dma_map_single(d40c->base->dev,
  739. d40d_prev->lli_phy.src,
  740. d40d_prev->lli_pool.size,
  741. DMA_TO_DEVICE);
  742. d40d->is_hw_linked = true;
  743. }
  744. }
  745. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  746. {
  747. struct d40_chan *d40c = container_of(tx->chan,
  748. struct d40_chan,
  749. chan);
  750. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  751. unsigned long flags;
  752. (void) d40_pause(&d40c->chan);
  753. spin_lock_irqsave(&d40c->lock, flags);
  754. d40c->chan.cookie++;
  755. if (d40c->chan.cookie < 0)
  756. d40c->chan.cookie = 1;
  757. d40d->txd.cookie = d40c->chan.cookie;
  758. if (d40c->log_num == D40_PHY_CHAN)
  759. d40_tx_submit_phy(d40c, d40d);
  760. else
  761. d40_tx_submit_log(d40c, d40d);
  762. d40_desc_queue(d40c, d40d);
  763. spin_unlock_irqrestore(&d40c->lock, flags);
  764. (void) d40_resume(&d40c->chan);
  765. return tx->cookie;
  766. }
  767. static int d40_start(struct d40_chan *d40c)
  768. {
  769. if (d40c->base->rev == 0) {
  770. int err;
  771. if (d40c->log_num != D40_PHY_CHAN) {
  772. err = d40_channel_execute_command(d40c,
  773. D40_DMA_SUSPEND_REQ);
  774. if (err)
  775. return err;
  776. }
  777. }
  778. if (d40c->log_num != D40_PHY_CHAN)
  779. d40_config_set_event(d40c, true);
  780. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  781. }
  782. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  783. {
  784. struct d40_desc *d40d;
  785. int err;
  786. /* Start queued jobs, if any */
  787. d40d = d40_first_queued(d40c);
  788. if (d40d != NULL) {
  789. d40c->busy = true;
  790. /* Remove from queue */
  791. d40_desc_remove(d40d);
  792. /* Add to active queue */
  793. d40_desc_submit(d40c, d40d);
  794. /*
  795. * If this job is already linked in hw,
  796. * do not submit it.
  797. */
  798. if (!d40d->is_hw_linked) {
  799. /* Initiate DMA job */
  800. d40_desc_load(d40c, d40d);
  801. /* Start dma job */
  802. err = d40_start(d40c);
  803. if (err)
  804. return NULL;
  805. }
  806. }
  807. return d40d;
  808. }
  809. /* called from interrupt context */
  810. static void dma_tc_handle(struct d40_chan *d40c)
  811. {
  812. struct d40_desc *d40d;
  813. /* Get first active entry from list */
  814. d40d = d40_first_active_get(d40c);
  815. if (d40d == NULL)
  816. return;
  817. if (d40d->lli_count < d40d->lli_len) {
  818. d40_desc_load(d40c, d40d);
  819. /* Start dma job */
  820. (void) d40_start(d40c);
  821. return;
  822. }
  823. if (d40_queue_start(d40c) == NULL)
  824. d40c->busy = false;
  825. d40c->pending_tx++;
  826. tasklet_schedule(&d40c->tasklet);
  827. }
  828. static void dma_tasklet(unsigned long data)
  829. {
  830. struct d40_chan *d40c = (struct d40_chan *) data;
  831. struct d40_desc *d40d;
  832. unsigned long flags;
  833. dma_async_tx_callback callback;
  834. void *callback_param;
  835. spin_lock_irqsave(&d40c->lock, flags);
  836. /* Get first active entry from list */
  837. d40d = d40_first_active_get(d40c);
  838. if (d40d == NULL)
  839. goto err;
  840. d40c->completed = d40d->txd.cookie;
  841. /*
  842. * If terminating a channel pending_tx is set to zero.
  843. * This prevents any finished active jobs to return to the client.
  844. */
  845. if (d40c->pending_tx == 0) {
  846. spin_unlock_irqrestore(&d40c->lock, flags);
  847. return;
  848. }
  849. /* Callback to client */
  850. callback = d40d->txd.callback;
  851. callback_param = d40d->txd.callback_param;
  852. if (async_tx_test_ack(&d40d->txd)) {
  853. d40_pool_lli_free(d40d);
  854. d40_desc_remove(d40d);
  855. d40_desc_free(d40c, d40d);
  856. } else {
  857. if (!d40d->is_in_client_list) {
  858. d40_desc_remove(d40d);
  859. list_add_tail(&d40d->node, &d40c->client);
  860. d40d->is_in_client_list = true;
  861. }
  862. }
  863. d40c->pending_tx--;
  864. if (d40c->pending_tx)
  865. tasklet_schedule(&d40c->tasklet);
  866. spin_unlock_irqrestore(&d40c->lock, flags);
  867. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  868. callback(callback_param);
  869. return;
  870. err:
  871. /* Rescue manouver if receiving double interrupts */
  872. if (d40c->pending_tx > 0)
  873. d40c->pending_tx--;
  874. spin_unlock_irqrestore(&d40c->lock, flags);
  875. }
  876. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  877. {
  878. static const struct d40_interrupt_lookup il[] = {
  879. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  880. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  881. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  882. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  883. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  884. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  885. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  886. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  887. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  888. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  889. };
  890. int i;
  891. u32 regs[ARRAY_SIZE(il)];
  892. u32 idx;
  893. u32 row;
  894. long chan = -1;
  895. struct d40_chan *d40c;
  896. unsigned long flags;
  897. struct d40_base *base = data;
  898. spin_lock_irqsave(&base->interrupt_lock, flags);
  899. /* Read interrupt status of both logical and physical channels */
  900. for (i = 0; i < ARRAY_SIZE(il); i++)
  901. regs[i] = readl(base->virtbase + il[i].src);
  902. for (;;) {
  903. chan = find_next_bit((unsigned long *)regs,
  904. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  905. /* No more set bits found? */
  906. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  907. break;
  908. row = chan / BITS_PER_LONG;
  909. idx = chan & (BITS_PER_LONG - 1);
  910. /* ACK interrupt */
  911. writel(1 << idx, base->virtbase + il[row].clr);
  912. if (il[row].offset == D40_PHY_CHAN)
  913. d40c = base->lookup_phy_chans[idx];
  914. else
  915. d40c = base->lookup_log_chans[il[row].offset + idx];
  916. spin_lock(&d40c->lock);
  917. if (!il[row].is_error)
  918. dma_tc_handle(d40c);
  919. else
  920. dev_err(base->dev,
  921. "[%s] IRQ chan: %ld offset %d idx %d\n",
  922. __func__, chan, il[row].offset, idx);
  923. spin_unlock(&d40c->lock);
  924. }
  925. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  926. return IRQ_HANDLED;
  927. }
  928. static int d40_validate_conf(struct d40_chan *d40c,
  929. struct stedma40_chan_cfg *conf)
  930. {
  931. int res = 0;
  932. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  933. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  934. bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
  935. == STEDMA40_CHANNEL_IN_LOG_MODE;
  936. if (!conf->dir) {
  937. dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
  938. __func__);
  939. res = -EINVAL;
  940. }
  941. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  942. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  943. d40c->runtime_addr == 0) {
  944. dev_err(&d40c->chan.dev->device,
  945. "[%s] Invalid TX channel address (%d)\n",
  946. __func__, conf->dst_dev_type);
  947. res = -EINVAL;
  948. }
  949. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  950. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  951. d40c->runtime_addr == 0) {
  952. dev_err(&d40c->chan.dev->device,
  953. "[%s] Invalid RX channel address (%d)\n",
  954. __func__, conf->src_dev_type);
  955. res = -EINVAL;
  956. }
  957. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  958. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  959. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  960. __func__);
  961. res = -EINVAL;
  962. }
  963. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  964. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  965. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  966. __func__);
  967. res = -EINVAL;
  968. }
  969. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  970. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  971. dev_err(&d40c->chan.dev->device,
  972. "[%s] No event line\n", __func__);
  973. res = -EINVAL;
  974. }
  975. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  976. (src_event_group != dst_event_group)) {
  977. dev_err(&d40c->chan.dev->device,
  978. "[%s] Invalid event group\n", __func__);
  979. res = -EINVAL;
  980. }
  981. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  982. /*
  983. * DMAC HW supports it. Will be added to this driver,
  984. * in case any dma client requires it.
  985. */
  986. dev_err(&d40c->chan.dev->device,
  987. "[%s] periph to periph not supported\n",
  988. __func__);
  989. res = -EINVAL;
  990. }
  991. return res;
  992. }
  993. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  994. int log_event_line, bool is_log)
  995. {
  996. unsigned long flags;
  997. spin_lock_irqsave(&phy->lock, flags);
  998. if (!is_log) {
  999. /* Physical interrupts are masked per physical full channel */
  1000. if (phy->allocated_src == D40_ALLOC_FREE &&
  1001. phy->allocated_dst == D40_ALLOC_FREE) {
  1002. phy->allocated_dst = D40_ALLOC_PHY;
  1003. phy->allocated_src = D40_ALLOC_PHY;
  1004. goto found;
  1005. } else
  1006. goto not_found;
  1007. }
  1008. /* Logical channel */
  1009. if (is_src) {
  1010. if (phy->allocated_src == D40_ALLOC_PHY)
  1011. goto not_found;
  1012. if (phy->allocated_src == D40_ALLOC_FREE)
  1013. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1014. if (!(phy->allocated_src & (1 << log_event_line))) {
  1015. phy->allocated_src |= 1 << log_event_line;
  1016. goto found;
  1017. } else
  1018. goto not_found;
  1019. } else {
  1020. if (phy->allocated_dst == D40_ALLOC_PHY)
  1021. goto not_found;
  1022. if (phy->allocated_dst == D40_ALLOC_FREE)
  1023. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1024. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1025. phy->allocated_dst |= 1 << log_event_line;
  1026. goto found;
  1027. } else
  1028. goto not_found;
  1029. }
  1030. not_found:
  1031. spin_unlock_irqrestore(&phy->lock, flags);
  1032. return false;
  1033. found:
  1034. spin_unlock_irqrestore(&phy->lock, flags);
  1035. return true;
  1036. }
  1037. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1038. int log_event_line)
  1039. {
  1040. unsigned long flags;
  1041. bool is_free = false;
  1042. spin_lock_irqsave(&phy->lock, flags);
  1043. if (!log_event_line) {
  1044. /* Physical interrupts are masked per physical full channel */
  1045. phy->allocated_dst = D40_ALLOC_FREE;
  1046. phy->allocated_src = D40_ALLOC_FREE;
  1047. is_free = true;
  1048. goto out;
  1049. }
  1050. /* Logical channel */
  1051. if (is_src) {
  1052. phy->allocated_src &= ~(1 << log_event_line);
  1053. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1054. phy->allocated_src = D40_ALLOC_FREE;
  1055. } else {
  1056. phy->allocated_dst &= ~(1 << log_event_line);
  1057. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1058. phy->allocated_dst = D40_ALLOC_FREE;
  1059. }
  1060. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1061. D40_ALLOC_FREE);
  1062. out:
  1063. spin_unlock_irqrestore(&phy->lock, flags);
  1064. return is_free;
  1065. }
  1066. static int d40_allocate_channel(struct d40_chan *d40c)
  1067. {
  1068. int dev_type;
  1069. int event_group;
  1070. int event_line;
  1071. struct d40_phy_res *phys;
  1072. int i;
  1073. int j;
  1074. int log_num;
  1075. bool is_src;
  1076. bool is_log = (d40c->dma_cfg.channel_type &
  1077. STEDMA40_CHANNEL_IN_OPER_MODE)
  1078. == STEDMA40_CHANNEL_IN_LOG_MODE;
  1079. phys = d40c->base->phy_res;
  1080. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1081. dev_type = d40c->dma_cfg.src_dev_type;
  1082. log_num = 2 * dev_type;
  1083. is_src = true;
  1084. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1085. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1086. /* dst event lines are used for logical memcpy */
  1087. dev_type = d40c->dma_cfg.dst_dev_type;
  1088. log_num = 2 * dev_type + 1;
  1089. is_src = false;
  1090. } else
  1091. return -EINVAL;
  1092. event_group = D40_TYPE_TO_GROUP(dev_type);
  1093. event_line = D40_TYPE_TO_EVENT(dev_type);
  1094. if (!is_log) {
  1095. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1096. /* Find physical half channel */
  1097. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1098. if (d40_alloc_mask_set(&phys[i], is_src,
  1099. 0, is_log))
  1100. goto found_phy;
  1101. }
  1102. } else
  1103. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1104. int phy_num = j + event_group * 2;
  1105. for (i = phy_num; i < phy_num + 2; i++) {
  1106. if (d40_alloc_mask_set(&phys[i],
  1107. is_src,
  1108. 0,
  1109. is_log))
  1110. goto found_phy;
  1111. }
  1112. }
  1113. return -EINVAL;
  1114. found_phy:
  1115. d40c->phy_chan = &phys[i];
  1116. d40c->log_num = D40_PHY_CHAN;
  1117. goto out;
  1118. }
  1119. if (dev_type == -1)
  1120. return -EINVAL;
  1121. /* Find logical channel */
  1122. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1123. int phy_num = j + event_group * 2;
  1124. /*
  1125. * Spread logical channels across all available physical rather
  1126. * than pack every logical channel at the first available phy
  1127. * channels.
  1128. */
  1129. if (is_src) {
  1130. for (i = phy_num; i < phy_num + 2; i++) {
  1131. if (d40_alloc_mask_set(&phys[i], is_src,
  1132. event_line, is_log))
  1133. goto found_log;
  1134. }
  1135. } else {
  1136. for (i = phy_num + 1; i >= phy_num; i--) {
  1137. if (d40_alloc_mask_set(&phys[i], is_src,
  1138. event_line, is_log))
  1139. goto found_log;
  1140. }
  1141. }
  1142. }
  1143. return -EINVAL;
  1144. found_log:
  1145. d40c->phy_chan = &phys[i];
  1146. d40c->log_num = log_num;
  1147. out:
  1148. if (is_log)
  1149. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1150. else
  1151. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1152. return 0;
  1153. }
  1154. static int d40_config_memcpy(struct d40_chan *d40c)
  1155. {
  1156. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1157. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1158. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1159. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1160. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1161. memcpy[d40c->chan.chan_id];
  1162. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1163. dma_has_cap(DMA_SLAVE, cap)) {
  1164. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1165. } else {
  1166. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1167. __func__);
  1168. return -EINVAL;
  1169. }
  1170. return 0;
  1171. }
  1172. static int d40_free_dma(struct d40_chan *d40c)
  1173. {
  1174. int res = 0;
  1175. u32 event;
  1176. struct d40_phy_res *phy = d40c->phy_chan;
  1177. bool is_src;
  1178. struct d40_desc *d;
  1179. struct d40_desc *_d;
  1180. /* Terminate all queued and active transfers */
  1181. d40_term_all(d40c);
  1182. /* Release client owned descriptors */
  1183. if (!list_empty(&d40c->client))
  1184. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1185. d40_pool_lli_free(d);
  1186. d40_desc_remove(d);
  1187. d40_desc_free(d40c, d);
  1188. }
  1189. if (phy == NULL) {
  1190. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1191. __func__);
  1192. return -EINVAL;
  1193. }
  1194. if (phy->allocated_src == D40_ALLOC_FREE &&
  1195. phy->allocated_dst == D40_ALLOC_FREE) {
  1196. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1197. __func__);
  1198. return -EINVAL;
  1199. }
  1200. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1201. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1202. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1203. is_src = false;
  1204. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1205. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1206. is_src = true;
  1207. } else {
  1208. dev_err(&d40c->chan.dev->device,
  1209. "[%s] Unknown direction\n", __func__);
  1210. return -EINVAL;
  1211. }
  1212. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1213. if (res) {
  1214. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1215. __func__);
  1216. return res;
  1217. }
  1218. if (d40c->log_num != D40_PHY_CHAN) {
  1219. /* Release logical channel, deactivate the event line */
  1220. d40_config_set_event(d40c, false);
  1221. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1222. /*
  1223. * Check if there are more logical allocation
  1224. * on this phy channel.
  1225. */
  1226. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1227. /* Resume the other logical channels if any */
  1228. if (d40_chan_has_events(d40c)) {
  1229. res = d40_channel_execute_command(d40c,
  1230. D40_DMA_RUN);
  1231. if (res) {
  1232. dev_err(&d40c->chan.dev->device,
  1233. "[%s] Executing RUN command\n",
  1234. __func__);
  1235. return res;
  1236. }
  1237. }
  1238. return 0;
  1239. }
  1240. } else {
  1241. (void) d40_alloc_mask_free(phy, is_src, 0);
  1242. }
  1243. /* Release physical channel */
  1244. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1245. if (res) {
  1246. dev_err(&d40c->chan.dev->device,
  1247. "[%s] Failed to stop channel\n", __func__);
  1248. return res;
  1249. }
  1250. d40c->phy_chan = NULL;
  1251. /* Invalidate channel type */
  1252. d40c->dma_cfg.channel_type = 0;
  1253. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1254. return 0;
  1255. }
  1256. static bool d40_is_paused(struct d40_chan *d40c)
  1257. {
  1258. bool is_paused = false;
  1259. unsigned long flags;
  1260. void __iomem *active_reg;
  1261. u32 status;
  1262. u32 event;
  1263. spin_lock_irqsave(&d40c->lock, flags);
  1264. if (d40c->log_num == D40_PHY_CHAN) {
  1265. if (d40c->phy_chan->num % 2 == 0)
  1266. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1267. else
  1268. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1269. status = (readl(active_reg) &
  1270. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1271. D40_CHAN_POS(d40c->phy_chan->num);
  1272. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1273. is_paused = true;
  1274. goto _exit;
  1275. }
  1276. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1277. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1278. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1279. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1280. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1281. D40_CHAN_REG_SDLNK);
  1282. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1283. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1284. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1285. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1286. D40_CHAN_REG_SSLNK);
  1287. } else {
  1288. dev_err(&d40c->chan.dev->device,
  1289. "[%s] Unknown direction\n", __func__);
  1290. goto _exit;
  1291. }
  1292. status = (status & D40_EVENTLINE_MASK(event)) >>
  1293. D40_EVENTLINE_POS(event);
  1294. if (status != D40_DMA_RUN)
  1295. is_paused = true;
  1296. _exit:
  1297. spin_unlock_irqrestore(&d40c->lock, flags);
  1298. return is_paused;
  1299. }
  1300. static u32 stedma40_residue(struct dma_chan *chan)
  1301. {
  1302. struct d40_chan *d40c =
  1303. container_of(chan, struct d40_chan, chan);
  1304. u32 bytes_left;
  1305. unsigned long flags;
  1306. spin_lock_irqsave(&d40c->lock, flags);
  1307. bytes_left = d40_residue(d40c);
  1308. spin_unlock_irqrestore(&d40c->lock, flags);
  1309. return bytes_left;
  1310. }
  1311. /* Public DMA functions in addition to the DMA engine framework */
  1312. int stedma40_set_psize(struct dma_chan *chan,
  1313. int src_psize,
  1314. int dst_psize)
  1315. {
  1316. struct d40_chan *d40c =
  1317. container_of(chan, struct d40_chan, chan);
  1318. unsigned long flags;
  1319. spin_lock_irqsave(&d40c->lock, flags);
  1320. if (d40c->log_num != D40_PHY_CHAN) {
  1321. d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1322. d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1323. d40c->log_def.lcsp1 |= src_psize <<
  1324. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1325. d40c->log_def.lcsp3 |= dst_psize <<
  1326. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1327. goto out;
  1328. }
  1329. if (src_psize == STEDMA40_PSIZE_PHY_1)
  1330. d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1331. else {
  1332. d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1333. d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1334. D40_SREG_CFG_PSIZE_POS);
  1335. d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
  1336. }
  1337. if (dst_psize == STEDMA40_PSIZE_PHY_1)
  1338. d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1339. else {
  1340. d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1341. d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1342. D40_SREG_CFG_PSIZE_POS);
  1343. d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
  1344. }
  1345. out:
  1346. spin_unlock_irqrestore(&d40c->lock, flags);
  1347. return 0;
  1348. }
  1349. EXPORT_SYMBOL(stedma40_set_psize);
  1350. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1351. struct scatterlist *sgl_dst,
  1352. struct scatterlist *sgl_src,
  1353. unsigned int sgl_len,
  1354. unsigned long dma_flags)
  1355. {
  1356. int res;
  1357. struct d40_desc *d40d;
  1358. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1359. chan);
  1360. unsigned long flags;
  1361. if (d40c->phy_chan == NULL) {
  1362. dev_err(&d40c->chan.dev->device,
  1363. "[%s] Unallocated channel.\n", __func__);
  1364. return ERR_PTR(-EINVAL);
  1365. }
  1366. spin_lock_irqsave(&d40c->lock, flags);
  1367. d40d = d40_desc_get(d40c);
  1368. if (d40d == NULL)
  1369. goto err;
  1370. d40d->lli_len = sgl_len;
  1371. d40d->lli_tx_len = d40d->lli_len;
  1372. d40d->txd.flags = dma_flags;
  1373. if (d40c->log_num != D40_PHY_CHAN) {
  1374. if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
  1375. d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
  1376. if (sgl_len > 1)
  1377. /*
  1378. * Check if there is space available in lcla. If not,
  1379. * split list into 1-length and run only in lcpa
  1380. * space.
  1381. */
  1382. if (d40_lcla_id_get(d40c) != 0)
  1383. d40d->lli_tx_len = 1;
  1384. if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
  1385. dev_err(&d40c->chan.dev->device,
  1386. "[%s] Out of memory\n", __func__);
  1387. goto err;
  1388. }
  1389. (void) d40_log_sg_to_lli(d40c->lcla.src_id,
  1390. sgl_src,
  1391. sgl_len,
  1392. d40d->lli_log.src,
  1393. d40c->log_def.lcsp1,
  1394. d40c->dma_cfg.src_info.data_width,
  1395. d40d->lli_tx_len,
  1396. d40c->base->plat_data->llis_per_log);
  1397. (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
  1398. sgl_dst,
  1399. sgl_len,
  1400. d40d->lli_log.dst,
  1401. d40c->log_def.lcsp3,
  1402. d40c->dma_cfg.dst_info.data_width,
  1403. d40d->lli_tx_len,
  1404. d40c->base->plat_data->llis_per_log);
  1405. } else {
  1406. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1407. dev_err(&d40c->chan.dev->device,
  1408. "[%s] Out of memory\n", __func__);
  1409. goto err;
  1410. }
  1411. res = d40_phy_sg_to_lli(sgl_src,
  1412. sgl_len,
  1413. 0,
  1414. d40d->lli_phy.src,
  1415. virt_to_phys(d40d->lli_phy.src),
  1416. d40c->src_def_cfg,
  1417. d40c->dma_cfg.src_info.data_width,
  1418. d40c->dma_cfg.src_info.psize);
  1419. if (res < 0)
  1420. goto err;
  1421. res = d40_phy_sg_to_lli(sgl_dst,
  1422. sgl_len,
  1423. 0,
  1424. d40d->lli_phy.dst,
  1425. virt_to_phys(d40d->lli_phy.dst),
  1426. d40c->dst_def_cfg,
  1427. d40c->dma_cfg.dst_info.data_width,
  1428. d40c->dma_cfg.dst_info.psize);
  1429. if (res < 0)
  1430. goto err;
  1431. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1432. d40d->lli_pool.size, DMA_TO_DEVICE);
  1433. }
  1434. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1435. d40d->txd.tx_submit = d40_tx_submit;
  1436. spin_unlock_irqrestore(&d40c->lock, flags);
  1437. return &d40d->txd;
  1438. err:
  1439. spin_unlock_irqrestore(&d40c->lock, flags);
  1440. return NULL;
  1441. }
  1442. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1443. bool stedma40_filter(struct dma_chan *chan, void *data)
  1444. {
  1445. struct stedma40_chan_cfg *info = data;
  1446. struct d40_chan *d40c =
  1447. container_of(chan, struct d40_chan, chan);
  1448. int err;
  1449. if (data) {
  1450. err = d40_validate_conf(d40c, info);
  1451. if (!err)
  1452. d40c->dma_cfg = *info;
  1453. } else
  1454. err = d40_config_memcpy(d40c);
  1455. return err == 0;
  1456. }
  1457. EXPORT_SYMBOL(stedma40_filter);
  1458. /* DMA ENGINE functions */
  1459. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1460. {
  1461. int err;
  1462. unsigned long flags;
  1463. struct d40_chan *d40c =
  1464. container_of(chan, struct d40_chan, chan);
  1465. bool is_free_phy;
  1466. spin_lock_irqsave(&d40c->lock, flags);
  1467. d40c->completed = chan->cookie = 1;
  1468. /*
  1469. * If no dma configuration is set (channel_type == 0)
  1470. * use default configuration (memcpy)
  1471. */
  1472. if (d40c->dma_cfg.channel_type == 0) {
  1473. err = d40_config_memcpy(d40c);
  1474. if (err) {
  1475. dev_err(&d40c->chan.dev->device,
  1476. "[%s] Failed to configure memcpy channel\n",
  1477. __func__);
  1478. goto fail;
  1479. }
  1480. }
  1481. is_free_phy = (d40c->phy_chan == NULL);
  1482. err = d40_allocate_channel(d40c);
  1483. if (err) {
  1484. dev_err(&d40c->chan.dev->device,
  1485. "[%s] Failed to allocate channel\n", __func__);
  1486. goto fail;
  1487. }
  1488. /* Fill in basic CFG register values */
  1489. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1490. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1491. if (d40c->log_num != D40_PHY_CHAN) {
  1492. d40_log_cfg(&d40c->dma_cfg,
  1493. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1494. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1495. d40c->lcpa = d40c->base->lcpa_base +
  1496. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1497. else
  1498. d40c->lcpa = d40c->base->lcpa_base +
  1499. d40c->dma_cfg.dst_dev_type *
  1500. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1501. }
  1502. /*
  1503. * Only write channel configuration to the DMA if the physical
  1504. * resource is free. In case of multiple logical channels
  1505. * on the same physical resource, only the first write is necessary.
  1506. */
  1507. if (is_free_phy)
  1508. d40_config_write(d40c);
  1509. fail:
  1510. spin_unlock_irqrestore(&d40c->lock, flags);
  1511. return err;
  1512. }
  1513. static void d40_free_chan_resources(struct dma_chan *chan)
  1514. {
  1515. struct d40_chan *d40c =
  1516. container_of(chan, struct d40_chan, chan);
  1517. int err;
  1518. unsigned long flags;
  1519. if (d40c->phy_chan == NULL) {
  1520. dev_err(&d40c->chan.dev->device,
  1521. "[%s] Cannot free unallocated channel\n", __func__);
  1522. return;
  1523. }
  1524. spin_lock_irqsave(&d40c->lock, flags);
  1525. err = d40_free_dma(d40c);
  1526. if (err)
  1527. dev_err(&d40c->chan.dev->device,
  1528. "[%s] Failed to free channel\n", __func__);
  1529. spin_unlock_irqrestore(&d40c->lock, flags);
  1530. }
  1531. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1532. dma_addr_t dst,
  1533. dma_addr_t src,
  1534. size_t size,
  1535. unsigned long dma_flags)
  1536. {
  1537. struct d40_desc *d40d;
  1538. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1539. chan);
  1540. unsigned long flags;
  1541. int err = 0;
  1542. if (d40c->phy_chan == NULL) {
  1543. dev_err(&d40c->chan.dev->device,
  1544. "[%s] Channel is not allocated.\n", __func__);
  1545. return ERR_PTR(-EINVAL);
  1546. }
  1547. spin_lock_irqsave(&d40c->lock, flags);
  1548. d40d = d40_desc_get(d40c);
  1549. if (d40d == NULL) {
  1550. dev_err(&d40c->chan.dev->device,
  1551. "[%s] Descriptor is NULL\n", __func__);
  1552. goto err;
  1553. }
  1554. d40d->txd.flags = dma_flags;
  1555. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1556. d40d->txd.tx_submit = d40_tx_submit;
  1557. if (d40c->log_num != D40_PHY_CHAN) {
  1558. if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
  1559. dev_err(&d40c->chan.dev->device,
  1560. "[%s] Out of memory\n", __func__);
  1561. goto err;
  1562. }
  1563. d40d->lli_len = 1;
  1564. d40d->lli_tx_len = 1;
  1565. d40_log_fill_lli(d40d->lli_log.src,
  1566. src,
  1567. size,
  1568. 0,
  1569. d40c->log_def.lcsp1,
  1570. d40c->dma_cfg.src_info.data_width,
  1571. false, true);
  1572. d40_log_fill_lli(d40d->lli_log.dst,
  1573. dst,
  1574. size,
  1575. 0,
  1576. d40c->log_def.lcsp3,
  1577. d40c->dma_cfg.dst_info.data_width,
  1578. true, true);
  1579. } else {
  1580. if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
  1581. dev_err(&d40c->chan.dev->device,
  1582. "[%s] Out of memory\n", __func__);
  1583. goto err;
  1584. }
  1585. err = d40_phy_fill_lli(d40d->lli_phy.src,
  1586. src,
  1587. size,
  1588. d40c->dma_cfg.src_info.psize,
  1589. 0,
  1590. d40c->src_def_cfg,
  1591. true,
  1592. d40c->dma_cfg.src_info.data_width,
  1593. false);
  1594. if (err)
  1595. goto err_fill_lli;
  1596. err = d40_phy_fill_lli(d40d->lli_phy.dst,
  1597. dst,
  1598. size,
  1599. d40c->dma_cfg.dst_info.psize,
  1600. 0,
  1601. d40c->dst_def_cfg,
  1602. true,
  1603. d40c->dma_cfg.dst_info.data_width,
  1604. false);
  1605. if (err)
  1606. goto err_fill_lli;
  1607. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1608. d40d->lli_pool.size, DMA_TO_DEVICE);
  1609. }
  1610. spin_unlock_irqrestore(&d40c->lock, flags);
  1611. return &d40d->txd;
  1612. err_fill_lli:
  1613. dev_err(&d40c->chan.dev->device,
  1614. "[%s] Failed filling in PHY LLI\n", __func__);
  1615. d40_pool_lli_free(d40d);
  1616. err:
  1617. spin_unlock_irqrestore(&d40c->lock, flags);
  1618. return NULL;
  1619. }
  1620. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1621. struct d40_chan *d40c,
  1622. struct scatterlist *sgl,
  1623. unsigned int sg_len,
  1624. enum dma_data_direction direction,
  1625. unsigned long dma_flags)
  1626. {
  1627. dma_addr_t dev_addr = 0;
  1628. int total_size;
  1629. if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
  1630. dev_err(&d40c->chan.dev->device,
  1631. "[%s] Out of memory\n", __func__);
  1632. return -ENOMEM;
  1633. }
  1634. d40d->lli_len = sg_len;
  1635. if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
  1636. d40d->lli_tx_len = d40d->lli_len;
  1637. else
  1638. d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
  1639. if (sg_len > 1)
  1640. /*
  1641. * Check if there is space available in lcla.
  1642. * If not, split list into 1-length and run only
  1643. * in lcpa space.
  1644. */
  1645. if (d40_lcla_id_get(d40c) != 0)
  1646. d40d->lli_tx_len = 1;
  1647. if (direction == DMA_FROM_DEVICE)
  1648. if (d40c->runtime_addr)
  1649. dev_addr = d40c->runtime_addr;
  1650. else
  1651. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1652. else if (direction == DMA_TO_DEVICE)
  1653. if (d40c->runtime_addr)
  1654. dev_addr = d40c->runtime_addr;
  1655. else
  1656. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1657. else
  1658. return -EINVAL;
  1659. total_size = d40_log_sg_to_dev(&d40c->lcla,
  1660. sgl, sg_len,
  1661. &d40d->lli_log,
  1662. &d40c->log_def,
  1663. d40c->dma_cfg.src_info.data_width,
  1664. d40c->dma_cfg.dst_info.data_width,
  1665. direction,
  1666. dev_addr, d40d->lli_tx_len,
  1667. d40c->base->plat_data->llis_per_log);
  1668. if (total_size < 0)
  1669. return -EINVAL;
  1670. return 0;
  1671. }
  1672. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1673. struct d40_chan *d40c,
  1674. struct scatterlist *sgl,
  1675. unsigned int sgl_len,
  1676. enum dma_data_direction direction,
  1677. unsigned long dma_flags)
  1678. {
  1679. dma_addr_t src_dev_addr;
  1680. dma_addr_t dst_dev_addr;
  1681. int res;
  1682. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1683. dev_err(&d40c->chan.dev->device,
  1684. "[%s] Out of memory\n", __func__);
  1685. return -ENOMEM;
  1686. }
  1687. d40d->lli_len = sgl_len;
  1688. d40d->lli_tx_len = sgl_len;
  1689. if (direction == DMA_FROM_DEVICE) {
  1690. dst_dev_addr = 0;
  1691. if (d40c->runtime_addr)
  1692. src_dev_addr = d40c->runtime_addr;
  1693. else
  1694. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1695. } else if (direction == DMA_TO_DEVICE) {
  1696. if (d40c->runtime_addr)
  1697. dst_dev_addr = d40c->runtime_addr;
  1698. else
  1699. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1700. src_dev_addr = 0;
  1701. } else
  1702. return -EINVAL;
  1703. res = d40_phy_sg_to_lli(sgl,
  1704. sgl_len,
  1705. src_dev_addr,
  1706. d40d->lli_phy.src,
  1707. virt_to_phys(d40d->lli_phy.src),
  1708. d40c->src_def_cfg,
  1709. d40c->dma_cfg.src_info.data_width,
  1710. d40c->dma_cfg.src_info.psize);
  1711. if (res < 0)
  1712. return res;
  1713. res = d40_phy_sg_to_lli(sgl,
  1714. sgl_len,
  1715. dst_dev_addr,
  1716. d40d->lli_phy.dst,
  1717. virt_to_phys(d40d->lli_phy.dst),
  1718. d40c->dst_def_cfg,
  1719. d40c->dma_cfg.dst_info.data_width,
  1720. d40c->dma_cfg.dst_info.psize);
  1721. if (res < 0)
  1722. return res;
  1723. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1724. d40d->lli_pool.size, DMA_TO_DEVICE);
  1725. return 0;
  1726. }
  1727. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1728. struct scatterlist *sgl,
  1729. unsigned int sg_len,
  1730. enum dma_data_direction direction,
  1731. unsigned long dma_flags)
  1732. {
  1733. struct d40_desc *d40d;
  1734. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1735. chan);
  1736. unsigned long flags;
  1737. int err;
  1738. if (d40c->phy_chan == NULL) {
  1739. dev_err(&d40c->chan.dev->device,
  1740. "[%s] Cannot prepare unallocated channel\n", __func__);
  1741. return ERR_PTR(-EINVAL);
  1742. }
  1743. if (d40c->dma_cfg.pre_transfer)
  1744. d40c->dma_cfg.pre_transfer(chan,
  1745. d40c->dma_cfg.pre_transfer_data,
  1746. sg_dma_len(sgl));
  1747. spin_lock_irqsave(&d40c->lock, flags);
  1748. d40d = d40_desc_get(d40c);
  1749. spin_unlock_irqrestore(&d40c->lock, flags);
  1750. if (d40d == NULL)
  1751. return NULL;
  1752. if (d40c->log_num != D40_PHY_CHAN)
  1753. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1754. direction, dma_flags);
  1755. else
  1756. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1757. direction, dma_flags);
  1758. if (err) {
  1759. dev_err(&d40c->chan.dev->device,
  1760. "[%s] Failed to prepare %s slave sg job: %d\n",
  1761. __func__,
  1762. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1763. return NULL;
  1764. }
  1765. d40d->txd.flags = dma_flags;
  1766. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1767. d40d->txd.tx_submit = d40_tx_submit;
  1768. return &d40d->txd;
  1769. }
  1770. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1771. dma_cookie_t cookie,
  1772. struct dma_tx_state *txstate)
  1773. {
  1774. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1775. dma_cookie_t last_used;
  1776. dma_cookie_t last_complete;
  1777. int ret;
  1778. if (d40c->phy_chan == NULL) {
  1779. dev_err(&d40c->chan.dev->device,
  1780. "[%s] Cannot read status of unallocated channel\n",
  1781. __func__);
  1782. return -EINVAL;
  1783. }
  1784. last_complete = d40c->completed;
  1785. last_used = chan->cookie;
  1786. if (d40_is_paused(d40c))
  1787. ret = DMA_PAUSED;
  1788. else
  1789. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1790. dma_set_tx_state(txstate, last_complete, last_used,
  1791. stedma40_residue(chan));
  1792. return ret;
  1793. }
  1794. static void d40_issue_pending(struct dma_chan *chan)
  1795. {
  1796. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1797. unsigned long flags;
  1798. if (d40c->phy_chan == NULL) {
  1799. dev_err(&d40c->chan.dev->device,
  1800. "[%s] Channel is not allocated!\n", __func__);
  1801. return;
  1802. }
  1803. spin_lock_irqsave(&d40c->lock, flags);
  1804. /* Busy means that pending jobs are already being processed */
  1805. if (!d40c->busy)
  1806. (void) d40_queue_start(d40c);
  1807. spin_unlock_irqrestore(&d40c->lock, flags);
  1808. }
  1809. /* Runtime reconfiguration extension */
  1810. static void d40_set_runtime_config(struct dma_chan *chan,
  1811. struct dma_slave_config *config)
  1812. {
  1813. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1814. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1815. enum dma_slave_buswidth config_addr_width;
  1816. dma_addr_t config_addr;
  1817. u32 config_maxburst;
  1818. enum stedma40_periph_data_width addr_width;
  1819. int psize;
  1820. if (config->direction == DMA_FROM_DEVICE) {
  1821. dma_addr_t dev_addr_rx =
  1822. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1823. config_addr = config->src_addr;
  1824. if (dev_addr_rx)
  1825. dev_dbg(d40c->base->dev,
  1826. "channel has a pre-wired RX address %08x "
  1827. "overriding with %08x\n",
  1828. dev_addr_rx, config_addr);
  1829. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1830. dev_dbg(d40c->base->dev,
  1831. "channel was not configured for peripheral "
  1832. "to memory transfer (%d) overriding\n",
  1833. cfg->dir);
  1834. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1835. config_addr_width = config->src_addr_width;
  1836. config_maxburst = config->src_maxburst;
  1837. } else if (config->direction == DMA_TO_DEVICE) {
  1838. dma_addr_t dev_addr_tx =
  1839. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1840. config_addr = config->dst_addr;
  1841. if (dev_addr_tx)
  1842. dev_dbg(d40c->base->dev,
  1843. "channel has a pre-wired TX address %08x "
  1844. "overriding with %08x\n",
  1845. dev_addr_tx, config_addr);
  1846. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1847. dev_dbg(d40c->base->dev,
  1848. "channel was not configured for memory "
  1849. "to peripheral transfer (%d) overriding\n",
  1850. cfg->dir);
  1851. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1852. config_addr_width = config->dst_addr_width;
  1853. config_maxburst = config->dst_maxburst;
  1854. } else {
  1855. dev_err(d40c->base->dev,
  1856. "unrecognized channel direction %d\n",
  1857. config->direction);
  1858. return;
  1859. }
  1860. switch (config_addr_width) {
  1861. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1862. addr_width = STEDMA40_BYTE_WIDTH;
  1863. break;
  1864. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1865. addr_width = STEDMA40_HALFWORD_WIDTH;
  1866. break;
  1867. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1868. addr_width = STEDMA40_WORD_WIDTH;
  1869. break;
  1870. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1871. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1872. break;
  1873. default:
  1874. dev_err(d40c->base->dev,
  1875. "illegal peripheral address width "
  1876. "requested (%d)\n",
  1877. config->src_addr_width);
  1878. return;
  1879. }
  1880. if (config_maxburst >= 16)
  1881. psize = STEDMA40_PSIZE_LOG_16;
  1882. else if (config_maxburst >= 8)
  1883. psize = STEDMA40_PSIZE_LOG_8;
  1884. else if (config_maxburst >= 4)
  1885. psize = STEDMA40_PSIZE_LOG_4;
  1886. else
  1887. psize = STEDMA40_PSIZE_LOG_1;
  1888. /* Set up all the endpoint configs */
  1889. cfg->src_info.data_width = addr_width;
  1890. cfg->src_info.psize = psize;
  1891. cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1892. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1893. cfg->dst_info.data_width = addr_width;
  1894. cfg->dst_info.psize = psize;
  1895. cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1896. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1897. /* These settings will take precedence later */
  1898. d40c->runtime_addr = config_addr;
  1899. d40c->runtime_direction = config->direction;
  1900. dev_dbg(d40c->base->dev,
  1901. "configured channel %s for %s, data width %d, "
  1902. "maxburst %d bytes, LE, no flow control\n",
  1903. dma_chan_name(chan),
  1904. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1905. config_addr_width,
  1906. config_maxburst);
  1907. }
  1908. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1909. unsigned long arg)
  1910. {
  1911. unsigned long flags;
  1912. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1913. if (d40c->phy_chan == NULL) {
  1914. dev_err(&d40c->chan.dev->device,
  1915. "[%s] Channel is not allocated!\n", __func__);
  1916. return -EINVAL;
  1917. }
  1918. switch (cmd) {
  1919. case DMA_TERMINATE_ALL:
  1920. spin_lock_irqsave(&d40c->lock, flags);
  1921. d40_term_all(d40c);
  1922. spin_unlock_irqrestore(&d40c->lock, flags);
  1923. return 0;
  1924. case DMA_PAUSE:
  1925. return d40_pause(chan);
  1926. case DMA_RESUME:
  1927. return d40_resume(chan);
  1928. case DMA_SLAVE_CONFIG:
  1929. d40_set_runtime_config(chan,
  1930. (struct dma_slave_config *) arg);
  1931. return 0;
  1932. default:
  1933. break;
  1934. }
  1935. /* Other commands are unimplemented */
  1936. return -ENXIO;
  1937. }
  1938. /* Initialization functions */
  1939. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1940. struct d40_chan *chans, int offset,
  1941. int num_chans)
  1942. {
  1943. int i = 0;
  1944. struct d40_chan *d40c;
  1945. INIT_LIST_HEAD(&dma->channels);
  1946. for (i = offset; i < offset + num_chans; i++) {
  1947. d40c = &chans[i];
  1948. d40c->base = base;
  1949. d40c->chan.device = dma;
  1950. /* Invalidate lcla element */
  1951. d40c->lcla.src_id = -1;
  1952. d40c->lcla.dst_id = -1;
  1953. spin_lock_init(&d40c->lock);
  1954. d40c->log_num = D40_PHY_CHAN;
  1955. INIT_LIST_HEAD(&d40c->active);
  1956. INIT_LIST_HEAD(&d40c->queue);
  1957. INIT_LIST_HEAD(&d40c->client);
  1958. tasklet_init(&d40c->tasklet, dma_tasklet,
  1959. (unsigned long) d40c);
  1960. list_add_tail(&d40c->chan.device_node,
  1961. &dma->channels);
  1962. }
  1963. }
  1964. static int __init d40_dmaengine_init(struct d40_base *base,
  1965. int num_reserved_chans)
  1966. {
  1967. int err ;
  1968. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1969. 0, base->num_log_chans);
  1970. dma_cap_zero(base->dma_slave.cap_mask);
  1971. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1972. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1973. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1974. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1975. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1976. base->dma_slave.device_tx_status = d40_tx_status;
  1977. base->dma_slave.device_issue_pending = d40_issue_pending;
  1978. base->dma_slave.device_control = d40_control;
  1979. base->dma_slave.dev = base->dev;
  1980. err = dma_async_device_register(&base->dma_slave);
  1981. if (err) {
  1982. dev_err(base->dev,
  1983. "[%s] Failed to register slave channels\n",
  1984. __func__);
  1985. goto failure1;
  1986. }
  1987. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1988. base->num_log_chans, base->plat_data->memcpy_len);
  1989. dma_cap_zero(base->dma_memcpy.cap_mask);
  1990. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1991. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1992. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1993. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1994. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1995. base->dma_memcpy.device_tx_status = d40_tx_status;
  1996. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1997. base->dma_memcpy.device_control = d40_control;
  1998. base->dma_memcpy.dev = base->dev;
  1999. /*
  2000. * This controller can only access address at even
  2001. * 32bit boundaries, i.e. 2^2
  2002. */
  2003. base->dma_memcpy.copy_align = 2;
  2004. err = dma_async_device_register(&base->dma_memcpy);
  2005. if (err) {
  2006. dev_err(base->dev,
  2007. "[%s] Failed to regsiter memcpy only channels\n",
  2008. __func__);
  2009. goto failure2;
  2010. }
  2011. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2012. 0, num_reserved_chans);
  2013. dma_cap_zero(base->dma_both.cap_mask);
  2014. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2015. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2016. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  2017. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  2018. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  2019. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  2020. base->dma_both.device_tx_status = d40_tx_status;
  2021. base->dma_both.device_issue_pending = d40_issue_pending;
  2022. base->dma_both.device_control = d40_control;
  2023. base->dma_both.dev = base->dev;
  2024. base->dma_both.copy_align = 2;
  2025. err = dma_async_device_register(&base->dma_both);
  2026. if (err) {
  2027. dev_err(base->dev,
  2028. "[%s] Failed to register logical and physical capable channels\n",
  2029. __func__);
  2030. goto failure3;
  2031. }
  2032. return 0;
  2033. failure3:
  2034. dma_async_device_unregister(&base->dma_memcpy);
  2035. failure2:
  2036. dma_async_device_unregister(&base->dma_slave);
  2037. failure1:
  2038. return err;
  2039. }
  2040. /* Initialization functions. */
  2041. static int __init d40_phy_res_init(struct d40_base *base)
  2042. {
  2043. int i;
  2044. int num_phy_chans_avail = 0;
  2045. u32 val[2];
  2046. int odd_even_bit = -2;
  2047. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2048. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2049. for (i = 0; i < base->num_phy_chans; i++) {
  2050. base->phy_res[i].num = i;
  2051. odd_even_bit += 2 * ((i % 2) == 0);
  2052. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2053. /* Mark security only channels as occupied */
  2054. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2055. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2056. } else {
  2057. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2058. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2059. num_phy_chans_avail++;
  2060. }
  2061. spin_lock_init(&base->phy_res[i].lock);
  2062. }
  2063. /* Mark disabled channels as occupied */
  2064. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2065. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2066. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2067. num_phy_chans_avail--;
  2068. }
  2069. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2070. num_phy_chans_avail, base->num_phy_chans);
  2071. /* Verify settings extended vs standard */
  2072. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2073. for (i = 0; i < base->num_phy_chans; i++) {
  2074. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2075. (val[0] & 0x3) != 1)
  2076. dev_info(base->dev,
  2077. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2078. __func__, i, val[0] & 0x3);
  2079. val[0] = val[0] >> 2;
  2080. }
  2081. return num_phy_chans_avail;
  2082. }
  2083. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2084. {
  2085. static const struct d40_reg_val dma_id_regs[] = {
  2086. /* Peripheral Id */
  2087. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2088. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2089. /*
  2090. * D40_DREG_PERIPHID2 Depends on HW revision:
  2091. * MOP500/HREF ED has 0x0008,
  2092. * ? has 0x0018,
  2093. * HREF V1 has 0x0028
  2094. */
  2095. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2096. /* PCell Id */
  2097. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2098. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2099. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2100. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2101. };
  2102. struct stedma40_platform_data *plat_data;
  2103. struct clk *clk = NULL;
  2104. void __iomem *virtbase = NULL;
  2105. struct resource *res = NULL;
  2106. struct d40_base *base = NULL;
  2107. int num_log_chans = 0;
  2108. int num_phy_chans;
  2109. int i;
  2110. u32 val;
  2111. u32 rev;
  2112. clk = clk_get(&pdev->dev, NULL);
  2113. if (IS_ERR(clk)) {
  2114. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2115. __func__);
  2116. goto failure;
  2117. }
  2118. clk_enable(clk);
  2119. /* Get IO for DMAC base address */
  2120. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2121. if (!res)
  2122. goto failure;
  2123. if (request_mem_region(res->start, resource_size(res),
  2124. D40_NAME " I/O base") == NULL)
  2125. goto failure;
  2126. virtbase = ioremap(res->start, resource_size(res));
  2127. if (!virtbase)
  2128. goto failure;
  2129. /* HW version check */
  2130. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2131. if (dma_id_regs[i].val !=
  2132. readl(virtbase + dma_id_regs[i].reg)) {
  2133. dev_err(&pdev->dev,
  2134. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2135. __func__,
  2136. dma_id_regs[i].val,
  2137. dma_id_regs[i].reg,
  2138. readl(virtbase + dma_id_regs[i].reg));
  2139. goto failure;
  2140. }
  2141. }
  2142. /* Get silicon revision and designer */
  2143. val = readl(virtbase + D40_DREG_PERIPHID2);
  2144. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2145. D40_HW_DESIGNER) {
  2146. dev_err(&pdev->dev,
  2147. "[%s] Unknown designer! Got %x wanted %x\n",
  2148. __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2149. D40_HW_DESIGNER);
  2150. goto failure;
  2151. }
  2152. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2153. D40_DREG_PERIPHID2_REV_POS;
  2154. /* The number of physical channels on this HW */
  2155. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2156. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2157. rev, res->start);
  2158. plat_data = pdev->dev.platform_data;
  2159. /* Count the number of logical channels in use */
  2160. for (i = 0; i < plat_data->dev_len; i++)
  2161. if (plat_data->dev_rx[i] != 0)
  2162. num_log_chans++;
  2163. for (i = 0; i < plat_data->dev_len; i++)
  2164. if (plat_data->dev_tx[i] != 0)
  2165. num_log_chans++;
  2166. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2167. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2168. sizeof(struct d40_chan), GFP_KERNEL);
  2169. if (base == NULL) {
  2170. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2171. goto failure;
  2172. }
  2173. base->rev = rev;
  2174. base->clk = clk;
  2175. base->num_phy_chans = num_phy_chans;
  2176. base->num_log_chans = num_log_chans;
  2177. base->phy_start = res->start;
  2178. base->phy_size = resource_size(res);
  2179. base->virtbase = virtbase;
  2180. base->plat_data = plat_data;
  2181. base->dev = &pdev->dev;
  2182. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2183. base->log_chans = &base->phy_chans[num_phy_chans];
  2184. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2185. GFP_KERNEL);
  2186. if (!base->phy_res)
  2187. goto failure;
  2188. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2189. sizeof(struct d40_chan *),
  2190. GFP_KERNEL);
  2191. if (!base->lookup_phy_chans)
  2192. goto failure;
  2193. if (num_log_chans + plat_data->memcpy_len) {
  2194. /*
  2195. * The max number of logical channels are event lines for all
  2196. * src devices and dst devices
  2197. */
  2198. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2199. sizeof(struct d40_chan *),
  2200. GFP_KERNEL);
  2201. if (!base->lookup_log_chans)
  2202. goto failure;
  2203. }
  2204. base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
  2205. GFP_KERNEL);
  2206. if (!base->lcla_pool.alloc_map)
  2207. goto failure;
  2208. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2209. 0, SLAB_HWCACHE_ALIGN,
  2210. NULL);
  2211. if (base->desc_slab == NULL)
  2212. goto failure;
  2213. return base;
  2214. failure:
  2215. if (clk) {
  2216. clk_disable(clk);
  2217. clk_put(clk);
  2218. }
  2219. if (virtbase)
  2220. iounmap(virtbase);
  2221. if (res)
  2222. release_mem_region(res->start,
  2223. resource_size(res));
  2224. if (virtbase)
  2225. iounmap(virtbase);
  2226. if (base) {
  2227. kfree(base->lcla_pool.alloc_map);
  2228. kfree(base->lookup_log_chans);
  2229. kfree(base->lookup_phy_chans);
  2230. kfree(base->phy_res);
  2231. kfree(base);
  2232. }
  2233. return NULL;
  2234. }
  2235. static void __init d40_hw_init(struct d40_base *base)
  2236. {
  2237. static const struct d40_reg_val dma_init_reg[] = {
  2238. /* Clock every part of the DMA block from start */
  2239. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2240. /* Interrupts on all logical channels */
  2241. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2242. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2243. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2244. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2245. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2246. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2247. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2248. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2249. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2250. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2251. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2252. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2253. };
  2254. int i;
  2255. u32 prmseo[2] = {0, 0};
  2256. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2257. u32 pcmis = 0;
  2258. u32 pcicr = 0;
  2259. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2260. writel(dma_init_reg[i].val,
  2261. base->virtbase + dma_init_reg[i].reg);
  2262. /* Configure all our dma channels to default settings */
  2263. for (i = 0; i < base->num_phy_chans; i++) {
  2264. activeo[i % 2] = activeo[i % 2] << 2;
  2265. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2266. == D40_ALLOC_PHY) {
  2267. activeo[i % 2] |= 3;
  2268. continue;
  2269. }
  2270. /* Enable interrupt # */
  2271. pcmis = (pcmis << 1) | 1;
  2272. /* Clear interrupt # */
  2273. pcicr = (pcicr << 1) | 1;
  2274. /* Set channel to physical mode */
  2275. prmseo[i % 2] = prmseo[i % 2] << 2;
  2276. prmseo[i % 2] |= 1;
  2277. }
  2278. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2279. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2280. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2281. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2282. /* Write which interrupt to enable */
  2283. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2284. /* Write which interrupt to clear */
  2285. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2286. }
  2287. static int __init d40_lcla_allocate(struct d40_base *base)
  2288. {
  2289. unsigned long *page_list;
  2290. int i, j;
  2291. int ret = 0;
  2292. /*
  2293. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2294. * To full fill this hardware requirement without wasting 256 kb
  2295. * we allocate pages until we get an aligned one.
  2296. */
  2297. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2298. GFP_KERNEL);
  2299. if (!page_list) {
  2300. ret = -ENOMEM;
  2301. goto failure;
  2302. }
  2303. /* Calculating how many pages that are required */
  2304. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2305. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2306. page_list[i] = __get_free_pages(GFP_KERNEL,
  2307. base->lcla_pool.pages);
  2308. if (!page_list[i]) {
  2309. dev_err(base->dev,
  2310. "[%s] Failed to allocate %d pages.\n",
  2311. __func__, base->lcla_pool.pages);
  2312. for (j = 0; j < i; j++)
  2313. free_pages(page_list[j], base->lcla_pool.pages);
  2314. goto failure;
  2315. }
  2316. if ((virt_to_phys((void *)page_list[i]) &
  2317. (LCLA_ALIGNMENT - 1)) == 0)
  2318. break;
  2319. }
  2320. for (j = 0; j < i; j++)
  2321. free_pages(page_list[j], base->lcla_pool.pages);
  2322. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2323. base->lcla_pool.base = (void *)page_list[i];
  2324. } else {
  2325. /*
  2326. * After many attempts and no succees with finding the correct
  2327. * alignment, try with allocating a big buffer.
  2328. */
  2329. dev_warn(base->dev,
  2330. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2331. __func__, base->lcla_pool.pages);
  2332. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2333. base->num_phy_chans +
  2334. LCLA_ALIGNMENT,
  2335. GFP_KERNEL);
  2336. if (!base->lcla_pool.base_unaligned) {
  2337. ret = -ENOMEM;
  2338. goto failure;
  2339. }
  2340. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2341. LCLA_ALIGNMENT);
  2342. }
  2343. writel(virt_to_phys(base->lcla_pool.base),
  2344. base->virtbase + D40_DREG_LCLA);
  2345. failure:
  2346. kfree(page_list);
  2347. return ret;
  2348. }
  2349. static int __init d40_probe(struct platform_device *pdev)
  2350. {
  2351. int err;
  2352. int ret = -ENOENT;
  2353. struct d40_base *base;
  2354. struct resource *res = NULL;
  2355. int num_reserved_chans;
  2356. u32 val;
  2357. base = d40_hw_detect_init(pdev);
  2358. if (!base)
  2359. goto failure;
  2360. num_reserved_chans = d40_phy_res_init(base);
  2361. platform_set_drvdata(pdev, base);
  2362. spin_lock_init(&base->interrupt_lock);
  2363. spin_lock_init(&base->execmd_lock);
  2364. /* Get IO for logical channel parameter address */
  2365. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2366. if (!res) {
  2367. ret = -ENOENT;
  2368. dev_err(&pdev->dev,
  2369. "[%s] No \"lcpa\" memory resource\n",
  2370. __func__);
  2371. goto failure;
  2372. }
  2373. base->lcpa_size = resource_size(res);
  2374. base->phy_lcpa = res->start;
  2375. if (request_mem_region(res->start, resource_size(res),
  2376. D40_NAME " I/O lcpa") == NULL) {
  2377. ret = -EBUSY;
  2378. dev_err(&pdev->dev,
  2379. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2380. __func__, res->start, res->end);
  2381. goto failure;
  2382. }
  2383. /* We make use of ESRAM memory for this. */
  2384. val = readl(base->virtbase + D40_DREG_LCPA);
  2385. if (res->start != val && val != 0) {
  2386. dev_warn(&pdev->dev,
  2387. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2388. __func__, val, res->start);
  2389. } else
  2390. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2391. base->lcpa_base = ioremap(res->start, resource_size(res));
  2392. if (!base->lcpa_base) {
  2393. ret = -ENOMEM;
  2394. dev_err(&pdev->dev,
  2395. "[%s] Failed to ioremap LCPA region\n",
  2396. __func__);
  2397. goto failure;
  2398. }
  2399. ret = d40_lcla_allocate(base);
  2400. if (ret) {
  2401. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2402. __func__);
  2403. goto failure;
  2404. }
  2405. spin_lock_init(&base->lcla_pool.lock);
  2406. base->lcla_pool.num_blocks = base->num_phy_chans;
  2407. base->irq = platform_get_irq(pdev, 0);
  2408. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2409. if (ret) {
  2410. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2411. goto failure;
  2412. }
  2413. err = d40_dmaengine_init(base, num_reserved_chans);
  2414. if (err)
  2415. goto failure;
  2416. d40_hw_init(base);
  2417. dev_info(base->dev, "initialized\n");
  2418. return 0;
  2419. failure:
  2420. if (base) {
  2421. if (base->desc_slab)
  2422. kmem_cache_destroy(base->desc_slab);
  2423. if (base->virtbase)
  2424. iounmap(base->virtbase);
  2425. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2426. free_pages((unsigned long)base->lcla_pool.base,
  2427. base->lcla_pool.pages);
  2428. kfree(base->lcla_pool.base_unaligned);
  2429. if (base->phy_lcpa)
  2430. release_mem_region(base->phy_lcpa,
  2431. base->lcpa_size);
  2432. if (base->phy_start)
  2433. release_mem_region(base->phy_start,
  2434. base->phy_size);
  2435. if (base->clk) {
  2436. clk_disable(base->clk);
  2437. clk_put(base->clk);
  2438. }
  2439. kfree(base->lcla_pool.alloc_map);
  2440. kfree(base->lookup_log_chans);
  2441. kfree(base->lookup_phy_chans);
  2442. kfree(base->phy_res);
  2443. kfree(base);
  2444. }
  2445. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2446. return ret;
  2447. }
  2448. static struct platform_driver d40_driver = {
  2449. .driver = {
  2450. .owner = THIS_MODULE,
  2451. .name = D40_NAME,
  2452. },
  2453. };
  2454. int __init stedma40_init(void)
  2455. {
  2456. return platform_driver_probe(&d40_driver, d40_probe);
  2457. }
  2458. arch_initcall(stedma40_init);