slub_def.h 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/bug.h>
  11. #include <linux/workqueue.h>
  12. #include <linux/kobject.h>
  13. #include <linux/kmemleak.h>
  14. enum stat_item {
  15. ALLOC_FASTPATH, /* Allocation from cpu slab */
  16. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  17. FREE_FASTPATH, /* Free to cpu slub */
  18. FREE_SLOWPATH, /* Freeing not to cpu slab */
  19. FREE_FROZEN, /* Freeing to frozen slab */
  20. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  21. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  22. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
  23. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  24. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  25. ALLOC_NODE_MISMATCH, /* Switching cpu slab */
  26. FREE_SLAB, /* Slab freed to the page allocator */
  27. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  28. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  29. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  30. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  31. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  32. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  33. DEACTIVATE_BYPASS, /* Implicit deactivation */
  34. ORDER_FALLBACK, /* Number of times fallback was necessary */
  35. CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
  36. CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
  37. CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
  38. CPU_PARTIAL_FREE, /* Refill cpu partial on free */
  39. CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
  40. CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
  41. NR_SLUB_STAT_ITEMS };
  42. struct kmem_cache_cpu {
  43. void **freelist; /* Pointer to next available object */
  44. unsigned long tid; /* Globally unique transaction id */
  45. struct page *page; /* The slab from which we are allocating */
  46. struct page *partial; /* Partially allocated frozen slabs */
  47. #ifdef CONFIG_SLUB_STATS
  48. unsigned stat[NR_SLUB_STAT_ITEMS];
  49. #endif
  50. };
  51. /*
  52. * Word size structure that can be atomically updated or read and that
  53. * contains both the order and the number of objects that a slab of the
  54. * given order would contain.
  55. */
  56. struct kmem_cache_order_objects {
  57. unsigned long x;
  58. };
  59. /*
  60. * Slab cache management.
  61. */
  62. struct kmem_cache {
  63. struct kmem_cache_cpu __percpu *cpu_slab;
  64. /* Used for retriving partial slabs etc */
  65. unsigned long flags;
  66. unsigned long min_partial;
  67. int size; /* The size of an object including meta data */
  68. int object_size; /* The size of an object without meta data */
  69. int offset; /* Free pointer offset. */
  70. int cpu_partial; /* Number of per cpu partial objects to keep around */
  71. struct kmem_cache_order_objects oo;
  72. /* Allocation and freeing of slabs */
  73. struct kmem_cache_order_objects max;
  74. struct kmem_cache_order_objects min;
  75. gfp_t allocflags; /* gfp flags to use on each alloc */
  76. int refcount; /* Refcount for slab cache destroy */
  77. void (*ctor)(void *);
  78. int inuse; /* Offset to metadata */
  79. int align; /* Alignment */
  80. int reserved; /* Reserved bytes at the end of slabs */
  81. const char *name; /* Name (only for display!) */
  82. struct list_head list; /* List of slab caches */
  83. #ifdef CONFIG_SYSFS
  84. struct kobject kobj; /* For sysfs */
  85. #endif
  86. #ifdef CONFIG_MEMCG_KMEM
  87. struct memcg_cache_params *memcg_params;
  88. int max_attr_size; /* for propagation, maximum size of a stored attr */
  89. #endif
  90. #ifdef CONFIG_NUMA
  91. /*
  92. * Defragmentation by allocating from a remote node.
  93. */
  94. int remote_node_defrag_ratio;
  95. #endif
  96. struct kmem_cache_node *node[MAX_NUMNODES];
  97. };
  98. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  99. void *__kmalloc(size_t size, gfp_t flags);
  100. static __always_inline void *
  101. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  102. {
  103. void *ret;
  104. flags |= (__GFP_COMP | __GFP_KMEMCG);
  105. ret = (void *) __get_free_pages(flags, order);
  106. kmemleak_alloc(ret, size, 1, flags);
  107. return ret;
  108. }
  109. /**
  110. * Calling this on allocated memory will check that the memory
  111. * is expected to be in use, and print warnings if not.
  112. */
  113. #ifdef CONFIG_SLUB_DEBUG
  114. extern bool verify_mem_not_deleted(const void *x);
  115. #else
  116. static inline bool verify_mem_not_deleted(const void *x)
  117. {
  118. return true;
  119. }
  120. #endif
  121. #ifdef CONFIG_TRACING
  122. extern void *
  123. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  124. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  125. #else
  126. static __always_inline void *
  127. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  128. {
  129. return kmem_cache_alloc(s, gfpflags);
  130. }
  131. static __always_inline void *
  132. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  133. {
  134. return kmalloc_order(size, flags, order);
  135. }
  136. #endif
  137. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  138. {
  139. unsigned int order = get_order(size);
  140. return kmalloc_order_trace(size, flags, order);
  141. }
  142. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  143. {
  144. if (__builtin_constant_p(size)) {
  145. if (size > KMALLOC_MAX_CACHE_SIZE)
  146. return kmalloc_large(size, flags);
  147. if (!(flags & GFP_DMA)) {
  148. int index = kmalloc_index(size);
  149. if (!index)
  150. return ZERO_SIZE_PTR;
  151. return kmem_cache_alloc_trace(kmalloc_caches[index],
  152. flags, size);
  153. }
  154. }
  155. return __kmalloc(size, flags);
  156. }
  157. #ifdef CONFIG_NUMA
  158. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  159. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  160. #ifdef CONFIG_TRACING
  161. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  162. gfp_t gfpflags,
  163. int node, size_t size);
  164. #else
  165. static __always_inline void *
  166. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  167. gfp_t gfpflags,
  168. int node, size_t size)
  169. {
  170. return kmem_cache_alloc_node(s, gfpflags, node);
  171. }
  172. #endif
  173. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  174. {
  175. if (__builtin_constant_p(size) &&
  176. size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
  177. int index = kmalloc_index(size);
  178. if (!index)
  179. return ZERO_SIZE_PTR;
  180. return kmem_cache_alloc_node_trace(kmalloc_caches[index],
  181. flags, node, size);
  182. }
  183. return __kmalloc_node(size, flags, node);
  184. }
  185. #endif
  186. #endif /* _LINUX_SLUB_DEF_H */