ieee80211_sta.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <net/iw_handler.h>
  27. #include <asm/types.h>
  28. #include <net/mac80211.h>
  29. #include "ieee80211_i.h"
  30. #include "ieee80211_rate.h"
  31. #include "ieee80211_led.h"
  32. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  33. #define IEEE80211_AUTH_MAX_TRIES 3
  34. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  35. #define IEEE80211_ASSOC_MAX_TRIES 3
  36. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  37. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  38. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  39. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  40. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  41. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  42. #define IEEE80211_PROBE_DELAY (HZ / 33)
  43. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  44. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  45. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  46. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  47. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  48. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  49. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  50. #define ERP_INFO_USE_PROTECTION BIT(1)
  51. /* mgmt header + 1 byte action code */
  52. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  53. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  54. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  55. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  56. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  57. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  58. /* next values represent the buffer size for A-MPDU frame.
  59. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  60. #define IEEE80211_MIN_AMPDU_BUF 0x8
  61. #define IEEE80211_MAX_AMPDU_BUF 0x40
  62. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  63. u8 *ssid, size_t ssid_len);
  64. static struct ieee80211_sta_bss *
  65. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  66. u8 *ssid, u8 ssid_len);
  67. static void ieee80211_rx_bss_put(struct net_device *dev,
  68. struct ieee80211_sta_bss *bss);
  69. static int ieee80211_sta_find_ibss(struct net_device *dev,
  70. struct ieee80211_if_sta *ifsta);
  71. static int ieee80211_sta_wep_configured(struct net_device *dev);
  72. static int ieee80211_sta_start_scan(struct net_device *dev,
  73. u8 *ssid, size_t ssid_len);
  74. static int ieee80211_sta_config_auth(struct net_device *dev,
  75. struct ieee80211_if_sta *ifsta);
  76. /* Parsed Information Elements */
  77. struct ieee802_11_elems {
  78. /* pointers to IEs */
  79. u8 *ssid;
  80. u8 *supp_rates;
  81. u8 *fh_params;
  82. u8 *ds_params;
  83. u8 *cf_params;
  84. u8 *tim;
  85. u8 *ibss_params;
  86. u8 *challenge;
  87. u8 *wpa;
  88. u8 *rsn;
  89. u8 *erp_info;
  90. u8 *ext_supp_rates;
  91. u8 *wmm_info;
  92. u8 *wmm_param;
  93. u8 *ht_cap_elem;
  94. u8 *ht_info_elem;
  95. /* length of them, respectively */
  96. u8 ssid_len;
  97. u8 supp_rates_len;
  98. u8 fh_params_len;
  99. u8 ds_params_len;
  100. u8 cf_params_len;
  101. u8 tim_len;
  102. u8 ibss_params_len;
  103. u8 challenge_len;
  104. u8 wpa_len;
  105. u8 rsn_len;
  106. u8 erp_info_len;
  107. u8 ext_supp_rates_len;
  108. u8 wmm_info_len;
  109. u8 wmm_param_len;
  110. u8 ht_cap_elem_len;
  111. u8 ht_info_elem_len;
  112. };
  113. static void ieee802_11_parse_elems(u8 *start, size_t len,
  114. struct ieee802_11_elems *elems)
  115. {
  116. size_t left = len;
  117. u8 *pos = start;
  118. memset(elems, 0, sizeof(*elems));
  119. while (left >= 2) {
  120. u8 id, elen;
  121. id = *pos++;
  122. elen = *pos++;
  123. left -= 2;
  124. if (elen > left)
  125. return;
  126. switch (id) {
  127. case WLAN_EID_SSID:
  128. elems->ssid = pos;
  129. elems->ssid_len = elen;
  130. break;
  131. case WLAN_EID_SUPP_RATES:
  132. elems->supp_rates = pos;
  133. elems->supp_rates_len = elen;
  134. break;
  135. case WLAN_EID_FH_PARAMS:
  136. elems->fh_params = pos;
  137. elems->fh_params_len = elen;
  138. break;
  139. case WLAN_EID_DS_PARAMS:
  140. elems->ds_params = pos;
  141. elems->ds_params_len = elen;
  142. break;
  143. case WLAN_EID_CF_PARAMS:
  144. elems->cf_params = pos;
  145. elems->cf_params_len = elen;
  146. break;
  147. case WLAN_EID_TIM:
  148. elems->tim = pos;
  149. elems->tim_len = elen;
  150. break;
  151. case WLAN_EID_IBSS_PARAMS:
  152. elems->ibss_params = pos;
  153. elems->ibss_params_len = elen;
  154. break;
  155. case WLAN_EID_CHALLENGE:
  156. elems->challenge = pos;
  157. elems->challenge_len = elen;
  158. break;
  159. case WLAN_EID_WPA:
  160. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  161. pos[2] == 0xf2) {
  162. /* Microsoft OUI (00:50:F2) */
  163. if (pos[3] == 1) {
  164. /* OUI Type 1 - WPA IE */
  165. elems->wpa = pos;
  166. elems->wpa_len = elen;
  167. } else if (elen >= 5 && pos[3] == 2) {
  168. if (pos[4] == 0) {
  169. elems->wmm_info = pos;
  170. elems->wmm_info_len = elen;
  171. } else if (pos[4] == 1) {
  172. elems->wmm_param = pos;
  173. elems->wmm_param_len = elen;
  174. }
  175. }
  176. }
  177. break;
  178. case WLAN_EID_RSN:
  179. elems->rsn = pos;
  180. elems->rsn_len = elen;
  181. break;
  182. case WLAN_EID_ERP_INFO:
  183. elems->erp_info = pos;
  184. elems->erp_info_len = elen;
  185. break;
  186. case WLAN_EID_EXT_SUPP_RATES:
  187. elems->ext_supp_rates = pos;
  188. elems->ext_supp_rates_len = elen;
  189. break;
  190. case WLAN_EID_HT_CAPABILITY:
  191. elems->ht_cap_elem = pos;
  192. elems->ht_cap_elem_len = elen;
  193. break;
  194. case WLAN_EID_HT_EXTRA_INFO:
  195. elems->ht_info_elem = pos;
  196. elems->ht_info_elem_len = elen;
  197. break;
  198. default:
  199. break;
  200. }
  201. left -= elen;
  202. pos += elen;
  203. }
  204. }
  205. static int ecw2cw(int ecw)
  206. {
  207. int cw = 1;
  208. while (ecw > 0) {
  209. cw <<= 1;
  210. ecw--;
  211. }
  212. return cw - 1;
  213. }
  214. static void ieee80211_sta_wmm_params(struct net_device *dev,
  215. struct ieee80211_if_sta *ifsta,
  216. u8 *wmm_param, size_t wmm_param_len)
  217. {
  218. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  219. struct ieee80211_tx_queue_params params;
  220. size_t left;
  221. int count;
  222. u8 *pos;
  223. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  224. return;
  225. count = wmm_param[6] & 0x0f;
  226. if (count == ifsta->wmm_last_param_set)
  227. return;
  228. ifsta->wmm_last_param_set = count;
  229. pos = wmm_param + 8;
  230. left = wmm_param_len - 8;
  231. memset(&params, 0, sizeof(params));
  232. if (!local->ops->conf_tx)
  233. return;
  234. local->wmm_acm = 0;
  235. for (; left >= 4; left -= 4, pos += 4) {
  236. int aci = (pos[0] >> 5) & 0x03;
  237. int acm = (pos[0] >> 4) & 0x01;
  238. int queue;
  239. switch (aci) {
  240. case 1:
  241. queue = IEEE80211_TX_QUEUE_DATA3;
  242. if (acm) {
  243. local->wmm_acm |= BIT(0) | BIT(3);
  244. }
  245. break;
  246. case 2:
  247. queue = IEEE80211_TX_QUEUE_DATA1;
  248. if (acm) {
  249. local->wmm_acm |= BIT(4) | BIT(5);
  250. }
  251. break;
  252. case 3:
  253. queue = IEEE80211_TX_QUEUE_DATA0;
  254. if (acm) {
  255. local->wmm_acm |= BIT(6) | BIT(7);
  256. }
  257. break;
  258. case 0:
  259. default:
  260. queue = IEEE80211_TX_QUEUE_DATA2;
  261. if (acm) {
  262. local->wmm_acm |= BIT(1) | BIT(2);
  263. }
  264. break;
  265. }
  266. params.aifs = pos[0] & 0x0f;
  267. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  268. params.cw_min = ecw2cw(pos[1] & 0x0f);
  269. /* TXOP is in units of 32 usec; burst_time in 0.1 ms */
  270. params.burst_time = (pos[2] | (pos[3] << 8)) * 32 / 100;
  271. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  272. "cWmin=%d cWmax=%d burst=%d\n",
  273. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  274. params.cw_max, params.burst_time);
  275. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  276. * AC for now) */
  277. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  278. printk(KERN_DEBUG "%s: failed to set TX queue "
  279. "parameters for queue %d\n", dev->name, queue);
  280. }
  281. }
  282. }
  283. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  284. u8 erp_value)
  285. {
  286. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  287. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  288. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  289. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  290. DECLARE_MAC_BUF(mac);
  291. u32 changed = 0;
  292. if (use_protection != bss_conf->use_cts_prot) {
  293. if (net_ratelimit()) {
  294. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  295. "%s)\n",
  296. sdata->dev->name,
  297. use_protection ? "enabled" : "disabled",
  298. print_mac(mac, ifsta->bssid));
  299. }
  300. bss_conf->use_cts_prot = use_protection;
  301. changed |= BSS_CHANGED_ERP_CTS_PROT;
  302. }
  303. if (preamble_mode != bss_conf->use_short_preamble) {
  304. if (net_ratelimit()) {
  305. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  306. " (BSSID=%s)\n",
  307. sdata->dev->name,
  308. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  309. "short" : "long",
  310. print_mac(mac, ifsta->bssid));
  311. }
  312. bss_conf->use_short_preamble = preamble_mode;
  313. changed |= BSS_CHANGED_ERP_PREAMBLE;
  314. }
  315. return changed;
  316. }
  317. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  318. struct ieee80211_ht_info *ht_info)
  319. {
  320. if (ht_info == NULL)
  321. return -EINVAL;
  322. memset(ht_info, 0, sizeof(*ht_info));
  323. if (ht_cap_ie) {
  324. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  325. ht_info->ht_supported = 1;
  326. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  327. ht_info->ampdu_factor =
  328. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  329. ht_info->ampdu_density =
  330. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  331. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  332. } else
  333. ht_info->ht_supported = 0;
  334. return 0;
  335. }
  336. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  337. struct ieee80211_ht_addt_info *ht_add_info_ie,
  338. struct ieee80211_ht_bss_info *bss_info)
  339. {
  340. if (bss_info == NULL)
  341. return -EINVAL;
  342. memset(bss_info, 0, sizeof(*bss_info));
  343. if (ht_add_info_ie) {
  344. u16 op_mode;
  345. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  346. bss_info->primary_channel = ht_add_info_ie->control_chan;
  347. bss_info->bss_cap = ht_add_info_ie->ht_param;
  348. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  349. }
  350. return 0;
  351. }
  352. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  353. struct ieee80211_if_sta *ifsta)
  354. {
  355. char *buf;
  356. size_t len;
  357. int i;
  358. union iwreq_data wrqu;
  359. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  360. return;
  361. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  362. ifsta->assocresp_ies_len), GFP_KERNEL);
  363. if (!buf)
  364. return;
  365. len = sprintf(buf, "ASSOCINFO(");
  366. if (ifsta->assocreq_ies) {
  367. len += sprintf(buf + len, "ReqIEs=");
  368. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  369. len += sprintf(buf + len, "%02x",
  370. ifsta->assocreq_ies[i]);
  371. }
  372. }
  373. if (ifsta->assocresp_ies) {
  374. if (ifsta->assocreq_ies)
  375. len += sprintf(buf + len, " ");
  376. len += sprintf(buf + len, "RespIEs=");
  377. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  378. len += sprintf(buf + len, "%02x",
  379. ifsta->assocresp_ies[i]);
  380. }
  381. }
  382. len += sprintf(buf + len, ")");
  383. if (len > IW_CUSTOM_MAX) {
  384. len = sprintf(buf, "ASSOCRESPIE=");
  385. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  386. len += sprintf(buf + len, "%02x",
  387. ifsta->assocresp_ies[i]);
  388. }
  389. }
  390. memset(&wrqu, 0, sizeof(wrqu));
  391. wrqu.data.length = len;
  392. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  393. kfree(buf);
  394. }
  395. static void ieee80211_set_associated(struct net_device *dev,
  396. struct ieee80211_if_sta *ifsta,
  397. bool assoc)
  398. {
  399. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  400. struct ieee80211_local *local = sdata->local;
  401. union iwreq_data wrqu;
  402. u32 changed = BSS_CHANGED_ASSOC;
  403. if (assoc) {
  404. struct ieee80211_sta_bss *bss;
  405. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  406. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  407. return;
  408. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  409. local->hw.conf.channel->center_freq,
  410. ifsta->ssid, ifsta->ssid_len);
  411. if (bss) {
  412. if (bss->has_erp_value)
  413. changed |= ieee80211_handle_erp_ie(
  414. sdata, bss->erp_value);
  415. ieee80211_rx_bss_put(dev, bss);
  416. }
  417. netif_carrier_on(dev);
  418. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  419. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  420. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  421. ieee80211_sta_send_associnfo(dev, ifsta);
  422. } else {
  423. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  424. netif_carrier_off(dev);
  425. ieee80211_reset_erp_info(dev);
  426. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  427. }
  428. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  429. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  430. ifsta->last_probe = jiffies;
  431. ieee80211_led_assoc(local, assoc);
  432. sdata->bss_conf.assoc = assoc;
  433. ieee80211_bss_info_change_notify(sdata, changed);
  434. }
  435. static void ieee80211_set_disassoc(struct net_device *dev,
  436. struct ieee80211_if_sta *ifsta, int deauth)
  437. {
  438. if (deauth)
  439. ifsta->auth_tries = 0;
  440. ifsta->assoc_tries = 0;
  441. ieee80211_set_associated(dev, ifsta, 0);
  442. }
  443. static void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  444. int encrypt)
  445. {
  446. struct ieee80211_sub_if_data *sdata;
  447. struct ieee80211_tx_packet_data *pkt_data;
  448. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  449. skb->dev = sdata->local->mdev;
  450. skb_set_mac_header(skb, 0);
  451. skb_set_network_header(skb, 0);
  452. skb_set_transport_header(skb, 0);
  453. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  454. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  455. pkt_data->ifindex = sdata->dev->ifindex;
  456. if (!encrypt)
  457. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  458. dev_queue_xmit(skb);
  459. }
  460. static void ieee80211_send_auth(struct net_device *dev,
  461. struct ieee80211_if_sta *ifsta,
  462. int transaction, u8 *extra, size_t extra_len,
  463. int encrypt)
  464. {
  465. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  466. struct sk_buff *skb;
  467. struct ieee80211_mgmt *mgmt;
  468. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  469. sizeof(*mgmt) + 6 + extra_len);
  470. if (!skb) {
  471. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  472. "frame\n", dev->name);
  473. return;
  474. }
  475. skb_reserve(skb, local->hw.extra_tx_headroom);
  476. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  477. memset(mgmt, 0, 24 + 6);
  478. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  479. IEEE80211_STYPE_AUTH);
  480. if (encrypt)
  481. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  482. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  483. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  484. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  485. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  486. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  487. ifsta->auth_transaction = transaction + 1;
  488. mgmt->u.auth.status_code = cpu_to_le16(0);
  489. if (extra)
  490. memcpy(skb_put(skb, extra_len), extra, extra_len);
  491. ieee80211_sta_tx(dev, skb, encrypt);
  492. }
  493. static void ieee80211_authenticate(struct net_device *dev,
  494. struct ieee80211_if_sta *ifsta)
  495. {
  496. DECLARE_MAC_BUF(mac);
  497. ifsta->auth_tries++;
  498. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  499. printk(KERN_DEBUG "%s: authentication with AP %s"
  500. " timed out\n",
  501. dev->name, print_mac(mac, ifsta->bssid));
  502. ifsta->state = IEEE80211_DISABLED;
  503. return;
  504. }
  505. ifsta->state = IEEE80211_AUTHENTICATE;
  506. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  507. dev->name, print_mac(mac, ifsta->bssid));
  508. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  509. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  510. }
  511. static void ieee80211_send_assoc(struct net_device *dev,
  512. struct ieee80211_if_sta *ifsta)
  513. {
  514. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  515. struct sk_buff *skb;
  516. struct ieee80211_mgmt *mgmt;
  517. u8 *pos, *ies;
  518. int i, len;
  519. u16 capab;
  520. struct ieee80211_sta_bss *bss;
  521. int wmm = 0;
  522. struct ieee80211_supported_band *sband;
  523. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  524. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  525. ifsta->ssid_len);
  526. if (!skb) {
  527. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  528. "frame\n", dev->name);
  529. return;
  530. }
  531. skb_reserve(skb, local->hw.extra_tx_headroom);
  532. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  533. capab = ifsta->capab;
  534. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  535. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  536. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  537. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  538. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  539. }
  540. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  541. local->hw.conf.channel->center_freq,
  542. ifsta->ssid, ifsta->ssid_len);
  543. if (bss) {
  544. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  545. capab |= WLAN_CAPABILITY_PRIVACY;
  546. if (bss->wmm_ie) {
  547. wmm = 1;
  548. }
  549. ieee80211_rx_bss_put(dev, bss);
  550. }
  551. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  552. memset(mgmt, 0, 24);
  553. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  554. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  555. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  556. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  557. skb_put(skb, 10);
  558. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  559. IEEE80211_STYPE_REASSOC_REQ);
  560. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  561. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  562. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  563. ETH_ALEN);
  564. } else {
  565. skb_put(skb, 4);
  566. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  567. IEEE80211_STYPE_ASSOC_REQ);
  568. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  569. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  570. }
  571. /* SSID */
  572. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  573. *pos++ = WLAN_EID_SSID;
  574. *pos++ = ifsta->ssid_len;
  575. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  576. len = sband->n_bitrates;
  577. if (len > 8)
  578. len = 8;
  579. pos = skb_put(skb, len + 2);
  580. *pos++ = WLAN_EID_SUPP_RATES;
  581. *pos++ = len;
  582. for (i = 0; i < len; i++) {
  583. int rate = sband->bitrates[i].bitrate;
  584. *pos++ = (u8) (rate / 5);
  585. }
  586. if (sband->n_bitrates > len) {
  587. pos = skb_put(skb, sband->n_bitrates - len + 2);
  588. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  589. *pos++ = sband->n_bitrates - len;
  590. for (i = len; i < sband->n_bitrates; i++) {
  591. int rate = sband->bitrates[i].bitrate;
  592. *pos++ = (u8) (rate / 5);
  593. }
  594. }
  595. if (ifsta->extra_ie) {
  596. pos = skb_put(skb, ifsta->extra_ie_len);
  597. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  598. }
  599. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  600. pos = skb_put(skb, 9);
  601. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  602. *pos++ = 7; /* len */
  603. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  604. *pos++ = 0x50;
  605. *pos++ = 0xf2;
  606. *pos++ = 2; /* WME */
  607. *pos++ = 0; /* WME info */
  608. *pos++ = 1; /* WME ver */
  609. *pos++ = 0;
  610. }
  611. /* wmm support is a must to HT */
  612. if (wmm && sband->ht_info.ht_supported) {
  613. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  614. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  615. *pos++ = WLAN_EID_HT_CAPABILITY;
  616. *pos++ = sizeof(struct ieee80211_ht_cap);
  617. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  618. memcpy(pos, &tmp, sizeof(u16));
  619. pos += sizeof(u16);
  620. /* TODO: needs a define here for << 2 */
  621. *pos++ = sband->ht_info.ampdu_factor |
  622. (sband->ht_info.ampdu_density << 2);
  623. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  624. }
  625. kfree(ifsta->assocreq_ies);
  626. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  627. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  628. if (ifsta->assocreq_ies)
  629. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  630. ieee80211_sta_tx(dev, skb, 0);
  631. }
  632. static void ieee80211_send_deauth(struct net_device *dev,
  633. struct ieee80211_if_sta *ifsta, u16 reason)
  634. {
  635. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  636. struct sk_buff *skb;
  637. struct ieee80211_mgmt *mgmt;
  638. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  639. if (!skb) {
  640. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  641. "frame\n", dev->name);
  642. return;
  643. }
  644. skb_reserve(skb, local->hw.extra_tx_headroom);
  645. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  646. memset(mgmt, 0, 24);
  647. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  648. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  649. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  650. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  651. IEEE80211_STYPE_DEAUTH);
  652. skb_put(skb, 2);
  653. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  654. ieee80211_sta_tx(dev, skb, 0);
  655. }
  656. static void ieee80211_send_disassoc(struct net_device *dev,
  657. struct ieee80211_if_sta *ifsta, u16 reason)
  658. {
  659. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  660. struct sk_buff *skb;
  661. struct ieee80211_mgmt *mgmt;
  662. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  663. if (!skb) {
  664. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  665. "frame\n", dev->name);
  666. return;
  667. }
  668. skb_reserve(skb, local->hw.extra_tx_headroom);
  669. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  670. memset(mgmt, 0, 24);
  671. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  672. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  673. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  674. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  675. IEEE80211_STYPE_DISASSOC);
  676. skb_put(skb, 2);
  677. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  678. ieee80211_sta_tx(dev, skb, 0);
  679. }
  680. static int ieee80211_privacy_mismatch(struct net_device *dev,
  681. struct ieee80211_if_sta *ifsta)
  682. {
  683. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  684. struct ieee80211_sta_bss *bss;
  685. int bss_privacy;
  686. int wep_privacy;
  687. int privacy_invoked;
  688. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  689. return 0;
  690. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  691. local->hw.conf.channel->center_freq,
  692. ifsta->ssid, ifsta->ssid_len);
  693. if (!bss)
  694. return 0;
  695. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  696. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  697. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  698. ieee80211_rx_bss_put(dev, bss);
  699. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  700. return 0;
  701. return 1;
  702. }
  703. static void ieee80211_associate(struct net_device *dev,
  704. struct ieee80211_if_sta *ifsta)
  705. {
  706. DECLARE_MAC_BUF(mac);
  707. ifsta->assoc_tries++;
  708. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  709. printk(KERN_DEBUG "%s: association with AP %s"
  710. " timed out\n",
  711. dev->name, print_mac(mac, ifsta->bssid));
  712. ifsta->state = IEEE80211_DISABLED;
  713. return;
  714. }
  715. ifsta->state = IEEE80211_ASSOCIATE;
  716. printk(KERN_DEBUG "%s: associate with AP %s\n",
  717. dev->name, print_mac(mac, ifsta->bssid));
  718. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  719. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  720. "mixed-cell disabled - abort association\n", dev->name);
  721. ifsta->state = IEEE80211_DISABLED;
  722. return;
  723. }
  724. ieee80211_send_assoc(dev, ifsta);
  725. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  726. }
  727. static void ieee80211_associated(struct net_device *dev,
  728. struct ieee80211_if_sta *ifsta)
  729. {
  730. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  731. struct sta_info *sta;
  732. int disassoc;
  733. DECLARE_MAC_BUF(mac);
  734. /* TODO: start monitoring current AP signal quality and number of
  735. * missed beacons. Scan other channels every now and then and search
  736. * for better APs. */
  737. /* TODO: remove expired BSSes */
  738. ifsta->state = IEEE80211_ASSOCIATED;
  739. sta = sta_info_get(local, ifsta->bssid);
  740. if (!sta) {
  741. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  742. dev->name, print_mac(mac, ifsta->bssid));
  743. disassoc = 1;
  744. } else {
  745. disassoc = 0;
  746. if (time_after(jiffies,
  747. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  748. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  749. printk(KERN_DEBUG "%s: No ProbeResp from "
  750. "current AP %s - assume out of "
  751. "range\n",
  752. dev->name, print_mac(mac, ifsta->bssid));
  753. disassoc = 1;
  754. sta_info_free(sta);
  755. } else
  756. ieee80211_send_probe_req(dev, ifsta->bssid,
  757. local->scan_ssid,
  758. local->scan_ssid_len);
  759. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  760. } else {
  761. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  762. if (time_after(jiffies, ifsta->last_probe +
  763. IEEE80211_PROBE_INTERVAL)) {
  764. ifsta->last_probe = jiffies;
  765. ieee80211_send_probe_req(dev, ifsta->bssid,
  766. ifsta->ssid,
  767. ifsta->ssid_len);
  768. }
  769. }
  770. sta_info_put(sta);
  771. }
  772. if (disassoc) {
  773. ifsta->state = IEEE80211_DISABLED;
  774. ieee80211_set_associated(dev, ifsta, 0);
  775. } else {
  776. mod_timer(&ifsta->timer, jiffies +
  777. IEEE80211_MONITORING_INTERVAL);
  778. }
  779. }
  780. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  781. u8 *ssid, size_t ssid_len)
  782. {
  783. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  784. struct ieee80211_supported_band *sband;
  785. struct sk_buff *skb;
  786. struct ieee80211_mgmt *mgmt;
  787. u8 *pos, *supp_rates, *esupp_rates = NULL;
  788. int i;
  789. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  790. if (!skb) {
  791. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  792. "request\n", dev->name);
  793. return;
  794. }
  795. skb_reserve(skb, local->hw.extra_tx_headroom);
  796. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  797. memset(mgmt, 0, 24);
  798. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  799. IEEE80211_STYPE_PROBE_REQ);
  800. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  801. if (dst) {
  802. memcpy(mgmt->da, dst, ETH_ALEN);
  803. memcpy(mgmt->bssid, dst, ETH_ALEN);
  804. } else {
  805. memset(mgmt->da, 0xff, ETH_ALEN);
  806. memset(mgmt->bssid, 0xff, ETH_ALEN);
  807. }
  808. pos = skb_put(skb, 2 + ssid_len);
  809. *pos++ = WLAN_EID_SSID;
  810. *pos++ = ssid_len;
  811. memcpy(pos, ssid, ssid_len);
  812. supp_rates = skb_put(skb, 2);
  813. supp_rates[0] = WLAN_EID_SUPP_RATES;
  814. supp_rates[1] = 0;
  815. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  816. for (i = 0; i < sband->n_bitrates; i++) {
  817. struct ieee80211_rate *rate = &sband->bitrates[i];
  818. if (esupp_rates) {
  819. pos = skb_put(skb, 1);
  820. esupp_rates[1]++;
  821. } else if (supp_rates[1] == 8) {
  822. esupp_rates = skb_put(skb, 3);
  823. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  824. esupp_rates[1] = 1;
  825. pos = &esupp_rates[2];
  826. } else {
  827. pos = skb_put(skb, 1);
  828. supp_rates[1]++;
  829. }
  830. *pos = rate->bitrate / 5;
  831. }
  832. ieee80211_sta_tx(dev, skb, 0);
  833. }
  834. static int ieee80211_sta_wep_configured(struct net_device *dev)
  835. {
  836. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  837. if (!sdata || !sdata->default_key ||
  838. sdata->default_key->conf.alg != ALG_WEP)
  839. return 0;
  840. return 1;
  841. }
  842. static void ieee80211_auth_completed(struct net_device *dev,
  843. struct ieee80211_if_sta *ifsta)
  844. {
  845. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  846. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  847. ieee80211_associate(dev, ifsta);
  848. }
  849. static void ieee80211_auth_challenge(struct net_device *dev,
  850. struct ieee80211_if_sta *ifsta,
  851. struct ieee80211_mgmt *mgmt,
  852. size_t len)
  853. {
  854. u8 *pos;
  855. struct ieee802_11_elems elems;
  856. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  857. pos = mgmt->u.auth.variable;
  858. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  859. if (!elems.challenge) {
  860. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  861. "frame\n", dev->name);
  862. return;
  863. }
  864. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  865. elems.challenge_len + 2, 1);
  866. }
  867. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  868. u8 dialog_token, u16 status, u16 policy,
  869. u16 buf_size, u16 timeout)
  870. {
  871. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  872. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  873. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  874. struct sk_buff *skb;
  875. struct ieee80211_mgmt *mgmt;
  876. u16 capab;
  877. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  878. sizeof(mgmt->u.action.u.addba_resp));
  879. if (!skb) {
  880. printk(KERN_DEBUG "%s: failed to allocate buffer "
  881. "for addba resp frame\n", dev->name);
  882. return;
  883. }
  884. skb_reserve(skb, local->hw.extra_tx_headroom);
  885. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  886. memset(mgmt, 0, 24);
  887. memcpy(mgmt->da, da, ETH_ALEN);
  888. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  889. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  890. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  891. else
  892. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  893. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  894. IEEE80211_STYPE_ACTION);
  895. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  896. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  897. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  898. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  899. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  900. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  901. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  902. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  903. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  904. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  905. ieee80211_sta_tx(dev, skb, 0);
  906. return;
  907. }
  908. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  909. u16 tid, u8 dialog_token, u16 start_seq_num,
  910. u16 agg_size, u16 timeout)
  911. {
  912. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  913. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  914. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  915. struct sk_buff *skb;
  916. struct ieee80211_mgmt *mgmt;
  917. u16 capab;
  918. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  919. sizeof(mgmt->u.action.u.addba_req));
  920. if (!skb) {
  921. printk(KERN_ERR "%s: failed to allocate buffer "
  922. "for addba request frame\n", dev->name);
  923. return;
  924. }
  925. skb_reserve(skb, local->hw.extra_tx_headroom);
  926. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  927. memset(mgmt, 0, 24);
  928. memcpy(mgmt->da, da, ETH_ALEN);
  929. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  930. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  931. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  932. else
  933. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  934. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  935. IEEE80211_STYPE_ACTION);
  936. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  937. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  938. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  939. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  940. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  941. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  942. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  943. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  944. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  945. mgmt->u.action.u.addba_req.start_seq_num =
  946. cpu_to_le16(start_seq_num << 4);
  947. ieee80211_sta_tx(dev, skb, 0);
  948. }
  949. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  950. struct ieee80211_mgmt *mgmt,
  951. size_t len)
  952. {
  953. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  954. struct ieee80211_hw *hw = &local->hw;
  955. struct ieee80211_conf *conf = &hw->conf;
  956. struct sta_info *sta;
  957. struct tid_ampdu_rx *tid_agg_rx;
  958. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  959. u8 dialog_token;
  960. int ret = -EOPNOTSUPP;
  961. DECLARE_MAC_BUF(mac);
  962. sta = sta_info_get(local, mgmt->sa);
  963. if (!sta)
  964. return;
  965. /* extract session parameters from addba request frame */
  966. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  967. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  968. start_seq_num =
  969. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  970. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  971. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  972. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  973. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  974. status = WLAN_STATUS_REQUEST_DECLINED;
  975. /* sanity check for incoming parameters:
  976. * check if configuration can support the BA policy
  977. * and if buffer size does not exceeds max value */
  978. if (((ba_policy != 1)
  979. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  980. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  981. status = WLAN_STATUS_INVALID_QOS_PARAM;
  982. #ifdef CONFIG_MAC80211_HT_DEBUG
  983. if (net_ratelimit())
  984. printk(KERN_DEBUG "Block Ack Req with bad params from "
  985. "%s on tid %u. policy %d, buffer size %d\n",
  986. print_mac(mac, mgmt->sa), tid, ba_policy,
  987. buf_size);
  988. #endif /* CONFIG_MAC80211_HT_DEBUG */
  989. goto end_no_lock;
  990. }
  991. /* determine default buffer size */
  992. if (buf_size == 0) {
  993. struct ieee80211_supported_band *sband;
  994. sband = local->hw.wiphy->bands[conf->channel->band];
  995. buf_size = IEEE80211_MIN_AMPDU_BUF;
  996. buf_size = buf_size << sband->ht_info.ampdu_factor;
  997. }
  998. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  999. /* examine state machine */
  1000. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1001. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  1002. #ifdef CONFIG_MAC80211_HT_DEBUG
  1003. if (net_ratelimit())
  1004. printk(KERN_DEBUG "unexpected Block Ack Req from "
  1005. "%s on tid %u\n",
  1006. print_mac(mac, mgmt->sa), tid);
  1007. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1008. goto end;
  1009. }
  1010. /* prepare reordering buffer */
  1011. tid_agg_rx->reorder_buf =
  1012. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1013. if (!tid_agg_rx->reorder_buf) {
  1014. if (net_ratelimit())
  1015. printk(KERN_ERR "can not allocate reordering buffer "
  1016. "to tid %d\n", tid);
  1017. goto end;
  1018. }
  1019. memset(tid_agg_rx->reorder_buf, 0,
  1020. buf_size * sizeof(struct sk_buf *));
  1021. if (local->ops->ampdu_action)
  1022. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1023. sta->addr, tid, &start_seq_num);
  1024. #ifdef CONFIG_MAC80211_HT_DEBUG
  1025. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1026. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1027. if (ret) {
  1028. kfree(tid_agg_rx->reorder_buf);
  1029. goto end;
  1030. }
  1031. /* change state and send addba resp */
  1032. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  1033. tid_agg_rx->dialog_token = dialog_token;
  1034. tid_agg_rx->ssn = start_seq_num;
  1035. tid_agg_rx->head_seq_num = start_seq_num;
  1036. tid_agg_rx->buf_size = buf_size;
  1037. tid_agg_rx->timeout = timeout;
  1038. tid_agg_rx->stored_mpdu_num = 0;
  1039. status = WLAN_STATUS_SUCCESS;
  1040. end:
  1041. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1042. end_no_lock:
  1043. ieee80211_send_addba_resp(sta->dev, sta->addr, tid, dialog_token,
  1044. status, 1, buf_size, timeout);
  1045. sta_info_put(sta);
  1046. }
  1047. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1048. struct ieee80211_mgmt *mgmt,
  1049. size_t len)
  1050. {
  1051. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1052. struct ieee80211_hw *hw = &local->hw;
  1053. struct sta_info *sta;
  1054. u16 capab;
  1055. u16 tid;
  1056. u8 *state;
  1057. sta = sta_info_get(local, mgmt->sa);
  1058. if (!sta)
  1059. return;
  1060. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1061. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1062. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1063. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1064. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1065. sta->ampdu_mlme.tid_tx[tid].dialog_token) {
  1066. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1067. #ifdef CONFIG_MAC80211_HT_DEBUG
  1068. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1069. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1070. sta_info_put(sta);
  1071. return;
  1072. }
  1073. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid].addba_resp_timer);
  1074. #ifdef CONFIG_MAC80211_HT_DEBUG
  1075. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1076. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1077. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1078. == WLAN_STATUS_SUCCESS) {
  1079. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1080. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1081. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1082. "%d\n", *state);
  1083. sta_info_put(sta);
  1084. return;
  1085. }
  1086. if (*state & HT_ADDBA_RECEIVED_MSK)
  1087. printk(KERN_DEBUG "double addBA response\n");
  1088. *state |= HT_ADDBA_RECEIVED_MSK;
  1089. sta->ampdu_mlme.tid_tx[tid].addba_req_num = 0;
  1090. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1091. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1092. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1093. }
  1094. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1095. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1096. } else {
  1097. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1098. sta->ampdu_mlme.tid_tx[tid].addba_req_num++;
  1099. /* this will allow the state check in stop_BA_session */
  1100. *state = HT_AGG_STATE_OPERATIONAL;
  1101. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1102. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1103. WLAN_BACK_INITIATOR);
  1104. }
  1105. sta_info_put(sta);
  1106. }
  1107. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1108. u16 initiator, u16 reason_code)
  1109. {
  1110. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1111. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1112. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1113. struct sk_buff *skb;
  1114. struct ieee80211_mgmt *mgmt;
  1115. u16 params;
  1116. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1117. sizeof(mgmt->u.action.u.delba));
  1118. if (!skb) {
  1119. printk(KERN_ERR "%s: failed to allocate buffer "
  1120. "for delba frame\n", dev->name);
  1121. return;
  1122. }
  1123. skb_reserve(skb, local->hw.extra_tx_headroom);
  1124. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1125. memset(mgmt, 0, 24);
  1126. memcpy(mgmt->da, da, ETH_ALEN);
  1127. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1128. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1129. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1130. else
  1131. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1132. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1133. IEEE80211_STYPE_ACTION);
  1134. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1135. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1136. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1137. params = (u16)(initiator << 11); /* bit 11 initiator */
  1138. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1139. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1140. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1141. ieee80211_sta_tx(dev, skb, 0);
  1142. }
  1143. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1144. u16 initiator, u16 reason)
  1145. {
  1146. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1147. struct ieee80211_hw *hw = &local->hw;
  1148. struct sta_info *sta;
  1149. int ret, i;
  1150. sta = sta_info_get(local, ra);
  1151. if (!sta)
  1152. return;
  1153. /* check if TID is in operational state */
  1154. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1155. if (sta->ampdu_mlme.tid_rx[tid].state
  1156. != HT_AGG_STATE_OPERATIONAL) {
  1157. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1158. sta_info_put(sta);
  1159. return;
  1160. }
  1161. sta->ampdu_mlme.tid_rx[tid].state =
  1162. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1163. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1164. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1165. /* stop HW Rx aggregation. ampdu_action existence
  1166. * already verified in session init so we add the BUG_ON */
  1167. BUG_ON(!local->ops->ampdu_action);
  1168. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1169. ra, tid, NULL);
  1170. if (ret)
  1171. printk(KERN_DEBUG "HW problem - can not stop rx "
  1172. "aggergation for tid %d\n", tid);
  1173. /* shutdown timer has not expired */
  1174. if (initiator != WLAN_BACK_TIMER)
  1175. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1176. session_timer);
  1177. /* check if this is a self generated aggregation halt */
  1178. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1179. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1180. /* free the reordering buffer */
  1181. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) {
  1182. if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) {
  1183. /* release the reordered frames */
  1184. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]);
  1185. sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--;
  1186. sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL;
  1187. }
  1188. }
  1189. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1190. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1191. sta_info_put(sta);
  1192. }
  1193. static void ieee80211_sta_process_delba(struct net_device *dev,
  1194. struct ieee80211_mgmt *mgmt, size_t len)
  1195. {
  1196. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1197. struct sta_info *sta;
  1198. u16 tid, params;
  1199. u16 initiator;
  1200. DECLARE_MAC_BUF(mac);
  1201. sta = sta_info_get(local, mgmt->sa);
  1202. if (!sta)
  1203. return;
  1204. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1205. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1206. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1207. #ifdef CONFIG_MAC80211_HT_DEBUG
  1208. if (net_ratelimit())
  1209. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1210. print_mac(mac, mgmt->sa),
  1211. initiator ? "recipient" : "initiator", tid,
  1212. mgmt->u.action.u.delba.reason_code);
  1213. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1214. if (initiator == WLAN_BACK_INITIATOR)
  1215. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1216. WLAN_BACK_INITIATOR, 0);
  1217. else { /* WLAN_BACK_RECIPIENT */
  1218. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1219. sta->ampdu_mlme.tid_tx[tid].state =
  1220. HT_AGG_STATE_OPERATIONAL;
  1221. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1222. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1223. WLAN_BACK_RECIPIENT);
  1224. }
  1225. sta_info_put(sta);
  1226. }
  1227. /*
  1228. * After sending add Block Ack request we activated a timer until
  1229. * add Block Ack response will arrive from the recipient.
  1230. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1231. */
  1232. void sta_addba_resp_timer_expired(unsigned long data)
  1233. {
  1234. /* not an elegant detour, but there is no choice as the timer passes
  1235. * only one argument, and both sta_info and TID are needed, so init
  1236. * flow in sta_info_add gives the TID as data, while the timer_to_id
  1237. * array gives the sta through container_of */
  1238. u16 tid = *(int *)data;
  1239. struct sta_info *temp_sta = container_of((void *)data,
  1240. struct sta_info, timer_to_tid[tid]);
  1241. struct ieee80211_local *local = temp_sta->local;
  1242. struct ieee80211_hw *hw = &local->hw;
  1243. struct sta_info *sta;
  1244. u8 *state;
  1245. sta = sta_info_get(local, temp_sta->addr);
  1246. if (!sta)
  1247. return;
  1248. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1249. /* check if the TID waits for addBA response */
  1250. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1251. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1252. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1253. *state = HT_AGG_STATE_IDLE;
  1254. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1255. "expecting addBA response there", tid);
  1256. goto timer_expired_exit;
  1257. }
  1258. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1259. /* go through the state check in stop_BA_session */
  1260. *state = HT_AGG_STATE_OPERATIONAL;
  1261. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1262. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1263. WLAN_BACK_INITIATOR);
  1264. timer_expired_exit:
  1265. sta_info_put(sta);
  1266. }
  1267. /*
  1268. * After receiving Block Ack Request (BAR) we activated a
  1269. * timer after each frame arrives from the originator.
  1270. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1271. */
  1272. void sta_rx_agg_session_timer_expired(unsigned long data)
  1273. {
  1274. /* not an elegant detour, but there is no choice as the timer passes
  1275. * only one argument, and verious sta_info are needed here, so init
  1276. * flow in sta_info_add gives the TID as data, while the timer_to_id
  1277. * array gives the sta through container_of */
  1278. u8 *ptid = (u8 *)data;
  1279. u8 *timer_to_id = ptid - *ptid;
  1280. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1281. timer_to_tid[0]);
  1282. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1283. ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr, (u16)*ptid,
  1284. WLAN_BACK_TIMER,
  1285. WLAN_REASON_QSTA_TIMEOUT);
  1286. }
  1287. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1288. struct ieee80211_if_sta *ifsta,
  1289. struct ieee80211_mgmt *mgmt,
  1290. size_t len)
  1291. {
  1292. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1293. u16 auth_alg, auth_transaction, status_code;
  1294. DECLARE_MAC_BUF(mac);
  1295. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1296. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1297. printk(KERN_DEBUG "%s: authentication frame received from "
  1298. "%s, but not in authenticate state - ignored\n",
  1299. dev->name, print_mac(mac, mgmt->sa));
  1300. return;
  1301. }
  1302. if (len < 24 + 6) {
  1303. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1304. "received from %s - ignored\n",
  1305. dev->name, len, print_mac(mac, mgmt->sa));
  1306. return;
  1307. }
  1308. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1309. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1310. printk(KERN_DEBUG "%s: authentication frame received from "
  1311. "unknown AP (SA=%s BSSID=%s) - "
  1312. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1313. print_mac(mac, mgmt->bssid));
  1314. return;
  1315. }
  1316. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1317. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1318. printk(KERN_DEBUG "%s: authentication frame received from "
  1319. "unknown BSSID (SA=%s BSSID=%s) - "
  1320. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1321. print_mac(mac, mgmt->bssid));
  1322. return;
  1323. }
  1324. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1325. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1326. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1327. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1328. "transaction=%d status=%d)\n",
  1329. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1330. auth_transaction, status_code);
  1331. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1332. /* IEEE 802.11 standard does not require authentication in IBSS
  1333. * networks and most implementations do not seem to use it.
  1334. * However, try to reply to authentication attempts if someone
  1335. * has actually implemented this.
  1336. * TODO: Could implement shared key authentication. */
  1337. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1338. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1339. "frame (alg=%d transaction=%d)\n",
  1340. dev->name, auth_alg, auth_transaction);
  1341. return;
  1342. }
  1343. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1344. }
  1345. if (auth_alg != ifsta->auth_alg ||
  1346. auth_transaction != ifsta->auth_transaction) {
  1347. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1348. "(alg=%d transaction=%d)\n",
  1349. dev->name, auth_alg, auth_transaction);
  1350. return;
  1351. }
  1352. if (status_code != WLAN_STATUS_SUCCESS) {
  1353. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1354. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1355. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1356. u8 algs[3];
  1357. const int num_algs = ARRAY_SIZE(algs);
  1358. int i, pos;
  1359. algs[0] = algs[1] = algs[2] = 0xff;
  1360. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1361. algs[0] = WLAN_AUTH_OPEN;
  1362. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1363. algs[1] = WLAN_AUTH_SHARED_KEY;
  1364. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1365. algs[2] = WLAN_AUTH_LEAP;
  1366. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1367. pos = 0;
  1368. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1369. pos = 1;
  1370. else
  1371. pos = 2;
  1372. for (i = 0; i < num_algs; i++) {
  1373. pos++;
  1374. if (pos >= num_algs)
  1375. pos = 0;
  1376. if (algs[pos] == ifsta->auth_alg ||
  1377. algs[pos] == 0xff)
  1378. continue;
  1379. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1380. !ieee80211_sta_wep_configured(dev))
  1381. continue;
  1382. ifsta->auth_alg = algs[pos];
  1383. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1384. "next try\n",
  1385. dev->name, ifsta->auth_alg);
  1386. break;
  1387. }
  1388. }
  1389. return;
  1390. }
  1391. switch (ifsta->auth_alg) {
  1392. case WLAN_AUTH_OPEN:
  1393. case WLAN_AUTH_LEAP:
  1394. ieee80211_auth_completed(dev, ifsta);
  1395. break;
  1396. case WLAN_AUTH_SHARED_KEY:
  1397. if (ifsta->auth_transaction == 4)
  1398. ieee80211_auth_completed(dev, ifsta);
  1399. else
  1400. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1401. break;
  1402. }
  1403. }
  1404. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1405. struct ieee80211_if_sta *ifsta,
  1406. struct ieee80211_mgmt *mgmt,
  1407. size_t len)
  1408. {
  1409. u16 reason_code;
  1410. DECLARE_MAC_BUF(mac);
  1411. if (len < 24 + 2) {
  1412. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1413. "received from %s - ignored\n",
  1414. dev->name, len, print_mac(mac, mgmt->sa));
  1415. return;
  1416. }
  1417. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1418. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1419. "unknown AP (SA=%s BSSID=%s) - "
  1420. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1421. print_mac(mac, mgmt->bssid));
  1422. return;
  1423. }
  1424. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1425. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1426. " (reason=%d)\n",
  1427. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1428. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1429. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1430. }
  1431. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1432. ifsta->state == IEEE80211_ASSOCIATE ||
  1433. ifsta->state == IEEE80211_ASSOCIATED) {
  1434. ifsta->state = IEEE80211_AUTHENTICATE;
  1435. mod_timer(&ifsta->timer, jiffies +
  1436. IEEE80211_RETRY_AUTH_INTERVAL);
  1437. }
  1438. ieee80211_set_disassoc(dev, ifsta, 1);
  1439. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1440. }
  1441. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1442. struct ieee80211_if_sta *ifsta,
  1443. struct ieee80211_mgmt *mgmt,
  1444. size_t len)
  1445. {
  1446. u16 reason_code;
  1447. DECLARE_MAC_BUF(mac);
  1448. if (len < 24 + 2) {
  1449. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1450. "received from %s - ignored\n",
  1451. dev->name, len, print_mac(mac, mgmt->sa));
  1452. return;
  1453. }
  1454. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1455. printk(KERN_DEBUG "%s: disassociation frame received from "
  1456. "unknown AP (SA=%s BSSID=%s) - "
  1457. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1458. print_mac(mac, mgmt->bssid));
  1459. return;
  1460. }
  1461. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1462. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1463. " (reason=%d)\n",
  1464. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1465. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1466. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1467. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1468. ifsta->state = IEEE80211_ASSOCIATE;
  1469. mod_timer(&ifsta->timer, jiffies +
  1470. IEEE80211_RETRY_AUTH_INTERVAL);
  1471. }
  1472. ieee80211_set_disassoc(dev, ifsta, 0);
  1473. }
  1474. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1475. struct ieee80211_if_sta *ifsta,
  1476. struct ieee80211_mgmt *mgmt,
  1477. size_t len,
  1478. int reassoc)
  1479. {
  1480. struct ieee80211_local *local = sdata->local;
  1481. struct net_device *dev = sdata->dev;
  1482. struct ieee80211_supported_band *sband;
  1483. struct sta_info *sta;
  1484. u64 rates, basic_rates;
  1485. u16 capab_info, status_code, aid;
  1486. struct ieee802_11_elems elems;
  1487. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1488. u8 *pos;
  1489. int i, j;
  1490. DECLARE_MAC_BUF(mac);
  1491. bool have_higher_than_11mbit = false;
  1492. /* AssocResp and ReassocResp have identical structure, so process both
  1493. * of them in this function. */
  1494. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1495. printk(KERN_DEBUG "%s: association frame received from "
  1496. "%s, but not in associate state - ignored\n",
  1497. dev->name, print_mac(mac, mgmt->sa));
  1498. return;
  1499. }
  1500. if (len < 24 + 6) {
  1501. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1502. "received from %s - ignored\n",
  1503. dev->name, len, print_mac(mac, mgmt->sa));
  1504. return;
  1505. }
  1506. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1507. printk(KERN_DEBUG "%s: association frame received from "
  1508. "unknown AP (SA=%s BSSID=%s) - "
  1509. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1510. print_mac(mac, mgmt->bssid));
  1511. return;
  1512. }
  1513. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1514. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1515. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1516. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1517. "status=%d aid=%d)\n",
  1518. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1519. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1520. if (status_code != WLAN_STATUS_SUCCESS) {
  1521. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1522. dev->name, status_code);
  1523. /* if this was a reassociation, ensure we try a "full"
  1524. * association next time. This works around some broken APs
  1525. * which do not correctly reject reassociation requests. */
  1526. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1527. return;
  1528. }
  1529. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1530. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1531. "set\n", dev->name, aid);
  1532. aid &= ~(BIT(15) | BIT(14));
  1533. pos = mgmt->u.assoc_resp.variable;
  1534. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1535. if (!elems.supp_rates) {
  1536. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1537. dev->name);
  1538. return;
  1539. }
  1540. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1541. ifsta->aid = aid;
  1542. ifsta->ap_capab = capab_info;
  1543. kfree(ifsta->assocresp_ies);
  1544. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1545. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1546. if (ifsta->assocresp_ies)
  1547. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1548. /* Add STA entry for the AP */
  1549. sta = sta_info_get(local, ifsta->bssid);
  1550. if (!sta) {
  1551. struct ieee80211_sta_bss *bss;
  1552. sta = sta_info_add(local, dev, ifsta->bssid, GFP_KERNEL);
  1553. if (!sta) {
  1554. printk(KERN_DEBUG "%s: failed to add STA entry for the"
  1555. " AP\n", dev->name);
  1556. return;
  1557. }
  1558. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1559. local->hw.conf.channel->center_freq,
  1560. ifsta->ssid, ifsta->ssid_len);
  1561. if (bss) {
  1562. sta->last_rssi = bss->rssi;
  1563. sta->last_signal = bss->signal;
  1564. sta->last_noise = bss->noise;
  1565. ieee80211_rx_bss_put(dev, bss);
  1566. }
  1567. }
  1568. sta->dev = dev;
  1569. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP;
  1570. rates = 0;
  1571. basic_rates = 0;
  1572. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1573. for (i = 0; i < elems.supp_rates_len; i++) {
  1574. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1575. if (rate > 110)
  1576. have_higher_than_11mbit = true;
  1577. for (j = 0; j < sband->n_bitrates; j++) {
  1578. if (sband->bitrates[j].bitrate == rate)
  1579. rates |= BIT(j);
  1580. if (elems.supp_rates[i] & 0x80)
  1581. basic_rates |= BIT(j);
  1582. }
  1583. }
  1584. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1585. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1586. if (rate > 110)
  1587. have_higher_than_11mbit = true;
  1588. for (j = 0; j < sband->n_bitrates; j++) {
  1589. if (sband->bitrates[j].bitrate == rate)
  1590. rates |= BIT(j);
  1591. if (elems.ext_supp_rates[i] & 0x80)
  1592. basic_rates |= BIT(j);
  1593. }
  1594. }
  1595. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1596. sdata->basic_rates = basic_rates;
  1597. /* cf. IEEE 802.11 9.2.12 */
  1598. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1599. have_higher_than_11mbit)
  1600. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1601. else
  1602. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1603. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1604. local->ops->conf_ht) {
  1605. struct ieee80211_ht_bss_info bss_info;
  1606. ieee80211_ht_cap_ie_to_ht_info(
  1607. (struct ieee80211_ht_cap *)
  1608. elems.ht_cap_elem, &sta->ht_info);
  1609. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1610. (struct ieee80211_ht_addt_info *)
  1611. elems.ht_info_elem, &bss_info);
  1612. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1613. }
  1614. rate_control_rate_init(sta, local);
  1615. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1616. sta->flags |= WLAN_STA_WME;
  1617. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1618. elems.wmm_param_len);
  1619. }
  1620. /* set AID, ieee80211_set_associated() will tell the driver */
  1621. bss_conf->aid = aid;
  1622. ieee80211_set_associated(dev, ifsta, 1);
  1623. sta_info_put(sta);
  1624. ieee80211_associated(dev, ifsta);
  1625. }
  1626. /* Caller must hold local->sta_bss_lock */
  1627. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1628. struct ieee80211_sta_bss *bss)
  1629. {
  1630. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1631. bss->hnext = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1632. local->sta_bss_hash[STA_HASH(bss->bssid)] = bss;
  1633. }
  1634. /* Caller must hold local->sta_bss_lock */
  1635. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1636. struct ieee80211_sta_bss *bss)
  1637. {
  1638. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1639. struct ieee80211_sta_bss *b, *prev = NULL;
  1640. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1641. while (b) {
  1642. if (b == bss) {
  1643. if (!prev)
  1644. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1645. bss->hnext;
  1646. else
  1647. prev->hnext = bss->hnext;
  1648. break;
  1649. }
  1650. prev = b;
  1651. b = b->hnext;
  1652. }
  1653. }
  1654. static struct ieee80211_sta_bss *
  1655. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1656. u8 *ssid, u8 ssid_len)
  1657. {
  1658. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1659. struct ieee80211_sta_bss *bss;
  1660. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1661. if (!bss)
  1662. return NULL;
  1663. atomic_inc(&bss->users);
  1664. atomic_inc(&bss->users);
  1665. memcpy(bss->bssid, bssid, ETH_ALEN);
  1666. bss->freq = freq;
  1667. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1668. memcpy(bss->ssid, ssid, ssid_len);
  1669. bss->ssid_len = ssid_len;
  1670. }
  1671. spin_lock_bh(&local->sta_bss_lock);
  1672. /* TODO: order by RSSI? */
  1673. list_add_tail(&bss->list, &local->sta_bss_list);
  1674. __ieee80211_rx_bss_hash_add(dev, bss);
  1675. spin_unlock_bh(&local->sta_bss_lock);
  1676. return bss;
  1677. }
  1678. static struct ieee80211_sta_bss *
  1679. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1680. u8 *ssid, u8 ssid_len)
  1681. {
  1682. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1683. struct ieee80211_sta_bss *bss;
  1684. spin_lock_bh(&local->sta_bss_lock);
  1685. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1686. while (bss) {
  1687. if (!memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1688. bss->freq == freq &&
  1689. bss->ssid_len == ssid_len &&
  1690. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1691. atomic_inc(&bss->users);
  1692. break;
  1693. }
  1694. bss = bss->hnext;
  1695. }
  1696. spin_unlock_bh(&local->sta_bss_lock);
  1697. return bss;
  1698. }
  1699. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1700. {
  1701. kfree(bss->wpa_ie);
  1702. kfree(bss->rsn_ie);
  1703. kfree(bss->wmm_ie);
  1704. kfree(bss->ht_ie);
  1705. kfree(bss);
  1706. }
  1707. static void ieee80211_rx_bss_put(struct net_device *dev,
  1708. struct ieee80211_sta_bss *bss)
  1709. {
  1710. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1711. if (!atomic_dec_and_test(&bss->users))
  1712. return;
  1713. spin_lock_bh(&local->sta_bss_lock);
  1714. __ieee80211_rx_bss_hash_del(dev, bss);
  1715. list_del(&bss->list);
  1716. spin_unlock_bh(&local->sta_bss_lock);
  1717. ieee80211_rx_bss_free(bss);
  1718. }
  1719. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1720. {
  1721. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1722. spin_lock_init(&local->sta_bss_lock);
  1723. INIT_LIST_HEAD(&local->sta_bss_list);
  1724. }
  1725. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1726. {
  1727. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1728. struct ieee80211_sta_bss *bss, *tmp;
  1729. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1730. ieee80211_rx_bss_put(dev, bss);
  1731. }
  1732. static void ieee80211_rx_bss_info(struct net_device *dev,
  1733. struct ieee80211_mgmt *mgmt,
  1734. size_t len,
  1735. struct ieee80211_rx_status *rx_status,
  1736. int beacon)
  1737. {
  1738. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1739. struct ieee802_11_elems elems;
  1740. size_t baselen;
  1741. int freq, clen;
  1742. struct ieee80211_sta_bss *bss;
  1743. struct sta_info *sta;
  1744. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1745. u64 timestamp;
  1746. DECLARE_MAC_BUF(mac);
  1747. DECLARE_MAC_BUF(mac2);
  1748. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  1749. return; /* ignore ProbeResp to foreign address */
  1750. #if 0
  1751. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  1752. dev->name, beacon ? "Beacon" : "Probe Response",
  1753. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  1754. #endif
  1755. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1756. if (baselen > len)
  1757. return;
  1758. timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  1759. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  1760. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0) {
  1761. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1762. static unsigned long last_tsf_debug = 0;
  1763. u64 tsf;
  1764. if (local->ops->get_tsf)
  1765. tsf = local->ops->get_tsf(local_to_hw(local));
  1766. else
  1767. tsf = -1LLU;
  1768. if (time_after(jiffies, last_tsf_debug + 5 * HZ)) {
  1769. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  1770. "%s TSF=0x%llx BCN=0x%llx diff=%lld "
  1771. "@%lu\n",
  1772. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->bssid),
  1773. (unsigned long long)tsf,
  1774. (unsigned long long)timestamp,
  1775. (unsigned long long)(tsf - timestamp),
  1776. jiffies);
  1777. last_tsf_debug = jiffies;
  1778. }
  1779. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1780. }
  1781. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1782. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  1783. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  1784. (sta = sta_info_get(local, mgmt->sa))) {
  1785. struct ieee80211_supported_band *sband;
  1786. struct ieee80211_rate *bitrates;
  1787. size_t num_rates;
  1788. u64 supp_rates, prev_rates;
  1789. int i, j;
  1790. sband = local->hw.wiphy->bands[rx_status->band];
  1791. if (!sband) {
  1792. WARN_ON(1);
  1793. sband = local->hw.wiphy->bands[
  1794. local->hw.conf.channel->band];
  1795. }
  1796. bitrates = sband->bitrates;
  1797. num_rates = sband->n_bitrates;
  1798. supp_rates = 0;
  1799. for (i = 0; i < elems.supp_rates_len +
  1800. elems.ext_supp_rates_len; i++) {
  1801. u8 rate = 0;
  1802. int own_rate;
  1803. if (i < elems.supp_rates_len)
  1804. rate = elems.supp_rates[i];
  1805. else if (elems.ext_supp_rates)
  1806. rate = elems.ext_supp_rates
  1807. [i - elems.supp_rates_len];
  1808. own_rate = 5 * (rate & 0x7f);
  1809. for (j = 0; j < num_rates; j++)
  1810. if (bitrates[j].bitrate == own_rate)
  1811. supp_rates |= BIT(j);
  1812. }
  1813. prev_rates = sta->supp_rates[rx_status->band];
  1814. sta->supp_rates[rx_status->band] &= supp_rates;
  1815. if (sta->supp_rates[rx_status->band] == 0) {
  1816. /* No matching rates - this should not really happen.
  1817. * Make sure that at least one rate is marked
  1818. * supported to avoid issues with TX rate ctrl. */
  1819. sta->supp_rates[rx_status->band] =
  1820. sdata->u.sta.supp_rates_bits[rx_status->band];
  1821. }
  1822. if (sta->supp_rates[rx_status->band] != prev_rates) {
  1823. printk(KERN_DEBUG "%s: updated supp_rates set for "
  1824. "%s based on beacon info (0x%llx & 0x%llx -> "
  1825. "0x%llx)\n",
  1826. dev->name, print_mac(mac, sta->addr),
  1827. (unsigned long long) prev_rates,
  1828. (unsigned long long) supp_rates,
  1829. (unsigned long long) sta->supp_rates[rx_status->band]);
  1830. }
  1831. sta_info_put(sta);
  1832. }
  1833. if (!elems.ssid)
  1834. return;
  1835. if (elems.ds_params && elems.ds_params_len == 1)
  1836. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  1837. else
  1838. freq = rx_status->freq;
  1839. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  1840. elems.ssid, elems.ssid_len);
  1841. if (!bss) {
  1842. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  1843. elems.ssid, elems.ssid_len);
  1844. if (!bss)
  1845. return;
  1846. } else {
  1847. #if 0
  1848. /* TODO: order by RSSI? */
  1849. spin_lock_bh(&local->sta_bss_lock);
  1850. list_move_tail(&bss->list, &local->sta_bss_list);
  1851. spin_unlock_bh(&local->sta_bss_lock);
  1852. #endif
  1853. }
  1854. bss->band = rx_status->band;
  1855. if (bss->probe_resp && beacon) {
  1856. /* Do not allow beacon to override data from Probe Response. */
  1857. ieee80211_rx_bss_put(dev, bss);
  1858. return;
  1859. }
  1860. /* save the ERP value so that it is available at association time */
  1861. if (elems.erp_info && elems.erp_info_len >= 1) {
  1862. bss->erp_value = elems.erp_info[0];
  1863. bss->has_erp_value = 1;
  1864. }
  1865. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  1866. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  1867. bss->supp_rates_len = 0;
  1868. if (elems.supp_rates) {
  1869. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1870. if (clen > elems.supp_rates_len)
  1871. clen = elems.supp_rates_len;
  1872. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  1873. clen);
  1874. bss->supp_rates_len += clen;
  1875. }
  1876. if (elems.ext_supp_rates) {
  1877. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1878. if (clen > elems.ext_supp_rates_len)
  1879. clen = elems.ext_supp_rates_len;
  1880. memcpy(&bss->supp_rates[bss->supp_rates_len],
  1881. elems.ext_supp_rates, clen);
  1882. bss->supp_rates_len += clen;
  1883. }
  1884. if (elems.wpa &&
  1885. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  1886. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  1887. kfree(bss->wpa_ie);
  1888. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  1889. if (bss->wpa_ie) {
  1890. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  1891. bss->wpa_ie_len = elems.wpa_len + 2;
  1892. } else
  1893. bss->wpa_ie_len = 0;
  1894. } else if (!elems.wpa && bss->wpa_ie) {
  1895. kfree(bss->wpa_ie);
  1896. bss->wpa_ie = NULL;
  1897. bss->wpa_ie_len = 0;
  1898. }
  1899. if (elems.rsn &&
  1900. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  1901. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  1902. kfree(bss->rsn_ie);
  1903. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  1904. if (bss->rsn_ie) {
  1905. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  1906. bss->rsn_ie_len = elems.rsn_len + 2;
  1907. } else
  1908. bss->rsn_ie_len = 0;
  1909. } else if (!elems.rsn && bss->rsn_ie) {
  1910. kfree(bss->rsn_ie);
  1911. bss->rsn_ie = NULL;
  1912. bss->rsn_ie_len = 0;
  1913. }
  1914. if (elems.wmm_param &&
  1915. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  1916. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  1917. kfree(bss->wmm_ie);
  1918. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  1919. if (bss->wmm_ie) {
  1920. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  1921. elems.wmm_param_len + 2);
  1922. bss->wmm_ie_len = elems.wmm_param_len + 2;
  1923. } else
  1924. bss->wmm_ie_len = 0;
  1925. } else if (!elems.wmm_param && bss->wmm_ie) {
  1926. kfree(bss->wmm_ie);
  1927. bss->wmm_ie = NULL;
  1928. bss->wmm_ie_len = 0;
  1929. }
  1930. if (elems.ht_cap_elem &&
  1931. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  1932. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  1933. kfree(bss->ht_ie);
  1934. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  1935. if (bss->ht_ie) {
  1936. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  1937. elems.ht_cap_elem_len + 2);
  1938. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  1939. } else
  1940. bss->ht_ie_len = 0;
  1941. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  1942. kfree(bss->ht_ie);
  1943. bss->ht_ie = NULL;
  1944. bss->ht_ie_len = 0;
  1945. }
  1946. bss->timestamp = timestamp;
  1947. bss->last_update = jiffies;
  1948. bss->rssi = rx_status->ssi;
  1949. bss->signal = rx_status->signal;
  1950. bss->noise = rx_status->noise;
  1951. if (!beacon)
  1952. bss->probe_resp++;
  1953. ieee80211_rx_bss_put(dev, bss);
  1954. }
  1955. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  1956. struct ieee80211_mgmt *mgmt,
  1957. size_t len,
  1958. struct ieee80211_rx_status *rx_status)
  1959. {
  1960. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  1961. }
  1962. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  1963. struct ieee80211_mgmt *mgmt,
  1964. size_t len,
  1965. struct ieee80211_rx_status *rx_status)
  1966. {
  1967. struct ieee80211_sub_if_data *sdata;
  1968. struct ieee80211_if_sta *ifsta;
  1969. size_t baselen;
  1970. struct ieee802_11_elems elems;
  1971. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1972. struct ieee80211_conf *conf = &local->hw.conf;
  1973. u32 changed = 0;
  1974. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  1975. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1976. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  1977. return;
  1978. ifsta = &sdata->u.sta;
  1979. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  1980. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  1981. return;
  1982. /* Process beacon from the current BSS */
  1983. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1984. if (baselen > len)
  1985. return;
  1986. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1987. if (elems.erp_info && elems.erp_info_len >= 1)
  1988. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  1989. if (elems.ht_cap_elem && elems.ht_info_elem &&
  1990. elems.wmm_param && local->ops->conf_ht &&
  1991. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  1992. struct ieee80211_ht_bss_info bss_info;
  1993. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1994. (struct ieee80211_ht_addt_info *)
  1995. elems.ht_info_elem, &bss_info);
  1996. /* check if AP changed bss inforamation */
  1997. if ((conf->ht_bss_conf.primary_channel !=
  1998. bss_info.primary_channel) ||
  1999. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  2000. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  2001. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  2002. &bss_info);
  2003. }
  2004. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2005. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2006. elems.wmm_param_len);
  2007. }
  2008. ieee80211_bss_info_change_notify(sdata, changed);
  2009. }
  2010. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2011. struct ieee80211_if_sta *ifsta,
  2012. struct ieee80211_mgmt *mgmt,
  2013. size_t len,
  2014. struct ieee80211_rx_status *rx_status)
  2015. {
  2016. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2017. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2018. int tx_last_beacon;
  2019. struct sk_buff *skb;
  2020. struct ieee80211_mgmt *resp;
  2021. u8 *pos, *end;
  2022. DECLARE_MAC_BUF(mac);
  2023. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2024. DECLARE_MAC_BUF(mac2);
  2025. DECLARE_MAC_BUF(mac3);
  2026. #endif
  2027. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2028. ifsta->state != IEEE80211_IBSS_JOINED ||
  2029. len < 24 + 2 || !ifsta->probe_resp)
  2030. return;
  2031. if (local->ops->tx_last_beacon)
  2032. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2033. else
  2034. tx_last_beacon = 1;
  2035. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2036. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2037. "%s (tx_last_beacon=%d)\n",
  2038. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2039. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2040. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2041. if (!tx_last_beacon)
  2042. return;
  2043. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2044. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2045. return;
  2046. end = ((u8 *) mgmt) + len;
  2047. pos = mgmt->u.probe_req.variable;
  2048. if (pos[0] != WLAN_EID_SSID ||
  2049. pos + 2 + pos[1] > end) {
  2050. if (net_ratelimit()) {
  2051. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2052. "from %s\n",
  2053. dev->name, print_mac(mac, mgmt->sa));
  2054. }
  2055. return;
  2056. }
  2057. if (pos[1] != 0 &&
  2058. (pos[1] != ifsta->ssid_len ||
  2059. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2060. /* Ignore ProbeReq for foreign SSID */
  2061. return;
  2062. }
  2063. /* Reply with ProbeResp */
  2064. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2065. if (!skb)
  2066. return;
  2067. resp = (struct ieee80211_mgmt *) skb->data;
  2068. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2069. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2070. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2071. dev->name, print_mac(mac, resp->da));
  2072. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2073. ieee80211_sta_tx(dev, skb, 0);
  2074. }
  2075. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2076. struct ieee80211_if_sta *ifsta,
  2077. struct ieee80211_mgmt *mgmt,
  2078. size_t len)
  2079. {
  2080. if (len < IEEE80211_MIN_ACTION_SIZE)
  2081. return;
  2082. switch (mgmt->u.action.category) {
  2083. case WLAN_CATEGORY_BACK:
  2084. switch (mgmt->u.action.u.addba_req.action_code) {
  2085. case WLAN_ACTION_ADDBA_REQ:
  2086. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2087. sizeof(mgmt->u.action.u.addba_req)))
  2088. break;
  2089. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2090. break;
  2091. case WLAN_ACTION_ADDBA_RESP:
  2092. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2093. sizeof(mgmt->u.action.u.addba_resp)))
  2094. break;
  2095. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2096. break;
  2097. case WLAN_ACTION_DELBA:
  2098. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2099. sizeof(mgmt->u.action.u.delba)))
  2100. break;
  2101. ieee80211_sta_process_delba(dev, mgmt, len);
  2102. break;
  2103. default:
  2104. if (net_ratelimit())
  2105. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2106. dev->name);
  2107. break;
  2108. }
  2109. break;
  2110. default:
  2111. break;
  2112. }
  2113. }
  2114. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2115. struct ieee80211_rx_status *rx_status)
  2116. {
  2117. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2118. struct ieee80211_sub_if_data *sdata;
  2119. struct ieee80211_if_sta *ifsta;
  2120. struct ieee80211_mgmt *mgmt;
  2121. u16 fc;
  2122. if (skb->len < 24)
  2123. goto fail;
  2124. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2125. ifsta = &sdata->u.sta;
  2126. mgmt = (struct ieee80211_mgmt *) skb->data;
  2127. fc = le16_to_cpu(mgmt->frame_control);
  2128. switch (fc & IEEE80211_FCTL_STYPE) {
  2129. case IEEE80211_STYPE_PROBE_REQ:
  2130. case IEEE80211_STYPE_PROBE_RESP:
  2131. case IEEE80211_STYPE_BEACON:
  2132. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2133. case IEEE80211_STYPE_AUTH:
  2134. case IEEE80211_STYPE_ASSOC_RESP:
  2135. case IEEE80211_STYPE_REASSOC_RESP:
  2136. case IEEE80211_STYPE_DEAUTH:
  2137. case IEEE80211_STYPE_DISASSOC:
  2138. case IEEE80211_STYPE_ACTION:
  2139. skb_queue_tail(&ifsta->skb_queue, skb);
  2140. queue_work(local->hw.workqueue, &ifsta->work);
  2141. return;
  2142. default:
  2143. printk(KERN_DEBUG "%s: received unknown management frame - "
  2144. "stype=%d\n", dev->name,
  2145. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2146. break;
  2147. }
  2148. fail:
  2149. kfree_skb(skb);
  2150. }
  2151. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2152. struct sk_buff *skb)
  2153. {
  2154. struct ieee80211_rx_status *rx_status;
  2155. struct ieee80211_sub_if_data *sdata;
  2156. struct ieee80211_if_sta *ifsta;
  2157. struct ieee80211_mgmt *mgmt;
  2158. u16 fc;
  2159. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2160. ifsta = &sdata->u.sta;
  2161. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2162. mgmt = (struct ieee80211_mgmt *) skb->data;
  2163. fc = le16_to_cpu(mgmt->frame_control);
  2164. switch (fc & IEEE80211_FCTL_STYPE) {
  2165. case IEEE80211_STYPE_PROBE_REQ:
  2166. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2167. rx_status);
  2168. break;
  2169. case IEEE80211_STYPE_PROBE_RESP:
  2170. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2171. break;
  2172. case IEEE80211_STYPE_BEACON:
  2173. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2174. break;
  2175. case IEEE80211_STYPE_AUTH:
  2176. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2177. break;
  2178. case IEEE80211_STYPE_ASSOC_RESP:
  2179. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2180. break;
  2181. case IEEE80211_STYPE_REASSOC_RESP:
  2182. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2183. break;
  2184. case IEEE80211_STYPE_DEAUTH:
  2185. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2186. break;
  2187. case IEEE80211_STYPE_DISASSOC:
  2188. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2189. break;
  2190. case IEEE80211_STYPE_ACTION:
  2191. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len);
  2192. break;
  2193. }
  2194. kfree_skb(skb);
  2195. }
  2196. ieee80211_txrx_result
  2197. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2198. struct ieee80211_rx_status *rx_status)
  2199. {
  2200. struct ieee80211_mgmt *mgmt;
  2201. u16 fc;
  2202. if (skb->len < 2)
  2203. return TXRX_DROP;
  2204. mgmt = (struct ieee80211_mgmt *) skb->data;
  2205. fc = le16_to_cpu(mgmt->frame_control);
  2206. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2207. return TXRX_CONTINUE;
  2208. if (skb->len < 24)
  2209. return TXRX_DROP;
  2210. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2211. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2212. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2213. skb->len, rx_status);
  2214. dev_kfree_skb(skb);
  2215. return TXRX_QUEUED;
  2216. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2217. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2218. rx_status);
  2219. dev_kfree_skb(skb);
  2220. return TXRX_QUEUED;
  2221. }
  2222. }
  2223. return TXRX_CONTINUE;
  2224. }
  2225. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2226. {
  2227. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2228. int active = 0;
  2229. struct sta_info *sta;
  2230. read_lock_bh(&local->sta_lock);
  2231. list_for_each_entry(sta, &local->sta_list, list) {
  2232. if (sta->dev == dev &&
  2233. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2234. jiffies)) {
  2235. active++;
  2236. break;
  2237. }
  2238. }
  2239. read_unlock_bh(&local->sta_lock);
  2240. return active;
  2241. }
  2242. static void ieee80211_sta_expire(struct net_device *dev)
  2243. {
  2244. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2245. struct sta_info *sta, *tmp;
  2246. LIST_HEAD(tmp_list);
  2247. DECLARE_MAC_BUF(mac);
  2248. write_lock_bh(&local->sta_lock);
  2249. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2250. if (time_after(jiffies, sta->last_rx +
  2251. IEEE80211_IBSS_INACTIVITY_LIMIT)) {
  2252. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2253. dev->name, print_mac(mac, sta->addr));
  2254. __sta_info_get(sta);
  2255. sta_info_remove(sta);
  2256. list_add(&sta->list, &tmp_list);
  2257. }
  2258. write_unlock_bh(&local->sta_lock);
  2259. list_for_each_entry_safe(sta, tmp, &tmp_list, list) {
  2260. sta_info_free(sta);
  2261. sta_info_put(sta);
  2262. }
  2263. }
  2264. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2265. struct ieee80211_if_sta *ifsta)
  2266. {
  2267. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2268. ieee80211_sta_expire(dev);
  2269. if (ieee80211_sta_active_ibss(dev))
  2270. return;
  2271. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2272. "IBSS networks with same SSID (merge)\n", dev->name);
  2273. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2274. }
  2275. void ieee80211_sta_timer(unsigned long data)
  2276. {
  2277. struct ieee80211_sub_if_data *sdata =
  2278. (struct ieee80211_sub_if_data *) data;
  2279. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2280. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2281. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2282. queue_work(local->hw.workqueue, &ifsta->work);
  2283. }
  2284. void ieee80211_sta_work(struct work_struct *work)
  2285. {
  2286. struct ieee80211_sub_if_data *sdata =
  2287. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2288. struct net_device *dev = sdata->dev;
  2289. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2290. struct ieee80211_if_sta *ifsta;
  2291. struct sk_buff *skb;
  2292. if (!netif_running(dev))
  2293. return;
  2294. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2295. return;
  2296. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2297. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  2298. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2299. "(type=%d)\n", dev->name, sdata->vif.type);
  2300. return;
  2301. }
  2302. ifsta = &sdata->u.sta;
  2303. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2304. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2305. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2306. ifsta->state != IEEE80211_ASSOCIATE &&
  2307. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2308. if (ifsta->scan_ssid_len)
  2309. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2310. else
  2311. ieee80211_sta_start_scan(dev, NULL, 0);
  2312. return;
  2313. }
  2314. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2315. if (ieee80211_sta_config_auth(dev, ifsta))
  2316. return;
  2317. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2318. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2319. return;
  2320. switch (ifsta->state) {
  2321. case IEEE80211_DISABLED:
  2322. break;
  2323. case IEEE80211_AUTHENTICATE:
  2324. ieee80211_authenticate(dev, ifsta);
  2325. break;
  2326. case IEEE80211_ASSOCIATE:
  2327. ieee80211_associate(dev, ifsta);
  2328. break;
  2329. case IEEE80211_ASSOCIATED:
  2330. ieee80211_associated(dev, ifsta);
  2331. break;
  2332. case IEEE80211_IBSS_SEARCH:
  2333. ieee80211_sta_find_ibss(dev, ifsta);
  2334. break;
  2335. case IEEE80211_IBSS_JOINED:
  2336. ieee80211_sta_merge_ibss(dev, ifsta);
  2337. break;
  2338. default:
  2339. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2340. ifsta->state);
  2341. break;
  2342. }
  2343. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2344. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2345. "mixed-cell disabled - disassociate\n", dev->name);
  2346. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2347. ieee80211_set_disassoc(dev, ifsta, 0);
  2348. }
  2349. }
  2350. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2351. struct ieee80211_if_sta *ifsta)
  2352. {
  2353. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2354. if (local->ops->reset_tsf) {
  2355. /* Reset own TSF to allow time synchronization work. */
  2356. local->ops->reset_tsf(local_to_hw(local));
  2357. }
  2358. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2359. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2360. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2361. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2362. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2363. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2364. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2365. else
  2366. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2367. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2368. ifsta->auth_alg);
  2369. ifsta->auth_transaction = -1;
  2370. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2371. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2372. netif_carrier_off(dev);
  2373. }
  2374. void ieee80211_sta_req_auth(struct net_device *dev,
  2375. struct ieee80211_if_sta *ifsta)
  2376. {
  2377. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2378. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2379. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2380. return;
  2381. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2382. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2383. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2384. IEEE80211_STA_AUTO_SSID_SEL))) {
  2385. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2386. queue_work(local->hw.workqueue, &ifsta->work);
  2387. }
  2388. }
  2389. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2390. const char *ssid, int ssid_len)
  2391. {
  2392. int tmp, hidden_ssid;
  2393. if (ssid_len == ifsta->ssid_len &&
  2394. !memcmp(ifsta->ssid, ssid, ssid_len))
  2395. return 1;
  2396. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2397. return 0;
  2398. hidden_ssid = 1;
  2399. tmp = ssid_len;
  2400. while (tmp--) {
  2401. if (ssid[tmp] != '\0') {
  2402. hidden_ssid = 0;
  2403. break;
  2404. }
  2405. }
  2406. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2407. return 1;
  2408. if (ssid_len == 1 && ssid[0] == ' ')
  2409. return 1;
  2410. return 0;
  2411. }
  2412. static int ieee80211_sta_config_auth(struct net_device *dev,
  2413. struct ieee80211_if_sta *ifsta)
  2414. {
  2415. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2416. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2417. struct ieee80211_sta_bss *bss, *selected = NULL;
  2418. int top_rssi = 0, freq;
  2419. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2420. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2421. ifsta->state = IEEE80211_AUTHENTICATE;
  2422. ieee80211_sta_reset_auth(dev, ifsta);
  2423. return 0;
  2424. }
  2425. spin_lock_bh(&local->sta_bss_lock);
  2426. freq = local->oper_channel->center_freq;
  2427. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2428. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2429. continue;
  2430. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2431. !!sdata->default_key)
  2432. continue;
  2433. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2434. bss->freq != freq)
  2435. continue;
  2436. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2437. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2438. continue;
  2439. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2440. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2441. continue;
  2442. if (!selected || top_rssi < bss->rssi) {
  2443. selected = bss;
  2444. top_rssi = bss->rssi;
  2445. }
  2446. }
  2447. if (selected)
  2448. atomic_inc(&selected->users);
  2449. spin_unlock_bh(&local->sta_bss_lock);
  2450. if (selected) {
  2451. ieee80211_set_freq(local, selected->freq);
  2452. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2453. ieee80211_sta_set_ssid(dev, selected->ssid,
  2454. selected->ssid_len);
  2455. ieee80211_sta_set_bssid(dev, selected->bssid);
  2456. ieee80211_rx_bss_put(dev, selected);
  2457. ifsta->state = IEEE80211_AUTHENTICATE;
  2458. ieee80211_sta_reset_auth(dev, ifsta);
  2459. return 0;
  2460. } else {
  2461. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2462. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2463. ieee80211_sta_start_scan(dev, NULL, 0);
  2464. else
  2465. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2466. ifsta->ssid_len);
  2467. ifsta->state = IEEE80211_AUTHENTICATE;
  2468. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2469. } else
  2470. ifsta->state = IEEE80211_DISABLED;
  2471. }
  2472. return -1;
  2473. }
  2474. static int ieee80211_sta_join_ibss(struct net_device *dev,
  2475. struct ieee80211_if_sta *ifsta,
  2476. struct ieee80211_sta_bss *bss)
  2477. {
  2478. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2479. int res, rates, i, j;
  2480. struct sk_buff *skb;
  2481. struct ieee80211_mgmt *mgmt;
  2482. struct ieee80211_tx_control control;
  2483. struct rate_selection ratesel;
  2484. u8 *pos;
  2485. struct ieee80211_sub_if_data *sdata;
  2486. struct ieee80211_supported_band *sband;
  2487. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2488. /* Remove possible STA entries from other IBSS networks. */
  2489. sta_info_flush(local, NULL);
  2490. if (local->ops->reset_tsf) {
  2491. /* Reset own TSF to allow time synchronization work. */
  2492. local->ops->reset_tsf(local_to_hw(local));
  2493. }
  2494. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  2495. res = ieee80211_if_config(dev);
  2496. if (res)
  2497. return res;
  2498. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  2499. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2500. sdata->drop_unencrypted = bss->capability &
  2501. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  2502. res = ieee80211_set_freq(local, bss->freq);
  2503. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  2504. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  2505. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  2506. return -1;
  2507. }
  2508. /* Set beacon template based on scan results */
  2509. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2510. do {
  2511. if (!skb)
  2512. break;
  2513. skb_reserve(skb, local->hw.extra_tx_headroom);
  2514. mgmt = (struct ieee80211_mgmt *)
  2515. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2516. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2517. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2518. IEEE80211_STYPE_BEACON);
  2519. memset(mgmt->da, 0xff, ETH_ALEN);
  2520. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2521. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2522. mgmt->u.beacon.beacon_int =
  2523. cpu_to_le16(local->hw.conf.beacon_int);
  2524. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2525. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2526. *pos++ = WLAN_EID_SSID;
  2527. *pos++ = ifsta->ssid_len;
  2528. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2529. rates = bss->supp_rates_len;
  2530. if (rates > 8)
  2531. rates = 8;
  2532. pos = skb_put(skb, 2 + rates);
  2533. *pos++ = WLAN_EID_SUPP_RATES;
  2534. *pos++ = rates;
  2535. memcpy(pos, bss->supp_rates, rates);
  2536. if (bss->band == IEEE80211_BAND_2GHZ) {
  2537. pos = skb_put(skb, 2 + 1);
  2538. *pos++ = WLAN_EID_DS_PARAMS;
  2539. *pos++ = 1;
  2540. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  2541. }
  2542. pos = skb_put(skb, 2 + 2);
  2543. *pos++ = WLAN_EID_IBSS_PARAMS;
  2544. *pos++ = 2;
  2545. /* FIX: set ATIM window based on scan results */
  2546. *pos++ = 0;
  2547. *pos++ = 0;
  2548. if (bss->supp_rates_len > 8) {
  2549. rates = bss->supp_rates_len - 8;
  2550. pos = skb_put(skb, 2 + rates);
  2551. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2552. *pos++ = rates;
  2553. memcpy(pos, &bss->supp_rates[8], rates);
  2554. }
  2555. memset(&control, 0, sizeof(control));
  2556. rate_control_get_rate(dev, sband, skb, &ratesel);
  2557. if (!ratesel.rate) {
  2558. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2559. "for IBSS beacon\n", dev->name);
  2560. break;
  2561. }
  2562. control.vif = &sdata->vif;
  2563. control.tx_rate = ratesel.rate;
  2564. if (sdata->bss_conf.use_short_preamble &&
  2565. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  2566. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  2567. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2568. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2569. control.retry_limit = 1;
  2570. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2571. if (ifsta->probe_resp) {
  2572. mgmt = (struct ieee80211_mgmt *)
  2573. ifsta->probe_resp->data;
  2574. mgmt->frame_control =
  2575. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2576. IEEE80211_STYPE_PROBE_RESP);
  2577. } else {
  2578. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2579. "template for IBSS\n", dev->name);
  2580. }
  2581. if (local->ops->beacon_update &&
  2582. local->ops->beacon_update(local_to_hw(local),
  2583. skb, &control) == 0) {
  2584. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2585. "template based on scan results\n", dev->name);
  2586. skb = NULL;
  2587. }
  2588. rates = 0;
  2589. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2590. for (i = 0; i < bss->supp_rates_len; i++) {
  2591. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2592. for (j = 0; j < sband->n_bitrates; j++)
  2593. if (sband->bitrates[j].bitrate == bitrate)
  2594. rates |= BIT(j);
  2595. }
  2596. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2597. } while (0);
  2598. if (skb) {
  2599. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2600. "template\n", dev->name);
  2601. dev_kfree_skb(skb);
  2602. }
  2603. ifsta->state = IEEE80211_IBSS_JOINED;
  2604. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2605. ieee80211_rx_bss_put(dev, bss);
  2606. return res;
  2607. }
  2608. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2609. struct ieee80211_if_sta *ifsta)
  2610. {
  2611. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2612. struct ieee80211_sta_bss *bss;
  2613. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2614. struct ieee80211_supported_band *sband;
  2615. u8 bssid[ETH_ALEN], *pos;
  2616. int i;
  2617. DECLARE_MAC_BUF(mac);
  2618. #if 0
  2619. /* Easier testing, use fixed BSSID. */
  2620. memset(bssid, 0xfe, ETH_ALEN);
  2621. #else
  2622. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2623. * own MAC address to make sure that devices that do not have proper
  2624. * random number generator get different BSSID. */
  2625. get_random_bytes(bssid, ETH_ALEN);
  2626. for (i = 0; i < ETH_ALEN; i++)
  2627. bssid[i] ^= dev->dev_addr[i];
  2628. bssid[0] &= ~0x01;
  2629. bssid[0] |= 0x02;
  2630. #endif
  2631. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2632. dev->name, print_mac(mac, bssid));
  2633. bss = ieee80211_rx_bss_add(dev, bssid,
  2634. local->hw.conf.channel->center_freq,
  2635. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2636. if (!bss)
  2637. return -ENOMEM;
  2638. bss->band = local->hw.conf.channel->band;
  2639. sband = local->hw.wiphy->bands[bss->band];
  2640. if (local->hw.conf.beacon_int == 0)
  2641. local->hw.conf.beacon_int = 100;
  2642. bss->beacon_int = local->hw.conf.beacon_int;
  2643. bss->last_update = jiffies;
  2644. bss->capability = WLAN_CAPABILITY_IBSS;
  2645. if (sdata->default_key) {
  2646. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2647. } else
  2648. sdata->drop_unencrypted = 0;
  2649. bss->supp_rates_len = sband->n_bitrates;
  2650. pos = bss->supp_rates;
  2651. for (i = 0; i < sband->n_bitrates; i++) {
  2652. int rate = sband->bitrates[i].bitrate;
  2653. *pos++ = (u8) (rate / 5);
  2654. }
  2655. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2656. }
  2657. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2658. struct ieee80211_if_sta *ifsta)
  2659. {
  2660. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2661. struct ieee80211_sta_bss *bss;
  2662. int found = 0;
  2663. u8 bssid[ETH_ALEN];
  2664. int active_ibss;
  2665. DECLARE_MAC_BUF(mac);
  2666. DECLARE_MAC_BUF(mac2);
  2667. if (ifsta->ssid_len == 0)
  2668. return -EINVAL;
  2669. active_ibss = ieee80211_sta_active_ibss(dev);
  2670. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2671. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2672. dev->name, active_ibss);
  2673. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2674. spin_lock_bh(&local->sta_bss_lock);
  2675. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2676. if (ifsta->ssid_len != bss->ssid_len ||
  2677. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2678. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2679. continue;
  2680. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2681. printk(KERN_DEBUG " bssid=%s found\n",
  2682. print_mac(mac, bss->bssid));
  2683. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2684. memcpy(bssid, bss->bssid, ETH_ALEN);
  2685. found = 1;
  2686. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2687. break;
  2688. }
  2689. spin_unlock_bh(&local->sta_bss_lock);
  2690. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2691. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2692. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2693. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2694. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2695. (bss = ieee80211_rx_bss_get(dev, bssid,
  2696. local->hw.conf.channel->center_freq,
  2697. ifsta->ssid, ifsta->ssid_len))) {
  2698. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2699. " based on configured SSID\n",
  2700. dev->name, print_mac(mac, bssid));
  2701. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2702. }
  2703. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2704. printk(KERN_DEBUG " did not try to join ibss\n");
  2705. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2706. /* Selected IBSS not found in current scan results - try to scan */
  2707. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2708. !ieee80211_sta_active_ibss(dev)) {
  2709. mod_timer(&ifsta->timer, jiffies +
  2710. IEEE80211_IBSS_MERGE_INTERVAL);
  2711. } else if (time_after(jiffies, local->last_scan_completed +
  2712. IEEE80211_SCAN_INTERVAL)) {
  2713. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2714. "join\n", dev->name);
  2715. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2716. ifsta->ssid_len);
  2717. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2718. int interval = IEEE80211_SCAN_INTERVAL;
  2719. if (time_after(jiffies, ifsta->ibss_join_req +
  2720. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2721. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2722. (!(local->oper_channel->flags &
  2723. IEEE80211_CHAN_NO_IBSS)))
  2724. return ieee80211_sta_create_ibss(dev, ifsta);
  2725. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2726. printk(KERN_DEBUG "%s: IBSS not allowed on"
  2727. " %d MHz\n", dev->name,
  2728. local->hw.conf.channel->center_freq);
  2729. }
  2730. /* No IBSS found - decrease scan interval and continue
  2731. * scanning. */
  2732. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  2733. }
  2734. ifsta->state = IEEE80211_IBSS_SEARCH;
  2735. mod_timer(&ifsta->timer, jiffies + interval);
  2736. return 0;
  2737. }
  2738. return 0;
  2739. }
  2740. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  2741. {
  2742. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2743. struct ieee80211_if_sta *ifsta;
  2744. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2745. if (len > IEEE80211_MAX_SSID_LEN)
  2746. return -EINVAL;
  2747. /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
  2748. * not defined. */
  2749. if (local->ops->conf_tx) {
  2750. struct ieee80211_tx_queue_params qparam;
  2751. int i;
  2752. memset(&qparam, 0, sizeof(qparam));
  2753. qparam.aifs = 2;
  2754. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  2755. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  2756. qparam.cw_min = 31;
  2757. else
  2758. qparam.cw_min = 15;
  2759. qparam.cw_max = 1023;
  2760. qparam.burst_time = 0;
  2761. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  2762. local->ops->conf_tx(local_to_hw(local),
  2763. i + IEEE80211_TX_QUEUE_DATA0,
  2764. &qparam);
  2765. /* IBSS uses different parameters for Beacon sending */
  2766. qparam.cw_min++;
  2767. qparam.cw_min *= 2;
  2768. qparam.cw_min--;
  2769. local->ops->conf_tx(local_to_hw(local),
  2770. IEEE80211_TX_QUEUE_BEACON, &qparam);
  2771. }
  2772. ifsta = &sdata->u.sta;
  2773. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  2774. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  2775. memcpy(ifsta->ssid, ssid, len);
  2776. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  2777. ifsta->ssid_len = len;
  2778. if (len)
  2779. ifsta->flags |= IEEE80211_STA_SSID_SET;
  2780. else
  2781. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  2782. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2783. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  2784. ifsta->ibss_join_req = jiffies;
  2785. ifsta->state = IEEE80211_IBSS_SEARCH;
  2786. return ieee80211_sta_find_ibss(dev, ifsta);
  2787. }
  2788. return 0;
  2789. }
  2790. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  2791. {
  2792. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2793. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2794. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  2795. *len = ifsta->ssid_len;
  2796. return 0;
  2797. }
  2798. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  2799. {
  2800. struct ieee80211_sub_if_data *sdata;
  2801. struct ieee80211_if_sta *ifsta;
  2802. int res;
  2803. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2804. ifsta = &sdata->u.sta;
  2805. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  2806. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  2807. res = ieee80211_if_config(dev);
  2808. if (res) {
  2809. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  2810. "the low-level driver\n", dev->name);
  2811. return res;
  2812. }
  2813. }
  2814. if (is_valid_ether_addr(bssid))
  2815. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  2816. else
  2817. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  2818. return 0;
  2819. }
  2820. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  2821. struct ieee80211_sub_if_data *sdata,
  2822. int powersave)
  2823. {
  2824. struct sk_buff *skb;
  2825. struct ieee80211_hdr *nullfunc;
  2826. u16 fc;
  2827. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  2828. if (!skb) {
  2829. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  2830. "frame\n", sdata->dev->name);
  2831. return;
  2832. }
  2833. skb_reserve(skb, local->hw.extra_tx_headroom);
  2834. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  2835. memset(nullfunc, 0, 24);
  2836. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  2837. IEEE80211_FCTL_TODS;
  2838. if (powersave)
  2839. fc |= IEEE80211_FCTL_PM;
  2840. nullfunc->frame_control = cpu_to_le16(fc);
  2841. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  2842. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  2843. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  2844. ieee80211_sta_tx(sdata->dev, skb, 0);
  2845. }
  2846. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  2847. {
  2848. struct ieee80211_local *local = hw_to_local(hw);
  2849. struct net_device *dev = local->scan_dev;
  2850. struct ieee80211_sub_if_data *sdata;
  2851. union iwreq_data wrqu;
  2852. local->last_scan_completed = jiffies;
  2853. memset(&wrqu, 0, sizeof(wrqu));
  2854. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  2855. if (local->sta_hw_scanning) {
  2856. local->sta_hw_scanning = 0;
  2857. goto done;
  2858. }
  2859. local->sta_sw_scanning = 0;
  2860. if (ieee80211_hw_config(local))
  2861. printk(KERN_DEBUG "%s: failed to restore operational "
  2862. "channel after scan\n", dev->name);
  2863. netif_tx_lock_bh(local->mdev);
  2864. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  2865. local->ops->configure_filter(local_to_hw(local),
  2866. FIF_BCN_PRBRESP_PROMISC,
  2867. &local->filter_flags,
  2868. local->mdev->mc_count,
  2869. local->mdev->mc_list);
  2870. netif_tx_unlock_bh(local->mdev);
  2871. rcu_read_lock();
  2872. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2873. /* No need to wake the master device. */
  2874. if (sdata->dev == local->mdev)
  2875. continue;
  2876. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  2877. if (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  2878. ieee80211_send_nullfunc(local, sdata, 0);
  2879. ieee80211_sta_timer((unsigned long)sdata);
  2880. }
  2881. netif_wake_queue(sdata->dev);
  2882. }
  2883. rcu_read_unlock();
  2884. done:
  2885. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2886. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  2887. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2888. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  2889. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  2890. !ieee80211_sta_active_ibss(dev)))
  2891. ieee80211_sta_find_ibss(dev, ifsta);
  2892. }
  2893. }
  2894. EXPORT_SYMBOL(ieee80211_scan_completed);
  2895. void ieee80211_sta_scan_work(struct work_struct *work)
  2896. {
  2897. struct ieee80211_local *local =
  2898. container_of(work, struct ieee80211_local, scan_work.work);
  2899. struct net_device *dev = local->scan_dev;
  2900. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2901. struct ieee80211_supported_band *sband;
  2902. struct ieee80211_channel *chan;
  2903. int skip;
  2904. unsigned long next_delay = 0;
  2905. if (!local->sta_sw_scanning)
  2906. return;
  2907. switch (local->scan_state) {
  2908. case SCAN_SET_CHANNEL:
  2909. /*
  2910. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  2911. * after we successfully scanned the last channel of the last
  2912. * band (and the last band is supported by the hw)
  2913. */
  2914. if (local->scan_band < IEEE80211_NUM_BANDS)
  2915. sband = local->hw.wiphy->bands[local->scan_band];
  2916. else
  2917. sband = NULL;
  2918. /*
  2919. * If we are at an unsupported band and have more bands
  2920. * left to scan, advance to the next supported one.
  2921. */
  2922. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  2923. local->scan_band++;
  2924. sband = local->hw.wiphy->bands[local->scan_band];
  2925. local->scan_channel_idx = 0;
  2926. }
  2927. /* if no more bands/channels left, complete scan */
  2928. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  2929. ieee80211_scan_completed(local_to_hw(local));
  2930. return;
  2931. }
  2932. skip = 0;
  2933. chan = &sband->channels[local->scan_channel_idx];
  2934. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  2935. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2936. chan->flags & IEEE80211_CHAN_NO_IBSS))
  2937. skip = 1;
  2938. if (!skip) {
  2939. local->scan_channel = chan;
  2940. if (ieee80211_hw_config(local)) {
  2941. printk(KERN_DEBUG "%s: failed to set freq to "
  2942. "%d MHz for scan\n", dev->name,
  2943. chan->center_freq);
  2944. skip = 1;
  2945. }
  2946. }
  2947. /* advance state machine to next channel/band */
  2948. local->scan_channel_idx++;
  2949. if (local->scan_channel_idx >= sband->n_channels) {
  2950. /*
  2951. * scan_band may end up == IEEE80211_NUM_BANDS, but
  2952. * we'll catch that case above and complete the scan
  2953. * if that is the case.
  2954. */
  2955. local->scan_band++;
  2956. local->scan_channel_idx = 0;
  2957. }
  2958. if (skip)
  2959. break;
  2960. next_delay = IEEE80211_PROBE_DELAY +
  2961. usecs_to_jiffies(local->hw.channel_change_time);
  2962. local->scan_state = SCAN_SEND_PROBE;
  2963. break;
  2964. case SCAN_SEND_PROBE:
  2965. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  2966. local->scan_state = SCAN_SET_CHANNEL;
  2967. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  2968. break;
  2969. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  2970. local->scan_ssid_len);
  2971. next_delay = IEEE80211_CHANNEL_TIME;
  2972. break;
  2973. }
  2974. if (local->sta_sw_scanning)
  2975. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2976. next_delay);
  2977. }
  2978. static int ieee80211_sta_start_scan(struct net_device *dev,
  2979. u8 *ssid, size_t ssid_len)
  2980. {
  2981. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2982. struct ieee80211_sub_if_data *sdata;
  2983. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  2984. return -EINVAL;
  2985. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  2986. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  2987. * BSSID: MACAddress
  2988. * SSID
  2989. * ScanType: ACTIVE, PASSIVE
  2990. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  2991. * a Probe frame during active scanning
  2992. * ChannelList
  2993. * MinChannelTime (>= ProbeDelay), in TU
  2994. * MaxChannelTime: (>= MinChannelTime), in TU
  2995. */
  2996. /* MLME-SCAN.confirm
  2997. * BSSDescriptionSet
  2998. * ResultCode: SUCCESS, INVALID_PARAMETERS
  2999. */
  3000. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3001. if (local->scan_dev == dev)
  3002. return 0;
  3003. return -EBUSY;
  3004. }
  3005. if (local->ops->hw_scan) {
  3006. int rc = local->ops->hw_scan(local_to_hw(local),
  3007. ssid, ssid_len);
  3008. if (!rc) {
  3009. local->sta_hw_scanning = 1;
  3010. local->scan_dev = dev;
  3011. }
  3012. return rc;
  3013. }
  3014. local->sta_sw_scanning = 1;
  3015. rcu_read_lock();
  3016. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3017. /* Don't stop the master interface, otherwise we can't transmit
  3018. * probes! */
  3019. if (sdata->dev == local->mdev)
  3020. continue;
  3021. netif_stop_queue(sdata->dev);
  3022. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3023. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3024. ieee80211_send_nullfunc(local, sdata, 1);
  3025. }
  3026. rcu_read_unlock();
  3027. if (ssid) {
  3028. local->scan_ssid_len = ssid_len;
  3029. memcpy(local->scan_ssid, ssid, ssid_len);
  3030. } else
  3031. local->scan_ssid_len = 0;
  3032. local->scan_state = SCAN_SET_CHANNEL;
  3033. local->scan_channel_idx = 0;
  3034. local->scan_band = IEEE80211_BAND_2GHZ;
  3035. local->scan_dev = dev;
  3036. netif_tx_lock_bh(local->mdev);
  3037. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3038. local->ops->configure_filter(local_to_hw(local),
  3039. FIF_BCN_PRBRESP_PROMISC,
  3040. &local->filter_flags,
  3041. local->mdev->mc_count,
  3042. local->mdev->mc_list);
  3043. netif_tx_unlock_bh(local->mdev);
  3044. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3045. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3046. IEEE80211_CHANNEL_TIME);
  3047. return 0;
  3048. }
  3049. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3050. {
  3051. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3052. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3053. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3054. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3055. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3056. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3057. if (local->scan_dev == dev)
  3058. return 0;
  3059. return -EBUSY;
  3060. }
  3061. ifsta->scan_ssid_len = ssid_len;
  3062. if (ssid_len)
  3063. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3064. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3065. queue_work(local->hw.workqueue, &ifsta->work);
  3066. return 0;
  3067. }
  3068. static char *
  3069. ieee80211_sta_scan_result(struct net_device *dev,
  3070. struct ieee80211_sta_bss *bss,
  3071. char *current_ev, char *end_buf)
  3072. {
  3073. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3074. struct iw_event iwe;
  3075. if (time_after(jiffies,
  3076. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3077. return current_ev;
  3078. memset(&iwe, 0, sizeof(iwe));
  3079. iwe.cmd = SIOCGIWAP;
  3080. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3081. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3082. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3083. IW_EV_ADDR_LEN);
  3084. memset(&iwe, 0, sizeof(iwe));
  3085. iwe.cmd = SIOCGIWESSID;
  3086. iwe.u.data.length = bss->ssid_len;
  3087. iwe.u.data.flags = 1;
  3088. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3089. bss->ssid);
  3090. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)) {
  3091. memset(&iwe, 0, sizeof(iwe));
  3092. iwe.cmd = SIOCGIWMODE;
  3093. if (bss->capability & WLAN_CAPABILITY_ESS)
  3094. iwe.u.mode = IW_MODE_MASTER;
  3095. else
  3096. iwe.u.mode = IW_MODE_ADHOC;
  3097. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3098. IW_EV_UINT_LEN);
  3099. }
  3100. memset(&iwe, 0, sizeof(iwe));
  3101. iwe.cmd = SIOCGIWFREQ;
  3102. iwe.u.freq.m = bss->freq;
  3103. iwe.u.freq.e = 6;
  3104. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3105. IW_EV_FREQ_LEN);
  3106. memset(&iwe, 0, sizeof(iwe));
  3107. iwe.cmd = SIOCGIWFREQ;
  3108. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3109. iwe.u.freq.e = 0;
  3110. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3111. IW_EV_FREQ_LEN);
  3112. memset(&iwe, 0, sizeof(iwe));
  3113. iwe.cmd = IWEVQUAL;
  3114. iwe.u.qual.qual = bss->signal;
  3115. iwe.u.qual.level = bss->rssi;
  3116. iwe.u.qual.noise = bss->noise;
  3117. iwe.u.qual.updated = local->wstats_flags;
  3118. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3119. IW_EV_QUAL_LEN);
  3120. memset(&iwe, 0, sizeof(iwe));
  3121. iwe.cmd = SIOCGIWENCODE;
  3122. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3123. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3124. else
  3125. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3126. iwe.u.data.length = 0;
  3127. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3128. if (bss && bss->wpa_ie) {
  3129. memset(&iwe, 0, sizeof(iwe));
  3130. iwe.cmd = IWEVGENIE;
  3131. iwe.u.data.length = bss->wpa_ie_len;
  3132. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3133. bss->wpa_ie);
  3134. }
  3135. if (bss && bss->rsn_ie) {
  3136. memset(&iwe, 0, sizeof(iwe));
  3137. iwe.cmd = IWEVGENIE;
  3138. iwe.u.data.length = bss->rsn_ie_len;
  3139. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3140. bss->rsn_ie);
  3141. }
  3142. if (bss && bss->supp_rates_len > 0) {
  3143. /* display all supported rates in readable format */
  3144. char *p = current_ev + IW_EV_LCP_LEN;
  3145. int i;
  3146. memset(&iwe, 0, sizeof(iwe));
  3147. iwe.cmd = SIOCGIWRATE;
  3148. /* Those two flags are ignored... */
  3149. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3150. for (i = 0; i < bss->supp_rates_len; i++) {
  3151. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3152. 0x7f) * 500000);
  3153. p = iwe_stream_add_value(current_ev, p,
  3154. end_buf, &iwe, IW_EV_PARAM_LEN);
  3155. }
  3156. current_ev = p;
  3157. }
  3158. if (bss) {
  3159. char *buf;
  3160. buf = kmalloc(30, GFP_ATOMIC);
  3161. if (buf) {
  3162. memset(&iwe, 0, sizeof(iwe));
  3163. iwe.cmd = IWEVCUSTOM;
  3164. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3165. iwe.u.data.length = strlen(buf);
  3166. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3167. &iwe, buf);
  3168. kfree(buf);
  3169. }
  3170. }
  3171. return current_ev;
  3172. }
  3173. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3174. {
  3175. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3176. char *current_ev = buf;
  3177. char *end_buf = buf + len;
  3178. struct ieee80211_sta_bss *bss;
  3179. spin_lock_bh(&local->sta_bss_lock);
  3180. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3181. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3182. spin_unlock_bh(&local->sta_bss_lock);
  3183. return -E2BIG;
  3184. }
  3185. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3186. end_buf);
  3187. }
  3188. spin_unlock_bh(&local->sta_bss_lock);
  3189. return current_ev - buf;
  3190. }
  3191. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3192. {
  3193. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3194. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3195. kfree(ifsta->extra_ie);
  3196. if (len == 0) {
  3197. ifsta->extra_ie = NULL;
  3198. ifsta->extra_ie_len = 0;
  3199. return 0;
  3200. }
  3201. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3202. if (!ifsta->extra_ie) {
  3203. ifsta->extra_ie_len = 0;
  3204. return -ENOMEM;
  3205. }
  3206. memcpy(ifsta->extra_ie, ie, len);
  3207. ifsta->extra_ie_len = len;
  3208. return 0;
  3209. }
  3210. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3211. struct sk_buff *skb, u8 *bssid,
  3212. u8 *addr)
  3213. {
  3214. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3215. struct sta_info *sta;
  3216. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3217. DECLARE_MAC_BUF(mac);
  3218. /* TODO: Could consider removing the least recently used entry and
  3219. * allow new one to be added. */
  3220. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3221. if (net_ratelimit()) {
  3222. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3223. "entry %s\n", dev->name, print_mac(mac, addr));
  3224. }
  3225. return NULL;
  3226. }
  3227. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3228. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3229. sta = sta_info_add(local, dev, addr, GFP_ATOMIC);
  3230. if (!sta)
  3231. return NULL;
  3232. sta->supp_rates[local->hw.conf.channel->band] =
  3233. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3234. rate_control_rate_init(sta, local);
  3235. return sta; /* caller will call sta_info_put() */
  3236. }
  3237. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3238. {
  3239. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3240. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3241. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3242. dev->name, reason);
  3243. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3244. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3245. return -EINVAL;
  3246. ieee80211_send_deauth(dev, ifsta, reason);
  3247. ieee80211_set_disassoc(dev, ifsta, 1);
  3248. return 0;
  3249. }
  3250. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3251. {
  3252. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3253. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3254. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3255. dev->name, reason);
  3256. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3257. return -EINVAL;
  3258. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3259. return -1;
  3260. ieee80211_send_disassoc(dev, ifsta, reason);
  3261. ieee80211_set_disassoc(dev, ifsta, 0);
  3262. return 0;
  3263. }