mmu.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. /*
  159. * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
  160. * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
  161. * number.
  162. */
  163. #define MMIO_SPTE_GEN_LOW_SHIFT 3
  164. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  165. #define MMIO_GEN_SHIFT 19
  166. #define MMIO_GEN_LOW_SHIFT 9
  167. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
  168. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  169. #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
  170. static u64 generation_mmio_spte_mask(unsigned int gen)
  171. {
  172. u64 mask;
  173. WARN_ON(gen > MMIO_MAX_GEN);
  174. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  175. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  176. return mask;
  177. }
  178. static unsigned int get_mmio_spte_generation(u64 spte)
  179. {
  180. unsigned int gen;
  181. spte &= ~shadow_mmio_mask;
  182. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  183. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  184. return gen;
  185. }
  186. static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
  187. {
  188. /*
  189. * Init kvm generation close to MMIO_MAX_GEN to easily test the
  190. * code of handling generation number wrap-around.
  191. */
  192. return (kvm_memslots(kvm)->generation +
  193. MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
  194. }
  195. static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
  196. unsigned access)
  197. {
  198. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  199. unsigned int gen = kvm_current_mmio_generation(kvm);
  200. u64 mask = generation_mmio_spte_mask(gen);
  201. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  202. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  203. sp->mmio_cached = true;
  204. trace_mark_mmio_spte(sptep, gfn, access, gen);
  205. mmu_spte_set(sptep, mask);
  206. }
  207. static bool is_mmio_spte(u64 spte)
  208. {
  209. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  210. }
  211. static gfn_t get_mmio_spte_gfn(u64 spte)
  212. {
  213. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  214. return (spte & ~mask) >> PAGE_SHIFT;
  215. }
  216. static unsigned get_mmio_spte_access(u64 spte)
  217. {
  218. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  219. return (spte & ~mask) & ~PAGE_MASK;
  220. }
  221. static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  222. pfn_t pfn, unsigned access)
  223. {
  224. if (unlikely(is_noslot_pfn(pfn))) {
  225. mark_mmio_spte(kvm, sptep, gfn, access);
  226. return true;
  227. }
  228. return false;
  229. }
  230. static bool check_mmio_spte(struct kvm *kvm, u64 spte)
  231. {
  232. unsigned int kvm_gen, spte_gen;
  233. kvm_gen = kvm_current_mmio_generation(kvm);
  234. spte_gen = get_mmio_spte_generation(spte);
  235. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  236. return likely(kvm_gen == spte_gen);
  237. }
  238. static inline u64 rsvd_bits(int s, int e)
  239. {
  240. return ((1ULL << (e - s + 1)) - 1) << s;
  241. }
  242. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  243. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  244. {
  245. shadow_user_mask = user_mask;
  246. shadow_accessed_mask = accessed_mask;
  247. shadow_dirty_mask = dirty_mask;
  248. shadow_nx_mask = nx_mask;
  249. shadow_x_mask = x_mask;
  250. }
  251. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  252. static int is_cpuid_PSE36(void)
  253. {
  254. return 1;
  255. }
  256. static int is_nx(struct kvm_vcpu *vcpu)
  257. {
  258. return vcpu->arch.efer & EFER_NX;
  259. }
  260. static int is_shadow_present_pte(u64 pte)
  261. {
  262. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  263. }
  264. static int is_large_pte(u64 pte)
  265. {
  266. return pte & PT_PAGE_SIZE_MASK;
  267. }
  268. static int is_dirty_gpte(unsigned long pte)
  269. {
  270. return pte & PT_DIRTY_MASK;
  271. }
  272. static int is_rmap_spte(u64 pte)
  273. {
  274. return is_shadow_present_pte(pte);
  275. }
  276. static int is_last_spte(u64 pte, int level)
  277. {
  278. if (level == PT_PAGE_TABLE_LEVEL)
  279. return 1;
  280. if (is_large_pte(pte))
  281. return 1;
  282. return 0;
  283. }
  284. static pfn_t spte_to_pfn(u64 pte)
  285. {
  286. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  287. }
  288. static gfn_t pse36_gfn_delta(u32 gpte)
  289. {
  290. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  291. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  292. }
  293. #ifdef CONFIG_X86_64
  294. static void __set_spte(u64 *sptep, u64 spte)
  295. {
  296. *sptep = spte;
  297. }
  298. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  299. {
  300. *sptep = spte;
  301. }
  302. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  303. {
  304. return xchg(sptep, spte);
  305. }
  306. static u64 __get_spte_lockless(u64 *sptep)
  307. {
  308. return ACCESS_ONCE(*sptep);
  309. }
  310. static bool __check_direct_spte_mmio_pf(u64 spte)
  311. {
  312. /* It is valid if the spte is zapped. */
  313. return spte == 0ull;
  314. }
  315. #else
  316. union split_spte {
  317. struct {
  318. u32 spte_low;
  319. u32 spte_high;
  320. };
  321. u64 spte;
  322. };
  323. static void count_spte_clear(u64 *sptep, u64 spte)
  324. {
  325. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  326. if (is_shadow_present_pte(spte))
  327. return;
  328. /* Ensure the spte is completely set before we increase the count */
  329. smp_wmb();
  330. sp->clear_spte_count++;
  331. }
  332. static void __set_spte(u64 *sptep, u64 spte)
  333. {
  334. union split_spte *ssptep, sspte;
  335. ssptep = (union split_spte *)sptep;
  336. sspte = (union split_spte)spte;
  337. ssptep->spte_high = sspte.spte_high;
  338. /*
  339. * If we map the spte from nonpresent to present, We should store
  340. * the high bits firstly, then set present bit, so cpu can not
  341. * fetch this spte while we are setting the spte.
  342. */
  343. smp_wmb();
  344. ssptep->spte_low = sspte.spte_low;
  345. }
  346. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  347. {
  348. union split_spte *ssptep, sspte;
  349. ssptep = (union split_spte *)sptep;
  350. sspte = (union split_spte)spte;
  351. ssptep->spte_low = sspte.spte_low;
  352. /*
  353. * If we map the spte from present to nonpresent, we should clear
  354. * present bit firstly to avoid vcpu fetch the old high bits.
  355. */
  356. smp_wmb();
  357. ssptep->spte_high = sspte.spte_high;
  358. count_spte_clear(sptep, spte);
  359. }
  360. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  361. {
  362. union split_spte *ssptep, sspte, orig;
  363. ssptep = (union split_spte *)sptep;
  364. sspte = (union split_spte)spte;
  365. /* xchg acts as a barrier before the setting of the high bits */
  366. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  367. orig.spte_high = ssptep->spte_high;
  368. ssptep->spte_high = sspte.spte_high;
  369. count_spte_clear(sptep, spte);
  370. return orig.spte;
  371. }
  372. /*
  373. * The idea using the light way get the spte on x86_32 guest is from
  374. * gup_get_pte(arch/x86/mm/gup.c).
  375. * The difference is we can not catch the spte tlb flush if we leave
  376. * guest mode, so we emulate it by increase clear_spte_count when spte
  377. * is cleared.
  378. */
  379. static u64 __get_spte_lockless(u64 *sptep)
  380. {
  381. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  382. union split_spte spte, *orig = (union split_spte *)sptep;
  383. int count;
  384. retry:
  385. count = sp->clear_spte_count;
  386. smp_rmb();
  387. spte.spte_low = orig->spte_low;
  388. smp_rmb();
  389. spte.spte_high = orig->spte_high;
  390. smp_rmb();
  391. if (unlikely(spte.spte_low != orig->spte_low ||
  392. count != sp->clear_spte_count))
  393. goto retry;
  394. return spte.spte;
  395. }
  396. static bool __check_direct_spte_mmio_pf(u64 spte)
  397. {
  398. union split_spte sspte = (union split_spte)spte;
  399. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  400. /* It is valid if the spte is zapped. */
  401. if (spte == 0ull)
  402. return true;
  403. /* It is valid if the spte is being zapped. */
  404. if (sspte.spte_low == 0ull &&
  405. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  406. return true;
  407. return false;
  408. }
  409. #endif
  410. static bool spte_is_locklessly_modifiable(u64 spte)
  411. {
  412. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  413. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  414. }
  415. static bool spte_has_volatile_bits(u64 spte)
  416. {
  417. /*
  418. * Always atomicly update spte if it can be updated
  419. * out of mmu-lock, it can ensure dirty bit is not lost,
  420. * also, it can help us to get a stable is_writable_pte()
  421. * to ensure tlb flush is not missed.
  422. */
  423. if (spte_is_locklessly_modifiable(spte))
  424. return true;
  425. if (!shadow_accessed_mask)
  426. return false;
  427. if (!is_shadow_present_pte(spte))
  428. return false;
  429. if ((spte & shadow_accessed_mask) &&
  430. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  431. return false;
  432. return true;
  433. }
  434. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  435. {
  436. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  437. }
  438. /* Rules for using mmu_spte_set:
  439. * Set the sptep from nonpresent to present.
  440. * Note: the sptep being assigned *must* be either not present
  441. * or in a state where the hardware will not attempt to update
  442. * the spte.
  443. */
  444. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  445. {
  446. WARN_ON(is_shadow_present_pte(*sptep));
  447. __set_spte(sptep, new_spte);
  448. }
  449. /* Rules for using mmu_spte_update:
  450. * Update the state bits, it means the mapped pfn is not changged.
  451. *
  452. * Whenever we overwrite a writable spte with a read-only one we
  453. * should flush remote TLBs. Otherwise rmap_write_protect
  454. * will find a read-only spte, even though the writable spte
  455. * might be cached on a CPU's TLB, the return value indicates this
  456. * case.
  457. */
  458. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  459. {
  460. u64 old_spte = *sptep;
  461. bool ret = false;
  462. WARN_ON(!is_rmap_spte(new_spte));
  463. if (!is_shadow_present_pte(old_spte)) {
  464. mmu_spte_set(sptep, new_spte);
  465. return ret;
  466. }
  467. if (!spte_has_volatile_bits(old_spte))
  468. __update_clear_spte_fast(sptep, new_spte);
  469. else
  470. old_spte = __update_clear_spte_slow(sptep, new_spte);
  471. /*
  472. * For the spte updated out of mmu-lock is safe, since
  473. * we always atomicly update it, see the comments in
  474. * spte_has_volatile_bits().
  475. */
  476. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  477. ret = true;
  478. if (!shadow_accessed_mask)
  479. return ret;
  480. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  481. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  482. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  483. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  484. return ret;
  485. }
  486. /*
  487. * Rules for using mmu_spte_clear_track_bits:
  488. * It sets the sptep from present to nonpresent, and track the
  489. * state bits, it is used to clear the last level sptep.
  490. */
  491. static int mmu_spte_clear_track_bits(u64 *sptep)
  492. {
  493. pfn_t pfn;
  494. u64 old_spte = *sptep;
  495. if (!spte_has_volatile_bits(old_spte))
  496. __update_clear_spte_fast(sptep, 0ull);
  497. else
  498. old_spte = __update_clear_spte_slow(sptep, 0ull);
  499. if (!is_rmap_spte(old_spte))
  500. return 0;
  501. pfn = spte_to_pfn(old_spte);
  502. /*
  503. * KVM does not hold the refcount of the page used by
  504. * kvm mmu, before reclaiming the page, we should
  505. * unmap it from mmu first.
  506. */
  507. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  508. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  509. kvm_set_pfn_accessed(pfn);
  510. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  511. kvm_set_pfn_dirty(pfn);
  512. return 1;
  513. }
  514. /*
  515. * Rules for using mmu_spte_clear_no_track:
  516. * Directly clear spte without caring the state bits of sptep,
  517. * it is used to set the upper level spte.
  518. */
  519. static void mmu_spte_clear_no_track(u64 *sptep)
  520. {
  521. __update_clear_spte_fast(sptep, 0ull);
  522. }
  523. static u64 mmu_spte_get_lockless(u64 *sptep)
  524. {
  525. return __get_spte_lockless(sptep);
  526. }
  527. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  528. {
  529. /*
  530. * Prevent page table teardown by making any free-er wait during
  531. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  532. */
  533. local_irq_disable();
  534. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  535. /*
  536. * Make sure a following spte read is not reordered ahead of the write
  537. * to vcpu->mode.
  538. */
  539. smp_mb();
  540. }
  541. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  542. {
  543. /*
  544. * Make sure the write to vcpu->mode is not reordered in front of
  545. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  546. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  547. */
  548. smp_mb();
  549. vcpu->mode = OUTSIDE_GUEST_MODE;
  550. local_irq_enable();
  551. }
  552. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  553. struct kmem_cache *base_cache, int min)
  554. {
  555. void *obj;
  556. if (cache->nobjs >= min)
  557. return 0;
  558. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  559. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  560. if (!obj)
  561. return -ENOMEM;
  562. cache->objects[cache->nobjs++] = obj;
  563. }
  564. return 0;
  565. }
  566. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  567. {
  568. return cache->nobjs;
  569. }
  570. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  571. struct kmem_cache *cache)
  572. {
  573. while (mc->nobjs)
  574. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  575. }
  576. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  577. int min)
  578. {
  579. void *page;
  580. if (cache->nobjs >= min)
  581. return 0;
  582. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  583. page = (void *)__get_free_page(GFP_KERNEL);
  584. if (!page)
  585. return -ENOMEM;
  586. cache->objects[cache->nobjs++] = page;
  587. }
  588. return 0;
  589. }
  590. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  591. {
  592. while (mc->nobjs)
  593. free_page((unsigned long)mc->objects[--mc->nobjs]);
  594. }
  595. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  596. {
  597. int r;
  598. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  599. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  600. if (r)
  601. goto out;
  602. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  603. if (r)
  604. goto out;
  605. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  606. mmu_page_header_cache, 4);
  607. out:
  608. return r;
  609. }
  610. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  611. {
  612. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  613. pte_list_desc_cache);
  614. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  615. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  616. mmu_page_header_cache);
  617. }
  618. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  619. {
  620. void *p;
  621. BUG_ON(!mc->nobjs);
  622. p = mc->objects[--mc->nobjs];
  623. return p;
  624. }
  625. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  626. {
  627. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  628. }
  629. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  630. {
  631. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  632. }
  633. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  634. {
  635. if (!sp->role.direct)
  636. return sp->gfns[index];
  637. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  638. }
  639. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  640. {
  641. if (sp->role.direct)
  642. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  643. else
  644. sp->gfns[index] = gfn;
  645. }
  646. /*
  647. * Return the pointer to the large page information for a given gfn,
  648. * handling slots that are not large page aligned.
  649. */
  650. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  651. struct kvm_memory_slot *slot,
  652. int level)
  653. {
  654. unsigned long idx;
  655. idx = gfn_to_index(gfn, slot->base_gfn, level);
  656. return &slot->arch.lpage_info[level - 2][idx];
  657. }
  658. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  659. {
  660. struct kvm_memory_slot *slot;
  661. struct kvm_lpage_info *linfo;
  662. int i;
  663. slot = gfn_to_memslot(kvm, gfn);
  664. for (i = PT_DIRECTORY_LEVEL;
  665. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  666. linfo = lpage_info_slot(gfn, slot, i);
  667. linfo->write_count += 1;
  668. }
  669. kvm->arch.indirect_shadow_pages++;
  670. }
  671. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  672. {
  673. struct kvm_memory_slot *slot;
  674. struct kvm_lpage_info *linfo;
  675. int i;
  676. slot = gfn_to_memslot(kvm, gfn);
  677. for (i = PT_DIRECTORY_LEVEL;
  678. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  679. linfo = lpage_info_slot(gfn, slot, i);
  680. linfo->write_count -= 1;
  681. WARN_ON(linfo->write_count < 0);
  682. }
  683. kvm->arch.indirect_shadow_pages--;
  684. }
  685. static int has_wrprotected_page(struct kvm *kvm,
  686. gfn_t gfn,
  687. int level)
  688. {
  689. struct kvm_memory_slot *slot;
  690. struct kvm_lpage_info *linfo;
  691. slot = gfn_to_memslot(kvm, gfn);
  692. if (slot) {
  693. linfo = lpage_info_slot(gfn, slot, level);
  694. return linfo->write_count;
  695. }
  696. return 1;
  697. }
  698. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  699. {
  700. unsigned long page_size;
  701. int i, ret = 0;
  702. page_size = kvm_host_page_size(kvm, gfn);
  703. for (i = PT_PAGE_TABLE_LEVEL;
  704. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  705. if (page_size >= KVM_HPAGE_SIZE(i))
  706. ret = i;
  707. else
  708. break;
  709. }
  710. return ret;
  711. }
  712. static struct kvm_memory_slot *
  713. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  714. bool no_dirty_log)
  715. {
  716. struct kvm_memory_slot *slot;
  717. slot = gfn_to_memslot(vcpu->kvm, gfn);
  718. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  719. (no_dirty_log && slot->dirty_bitmap))
  720. slot = NULL;
  721. return slot;
  722. }
  723. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  724. {
  725. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  726. }
  727. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  728. {
  729. int host_level, level, max_level;
  730. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  731. if (host_level == PT_PAGE_TABLE_LEVEL)
  732. return host_level;
  733. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  734. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  735. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  736. break;
  737. return level - 1;
  738. }
  739. /*
  740. * Pte mapping structures:
  741. *
  742. * If pte_list bit zero is zero, then pte_list point to the spte.
  743. *
  744. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  745. * pte_list_desc containing more mappings.
  746. *
  747. * Returns the number of pte entries before the spte was added or zero if
  748. * the spte was not added.
  749. *
  750. */
  751. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  752. unsigned long *pte_list)
  753. {
  754. struct pte_list_desc *desc;
  755. int i, count = 0;
  756. if (!*pte_list) {
  757. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  758. *pte_list = (unsigned long)spte;
  759. } else if (!(*pte_list & 1)) {
  760. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  761. desc = mmu_alloc_pte_list_desc(vcpu);
  762. desc->sptes[0] = (u64 *)*pte_list;
  763. desc->sptes[1] = spte;
  764. *pte_list = (unsigned long)desc | 1;
  765. ++count;
  766. } else {
  767. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  768. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  769. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  770. desc = desc->more;
  771. count += PTE_LIST_EXT;
  772. }
  773. if (desc->sptes[PTE_LIST_EXT-1]) {
  774. desc->more = mmu_alloc_pte_list_desc(vcpu);
  775. desc = desc->more;
  776. }
  777. for (i = 0; desc->sptes[i]; ++i)
  778. ++count;
  779. desc->sptes[i] = spte;
  780. }
  781. return count;
  782. }
  783. static void
  784. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  785. int i, struct pte_list_desc *prev_desc)
  786. {
  787. int j;
  788. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  789. ;
  790. desc->sptes[i] = desc->sptes[j];
  791. desc->sptes[j] = NULL;
  792. if (j != 0)
  793. return;
  794. if (!prev_desc && !desc->more)
  795. *pte_list = (unsigned long)desc->sptes[0];
  796. else
  797. if (prev_desc)
  798. prev_desc->more = desc->more;
  799. else
  800. *pte_list = (unsigned long)desc->more | 1;
  801. mmu_free_pte_list_desc(desc);
  802. }
  803. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  804. {
  805. struct pte_list_desc *desc;
  806. struct pte_list_desc *prev_desc;
  807. int i;
  808. if (!*pte_list) {
  809. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  810. BUG();
  811. } else if (!(*pte_list & 1)) {
  812. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  813. if ((u64 *)*pte_list != spte) {
  814. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  815. BUG();
  816. }
  817. *pte_list = 0;
  818. } else {
  819. rmap_printk("pte_list_remove: %p many->many\n", spte);
  820. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  821. prev_desc = NULL;
  822. while (desc) {
  823. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  824. if (desc->sptes[i] == spte) {
  825. pte_list_desc_remove_entry(pte_list,
  826. desc, i,
  827. prev_desc);
  828. return;
  829. }
  830. prev_desc = desc;
  831. desc = desc->more;
  832. }
  833. pr_err("pte_list_remove: %p many->many\n", spte);
  834. BUG();
  835. }
  836. }
  837. typedef void (*pte_list_walk_fn) (u64 *spte);
  838. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  839. {
  840. struct pte_list_desc *desc;
  841. int i;
  842. if (!*pte_list)
  843. return;
  844. if (!(*pte_list & 1))
  845. return fn((u64 *)*pte_list);
  846. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  847. while (desc) {
  848. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  849. fn(desc->sptes[i]);
  850. desc = desc->more;
  851. }
  852. }
  853. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  854. struct kvm_memory_slot *slot)
  855. {
  856. unsigned long idx;
  857. idx = gfn_to_index(gfn, slot->base_gfn, level);
  858. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  859. }
  860. /*
  861. * Take gfn and return the reverse mapping to it.
  862. */
  863. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  864. {
  865. struct kvm_memory_slot *slot;
  866. slot = gfn_to_memslot(kvm, gfn);
  867. return __gfn_to_rmap(gfn, level, slot);
  868. }
  869. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  870. {
  871. struct kvm_mmu_memory_cache *cache;
  872. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  873. return mmu_memory_cache_free_objects(cache);
  874. }
  875. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  876. {
  877. struct kvm_mmu_page *sp;
  878. unsigned long *rmapp;
  879. sp = page_header(__pa(spte));
  880. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  881. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  882. return pte_list_add(vcpu, spte, rmapp);
  883. }
  884. static void rmap_remove(struct kvm *kvm, u64 *spte)
  885. {
  886. struct kvm_mmu_page *sp;
  887. gfn_t gfn;
  888. unsigned long *rmapp;
  889. sp = page_header(__pa(spte));
  890. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  891. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  892. pte_list_remove(spte, rmapp);
  893. }
  894. /*
  895. * Used by the following functions to iterate through the sptes linked by a
  896. * rmap. All fields are private and not assumed to be used outside.
  897. */
  898. struct rmap_iterator {
  899. /* private fields */
  900. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  901. int pos; /* index of the sptep */
  902. };
  903. /*
  904. * Iteration must be started by this function. This should also be used after
  905. * removing/dropping sptes from the rmap link because in such cases the
  906. * information in the itererator may not be valid.
  907. *
  908. * Returns sptep if found, NULL otherwise.
  909. */
  910. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  911. {
  912. if (!rmap)
  913. return NULL;
  914. if (!(rmap & 1)) {
  915. iter->desc = NULL;
  916. return (u64 *)rmap;
  917. }
  918. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  919. iter->pos = 0;
  920. return iter->desc->sptes[iter->pos];
  921. }
  922. /*
  923. * Must be used with a valid iterator: e.g. after rmap_get_first().
  924. *
  925. * Returns sptep if found, NULL otherwise.
  926. */
  927. static u64 *rmap_get_next(struct rmap_iterator *iter)
  928. {
  929. if (iter->desc) {
  930. if (iter->pos < PTE_LIST_EXT - 1) {
  931. u64 *sptep;
  932. ++iter->pos;
  933. sptep = iter->desc->sptes[iter->pos];
  934. if (sptep)
  935. return sptep;
  936. }
  937. iter->desc = iter->desc->more;
  938. if (iter->desc) {
  939. iter->pos = 0;
  940. /* desc->sptes[0] cannot be NULL */
  941. return iter->desc->sptes[iter->pos];
  942. }
  943. }
  944. return NULL;
  945. }
  946. static void drop_spte(struct kvm *kvm, u64 *sptep)
  947. {
  948. if (mmu_spte_clear_track_bits(sptep))
  949. rmap_remove(kvm, sptep);
  950. }
  951. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  952. {
  953. if (is_large_pte(*sptep)) {
  954. WARN_ON(page_header(__pa(sptep))->role.level ==
  955. PT_PAGE_TABLE_LEVEL);
  956. drop_spte(kvm, sptep);
  957. --kvm->stat.lpages;
  958. return true;
  959. }
  960. return false;
  961. }
  962. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  963. {
  964. if (__drop_large_spte(vcpu->kvm, sptep))
  965. kvm_flush_remote_tlbs(vcpu->kvm);
  966. }
  967. /*
  968. * Write-protect on the specified @sptep, @pt_protect indicates whether
  969. * spte writ-protection is caused by protecting shadow page table.
  970. * @flush indicates whether tlb need be flushed.
  971. *
  972. * Note: write protection is difference between drity logging and spte
  973. * protection:
  974. * - for dirty logging, the spte can be set to writable at anytime if
  975. * its dirty bitmap is properly set.
  976. * - for spte protection, the spte can be writable only after unsync-ing
  977. * shadow page.
  978. *
  979. * Return true if the spte is dropped.
  980. */
  981. static bool
  982. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  983. {
  984. u64 spte = *sptep;
  985. if (!is_writable_pte(spte) &&
  986. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  987. return false;
  988. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  989. if (__drop_large_spte(kvm, sptep)) {
  990. *flush |= true;
  991. return true;
  992. }
  993. if (pt_protect)
  994. spte &= ~SPTE_MMU_WRITEABLE;
  995. spte = spte & ~PT_WRITABLE_MASK;
  996. *flush |= mmu_spte_update(sptep, spte);
  997. return false;
  998. }
  999. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  1000. bool pt_protect)
  1001. {
  1002. u64 *sptep;
  1003. struct rmap_iterator iter;
  1004. bool flush = false;
  1005. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1006. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1007. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  1008. sptep = rmap_get_first(*rmapp, &iter);
  1009. continue;
  1010. }
  1011. sptep = rmap_get_next(&iter);
  1012. }
  1013. return flush;
  1014. }
  1015. /**
  1016. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1017. * @kvm: kvm instance
  1018. * @slot: slot to protect
  1019. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1020. * @mask: indicates which pages we should protect
  1021. *
  1022. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1023. * logging we do not have any such mappings.
  1024. */
  1025. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1026. struct kvm_memory_slot *slot,
  1027. gfn_t gfn_offset, unsigned long mask)
  1028. {
  1029. unsigned long *rmapp;
  1030. while (mask) {
  1031. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1032. PT_PAGE_TABLE_LEVEL, slot);
  1033. __rmap_write_protect(kvm, rmapp, false);
  1034. /* clear the first set bit */
  1035. mask &= mask - 1;
  1036. }
  1037. }
  1038. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  1039. {
  1040. struct kvm_memory_slot *slot;
  1041. unsigned long *rmapp;
  1042. int i;
  1043. bool write_protected = false;
  1044. slot = gfn_to_memslot(kvm, gfn);
  1045. for (i = PT_PAGE_TABLE_LEVEL;
  1046. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  1047. rmapp = __gfn_to_rmap(gfn, i, slot);
  1048. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  1049. }
  1050. return write_protected;
  1051. }
  1052. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1053. struct kvm_memory_slot *slot, unsigned long data)
  1054. {
  1055. u64 *sptep;
  1056. struct rmap_iterator iter;
  1057. int need_tlb_flush = 0;
  1058. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1059. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1060. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1061. drop_spte(kvm, sptep);
  1062. need_tlb_flush = 1;
  1063. }
  1064. return need_tlb_flush;
  1065. }
  1066. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1067. struct kvm_memory_slot *slot, unsigned long data)
  1068. {
  1069. u64 *sptep;
  1070. struct rmap_iterator iter;
  1071. int need_flush = 0;
  1072. u64 new_spte;
  1073. pte_t *ptep = (pte_t *)data;
  1074. pfn_t new_pfn;
  1075. WARN_ON(pte_huge(*ptep));
  1076. new_pfn = pte_pfn(*ptep);
  1077. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1078. BUG_ON(!is_shadow_present_pte(*sptep));
  1079. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1080. need_flush = 1;
  1081. if (pte_write(*ptep)) {
  1082. drop_spte(kvm, sptep);
  1083. sptep = rmap_get_first(*rmapp, &iter);
  1084. } else {
  1085. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1086. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1087. new_spte &= ~PT_WRITABLE_MASK;
  1088. new_spte &= ~SPTE_HOST_WRITEABLE;
  1089. new_spte &= ~shadow_accessed_mask;
  1090. mmu_spte_clear_track_bits(sptep);
  1091. mmu_spte_set(sptep, new_spte);
  1092. sptep = rmap_get_next(&iter);
  1093. }
  1094. }
  1095. if (need_flush)
  1096. kvm_flush_remote_tlbs(kvm);
  1097. return 0;
  1098. }
  1099. static int kvm_handle_hva_range(struct kvm *kvm,
  1100. unsigned long start,
  1101. unsigned long end,
  1102. unsigned long data,
  1103. int (*handler)(struct kvm *kvm,
  1104. unsigned long *rmapp,
  1105. struct kvm_memory_slot *slot,
  1106. unsigned long data))
  1107. {
  1108. int j;
  1109. int ret = 0;
  1110. struct kvm_memslots *slots;
  1111. struct kvm_memory_slot *memslot;
  1112. slots = kvm_memslots(kvm);
  1113. kvm_for_each_memslot(memslot, slots) {
  1114. unsigned long hva_start, hva_end;
  1115. gfn_t gfn_start, gfn_end;
  1116. hva_start = max(start, memslot->userspace_addr);
  1117. hva_end = min(end, memslot->userspace_addr +
  1118. (memslot->npages << PAGE_SHIFT));
  1119. if (hva_start >= hva_end)
  1120. continue;
  1121. /*
  1122. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1123. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1124. */
  1125. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1126. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1127. for (j = PT_PAGE_TABLE_LEVEL;
  1128. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1129. unsigned long idx, idx_end;
  1130. unsigned long *rmapp;
  1131. /*
  1132. * {idx(page_j) | page_j intersects with
  1133. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1134. */
  1135. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1136. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1137. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1138. for (; idx <= idx_end; ++idx)
  1139. ret |= handler(kvm, rmapp++, memslot, data);
  1140. }
  1141. }
  1142. return ret;
  1143. }
  1144. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1145. unsigned long data,
  1146. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1147. struct kvm_memory_slot *slot,
  1148. unsigned long data))
  1149. {
  1150. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1151. }
  1152. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1153. {
  1154. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1155. }
  1156. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1157. {
  1158. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1159. }
  1160. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1161. {
  1162. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1163. }
  1164. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1165. struct kvm_memory_slot *slot, unsigned long data)
  1166. {
  1167. u64 *sptep;
  1168. struct rmap_iterator uninitialized_var(iter);
  1169. int young = 0;
  1170. /*
  1171. * In case of absence of EPT Access and Dirty Bits supports,
  1172. * emulate the accessed bit for EPT, by checking if this page has
  1173. * an EPT mapping, and clearing it if it does. On the next access,
  1174. * a new EPT mapping will be established.
  1175. * This has some overhead, but not as much as the cost of swapping
  1176. * out actively used pages or breaking up actively used hugepages.
  1177. */
  1178. if (!shadow_accessed_mask) {
  1179. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1180. goto out;
  1181. }
  1182. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1183. sptep = rmap_get_next(&iter)) {
  1184. BUG_ON(!is_shadow_present_pte(*sptep));
  1185. if (*sptep & shadow_accessed_mask) {
  1186. young = 1;
  1187. clear_bit((ffs(shadow_accessed_mask) - 1),
  1188. (unsigned long *)sptep);
  1189. }
  1190. }
  1191. out:
  1192. /* @data has hva passed to kvm_age_hva(). */
  1193. trace_kvm_age_page(data, slot, young);
  1194. return young;
  1195. }
  1196. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1197. struct kvm_memory_slot *slot, unsigned long data)
  1198. {
  1199. u64 *sptep;
  1200. struct rmap_iterator iter;
  1201. int young = 0;
  1202. /*
  1203. * If there's no access bit in the secondary pte set by the
  1204. * hardware it's up to gup-fast/gup to set the access bit in
  1205. * the primary pte or in the page structure.
  1206. */
  1207. if (!shadow_accessed_mask)
  1208. goto out;
  1209. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1210. sptep = rmap_get_next(&iter)) {
  1211. BUG_ON(!is_shadow_present_pte(*sptep));
  1212. if (*sptep & shadow_accessed_mask) {
  1213. young = 1;
  1214. break;
  1215. }
  1216. }
  1217. out:
  1218. return young;
  1219. }
  1220. #define RMAP_RECYCLE_THRESHOLD 1000
  1221. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1222. {
  1223. unsigned long *rmapp;
  1224. struct kvm_mmu_page *sp;
  1225. sp = page_header(__pa(spte));
  1226. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1227. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1228. kvm_flush_remote_tlbs(vcpu->kvm);
  1229. }
  1230. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1231. {
  1232. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1233. }
  1234. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1235. {
  1236. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1237. }
  1238. #ifdef MMU_DEBUG
  1239. static int is_empty_shadow_page(u64 *spt)
  1240. {
  1241. u64 *pos;
  1242. u64 *end;
  1243. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1244. if (is_shadow_present_pte(*pos)) {
  1245. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1246. pos, *pos);
  1247. return 0;
  1248. }
  1249. return 1;
  1250. }
  1251. #endif
  1252. /*
  1253. * This value is the sum of all of the kvm instances's
  1254. * kvm->arch.n_used_mmu_pages values. We need a global,
  1255. * aggregate version in order to make the slab shrinker
  1256. * faster
  1257. */
  1258. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1259. {
  1260. kvm->arch.n_used_mmu_pages += nr;
  1261. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1262. }
  1263. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1264. {
  1265. ASSERT(is_empty_shadow_page(sp->spt));
  1266. hlist_del(&sp->hash_link);
  1267. list_del(&sp->link);
  1268. free_page((unsigned long)sp->spt);
  1269. if (!sp->role.direct)
  1270. free_page((unsigned long)sp->gfns);
  1271. kmem_cache_free(mmu_page_header_cache, sp);
  1272. }
  1273. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1274. {
  1275. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1276. }
  1277. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1278. struct kvm_mmu_page *sp, u64 *parent_pte)
  1279. {
  1280. if (!parent_pte)
  1281. return;
  1282. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1283. }
  1284. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1285. u64 *parent_pte)
  1286. {
  1287. pte_list_remove(parent_pte, &sp->parent_ptes);
  1288. }
  1289. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1290. u64 *parent_pte)
  1291. {
  1292. mmu_page_remove_parent_pte(sp, parent_pte);
  1293. mmu_spte_clear_no_track(parent_pte);
  1294. }
  1295. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1296. u64 *parent_pte, int direct)
  1297. {
  1298. struct kvm_mmu_page *sp;
  1299. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1300. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1301. if (!direct)
  1302. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1303. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1304. /*
  1305. * The active_mmu_pages list is the FIFO list, do not move the
  1306. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1307. * this feature. See the comments in kvm_zap_obsolete_pages().
  1308. */
  1309. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1310. sp->parent_ptes = 0;
  1311. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1312. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1313. return sp;
  1314. }
  1315. static void mark_unsync(u64 *spte);
  1316. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1317. {
  1318. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1319. }
  1320. static void mark_unsync(u64 *spte)
  1321. {
  1322. struct kvm_mmu_page *sp;
  1323. unsigned int index;
  1324. sp = page_header(__pa(spte));
  1325. index = spte - sp->spt;
  1326. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1327. return;
  1328. if (sp->unsync_children++)
  1329. return;
  1330. kvm_mmu_mark_parents_unsync(sp);
  1331. }
  1332. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1333. struct kvm_mmu_page *sp)
  1334. {
  1335. return 1;
  1336. }
  1337. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1338. {
  1339. }
  1340. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1341. struct kvm_mmu_page *sp, u64 *spte,
  1342. const void *pte)
  1343. {
  1344. WARN_ON(1);
  1345. }
  1346. #define KVM_PAGE_ARRAY_NR 16
  1347. struct kvm_mmu_pages {
  1348. struct mmu_page_and_offset {
  1349. struct kvm_mmu_page *sp;
  1350. unsigned int idx;
  1351. } page[KVM_PAGE_ARRAY_NR];
  1352. unsigned int nr;
  1353. };
  1354. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1355. int idx)
  1356. {
  1357. int i;
  1358. if (sp->unsync)
  1359. for (i=0; i < pvec->nr; i++)
  1360. if (pvec->page[i].sp == sp)
  1361. return 0;
  1362. pvec->page[pvec->nr].sp = sp;
  1363. pvec->page[pvec->nr].idx = idx;
  1364. pvec->nr++;
  1365. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1366. }
  1367. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1368. struct kvm_mmu_pages *pvec)
  1369. {
  1370. int i, ret, nr_unsync_leaf = 0;
  1371. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1372. struct kvm_mmu_page *child;
  1373. u64 ent = sp->spt[i];
  1374. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1375. goto clear_child_bitmap;
  1376. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1377. if (child->unsync_children) {
  1378. if (mmu_pages_add(pvec, child, i))
  1379. return -ENOSPC;
  1380. ret = __mmu_unsync_walk(child, pvec);
  1381. if (!ret)
  1382. goto clear_child_bitmap;
  1383. else if (ret > 0)
  1384. nr_unsync_leaf += ret;
  1385. else
  1386. return ret;
  1387. } else if (child->unsync) {
  1388. nr_unsync_leaf++;
  1389. if (mmu_pages_add(pvec, child, i))
  1390. return -ENOSPC;
  1391. } else
  1392. goto clear_child_bitmap;
  1393. continue;
  1394. clear_child_bitmap:
  1395. __clear_bit(i, sp->unsync_child_bitmap);
  1396. sp->unsync_children--;
  1397. WARN_ON((int)sp->unsync_children < 0);
  1398. }
  1399. return nr_unsync_leaf;
  1400. }
  1401. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1402. struct kvm_mmu_pages *pvec)
  1403. {
  1404. if (!sp->unsync_children)
  1405. return 0;
  1406. mmu_pages_add(pvec, sp, 0);
  1407. return __mmu_unsync_walk(sp, pvec);
  1408. }
  1409. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1410. {
  1411. WARN_ON(!sp->unsync);
  1412. trace_kvm_mmu_sync_page(sp);
  1413. sp->unsync = 0;
  1414. --kvm->stat.mmu_unsync;
  1415. }
  1416. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1417. struct list_head *invalid_list);
  1418. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1419. struct list_head *invalid_list);
  1420. /*
  1421. * NOTE: we should pay more attention on the zapped-obsolete page
  1422. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1423. * since it has been deleted from active_mmu_pages but still can be found
  1424. * at hast list.
  1425. *
  1426. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1427. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1428. * all the obsolete pages.
  1429. */
  1430. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1431. hlist_for_each_entry(_sp, \
  1432. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1433. if ((_sp)->gfn != (_gfn)) {} else
  1434. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1435. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1436. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1437. /* @sp->gfn should be write-protected at the call site */
  1438. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1439. struct list_head *invalid_list, bool clear_unsync)
  1440. {
  1441. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1442. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1443. return 1;
  1444. }
  1445. if (clear_unsync)
  1446. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1447. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1448. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1449. return 1;
  1450. }
  1451. kvm_mmu_flush_tlb(vcpu);
  1452. return 0;
  1453. }
  1454. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1455. struct kvm_mmu_page *sp)
  1456. {
  1457. LIST_HEAD(invalid_list);
  1458. int ret;
  1459. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1460. if (ret)
  1461. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1462. return ret;
  1463. }
  1464. #ifdef CONFIG_KVM_MMU_AUDIT
  1465. #include "mmu_audit.c"
  1466. #else
  1467. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1468. static void mmu_audit_disable(void) { }
  1469. #endif
  1470. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1471. struct list_head *invalid_list)
  1472. {
  1473. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1474. }
  1475. /* @gfn should be write-protected at the call site */
  1476. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1477. {
  1478. struct kvm_mmu_page *s;
  1479. LIST_HEAD(invalid_list);
  1480. bool flush = false;
  1481. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1482. if (!s->unsync)
  1483. continue;
  1484. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1485. kvm_unlink_unsync_page(vcpu->kvm, s);
  1486. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1487. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1488. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1489. continue;
  1490. }
  1491. flush = true;
  1492. }
  1493. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1494. if (flush)
  1495. kvm_mmu_flush_tlb(vcpu);
  1496. }
  1497. struct mmu_page_path {
  1498. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1499. unsigned int idx[PT64_ROOT_LEVEL-1];
  1500. };
  1501. #define for_each_sp(pvec, sp, parents, i) \
  1502. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1503. sp = pvec.page[i].sp; \
  1504. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1505. i = mmu_pages_next(&pvec, &parents, i))
  1506. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1507. struct mmu_page_path *parents,
  1508. int i)
  1509. {
  1510. int n;
  1511. for (n = i+1; n < pvec->nr; n++) {
  1512. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1513. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1514. parents->idx[0] = pvec->page[n].idx;
  1515. return n;
  1516. }
  1517. parents->parent[sp->role.level-2] = sp;
  1518. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1519. }
  1520. return n;
  1521. }
  1522. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1523. {
  1524. struct kvm_mmu_page *sp;
  1525. unsigned int level = 0;
  1526. do {
  1527. unsigned int idx = parents->idx[level];
  1528. sp = parents->parent[level];
  1529. if (!sp)
  1530. return;
  1531. --sp->unsync_children;
  1532. WARN_ON((int)sp->unsync_children < 0);
  1533. __clear_bit(idx, sp->unsync_child_bitmap);
  1534. level++;
  1535. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1536. }
  1537. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1538. struct mmu_page_path *parents,
  1539. struct kvm_mmu_pages *pvec)
  1540. {
  1541. parents->parent[parent->role.level-1] = NULL;
  1542. pvec->nr = 0;
  1543. }
  1544. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1545. struct kvm_mmu_page *parent)
  1546. {
  1547. int i;
  1548. struct kvm_mmu_page *sp;
  1549. struct mmu_page_path parents;
  1550. struct kvm_mmu_pages pages;
  1551. LIST_HEAD(invalid_list);
  1552. kvm_mmu_pages_init(parent, &parents, &pages);
  1553. while (mmu_unsync_walk(parent, &pages)) {
  1554. bool protected = false;
  1555. for_each_sp(pages, sp, parents, i)
  1556. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1557. if (protected)
  1558. kvm_flush_remote_tlbs(vcpu->kvm);
  1559. for_each_sp(pages, sp, parents, i) {
  1560. kvm_sync_page(vcpu, sp, &invalid_list);
  1561. mmu_pages_clear_parents(&parents);
  1562. }
  1563. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1564. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1565. kvm_mmu_pages_init(parent, &parents, &pages);
  1566. }
  1567. }
  1568. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1569. {
  1570. int i;
  1571. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1572. sp->spt[i] = 0ull;
  1573. }
  1574. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1575. {
  1576. sp->write_flooding_count = 0;
  1577. }
  1578. static void clear_sp_write_flooding_count(u64 *spte)
  1579. {
  1580. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1581. __clear_sp_write_flooding_count(sp);
  1582. }
  1583. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1584. {
  1585. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1586. }
  1587. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1588. gfn_t gfn,
  1589. gva_t gaddr,
  1590. unsigned level,
  1591. int direct,
  1592. unsigned access,
  1593. u64 *parent_pte)
  1594. {
  1595. union kvm_mmu_page_role role;
  1596. unsigned quadrant;
  1597. struct kvm_mmu_page *sp;
  1598. bool need_sync = false;
  1599. role = vcpu->arch.mmu.base_role;
  1600. role.level = level;
  1601. role.direct = direct;
  1602. if (role.direct)
  1603. role.cr4_pae = 0;
  1604. role.access = access;
  1605. if (!vcpu->arch.mmu.direct_map
  1606. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1607. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1608. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1609. role.quadrant = quadrant;
  1610. }
  1611. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1612. if (is_obsolete_sp(vcpu->kvm, sp))
  1613. continue;
  1614. if (!need_sync && sp->unsync)
  1615. need_sync = true;
  1616. if (sp->role.word != role.word)
  1617. continue;
  1618. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1619. break;
  1620. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1621. if (sp->unsync_children) {
  1622. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1623. kvm_mmu_mark_parents_unsync(sp);
  1624. } else if (sp->unsync)
  1625. kvm_mmu_mark_parents_unsync(sp);
  1626. __clear_sp_write_flooding_count(sp);
  1627. trace_kvm_mmu_get_page(sp, false);
  1628. return sp;
  1629. }
  1630. ++vcpu->kvm->stat.mmu_cache_miss;
  1631. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1632. if (!sp)
  1633. return sp;
  1634. sp->gfn = gfn;
  1635. sp->role = role;
  1636. hlist_add_head(&sp->hash_link,
  1637. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1638. if (!direct) {
  1639. if (rmap_write_protect(vcpu->kvm, gfn))
  1640. kvm_flush_remote_tlbs(vcpu->kvm);
  1641. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1642. kvm_sync_pages(vcpu, gfn);
  1643. account_shadowed(vcpu->kvm, gfn);
  1644. }
  1645. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1646. init_shadow_page_table(sp);
  1647. trace_kvm_mmu_get_page(sp, true);
  1648. return sp;
  1649. }
  1650. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1651. struct kvm_vcpu *vcpu, u64 addr)
  1652. {
  1653. iterator->addr = addr;
  1654. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1655. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1656. if (iterator->level == PT64_ROOT_LEVEL &&
  1657. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1658. !vcpu->arch.mmu.direct_map)
  1659. --iterator->level;
  1660. if (iterator->level == PT32E_ROOT_LEVEL) {
  1661. iterator->shadow_addr
  1662. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1663. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1664. --iterator->level;
  1665. if (!iterator->shadow_addr)
  1666. iterator->level = 0;
  1667. }
  1668. }
  1669. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1670. {
  1671. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1672. return false;
  1673. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1674. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1675. return true;
  1676. }
  1677. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1678. u64 spte)
  1679. {
  1680. if (is_last_spte(spte, iterator->level)) {
  1681. iterator->level = 0;
  1682. return;
  1683. }
  1684. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1685. --iterator->level;
  1686. }
  1687. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1688. {
  1689. return __shadow_walk_next(iterator, *iterator->sptep);
  1690. }
  1691. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1692. {
  1693. u64 spte;
  1694. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1695. shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
  1696. mmu_spte_set(sptep, spte);
  1697. }
  1698. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1699. unsigned direct_access)
  1700. {
  1701. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1702. struct kvm_mmu_page *child;
  1703. /*
  1704. * For the direct sp, if the guest pte's dirty bit
  1705. * changed form clean to dirty, it will corrupt the
  1706. * sp's access: allow writable in the read-only sp,
  1707. * so we should update the spte at this point to get
  1708. * a new sp with the correct access.
  1709. */
  1710. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1711. if (child->role.access == direct_access)
  1712. return;
  1713. drop_parent_pte(child, sptep);
  1714. kvm_flush_remote_tlbs(vcpu->kvm);
  1715. }
  1716. }
  1717. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1718. u64 *spte)
  1719. {
  1720. u64 pte;
  1721. struct kvm_mmu_page *child;
  1722. pte = *spte;
  1723. if (is_shadow_present_pte(pte)) {
  1724. if (is_last_spte(pte, sp->role.level)) {
  1725. drop_spte(kvm, spte);
  1726. if (is_large_pte(pte))
  1727. --kvm->stat.lpages;
  1728. } else {
  1729. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1730. drop_parent_pte(child, spte);
  1731. }
  1732. return true;
  1733. }
  1734. if (is_mmio_spte(pte))
  1735. mmu_spte_clear_no_track(spte);
  1736. return false;
  1737. }
  1738. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1739. struct kvm_mmu_page *sp)
  1740. {
  1741. unsigned i;
  1742. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1743. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1744. }
  1745. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1746. {
  1747. mmu_page_remove_parent_pte(sp, parent_pte);
  1748. }
  1749. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1750. {
  1751. u64 *sptep;
  1752. struct rmap_iterator iter;
  1753. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1754. drop_parent_pte(sp, sptep);
  1755. }
  1756. static int mmu_zap_unsync_children(struct kvm *kvm,
  1757. struct kvm_mmu_page *parent,
  1758. struct list_head *invalid_list)
  1759. {
  1760. int i, zapped = 0;
  1761. struct mmu_page_path parents;
  1762. struct kvm_mmu_pages pages;
  1763. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1764. return 0;
  1765. kvm_mmu_pages_init(parent, &parents, &pages);
  1766. while (mmu_unsync_walk(parent, &pages)) {
  1767. struct kvm_mmu_page *sp;
  1768. for_each_sp(pages, sp, parents, i) {
  1769. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1770. mmu_pages_clear_parents(&parents);
  1771. zapped++;
  1772. }
  1773. kvm_mmu_pages_init(parent, &parents, &pages);
  1774. }
  1775. return zapped;
  1776. }
  1777. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1778. struct list_head *invalid_list)
  1779. {
  1780. int ret;
  1781. trace_kvm_mmu_prepare_zap_page(sp);
  1782. ++kvm->stat.mmu_shadow_zapped;
  1783. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1784. kvm_mmu_page_unlink_children(kvm, sp);
  1785. kvm_mmu_unlink_parents(kvm, sp);
  1786. if (!sp->role.invalid && !sp->role.direct)
  1787. unaccount_shadowed(kvm, sp->gfn);
  1788. if (sp->unsync)
  1789. kvm_unlink_unsync_page(kvm, sp);
  1790. if (!sp->root_count) {
  1791. /* Count self */
  1792. ret++;
  1793. list_move(&sp->link, invalid_list);
  1794. kvm_mod_used_mmu_pages(kvm, -1);
  1795. } else {
  1796. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1797. /*
  1798. * The obsolete pages can not be used on any vcpus.
  1799. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1800. */
  1801. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1802. kvm_reload_remote_mmus(kvm);
  1803. }
  1804. sp->role.invalid = 1;
  1805. return ret;
  1806. }
  1807. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1808. struct list_head *invalid_list)
  1809. {
  1810. struct kvm_mmu_page *sp, *nsp;
  1811. if (list_empty(invalid_list))
  1812. return;
  1813. /*
  1814. * wmb: make sure everyone sees our modifications to the page tables
  1815. * rmb: make sure we see changes to vcpu->mode
  1816. */
  1817. smp_mb();
  1818. /*
  1819. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1820. * page table walks.
  1821. */
  1822. kvm_flush_remote_tlbs(kvm);
  1823. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1824. WARN_ON(!sp->role.invalid || sp->root_count);
  1825. kvm_mmu_free_page(sp);
  1826. }
  1827. }
  1828. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1829. struct list_head *invalid_list)
  1830. {
  1831. struct kvm_mmu_page *sp;
  1832. if (list_empty(&kvm->arch.active_mmu_pages))
  1833. return false;
  1834. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1835. struct kvm_mmu_page, link);
  1836. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1837. return true;
  1838. }
  1839. /*
  1840. * Changing the number of mmu pages allocated to the vm
  1841. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1842. */
  1843. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1844. {
  1845. LIST_HEAD(invalid_list);
  1846. spin_lock(&kvm->mmu_lock);
  1847. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1848. /* Need to free some mmu pages to achieve the goal. */
  1849. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1850. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1851. break;
  1852. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1853. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1854. }
  1855. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1856. spin_unlock(&kvm->mmu_lock);
  1857. }
  1858. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1859. {
  1860. struct kvm_mmu_page *sp;
  1861. LIST_HEAD(invalid_list);
  1862. int r;
  1863. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1864. r = 0;
  1865. spin_lock(&kvm->mmu_lock);
  1866. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1867. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1868. sp->role.word);
  1869. r = 1;
  1870. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1871. }
  1872. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1873. spin_unlock(&kvm->mmu_lock);
  1874. return r;
  1875. }
  1876. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1877. /*
  1878. * The function is based on mtrr_type_lookup() in
  1879. * arch/x86/kernel/cpu/mtrr/generic.c
  1880. */
  1881. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1882. u64 start, u64 end)
  1883. {
  1884. int i;
  1885. u64 base, mask;
  1886. u8 prev_match, curr_match;
  1887. int num_var_ranges = KVM_NR_VAR_MTRR;
  1888. if (!mtrr_state->enabled)
  1889. return 0xFF;
  1890. /* Make end inclusive end, instead of exclusive */
  1891. end--;
  1892. /* Look in fixed ranges. Just return the type as per start */
  1893. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1894. int idx;
  1895. if (start < 0x80000) {
  1896. idx = 0;
  1897. idx += (start >> 16);
  1898. return mtrr_state->fixed_ranges[idx];
  1899. } else if (start < 0xC0000) {
  1900. idx = 1 * 8;
  1901. idx += ((start - 0x80000) >> 14);
  1902. return mtrr_state->fixed_ranges[idx];
  1903. } else if (start < 0x1000000) {
  1904. idx = 3 * 8;
  1905. idx += ((start - 0xC0000) >> 12);
  1906. return mtrr_state->fixed_ranges[idx];
  1907. }
  1908. }
  1909. /*
  1910. * Look in variable ranges
  1911. * Look of multiple ranges matching this address and pick type
  1912. * as per MTRR precedence
  1913. */
  1914. if (!(mtrr_state->enabled & 2))
  1915. return mtrr_state->def_type;
  1916. prev_match = 0xFF;
  1917. for (i = 0; i < num_var_ranges; ++i) {
  1918. unsigned short start_state, end_state;
  1919. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1920. continue;
  1921. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1922. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1923. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1924. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1925. start_state = ((start & mask) == (base & mask));
  1926. end_state = ((end & mask) == (base & mask));
  1927. if (start_state != end_state)
  1928. return 0xFE;
  1929. if ((start & mask) != (base & mask))
  1930. continue;
  1931. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1932. if (prev_match == 0xFF) {
  1933. prev_match = curr_match;
  1934. continue;
  1935. }
  1936. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1937. curr_match == MTRR_TYPE_UNCACHABLE)
  1938. return MTRR_TYPE_UNCACHABLE;
  1939. if ((prev_match == MTRR_TYPE_WRBACK &&
  1940. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1941. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1942. curr_match == MTRR_TYPE_WRBACK)) {
  1943. prev_match = MTRR_TYPE_WRTHROUGH;
  1944. curr_match = MTRR_TYPE_WRTHROUGH;
  1945. }
  1946. if (prev_match != curr_match)
  1947. return MTRR_TYPE_UNCACHABLE;
  1948. }
  1949. if (prev_match != 0xFF)
  1950. return prev_match;
  1951. return mtrr_state->def_type;
  1952. }
  1953. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1954. {
  1955. u8 mtrr;
  1956. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1957. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1958. if (mtrr == 0xfe || mtrr == 0xff)
  1959. mtrr = MTRR_TYPE_WRBACK;
  1960. return mtrr;
  1961. }
  1962. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1963. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1964. {
  1965. trace_kvm_mmu_unsync_page(sp);
  1966. ++vcpu->kvm->stat.mmu_unsync;
  1967. sp->unsync = 1;
  1968. kvm_mmu_mark_parents_unsync(sp);
  1969. }
  1970. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1971. {
  1972. struct kvm_mmu_page *s;
  1973. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1974. if (s->unsync)
  1975. continue;
  1976. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1977. __kvm_unsync_page(vcpu, s);
  1978. }
  1979. }
  1980. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1981. bool can_unsync)
  1982. {
  1983. struct kvm_mmu_page *s;
  1984. bool need_unsync = false;
  1985. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1986. if (!can_unsync)
  1987. return 1;
  1988. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1989. return 1;
  1990. if (!s->unsync)
  1991. need_unsync = true;
  1992. }
  1993. if (need_unsync)
  1994. kvm_unsync_pages(vcpu, gfn);
  1995. return 0;
  1996. }
  1997. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1998. unsigned pte_access, int level,
  1999. gfn_t gfn, pfn_t pfn, bool speculative,
  2000. bool can_unsync, bool host_writable)
  2001. {
  2002. u64 spte;
  2003. int ret = 0;
  2004. if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
  2005. return 0;
  2006. spte = PT_PRESENT_MASK;
  2007. if (!speculative)
  2008. spte |= shadow_accessed_mask;
  2009. if (pte_access & ACC_EXEC_MASK)
  2010. spte |= shadow_x_mask;
  2011. else
  2012. spte |= shadow_nx_mask;
  2013. if (pte_access & ACC_USER_MASK)
  2014. spte |= shadow_user_mask;
  2015. if (level > PT_PAGE_TABLE_LEVEL)
  2016. spte |= PT_PAGE_SIZE_MASK;
  2017. if (tdp_enabled)
  2018. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2019. kvm_is_mmio_pfn(pfn));
  2020. if (host_writable)
  2021. spte |= SPTE_HOST_WRITEABLE;
  2022. else
  2023. pte_access &= ~ACC_WRITE_MASK;
  2024. spte |= (u64)pfn << PAGE_SHIFT;
  2025. if (pte_access & ACC_WRITE_MASK) {
  2026. /*
  2027. * Other vcpu creates new sp in the window between
  2028. * mapping_level() and acquiring mmu-lock. We can
  2029. * allow guest to retry the access, the mapping can
  2030. * be fixed if guest refault.
  2031. */
  2032. if (level > PT_PAGE_TABLE_LEVEL &&
  2033. has_wrprotected_page(vcpu->kvm, gfn, level))
  2034. goto done;
  2035. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2036. /*
  2037. * Optimization: for pte sync, if spte was writable the hash
  2038. * lookup is unnecessary (and expensive). Write protection
  2039. * is responsibility of mmu_get_page / kvm_sync_page.
  2040. * Same reasoning can be applied to dirty page accounting.
  2041. */
  2042. if (!can_unsync && is_writable_pte(*sptep))
  2043. goto set_pte;
  2044. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2045. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2046. __func__, gfn);
  2047. ret = 1;
  2048. pte_access &= ~ACC_WRITE_MASK;
  2049. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2050. }
  2051. }
  2052. if (pte_access & ACC_WRITE_MASK)
  2053. mark_page_dirty(vcpu->kvm, gfn);
  2054. set_pte:
  2055. if (mmu_spte_update(sptep, spte))
  2056. kvm_flush_remote_tlbs(vcpu->kvm);
  2057. done:
  2058. return ret;
  2059. }
  2060. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2061. unsigned pte_access, int write_fault, int *emulate,
  2062. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2063. bool host_writable)
  2064. {
  2065. int was_rmapped = 0;
  2066. int rmap_count;
  2067. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2068. *sptep, write_fault, gfn);
  2069. if (is_rmap_spte(*sptep)) {
  2070. /*
  2071. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2072. * the parent of the now unreachable PTE.
  2073. */
  2074. if (level > PT_PAGE_TABLE_LEVEL &&
  2075. !is_large_pte(*sptep)) {
  2076. struct kvm_mmu_page *child;
  2077. u64 pte = *sptep;
  2078. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2079. drop_parent_pte(child, sptep);
  2080. kvm_flush_remote_tlbs(vcpu->kvm);
  2081. } else if (pfn != spte_to_pfn(*sptep)) {
  2082. pgprintk("hfn old %llx new %llx\n",
  2083. spte_to_pfn(*sptep), pfn);
  2084. drop_spte(vcpu->kvm, sptep);
  2085. kvm_flush_remote_tlbs(vcpu->kvm);
  2086. } else
  2087. was_rmapped = 1;
  2088. }
  2089. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2090. true, host_writable)) {
  2091. if (write_fault)
  2092. *emulate = 1;
  2093. kvm_mmu_flush_tlb(vcpu);
  2094. }
  2095. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2096. *emulate = 1;
  2097. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2098. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2099. is_large_pte(*sptep)? "2MB" : "4kB",
  2100. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2101. *sptep, sptep);
  2102. if (!was_rmapped && is_large_pte(*sptep))
  2103. ++vcpu->kvm->stat.lpages;
  2104. if (is_shadow_present_pte(*sptep)) {
  2105. if (!was_rmapped) {
  2106. rmap_count = rmap_add(vcpu, sptep, gfn);
  2107. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2108. rmap_recycle(vcpu, sptep, gfn);
  2109. }
  2110. }
  2111. kvm_release_pfn_clean(pfn);
  2112. }
  2113. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2114. {
  2115. mmu_free_roots(vcpu);
  2116. }
  2117. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2118. {
  2119. int bit7;
  2120. bit7 = (gpte >> 7) & 1;
  2121. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2122. }
  2123. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2124. bool no_dirty_log)
  2125. {
  2126. struct kvm_memory_slot *slot;
  2127. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2128. if (!slot)
  2129. return KVM_PFN_ERR_FAULT;
  2130. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2131. }
  2132. static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
  2133. struct kvm_mmu_page *sp, u64 *spte,
  2134. u64 gpte)
  2135. {
  2136. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  2137. goto no_present;
  2138. if (!is_present_gpte(gpte))
  2139. goto no_present;
  2140. if (!(gpte & PT_ACCESSED_MASK))
  2141. goto no_present;
  2142. return false;
  2143. no_present:
  2144. drop_spte(vcpu->kvm, spte);
  2145. return true;
  2146. }
  2147. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2148. struct kvm_mmu_page *sp,
  2149. u64 *start, u64 *end)
  2150. {
  2151. struct page *pages[PTE_PREFETCH_NUM];
  2152. unsigned access = sp->role.access;
  2153. int i, ret;
  2154. gfn_t gfn;
  2155. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2156. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2157. return -1;
  2158. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2159. if (ret <= 0)
  2160. return -1;
  2161. for (i = 0; i < ret; i++, gfn++, start++)
  2162. mmu_set_spte(vcpu, start, access, 0, NULL,
  2163. sp->role.level, gfn, page_to_pfn(pages[i]),
  2164. true, true);
  2165. return 0;
  2166. }
  2167. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2168. struct kvm_mmu_page *sp, u64 *sptep)
  2169. {
  2170. u64 *spte, *start = NULL;
  2171. int i;
  2172. WARN_ON(!sp->role.direct);
  2173. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2174. spte = sp->spt + i;
  2175. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2176. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2177. if (!start)
  2178. continue;
  2179. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2180. break;
  2181. start = NULL;
  2182. } else if (!start)
  2183. start = spte;
  2184. }
  2185. }
  2186. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2187. {
  2188. struct kvm_mmu_page *sp;
  2189. /*
  2190. * Since it's no accessed bit on EPT, it's no way to
  2191. * distinguish between actually accessed translations
  2192. * and prefetched, so disable pte prefetch if EPT is
  2193. * enabled.
  2194. */
  2195. if (!shadow_accessed_mask)
  2196. return;
  2197. sp = page_header(__pa(sptep));
  2198. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2199. return;
  2200. __direct_pte_prefetch(vcpu, sp, sptep);
  2201. }
  2202. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2203. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2204. bool prefault)
  2205. {
  2206. struct kvm_shadow_walk_iterator iterator;
  2207. struct kvm_mmu_page *sp;
  2208. int emulate = 0;
  2209. gfn_t pseudo_gfn;
  2210. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2211. if (iterator.level == level) {
  2212. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2213. write, &emulate, level, gfn, pfn,
  2214. prefault, map_writable);
  2215. direct_pte_prefetch(vcpu, iterator.sptep);
  2216. ++vcpu->stat.pf_fixed;
  2217. break;
  2218. }
  2219. if (!is_shadow_present_pte(*iterator.sptep)) {
  2220. u64 base_addr = iterator.addr;
  2221. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2222. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2223. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2224. iterator.level - 1,
  2225. 1, ACC_ALL, iterator.sptep);
  2226. link_shadow_page(iterator.sptep, sp);
  2227. }
  2228. }
  2229. return emulate;
  2230. }
  2231. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2232. {
  2233. siginfo_t info;
  2234. info.si_signo = SIGBUS;
  2235. info.si_errno = 0;
  2236. info.si_code = BUS_MCEERR_AR;
  2237. info.si_addr = (void __user *)address;
  2238. info.si_addr_lsb = PAGE_SHIFT;
  2239. send_sig_info(SIGBUS, &info, tsk);
  2240. }
  2241. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2242. {
  2243. /*
  2244. * Do not cache the mmio info caused by writing the readonly gfn
  2245. * into the spte otherwise read access on readonly gfn also can
  2246. * caused mmio page fault and treat it as mmio access.
  2247. * Return 1 to tell kvm to emulate it.
  2248. */
  2249. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2250. return 1;
  2251. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2252. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2253. return 0;
  2254. }
  2255. return -EFAULT;
  2256. }
  2257. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2258. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2259. {
  2260. pfn_t pfn = *pfnp;
  2261. gfn_t gfn = *gfnp;
  2262. int level = *levelp;
  2263. /*
  2264. * Check if it's a transparent hugepage. If this would be an
  2265. * hugetlbfs page, level wouldn't be set to
  2266. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2267. * here.
  2268. */
  2269. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2270. level == PT_PAGE_TABLE_LEVEL &&
  2271. PageTransCompound(pfn_to_page(pfn)) &&
  2272. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2273. unsigned long mask;
  2274. /*
  2275. * mmu_notifier_retry was successful and we hold the
  2276. * mmu_lock here, so the pmd can't become splitting
  2277. * from under us, and in turn
  2278. * __split_huge_page_refcount() can't run from under
  2279. * us and we can safely transfer the refcount from
  2280. * PG_tail to PG_head as we switch the pfn to tail to
  2281. * head.
  2282. */
  2283. *levelp = level = PT_DIRECTORY_LEVEL;
  2284. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2285. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2286. if (pfn & mask) {
  2287. gfn &= ~mask;
  2288. *gfnp = gfn;
  2289. kvm_release_pfn_clean(pfn);
  2290. pfn &= ~mask;
  2291. kvm_get_pfn(pfn);
  2292. *pfnp = pfn;
  2293. }
  2294. }
  2295. }
  2296. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2297. pfn_t pfn, unsigned access, int *ret_val)
  2298. {
  2299. bool ret = true;
  2300. /* The pfn is invalid, report the error! */
  2301. if (unlikely(is_error_pfn(pfn))) {
  2302. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2303. goto exit;
  2304. }
  2305. if (unlikely(is_noslot_pfn(pfn)))
  2306. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2307. ret = false;
  2308. exit:
  2309. return ret;
  2310. }
  2311. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2312. {
  2313. /*
  2314. * #PF can be fast only if the shadow page table is present and it
  2315. * is caused by write-protect, that means we just need change the
  2316. * W bit of the spte which can be done out of mmu-lock.
  2317. */
  2318. if (!(error_code & PFERR_PRESENT_MASK) ||
  2319. !(error_code & PFERR_WRITE_MASK))
  2320. return false;
  2321. return true;
  2322. }
  2323. static bool
  2324. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2325. {
  2326. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2327. gfn_t gfn;
  2328. WARN_ON(!sp->role.direct);
  2329. /*
  2330. * The gfn of direct spte is stable since it is calculated
  2331. * by sp->gfn.
  2332. */
  2333. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2334. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2335. mark_page_dirty(vcpu->kvm, gfn);
  2336. return true;
  2337. }
  2338. /*
  2339. * Return value:
  2340. * - true: let the vcpu to access on the same address again.
  2341. * - false: let the real page fault path to fix it.
  2342. */
  2343. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2344. u32 error_code)
  2345. {
  2346. struct kvm_shadow_walk_iterator iterator;
  2347. bool ret = false;
  2348. u64 spte = 0ull;
  2349. if (!page_fault_can_be_fast(vcpu, error_code))
  2350. return false;
  2351. walk_shadow_page_lockless_begin(vcpu);
  2352. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2353. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2354. break;
  2355. /*
  2356. * If the mapping has been changed, let the vcpu fault on the
  2357. * same address again.
  2358. */
  2359. if (!is_rmap_spte(spte)) {
  2360. ret = true;
  2361. goto exit;
  2362. }
  2363. if (!is_last_spte(spte, level))
  2364. goto exit;
  2365. /*
  2366. * Check if it is a spurious fault caused by TLB lazily flushed.
  2367. *
  2368. * Need not check the access of upper level table entries since
  2369. * they are always ACC_ALL.
  2370. */
  2371. if (is_writable_pte(spte)) {
  2372. ret = true;
  2373. goto exit;
  2374. }
  2375. /*
  2376. * Currently, to simplify the code, only the spte write-protected
  2377. * by dirty-log can be fast fixed.
  2378. */
  2379. if (!spte_is_locklessly_modifiable(spte))
  2380. goto exit;
  2381. /*
  2382. * Currently, fast page fault only works for direct mapping since
  2383. * the gfn is not stable for indirect shadow page.
  2384. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2385. */
  2386. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2387. exit:
  2388. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2389. spte, ret);
  2390. walk_shadow_page_lockless_end(vcpu);
  2391. return ret;
  2392. }
  2393. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2394. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2395. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2396. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2397. gfn_t gfn, bool prefault)
  2398. {
  2399. int r;
  2400. int level;
  2401. int force_pt_level;
  2402. pfn_t pfn;
  2403. unsigned long mmu_seq;
  2404. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2405. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2406. if (likely(!force_pt_level)) {
  2407. level = mapping_level(vcpu, gfn);
  2408. /*
  2409. * This path builds a PAE pagetable - so we can map
  2410. * 2mb pages at maximum. Therefore check if the level
  2411. * is larger than that.
  2412. */
  2413. if (level > PT_DIRECTORY_LEVEL)
  2414. level = PT_DIRECTORY_LEVEL;
  2415. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2416. } else
  2417. level = PT_PAGE_TABLE_LEVEL;
  2418. if (fast_page_fault(vcpu, v, level, error_code))
  2419. return 0;
  2420. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2421. smp_rmb();
  2422. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2423. return 0;
  2424. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2425. return r;
  2426. spin_lock(&vcpu->kvm->mmu_lock);
  2427. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2428. goto out_unlock;
  2429. make_mmu_pages_available(vcpu);
  2430. if (likely(!force_pt_level))
  2431. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2432. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2433. prefault);
  2434. spin_unlock(&vcpu->kvm->mmu_lock);
  2435. return r;
  2436. out_unlock:
  2437. spin_unlock(&vcpu->kvm->mmu_lock);
  2438. kvm_release_pfn_clean(pfn);
  2439. return 0;
  2440. }
  2441. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2442. {
  2443. int i;
  2444. struct kvm_mmu_page *sp;
  2445. LIST_HEAD(invalid_list);
  2446. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2447. return;
  2448. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2449. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2450. vcpu->arch.mmu.direct_map)) {
  2451. hpa_t root = vcpu->arch.mmu.root_hpa;
  2452. spin_lock(&vcpu->kvm->mmu_lock);
  2453. sp = page_header(root);
  2454. --sp->root_count;
  2455. if (!sp->root_count && sp->role.invalid) {
  2456. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2457. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2458. }
  2459. spin_unlock(&vcpu->kvm->mmu_lock);
  2460. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2461. return;
  2462. }
  2463. spin_lock(&vcpu->kvm->mmu_lock);
  2464. for (i = 0; i < 4; ++i) {
  2465. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2466. if (root) {
  2467. root &= PT64_BASE_ADDR_MASK;
  2468. sp = page_header(root);
  2469. --sp->root_count;
  2470. if (!sp->root_count && sp->role.invalid)
  2471. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2472. &invalid_list);
  2473. }
  2474. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2475. }
  2476. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2477. spin_unlock(&vcpu->kvm->mmu_lock);
  2478. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2479. }
  2480. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2481. {
  2482. int ret = 0;
  2483. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2484. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2485. ret = 1;
  2486. }
  2487. return ret;
  2488. }
  2489. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2490. {
  2491. struct kvm_mmu_page *sp;
  2492. unsigned i;
  2493. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2494. spin_lock(&vcpu->kvm->mmu_lock);
  2495. make_mmu_pages_available(vcpu);
  2496. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2497. 1, ACC_ALL, NULL);
  2498. ++sp->root_count;
  2499. spin_unlock(&vcpu->kvm->mmu_lock);
  2500. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2501. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2502. for (i = 0; i < 4; ++i) {
  2503. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2504. ASSERT(!VALID_PAGE(root));
  2505. spin_lock(&vcpu->kvm->mmu_lock);
  2506. make_mmu_pages_available(vcpu);
  2507. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2508. i << 30,
  2509. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2510. NULL);
  2511. root = __pa(sp->spt);
  2512. ++sp->root_count;
  2513. spin_unlock(&vcpu->kvm->mmu_lock);
  2514. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2515. }
  2516. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2517. } else
  2518. BUG();
  2519. return 0;
  2520. }
  2521. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2522. {
  2523. struct kvm_mmu_page *sp;
  2524. u64 pdptr, pm_mask;
  2525. gfn_t root_gfn;
  2526. int i;
  2527. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2528. if (mmu_check_root(vcpu, root_gfn))
  2529. return 1;
  2530. /*
  2531. * Do we shadow a long mode page table? If so we need to
  2532. * write-protect the guests page table root.
  2533. */
  2534. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2535. hpa_t root = vcpu->arch.mmu.root_hpa;
  2536. ASSERT(!VALID_PAGE(root));
  2537. spin_lock(&vcpu->kvm->mmu_lock);
  2538. make_mmu_pages_available(vcpu);
  2539. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2540. 0, ACC_ALL, NULL);
  2541. root = __pa(sp->spt);
  2542. ++sp->root_count;
  2543. spin_unlock(&vcpu->kvm->mmu_lock);
  2544. vcpu->arch.mmu.root_hpa = root;
  2545. return 0;
  2546. }
  2547. /*
  2548. * We shadow a 32 bit page table. This may be a legacy 2-level
  2549. * or a PAE 3-level page table. In either case we need to be aware that
  2550. * the shadow page table may be a PAE or a long mode page table.
  2551. */
  2552. pm_mask = PT_PRESENT_MASK;
  2553. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2554. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2555. for (i = 0; i < 4; ++i) {
  2556. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2557. ASSERT(!VALID_PAGE(root));
  2558. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2559. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2560. if (!is_present_gpte(pdptr)) {
  2561. vcpu->arch.mmu.pae_root[i] = 0;
  2562. continue;
  2563. }
  2564. root_gfn = pdptr >> PAGE_SHIFT;
  2565. if (mmu_check_root(vcpu, root_gfn))
  2566. return 1;
  2567. }
  2568. spin_lock(&vcpu->kvm->mmu_lock);
  2569. make_mmu_pages_available(vcpu);
  2570. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2571. PT32_ROOT_LEVEL, 0,
  2572. ACC_ALL, NULL);
  2573. root = __pa(sp->spt);
  2574. ++sp->root_count;
  2575. spin_unlock(&vcpu->kvm->mmu_lock);
  2576. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2577. }
  2578. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2579. /*
  2580. * If we shadow a 32 bit page table with a long mode page
  2581. * table we enter this path.
  2582. */
  2583. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2584. if (vcpu->arch.mmu.lm_root == NULL) {
  2585. /*
  2586. * The additional page necessary for this is only
  2587. * allocated on demand.
  2588. */
  2589. u64 *lm_root;
  2590. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2591. if (lm_root == NULL)
  2592. return 1;
  2593. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2594. vcpu->arch.mmu.lm_root = lm_root;
  2595. }
  2596. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2597. }
  2598. return 0;
  2599. }
  2600. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2601. {
  2602. if (vcpu->arch.mmu.direct_map)
  2603. return mmu_alloc_direct_roots(vcpu);
  2604. else
  2605. return mmu_alloc_shadow_roots(vcpu);
  2606. }
  2607. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2608. {
  2609. int i;
  2610. struct kvm_mmu_page *sp;
  2611. if (vcpu->arch.mmu.direct_map)
  2612. return;
  2613. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2614. return;
  2615. vcpu_clear_mmio_info(vcpu, ~0ul);
  2616. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2617. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2618. hpa_t root = vcpu->arch.mmu.root_hpa;
  2619. sp = page_header(root);
  2620. mmu_sync_children(vcpu, sp);
  2621. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2622. return;
  2623. }
  2624. for (i = 0; i < 4; ++i) {
  2625. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2626. if (root && VALID_PAGE(root)) {
  2627. root &= PT64_BASE_ADDR_MASK;
  2628. sp = page_header(root);
  2629. mmu_sync_children(vcpu, sp);
  2630. }
  2631. }
  2632. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2633. }
  2634. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2635. {
  2636. spin_lock(&vcpu->kvm->mmu_lock);
  2637. mmu_sync_roots(vcpu);
  2638. spin_unlock(&vcpu->kvm->mmu_lock);
  2639. }
  2640. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2641. u32 access, struct x86_exception *exception)
  2642. {
  2643. if (exception)
  2644. exception->error_code = 0;
  2645. return vaddr;
  2646. }
  2647. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2648. u32 access,
  2649. struct x86_exception *exception)
  2650. {
  2651. if (exception)
  2652. exception->error_code = 0;
  2653. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2654. }
  2655. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2656. {
  2657. if (direct)
  2658. return vcpu_match_mmio_gpa(vcpu, addr);
  2659. return vcpu_match_mmio_gva(vcpu, addr);
  2660. }
  2661. /*
  2662. * On direct hosts, the last spte is only allows two states
  2663. * for mmio page fault:
  2664. * - It is the mmio spte
  2665. * - It is zapped or it is being zapped.
  2666. *
  2667. * This function completely checks the spte when the last spte
  2668. * is not the mmio spte.
  2669. */
  2670. static bool check_direct_spte_mmio_pf(u64 spte)
  2671. {
  2672. return __check_direct_spte_mmio_pf(spte);
  2673. }
  2674. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2675. {
  2676. struct kvm_shadow_walk_iterator iterator;
  2677. u64 spte = 0ull;
  2678. walk_shadow_page_lockless_begin(vcpu);
  2679. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2680. if (!is_shadow_present_pte(spte))
  2681. break;
  2682. walk_shadow_page_lockless_end(vcpu);
  2683. return spte;
  2684. }
  2685. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2686. {
  2687. u64 spte;
  2688. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2689. return RET_MMIO_PF_EMULATE;
  2690. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2691. if (is_mmio_spte(spte)) {
  2692. gfn_t gfn = get_mmio_spte_gfn(spte);
  2693. unsigned access = get_mmio_spte_access(spte);
  2694. if (!check_mmio_spte(vcpu->kvm, spte))
  2695. return RET_MMIO_PF_INVALID;
  2696. if (direct)
  2697. addr = 0;
  2698. trace_handle_mmio_page_fault(addr, gfn, access);
  2699. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2700. return RET_MMIO_PF_EMULATE;
  2701. }
  2702. /*
  2703. * It's ok if the gva is remapped by other cpus on shadow guest,
  2704. * it's a BUG if the gfn is not a mmio page.
  2705. */
  2706. if (direct && !check_direct_spte_mmio_pf(spte))
  2707. return RET_MMIO_PF_BUG;
  2708. /*
  2709. * If the page table is zapped by other cpus, let CPU fault again on
  2710. * the address.
  2711. */
  2712. return RET_MMIO_PF_RETRY;
  2713. }
  2714. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2715. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2716. u32 error_code, bool direct)
  2717. {
  2718. int ret;
  2719. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2720. WARN_ON(ret == RET_MMIO_PF_BUG);
  2721. return ret;
  2722. }
  2723. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2724. u32 error_code, bool prefault)
  2725. {
  2726. gfn_t gfn;
  2727. int r;
  2728. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2729. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2730. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2731. if (likely(r != RET_MMIO_PF_INVALID))
  2732. return r;
  2733. }
  2734. r = mmu_topup_memory_caches(vcpu);
  2735. if (r)
  2736. return r;
  2737. ASSERT(vcpu);
  2738. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2739. gfn = gva >> PAGE_SHIFT;
  2740. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2741. error_code, gfn, prefault);
  2742. }
  2743. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2744. {
  2745. struct kvm_arch_async_pf arch;
  2746. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2747. arch.gfn = gfn;
  2748. arch.direct_map = vcpu->arch.mmu.direct_map;
  2749. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2750. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2751. }
  2752. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2753. {
  2754. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2755. kvm_event_needs_reinjection(vcpu)))
  2756. return false;
  2757. return kvm_x86_ops->interrupt_allowed(vcpu);
  2758. }
  2759. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2760. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2761. {
  2762. bool async;
  2763. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2764. if (!async)
  2765. return false; /* *pfn has correct page already */
  2766. if (!prefault && can_do_async_pf(vcpu)) {
  2767. trace_kvm_try_async_get_page(gva, gfn);
  2768. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2769. trace_kvm_async_pf_doublefault(gva, gfn);
  2770. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2771. return true;
  2772. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2773. return true;
  2774. }
  2775. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2776. return false;
  2777. }
  2778. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2779. bool prefault)
  2780. {
  2781. pfn_t pfn;
  2782. int r;
  2783. int level;
  2784. int force_pt_level;
  2785. gfn_t gfn = gpa >> PAGE_SHIFT;
  2786. unsigned long mmu_seq;
  2787. int write = error_code & PFERR_WRITE_MASK;
  2788. bool map_writable;
  2789. ASSERT(vcpu);
  2790. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2791. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2792. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2793. if (likely(r != RET_MMIO_PF_INVALID))
  2794. return r;
  2795. }
  2796. r = mmu_topup_memory_caches(vcpu);
  2797. if (r)
  2798. return r;
  2799. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2800. if (likely(!force_pt_level)) {
  2801. level = mapping_level(vcpu, gfn);
  2802. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2803. } else
  2804. level = PT_PAGE_TABLE_LEVEL;
  2805. if (fast_page_fault(vcpu, gpa, level, error_code))
  2806. return 0;
  2807. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2808. smp_rmb();
  2809. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2810. return 0;
  2811. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2812. return r;
  2813. spin_lock(&vcpu->kvm->mmu_lock);
  2814. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2815. goto out_unlock;
  2816. make_mmu_pages_available(vcpu);
  2817. if (likely(!force_pt_level))
  2818. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2819. r = __direct_map(vcpu, gpa, write, map_writable,
  2820. level, gfn, pfn, prefault);
  2821. spin_unlock(&vcpu->kvm->mmu_lock);
  2822. return r;
  2823. out_unlock:
  2824. spin_unlock(&vcpu->kvm->mmu_lock);
  2825. kvm_release_pfn_clean(pfn);
  2826. return 0;
  2827. }
  2828. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2829. {
  2830. mmu_free_roots(vcpu);
  2831. }
  2832. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2833. struct kvm_mmu *context)
  2834. {
  2835. context->new_cr3 = nonpaging_new_cr3;
  2836. context->page_fault = nonpaging_page_fault;
  2837. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2838. context->free = nonpaging_free;
  2839. context->sync_page = nonpaging_sync_page;
  2840. context->invlpg = nonpaging_invlpg;
  2841. context->update_pte = nonpaging_update_pte;
  2842. context->root_level = 0;
  2843. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2844. context->root_hpa = INVALID_PAGE;
  2845. context->direct_map = true;
  2846. context->nx = false;
  2847. return 0;
  2848. }
  2849. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2850. {
  2851. ++vcpu->stat.tlb_flush;
  2852. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2853. }
  2854. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2855. {
  2856. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2857. mmu_free_roots(vcpu);
  2858. }
  2859. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2860. {
  2861. return kvm_read_cr3(vcpu);
  2862. }
  2863. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2864. struct x86_exception *fault)
  2865. {
  2866. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2867. }
  2868. static void paging_free(struct kvm_vcpu *vcpu)
  2869. {
  2870. nonpaging_free(vcpu);
  2871. }
  2872. static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
  2873. {
  2874. unsigned mask;
  2875. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  2876. mask = (unsigned)~ACC_WRITE_MASK;
  2877. /* Allow write access to dirty gptes */
  2878. mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
  2879. *access &= mask;
  2880. }
  2881. static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  2882. unsigned access, int *nr_present)
  2883. {
  2884. if (unlikely(is_mmio_spte(*sptep))) {
  2885. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2886. mmu_spte_clear_no_track(sptep);
  2887. return true;
  2888. }
  2889. (*nr_present)++;
  2890. mark_mmio_spte(kvm, sptep, gfn, access);
  2891. return true;
  2892. }
  2893. return false;
  2894. }
  2895. static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
  2896. {
  2897. unsigned access;
  2898. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  2899. access &= ~(gpte >> PT64_NX_SHIFT);
  2900. return access;
  2901. }
  2902. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2903. {
  2904. unsigned index;
  2905. index = level - 1;
  2906. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2907. return mmu->last_pte_bitmap & (1 << index);
  2908. }
  2909. #define PTTYPE 64
  2910. #include "paging_tmpl.h"
  2911. #undef PTTYPE
  2912. #define PTTYPE 32
  2913. #include "paging_tmpl.h"
  2914. #undef PTTYPE
  2915. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2916. struct kvm_mmu *context)
  2917. {
  2918. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2919. u64 exb_bit_rsvd = 0;
  2920. if (!context->nx)
  2921. exb_bit_rsvd = rsvd_bits(63, 63);
  2922. switch (context->root_level) {
  2923. case PT32_ROOT_LEVEL:
  2924. /* no rsvd bits for 2 level 4K page table entries */
  2925. context->rsvd_bits_mask[0][1] = 0;
  2926. context->rsvd_bits_mask[0][0] = 0;
  2927. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2928. if (!is_pse(vcpu)) {
  2929. context->rsvd_bits_mask[1][1] = 0;
  2930. break;
  2931. }
  2932. if (is_cpuid_PSE36())
  2933. /* 36bits PSE 4MB page */
  2934. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2935. else
  2936. /* 32 bits PSE 4MB page */
  2937. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2938. break;
  2939. case PT32E_ROOT_LEVEL:
  2940. context->rsvd_bits_mask[0][2] =
  2941. rsvd_bits(maxphyaddr, 63) |
  2942. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2943. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2944. rsvd_bits(maxphyaddr, 62); /* PDE */
  2945. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2946. rsvd_bits(maxphyaddr, 62); /* PTE */
  2947. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2948. rsvd_bits(maxphyaddr, 62) |
  2949. rsvd_bits(13, 20); /* large page */
  2950. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2951. break;
  2952. case PT64_ROOT_LEVEL:
  2953. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2954. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2955. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2956. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2957. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2958. rsvd_bits(maxphyaddr, 51);
  2959. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2960. rsvd_bits(maxphyaddr, 51);
  2961. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2962. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2963. rsvd_bits(maxphyaddr, 51) |
  2964. rsvd_bits(13, 29);
  2965. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2966. rsvd_bits(maxphyaddr, 51) |
  2967. rsvd_bits(13, 20); /* large page */
  2968. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2969. break;
  2970. }
  2971. }
  2972. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2973. {
  2974. unsigned bit, byte, pfec;
  2975. u8 map;
  2976. bool fault, x, w, u, wf, uf, ff, smep;
  2977. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2978. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2979. pfec = byte << 1;
  2980. map = 0;
  2981. wf = pfec & PFERR_WRITE_MASK;
  2982. uf = pfec & PFERR_USER_MASK;
  2983. ff = pfec & PFERR_FETCH_MASK;
  2984. for (bit = 0; bit < 8; ++bit) {
  2985. x = bit & ACC_EXEC_MASK;
  2986. w = bit & ACC_WRITE_MASK;
  2987. u = bit & ACC_USER_MASK;
  2988. /* Not really needed: !nx will cause pte.nx to fault */
  2989. x |= !mmu->nx;
  2990. /* Allow supervisor writes if !cr0.wp */
  2991. w |= !is_write_protection(vcpu) && !uf;
  2992. /* Disallow supervisor fetches of user code if cr4.smep */
  2993. x &= !(smep && u && !uf);
  2994. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2995. map |= fault << bit;
  2996. }
  2997. mmu->permissions[byte] = map;
  2998. }
  2999. }
  3000. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3001. {
  3002. u8 map;
  3003. unsigned level, root_level = mmu->root_level;
  3004. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3005. if (root_level == PT32E_ROOT_LEVEL)
  3006. --root_level;
  3007. /* PT_PAGE_TABLE_LEVEL always terminates */
  3008. map = 1 | (1 << ps_set_index);
  3009. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3010. if (level <= PT_PDPE_LEVEL
  3011. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3012. map |= 1 << (ps_set_index | (level - 1));
  3013. }
  3014. mmu->last_pte_bitmap = map;
  3015. }
  3016. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  3017. struct kvm_mmu *context,
  3018. int level)
  3019. {
  3020. context->nx = is_nx(vcpu);
  3021. context->root_level = level;
  3022. reset_rsvds_bits_mask(vcpu, context);
  3023. update_permission_bitmask(vcpu, context);
  3024. update_last_pte_bitmap(vcpu, context);
  3025. ASSERT(is_pae(vcpu));
  3026. context->new_cr3 = paging_new_cr3;
  3027. context->page_fault = paging64_page_fault;
  3028. context->gva_to_gpa = paging64_gva_to_gpa;
  3029. context->sync_page = paging64_sync_page;
  3030. context->invlpg = paging64_invlpg;
  3031. context->update_pte = paging64_update_pte;
  3032. context->free = paging_free;
  3033. context->shadow_root_level = level;
  3034. context->root_hpa = INVALID_PAGE;
  3035. context->direct_map = false;
  3036. return 0;
  3037. }
  3038. static int paging64_init_context(struct kvm_vcpu *vcpu,
  3039. struct kvm_mmu *context)
  3040. {
  3041. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3042. }
  3043. static int paging32_init_context(struct kvm_vcpu *vcpu,
  3044. struct kvm_mmu *context)
  3045. {
  3046. context->nx = false;
  3047. context->root_level = PT32_ROOT_LEVEL;
  3048. reset_rsvds_bits_mask(vcpu, context);
  3049. update_permission_bitmask(vcpu, context);
  3050. update_last_pte_bitmap(vcpu, context);
  3051. context->new_cr3 = paging_new_cr3;
  3052. context->page_fault = paging32_page_fault;
  3053. context->gva_to_gpa = paging32_gva_to_gpa;
  3054. context->free = paging_free;
  3055. context->sync_page = paging32_sync_page;
  3056. context->invlpg = paging32_invlpg;
  3057. context->update_pte = paging32_update_pte;
  3058. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3059. context->root_hpa = INVALID_PAGE;
  3060. context->direct_map = false;
  3061. return 0;
  3062. }
  3063. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  3064. struct kvm_mmu *context)
  3065. {
  3066. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3067. }
  3068. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3069. {
  3070. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  3071. context->base_role.word = 0;
  3072. context->new_cr3 = nonpaging_new_cr3;
  3073. context->page_fault = tdp_page_fault;
  3074. context->free = nonpaging_free;
  3075. context->sync_page = nonpaging_sync_page;
  3076. context->invlpg = nonpaging_invlpg;
  3077. context->update_pte = nonpaging_update_pte;
  3078. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3079. context->root_hpa = INVALID_PAGE;
  3080. context->direct_map = true;
  3081. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3082. context->get_cr3 = get_cr3;
  3083. context->get_pdptr = kvm_pdptr_read;
  3084. context->inject_page_fault = kvm_inject_page_fault;
  3085. if (!is_paging(vcpu)) {
  3086. context->nx = false;
  3087. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3088. context->root_level = 0;
  3089. } else if (is_long_mode(vcpu)) {
  3090. context->nx = is_nx(vcpu);
  3091. context->root_level = PT64_ROOT_LEVEL;
  3092. reset_rsvds_bits_mask(vcpu, context);
  3093. context->gva_to_gpa = paging64_gva_to_gpa;
  3094. } else if (is_pae(vcpu)) {
  3095. context->nx = is_nx(vcpu);
  3096. context->root_level = PT32E_ROOT_LEVEL;
  3097. reset_rsvds_bits_mask(vcpu, context);
  3098. context->gva_to_gpa = paging64_gva_to_gpa;
  3099. } else {
  3100. context->nx = false;
  3101. context->root_level = PT32_ROOT_LEVEL;
  3102. reset_rsvds_bits_mask(vcpu, context);
  3103. context->gva_to_gpa = paging32_gva_to_gpa;
  3104. }
  3105. update_permission_bitmask(vcpu, context);
  3106. update_last_pte_bitmap(vcpu, context);
  3107. return 0;
  3108. }
  3109. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3110. {
  3111. int r;
  3112. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3113. ASSERT(vcpu);
  3114. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3115. if (!is_paging(vcpu))
  3116. r = nonpaging_init_context(vcpu, context);
  3117. else if (is_long_mode(vcpu))
  3118. r = paging64_init_context(vcpu, context);
  3119. else if (is_pae(vcpu))
  3120. r = paging32E_init_context(vcpu, context);
  3121. else
  3122. r = paging32_init_context(vcpu, context);
  3123. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3124. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3125. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3126. vcpu->arch.mmu.base_role.smep_andnot_wp
  3127. = smep && !is_write_protection(vcpu);
  3128. return r;
  3129. }
  3130. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3131. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3132. {
  3133. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3134. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3135. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3136. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3137. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3138. return r;
  3139. }
  3140. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3141. {
  3142. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3143. g_context->get_cr3 = get_cr3;
  3144. g_context->get_pdptr = kvm_pdptr_read;
  3145. g_context->inject_page_fault = kvm_inject_page_fault;
  3146. /*
  3147. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3148. * translation of l2_gpa to l1_gpa addresses is done using the
  3149. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3150. * functions between mmu and nested_mmu are swapped.
  3151. */
  3152. if (!is_paging(vcpu)) {
  3153. g_context->nx = false;
  3154. g_context->root_level = 0;
  3155. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3156. } else if (is_long_mode(vcpu)) {
  3157. g_context->nx = is_nx(vcpu);
  3158. g_context->root_level = PT64_ROOT_LEVEL;
  3159. reset_rsvds_bits_mask(vcpu, g_context);
  3160. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3161. } else if (is_pae(vcpu)) {
  3162. g_context->nx = is_nx(vcpu);
  3163. g_context->root_level = PT32E_ROOT_LEVEL;
  3164. reset_rsvds_bits_mask(vcpu, g_context);
  3165. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3166. } else {
  3167. g_context->nx = false;
  3168. g_context->root_level = PT32_ROOT_LEVEL;
  3169. reset_rsvds_bits_mask(vcpu, g_context);
  3170. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3171. }
  3172. update_permission_bitmask(vcpu, g_context);
  3173. update_last_pte_bitmap(vcpu, g_context);
  3174. return 0;
  3175. }
  3176. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3177. {
  3178. if (mmu_is_nested(vcpu))
  3179. return init_kvm_nested_mmu(vcpu);
  3180. else if (tdp_enabled)
  3181. return init_kvm_tdp_mmu(vcpu);
  3182. else
  3183. return init_kvm_softmmu(vcpu);
  3184. }
  3185. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3186. {
  3187. ASSERT(vcpu);
  3188. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3189. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3190. vcpu->arch.mmu.free(vcpu);
  3191. }
  3192. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3193. {
  3194. destroy_kvm_mmu(vcpu);
  3195. return init_kvm_mmu(vcpu);
  3196. }
  3197. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3198. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3199. {
  3200. int r;
  3201. r = mmu_topup_memory_caches(vcpu);
  3202. if (r)
  3203. goto out;
  3204. r = mmu_alloc_roots(vcpu);
  3205. kvm_mmu_sync_roots(vcpu);
  3206. if (r)
  3207. goto out;
  3208. /* set_cr3() should ensure TLB has been flushed */
  3209. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3210. out:
  3211. return r;
  3212. }
  3213. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3214. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3215. {
  3216. mmu_free_roots(vcpu);
  3217. }
  3218. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3219. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3220. struct kvm_mmu_page *sp, u64 *spte,
  3221. const void *new)
  3222. {
  3223. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3224. ++vcpu->kvm->stat.mmu_pde_zapped;
  3225. return;
  3226. }
  3227. ++vcpu->kvm->stat.mmu_pte_updated;
  3228. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3229. }
  3230. static bool need_remote_flush(u64 old, u64 new)
  3231. {
  3232. if (!is_shadow_present_pte(old))
  3233. return false;
  3234. if (!is_shadow_present_pte(new))
  3235. return true;
  3236. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3237. return true;
  3238. old ^= PT64_NX_MASK;
  3239. new ^= PT64_NX_MASK;
  3240. return (old & ~new & PT64_PERM_MASK) != 0;
  3241. }
  3242. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3243. bool remote_flush, bool local_flush)
  3244. {
  3245. if (zap_page)
  3246. return;
  3247. if (remote_flush)
  3248. kvm_flush_remote_tlbs(vcpu->kvm);
  3249. else if (local_flush)
  3250. kvm_mmu_flush_tlb(vcpu);
  3251. }
  3252. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3253. const u8 *new, int *bytes)
  3254. {
  3255. u64 gentry;
  3256. int r;
  3257. /*
  3258. * Assume that the pte write on a page table of the same type
  3259. * as the current vcpu paging mode since we update the sptes only
  3260. * when they have the same mode.
  3261. */
  3262. if (is_pae(vcpu) && *bytes == 4) {
  3263. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3264. *gpa &= ~(gpa_t)7;
  3265. *bytes = 8;
  3266. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3267. if (r)
  3268. gentry = 0;
  3269. new = (const u8 *)&gentry;
  3270. }
  3271. switch (*bytes) {
  3272. case 4:
  3273. gentry = *(const u32 *)new;
  3274. break;
  3275. case 8:
  3276. gentry = *(const u64 *)new;
  3277. break;
  3278. default:
  3279. gentry = 0;
  3280. break;
  3281. }
  3282. return gentry;
  3283. }
  3284. /*
  3285. * If we're seeing too many writes to a page, it may no longer be a page table,
  3286. * or we may be forking, in which case it is better to unmap the page.
  3287. */
  3288. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3289. {
  3290. /*
  3291. * Skip write-flooding detected for the sp whose level is 1, because
  3292. * it can become unsync, then the guest page is not write-protected.
  3293. */
  3294. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3295. return false;
  3296. return ++sp->write_flooding_count >= 3;
  3297. }
  3298. /*
  3299. * Misaligned accesses are too much trouble to fix up; also, they usually
  3300. * indicate a page is not used as a page table.
  3301. */
  3302. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3303. int bytes)
  3304. {
  3305. unsigned offset, pte_size, misaligned;
  3306. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3307. gpa, bytes, sp->role.word);
  3308. offset = offset_in_page(gpa);
  3309. pte_size = sp->role.cr4_pae ? 8 : 4;
  3310. /*
  3311. * Sometimes, the OS only writes the last one bytes to update status
  3312. * bits, for example, in linux, andb instruction is used in clear_bit().
  3313. */
  3314. if (!(offset & (pte_size - 1)) && bytes == 1)
  3315. return false;
  3316. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3317. misaligned |= bytes < 4;
  3318. return misaligned;
  3319. }
  3320. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3321. {
  3322. unsigned page_offset, quadrant;
  3323. u64 *spte;
  3324. int level;
  3325. page_offset = offset_in_page(gpa);
  3326. level = sp->role.level;
  3327. *nspte = 1;
  3328. if (!sp->role.cr4_pae) {
  3329. page_offset <<= 1; /* 32->64 */
  3330. /*
  3331. * A 32-bit pde maps 4MB while the shadow pdes map
  3332. * only 2MB. So we need to double the offset again
  3333. * and zap two pdes instead of one.
  3334. */
  3335. if (level == PT32_ROOT_LEVEL) {
  3336. page_offset &= ~7; /* kill rounding error */
  3337. page_offset <<= 1;
  3338. *nspte = 2;
  3339. }
  3340. quadrant = page_offset >> PAGE_SHIFT;
  3341. page_offset &= ~PAGE_MASK;
  3342. if (quadrant != sp->role.quadrant)
  3343. return NULL;
  3344. }
  3345. spte = &sp->spt[page_offset / sizeof(*spte)];
  3346. return spte;
  3347. }
  3348. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3349. const u8 *new, int bytes)
  3350. {
  3351. gfn_t gfn = gpa >> PAGE_SHIFT;
  3352. union kvm_mmu_page_role mask = { .word = 0 };
  3353. struct kvm_mmu_page *sp;
  3354. LIST_HEAD(invalid_list);
  3355. u64 entry, gentry, *spte;
  3356. int npte;
  3357. bool remote_flush, local_flush, zap_page;
  3358. /*
  3359. * If we don't have indirect shadow pages, it means no page is
  3360. * write-protected, so we can exit simply.
  3361. */
  3362. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3363. return;
  3364. zap_page = remote_flush = local_flush = false;
  3365. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3366. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3367. /*
  3368. * No need to care whether allocation memory is successful
  3369. * or not since pte prefetch is skiped if it does not have
  3370. * enough objects in the cache.
  3371. */
  3372. mmu_topup_memory_caches(vcpu);
  3373. spin_lock(&vcpu->kvm->mmu_lock);
  3374. ++vcpu->kvm->stat.mmu_pte_write;
  3375. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3376. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3377. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3378. if (detect_write_misaligned(sp, gpa, bytes) ||
  3379. detect_write_flooding(sp)) {
  3380. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3381. &invalid_list);
  3382. ++vcpu->kvm->stat.mmu_flooded;
  3383. continue;
  3384. }
  3385. spte = get_written_sptes(sp, gpa, &npte);
  3386. if (!spte)
  3387. continue;
  3388. local_flush = true;
  3389. while (npte--) {
  3390. entry = *spte;
  3391. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3392. if (gentry &&
  3393. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3394. & mask.word) && rmap_can_add(vcpu))
  3395. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3396. if (need_remote_flush(entry, *spte))
  3397. remote_flush = true;
  3398. ++spte;
  3399. }
  3400. }
  3401. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3402. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3403. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3404. spin_unlock(&vcpu->kvm->mmu_lock);
  3405. }
  3406. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3407. {
  3408. gpa_t gpa;
  3409. int r;
  3410. if (vcpu->arch.mmu.direct_map)
  3411. return 0;
  3412. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3413. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3414. return r;
  3415. }
  3416. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3417. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3418. {
  3419. LIST_HEAD(invalid_list);
  3420. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3421. return;
  3422. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3423. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3424. break;
  3425. ++vcpu->kvm->stat.mmu_recycled;
  3426. }
  3427. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3428. }
  3429. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3430. {
  3431. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3432. return vcpu_match_mmio_gpa(vcpu, addr);
  3433. return vcpu_match_mmio_gva(vcpu, addr);
  3434. }
  3435. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3436. void *insn, int insn_len)
  3437. {
  3438. int r, emulation_type = EMULTYPE_RETRY;
  3439. enum emulation_result er;
  3440. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3441. if (r < 0)
  3442. goto out;
  3443. if (!r) {
  3444. r = 1;
  3445. goto out;
  3446. }
  3447. if (is_mmio_page_fault(vcpu, cr2))
  3448. emulation_type = 0;
  3449. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3450. switch (er) {
  3451. case EMULATE_DONE:
  3452. return 1;
  3453. case EMULATE_DO_MMIO:
  3454. ++vcpu->stat.mmio_exits;
  3455. /* fall through */
  3456. case EMULATE_FAIL:
  3457. return 0;
  3458. default:
  3459. BUG();
  3460. }
  3461. out:
  3462. return r;
  3463. }
  3464. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3465. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3466. {
  3467. vcpu->arch.mmu.invlpg(vcpu, gva);
  3468. kvm_mmu_flush_tlb(vcpu);
  3469. ++vcpu->stat.invlpg;
  3470. }
  3471. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3472. void kvm_enable_tdp(void)
  3473. {
  3474. tdp_enabled = true;
  3475. }
  3476. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3477. void kvm_disable_tdp(void)
  3478. {
  3479. tdp_enabled = false;
  3480. }
  3481. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3482. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3483. {
  3484. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3485. if (vcpu->arch.mmu.lm_root != NULL)
  3486. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3487. }
  3488. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3489. {
  3490. struct page *page;
  3491. int i;
  3492. ASSERT(vcpu);
  3493. /*
  3494. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3495. * Therefore we need to allocate shadow page tables in the first
  3496. * 4GB of memory, which happens to fit the DMA32 zone.
  3497. */
  3498. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3499. if (!page)
  3500. return -ENOMEM;
  3501. vcpu->arch.mmu.pae_root = page_address(page);
  3502. for (i = 0; i < 4; ++i)
  3503. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3504. return 0;
  3505. }
  3506. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3507. {
  3508. ASSERT(vcpu);
  3509. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3510. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3511. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3512. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3513. return alloc_mmu_pages(vcpu);
  3514. }
  3515. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3516. {
  3517. ASSERT(vcpu);
  3518. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3519. return init_kvm_mmu(vcpu);
  3520. }
  3521. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3522. {
  3523. struct kvm_memory_slot *memslot;
  3524. gfn_t last_gfn;
  3525. int i;
  3526. memslot = id_to_memslot(kvm->memslots, slot);
  3527. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3528. spin_lock(&kvm->mmu_lock);
  3529. for (i = PT_PAGE_TABLE_LEVEL;
  3530. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3531. unsigned long *rmapp;
  3532. unsigned long last_index, index;
  3533. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3534. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3535. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3536. if (*rmapp)
  3537. __rmap_write_protect(kvm, rmapp, false);
  3538. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3539. kvm_flush_remote_tlbs(kvm);
  3540. cond_resched_lock(&kvm->mmu_lock);
  3541. }
  3542. }
  3543. }
  3544. kvm_flush_remote_tlbs(kvm);
  3545. spin_unlock(&kvm->mmu_lock);
  3546. }
  3547. #define BATCH_ZAP_PAGES 10
  3548. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3549. {
  3550. struct kvm_mmu_page *sp, *node;
  3551. int batch = 0;
  3552. restart:
  3553. list_for_each_entry_safe_reverse(sp, node,
  3554. &kvm->arch.active_mmu_pages, link) {
  3555. int ret;
  3556. /*
  3557. * No obsolete page exists before new created page since
  3558. * active_mmu_pages is the FIFO list.
  3559. */
  3560. if (!is_obsolete_sp(kvm, sp))
  3561. break;
  3562. /*
  3563. * Since we are reversely walking the list and the invalid
  3564. * list will be moved to the head, skip the invalid page
  3565. * can help us to avoid the infinity list walking.
  3566. */
  3567. if (sp->role.invalid)
  3568. continue;
  3569. /*
  3570. * Need not flush tlb since we only zap the sp with invalid
  3571. * generation number.
  3572. */
  3573. if (batch >= BATCH_ZAP_PAGES &&
  3574. cond_resched_lock(&kvm->mmu_lock)) {
  3575. batch = 0;
  3576. goto restart;
  3577. }
  3578. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3579. &kvm->arch.zapped_obsolete_pages);
  3580. batch += ret;
  3581. if (ret)
  3582. goto restart;
  3583. }
  3584. /*
  3585. * Should flush tlb before free page tables since lockless-walking
  3586. * may use the pages.
  3587. */
  3588. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3589. }
  3590. /*
  3591. * Fast invalidate all shadow pages and use lock-break technique
  3592. * to zap obsolete pages.
  3593. *
  3594. * It's required when memslot is being deleted or VM is being
  3595. * destroyed, in these cases, we should ensure that KVM MMU does
  3596. * not use any resource of the being-deleted slot or all slots
  3597. * after calling the function.
  3598. */
  3599. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3600. {
  3601. spin_lock(&kvm->mmu_lock);
  3602. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3603. kvm->arch.mmu_valid_gen++;
  3604. /*
  3605. * Notify all vcpus to reload its shadow page table
  3606. * and flush TLB. Then all vcpus will switch to new
  3607. * shadow page table with the new mmu_valid_gen.
  3608. *
  3609. * Note: we should do this under the protection of
  3610. * mmu-lock, otherwise, vcpu would purge shadow page
  3611. * but miss tlb flush.
  3612. */
  3613. kvm_reload_remote_mmus(kvm);
  3614. kvm_zap_obsolete_pages(kvm);
  3615. spin_unlock(&kvm->mmu_lock);
  3616. }
  3617. static void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
  3618. {
  3619. struct kvm_mmu_page *sp, *node;
  3620. LIST_HEAD(invalid_list);
  3621. spin_lock(&kvm->mmu_lock);
  3622. restart:
  3623. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
  3624. if (!sp->mmio_cached)
  3625. continue;
  3626. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3627. goto restart;
  3628. }
  3629. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3630. spin_unlock(&kvm->mmu_lock);
  3631. }
  3632. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  3633. {
  3634. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  3635. }
  3636. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
  3637. {
  3638. /*
  3639. * The very rare case: if the generation-number is round,
  3640. * zap all shadow pages.
  3641. *
  3642. * The max value is MMIO_MAX_GEN - 1 since it is not called
  3643. * when mark memslot invalid.
  3644. */
  3645. if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1)))
  3646. kvm_mmu_zap_mmio_sptes(kvm);
  3647. }
  3648. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3649. {
  3650. struct kvm *kvm;
  3651. int nr_to_scan = sc->nr_to_scan;
  3652. if (nr_to_scan == 0)
  3653. goto out;
  3654. raw_spin_lock(&kvm_lock);
  3655. list_for_each_entry(kvm, &vm_list, vm_list) {
  3656. int idx;
  3657. LIST_HEAD(invalid_list);
  3658. /*
  3659. * Never scan more than sc->nr_to_scan VM instances.
  3660. * Will not hit this condition practically since we do not try
  3661. * to shrink more than one VM and it is very unlikely to see
  3662. * !n_used_mmu_pages so many times.
  3663. */
  3664. if (!nr_to_scan--)
  3665. break;
  3666. /*
  3667. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3668. * here. We may skip a VM instance errorneosly, but we do not
  3669. * want to shrink a VM that only started to populate its MMU
  3670. * anyway.
  3671. */
  3672. if (!kvm->arch.n_used_mmu_pages &&
  3673. !kvm_has_zapped_obsolete_pages(kvm))
  3674. continue;
  3675. idx = srcu_read_lock(&kvm->srcu);
  3676. spin_lock(&kvm->mmu_lock);
  3677. if (kvm_has_zapped_obsolete_pages(kvm)) {
  3678. kvm_mmu_commit_zap_page(kvm,
  3679. &kvm->arch.zapped_obsolete_pages);
  3680. goto unlock;
  3681. }
  3682. prepare_zap_oldest_mmu_page(kvm, &invalid_list);
  3683. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3684. unlock:
  3685. spin_unlock(&kvm->mmu_lock);
  3686. srcu_read_unlock(&kvm->srcu, idx);
  3687. list_move_tail(&kvm->vm_list, &vm_list);
  3688. break;
  3689. }
  3690. raw_spin_unlock(&kvm_lock);
  3691. out:
  3692. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3693. }
  3694. static struct shrinker mmu_shrinker = {
  3695. .shrink = mmu_shrink,
  3696. .seeks = DEFAULT_SEEKS * 10,
  3697. };
  3698. static void mmu_destroy_caches(void)
  3699. {
  3700. if (pte_list_desc_cache)
  3701. kmem_cache_destroy(pte_list_desc_cache);
  3702. if (mmu_page_header_cache)
  3703. kmem_cache_destroy(mmu_page_header_cache);
  3704. }
  3705. int kvm_mmu_module_init(void)
  3706. {
  3707. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3708. sizeof(struct pte_list_desc),
  3709. 0, 0, NULL);
  3710. if (!pte_list_desc_cache)
  3711. goto nomem;
  3712. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3713. sizeof(struct kvm_mmu_page),
  3714. 0, 0, NULL);
  3715. if (!mmu_page_header_cache)
  3716. goto nomem;
  3717. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3718. goto nomem;
  3719. register_shrinker(&mmu_shrinker);
  3720. return 0;
  3721. nomem:
  3722. mmu_destroy_caches();
  3723. return -ENOMEM;
  3724. }
  3725. /*
  3726. * Caculate mmu pages needed for kvm.
  3727. */
  3728. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3729. {
  3730. unsigned int nr_mmu_pages;
  3731. unsigned int nr_pages = 0;
  3732. struct kvm_memslots *slots;
  3733. struct kvm_memory_slot *memslot;
  3734. slots = kvm_memslots(kvm);
  3735. kvm_for_each_memslot(memslot, slots)
  3736. nr_pages += memslot->npages;
  3737. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3738. nr_mmu_pages = max(nr_mmu_pages,
  3739. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3740. return nr_mmu_pages;
  3741. }
  3742. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3743. {
  3744. struct kvm_shadow_walk_iterator iterator;
  3745. u64 spte;
  3746. int nr_sptes = 0;
  3747. walk_shadow_page_lockless_begin(vcpu);
  3748. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3749. sptes[iterator.level-1] = spte;
  3750. nr_sptes++;
  3751. if (!is_shadow_present_pte(spte))
  3752. break;
  3753. }
  3754. walk_shadow_page_lockless_end(vcpu);
  3755. return nr_sptes;
  3756. }
  3757. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3758. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3759. {
  3760. ASSERT(vcpu);
  3761. destroy_kvm_mmu(vcpu);
  3762. free_mmu_pages(vcpu);
  3763. mmu_free_memory_caches(vcpu);
  3764. }
  3765. void kvm_mmu_module_exit(void)
  3766. {
  3767. mmu_destroy_caches();
  3768. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3769. unregister_shrinker(&mmu_shrinker);
  3770. mmu_audit_disable();
  3771. }