uv_hub.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV architectural definitions
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #ifndef _ASM_X86_UV_UV_HUB_H
  11. #define _ASM_X86_UV_UV_HUB_H
  12. #include <linux/numa.h>
  13. #include <linux/percpu.h>
  14. #include <asm/types.h>
  15. #include <asm/percpu.h>
  16. /*
  17. * Addressing Terminology
  18. *
  19. * M - The low M bits of a physical address represent the offset
  20. * into the blade local memory. RAM memory on a blade is physically
  21. * contiguous (although various IO spaces may punch holes in
  22. * it)..
  23. *
  24. * N - Number of bits in the node portion of a socket physical
  25. * address.
  26. *
  27. * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
  28. * routers always have low bit of 1, C/MBricks have low bit
  29. * equal to 0. Most addressing macros that target UV hub chips
  30. * right shift the NASID by 1 to exclude the always-zero bit.
  31. * NASIDs contain up to 15 bits.
  32. *
  33. * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  34. * of nasids.
  35. *
  36. * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
  37. * of the nasid for socket usage.
  38. *
  39. *
  40. * NumaLink Global Physical Address Format:
  41. * +--------------------------------+---------------------+
  42. * |00..000| GNODE | NodeOffset |
  43. * +--------------------------------+---------------------+
  44. * |<-------53 - M bits --->|<--------M bits ----->
  45. *
  46. * M - number of node offset bits (35 .. 40)
  47. *
  48. *
  49. * Memory/UV-HUB Processor Socket Address Format:
  50. * +----------------+---------------+---------------------+
  51. * |00..000000000000| PNODE | NodeOffset |
  52. * +----------------+---------------+---------------------+
  53. * <--- N bits --->|<--------M bits ----->
  54. *
  55. * M - number of node offset bits (35 .. 40)
  56. * N - number of PNODE bits (0 .. 10)
  57. *
  58. * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  59. * The actual values are configuration dependent and are set at
  60. * boot time. M & N values are set by the hardware/BIOS at boot.
  61. *
  62. *
  63. * APICID format
  64. * NOTE!!!!!! This is the current format of the APICID. However, code
  65. * should assume that this will change in the future. Use functions
  66. * in this file for all APICID bit manipulations and conversion.
  67. *
  68. * 1111110000000000
  69. * 5432109876543210
  70. * pppppppppplc0cch
  71. * sssssssssss
  72. *
  73. * p = pnode bits
  74. * l = socket number on board
  75. * c = core
  76. * h = hyperthread
  77. * s = bits that are in the SOCKET_ID CSR
  78. *
  79. * Note: Processor only supports 12 bits in the APICID register. The ACPI
  80. * tables hold all 16 bits. Software needs to be aware of this.
  81. *
  82. * Unless otherwise specified, all references to APICID refer to
  83. * the FULL value contained in ACPI tables, not the subset in the
  84. * processor APICID register.
  85. */
  86. /*
  87. * Maximum number of bricks in all partitions and in all coherency domains.
  88. * This is the total number of bricks accessible in the numalink fabric. It
  89. * includes all C & M bricks. Routers are NOT included.
  90. *
  91. * This value is also the value of the maximum number of non-router NASIDs
  92. * in the numalink fabric.
  93. *
  94. * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
  95. */
  96. #define UV_MAX_NUMALINK_BLADES 16384
  97. /*
  98. * Maximum number of C/Mbricks within a software SSI (hardware may support
  99. * more).
  100. */
  101. #define UV_MAX_SSI_BLADES 256
  102. /*
  103. * The largest possible NASID of a C or M brick (+ 2)
  104. */
  105. #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
  106. struct uv_scir_s {
  107. struct timer_list timer;
  108. unsigned long offset;
  109. unsigned long last;
  110. unsigned long idle_on;
  111. unsigned long idle_off;
  112. unsigned char state;
  113. unsigned char enabled;
  114. };
  115. /*
  116. * The following defines attributes of the HUB chip. These attributes are
  117. * frequently referenced and are kept in the per-cpu data areas of each cpu.
  118. * They are kept together in a struct to minimize cache misses.
  119. */
  120. struct uv_hub_info_s {
  121. unsigned long global_mmr_base;
  122. unsigned long gpa_mask;
  123. unsigned long gnode_upper;
  124. unsigned long lowmem_remap_top;
  125. unsigned long lowmem_remap_base;
  126. unsigned short pnode;
  127. unsigned short pnode_mask;
  128. unsigned short coherency_domain_number;
  129. unsigned short numa_blade_id;
  130. unsigned char blade_processor_id;
  131. unsigned char m_val;
  132. unsigned char n_val;
  133. struct uv_scir_s scir;
  134. };
  135. DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  136. #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
  137. #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
  138. /*
  139. * Local & Global MMR space macros.
  140. * Note: macros are intended to be used ONLY by inline functions
  141. * in this file - not by other kernel code.
  142. * n - NASID (full 15-bit global nasid)
  143. * g - GNODE (full 15-bit global nasid, right shifted 1)
  144. * p - PNODE (local part of nsids, right shifted 1)
  145. */
  146. #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
  147. #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
  148. #define UV_LOCAL_MMR_BASE 0xf4000000UL
  149. #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
  150. #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
  151. #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
  152. #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
  153. #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
  154. #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
  155. #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
  156. #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
  157. ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
  158. #define UV_APIC_PNODE_SHIFT 6
  159. /* Local Bus from cpu's perspective */
  160. #define LOCAL_BUS_BASE 0x1c00000
  161. #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
  162. /*
  163. * System Controller Interface Reg
  164. *
  165. * Note there are NO leds on a UV system. This register is only
  166. * used by the system controller to monitor system-wide operation.
  167. * There are 64 regs per node. With Nahelem cpus (2 cores per node,
  168. * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
  169. * a node.
  170. *
  171. * The window is located at top of ACPI MMR space
  172. */
  173. #define SCIR_WINDOW_COUNT 64
  174. #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
  175. LOCAL_BUS_SIZE - \
  176. SCIR_WINDOW_COUNT)
  177. #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
  178. #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
  179. #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
  180. /*
  181. * Macros for converting between kernel virtual addresses, socket local physical
  182. * addresses, and UV global physical addresses.
  183. * Note: use the standard __pa() & __va() macros for converting
  184. * between socket virtual and socket physical addresses.
  185. */
  186. /* socket phys RAM --> UV global physical address */
  187. static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
  188. {
  189. if (paddr < uv_hub_info->lowmem_remap_top)
  190. paddr += uv_hub_info->lowmem_remap_base;
  191. return paddr | uv_hub_info->gnode_upper;
  192. }
  193. /* socket virtual --> UV global physical address */
  194. static inline unsigned long uv_gpa(void *v)
  195. {
  196. return __pa(v) | uv_hub_info->gnode_upper;
  197. }
  198. /* socket virtual --> UV global physical address */
  199. static inline void *uv_vgpa(void *v)
  200. {
  201. return (void *)uv_gpa(v);
  202. }
  203. /* UV global physical address --> socket virtual */
  204. static inline void *uv_va(unsigned long gpa)
  205. {
  206. return __va(gpa & uv_hub_info->gpa_mask);
  207. }
  208. /* pnode, offset --> socket virtual */
  209. static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
  210. {
  211. return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
  212. }
  213. /*
  214. * Extract a PNODE from an APICID (full apicid, not processor subset)
  215. */
  216. static inline int uv_apicid_to_pnode(int apicid)
  217. {
  218. return (apicid >> UV_APIC_PNODE_SHIFT);
  219. }
  220. /*
  221. * Access global MMRs using the low memory MMR32 space. This region supports
  222. * faster MMR access but not all MMRs are accessible in this space.
  223. */
  224. static inline unsigned long *uv_global_mmr32_address(int pnode,
  225. unsigned long offset)
  226. {
  227. return __va(UV_GLOBAL_MMR32_BASE |
  228. UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
  229. }
  230. static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
  231. unsigned long val)
  232. {
  233. *uv_global_mmr32_address(pnode, offset) = val;
  234. }
  235. static inline unsigned long uv_read_global_mmr32(int pnode,
  236. unsigned long offset)
  237. {
  238. return *uv_global_mmr32_address(pnode, offset);
  239. }
  240. /*
  241. * Access Global MMR space using the MMR space located at the top of physical
  242. * memory.
  243. */
  244. static inline unsigned long *uv_global_mmr64_address(int pnode,
  245. unsigned long offset)
  246. {
  247. return __va(UV_GLOBAL_MMR64_BASE |
  248. UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
  249. }
  250. static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
  251. unsigned long val)
  252. {
  253. *uv_global_mmr64_address(pnode, offset) = val;
  254. }
  255. static inline unsigned long uv_read_global_mmr64(int pnode,
  256. unsigned long offset)
  257. {
  258. return *uv_global_mmr64_address(pnode, offset);
  259. }
  260. /*
  261. * Access hub local MMRs. Faster than using global space but only local MMRs
  262. * are accessible.
  263. */
  264. static inline unsigned long *uv_local_mmr_address(unsigned long offset)
  265. {
  266. return __va(UV_LOCAL_MMR_BASE | offset);
  267. }
  268. static inline unsigned long uv_read_local_mmr(unsigned long offset)
  269. {
  270. return *uv_local_mmr_address(offset);
  271. }
  272. static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
  273. {
  274. *uv_local_mmr_address(offset) = val;
  275. }
  276. static inline unsigned char uv_read_local_mmr8(unsigned long offset)
  277. {
  278. return *((unsigned char *)uv_local_mmr_address(offset));
  279. }
  280. static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
  281. {
  282. *((unsigned char *)uv_local_mmr_address(offset)) = val;
  283. }
  284. /*
  285. * Structures and definitions for converting between cpu, node, pnode, and blade
  286. * numbers.
  287. */
  288. struct uv_blade_info {
  289. unsigned short nr_possible_cpus;
  290. unsigned short nr_online_cpus;
  291. unsigned short pnode;
  292. };
  293. extern struct uv_blade_info *uv_blade_info;
  294. extern short *uv_node_to_blade;
  295. extern short *uv_cpu_to_blade;
  296. extern short uv_possible_blades;
  297. /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
  298. static inline int uv_blade_processor_id(void)
  299. {
  300. return uv_hub_info->blade_processor_id;
  301. }
  302. /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
  303. static inline int uv_numa_blade_id(void)
  304. {
  305. return uv_hub_info->numa_blade_id;
  306. }
  307. /* Convert a cpu number to the the UV blade number */
  308. static inline int uv_cpu_to_blade_id(int cpu)
  309. {
  310. return uv_cpu_to_blade[cpu];
  311. }
  312. /* Convert linux node number to the UV blade number */
  313. static inline int uv_node_to_blade_id(int nid)
  314. {
  315. return uv_node_to_blade[nid];
  316. }
  317. /* Convert a blade id to the PNODE of the blade */
  318. static inline int uv_blade_to_pnode(int bid)
  319. {
  320. return uv_blade_info[bid].pnode;
  321. }
  322. /* Determine the number of possible cpus on a blade */
  323. static inline int uv_blade_nr_possible_cpus(int bid)
  324. {
  325. return uv_blade_info[bid].nr_possible_cpus;
  326. }
  327. /* Determine the number of online cpus on a blade */
  328. static inline int uv_blade_nr_online_cpus(int bid)
  329. {
  330. return uv_blade_info[bid].nr_online_cpus;
  331. }
  332. /* Convert a cpu id to the PNODE of the blade containing the cpu */
  333. static inline int uv_cpu_to_pnode(int cpu)
  334. {
  335. return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
  336. }
  337. /* Convert a linux node number to the PNODE of the blade */
  338. static inline int uv_node_to_pnode(int nid)
  339. {
  340. return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
  341. }
  342. /* Maximum possible number of blades */
  343. static inline int uv_num_possible_blades(void)
  344. {
  345. return uv_possible_blades;
  346. }
  347. /* Update SCIR state */
  348. static inline void uv_set_scir_bits(unsigned char value)
  349. {
  350. if (uv_hub_info->scir.state != value) {
  351. uv_hub_info->scir.state = value;
  352. uv_write_local_mmr8(uv_hub_info->scir.offset, value);
  353. }
  354. }
  355. static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
  356. {
  357. if (uv_cpu_hub_info(cpu)->scir.state != value) {
  358. uv_cpu_hub_info(cpu)->scir.state = value;
  359. uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
  360. }
  361. }
  362. #endif /* _ASM_X86_UV_UV_HUB_H */