menu.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /*
  2. * menu.c - the menu idle governor
  3. *
  4. * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
  5. * Copyright (C) 2009 Intel Corporation
  6. * Author:
  7. * Arjan van de Ven <arjan@linux.intel.com>
  8. *
  9. * This code is licenced under the GPL version 2 as described
  10. * in the COPYING file that acompanies the Linux Kernel.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/cpuidle.h>
  14. #include <linux/pm_qos.h>
  15. #include <linux/time.h>
  16. #include <linux/ktime.h>
  17. #include <linux/hrtimer.h>
  18. #include <linux/tick.h>
  19. #include <linux/sched.h>
  20. #include <linux/math64.h>
  21. #include <linux/module.h>
  22. #define BUCKETS 12
  23. #define INTERVALS 8
  24. #define RESOLUTION 1024
  25. #define DECAY 8
  26. #define MAX_INTERESTING 50000
  27. #define STDDEV_THRESH 400
  28. /* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */
  29. #define MAX_DEVIATION 60
  30. static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer);
  31. static DEFINE_PER_CPU(int, hrtimer_status);
  32. /* menu hrtimer mode */
  33. enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT};
  34. /*
  35. * Concepts and ideas behind the menu governor
  36. *
  37. * For the menu governor, there are 3 decision factors for picking a C
  38. * state:
  39. * 1) Energy break even point
  40. * 2) Performance impact
  41. * 3) Latency tolerance (from pmqos infrastructure)
  42. * These these three factors are treated independently.
  43. *
  44. * Energy break even point
  45. * -----------------------
  46. * C state entry and exit have an energy cost, and a certain amount of time in
  47. * the C state is required to actually break even on this cost. CPUIDLE
  48. * provides us this duration in the "target_residency" field. So all that we
  49. * need is a good prediction of how long we'll be idle. Like the traditional
  50. * menu governor, we start with the actual known "next timer event" time.
  51. *
  52. * Since there are other source of wakeups (interrupts for example) than
  53. * the next timer event, this estimation is rather optimistic. To get a
  54. * more realistic estimate, a correction factor is applied to the estimate,
  55. * that is based on historic behavior. For example, if in the past the actual
  56. * duration always was 50% of the next timer tick, the correction factor will
  57. * be 0.5.
  58. *
  59. * menu uses a running average for this correction factor, however it uses a
  60. * set of factors, not just a single factor. This stems from the realization
  61. * that the ratio is dependent on the order of magnitude of the expected
  62. * duration; if we expect 500 milliseconds of idle time the likelihood of
  63. * getting an interrupt very early is much higher than if we expect 50 micro
  64. * seconds of idle time. A second independent factor that has big impact on
  65. * the actual factor is if there is (disk) IO outstanding or not.
  66. * (as a special twist, we consider every sleep longer than 50 milliseconds
  67. * as perfect; there are no power gains for sleeping longer than this)
  68. *
  69. * For these two reasons we keep an array of 12 independent factors, that gets
  70. * indexed based on the magnitude of the expected duration as well as the
  71. * "is IO outstanding" property.
  72. *
  73. * Repeatable-interval-detector
  74. * ----------------------------
  75. * There are some cases where "next timer" is a completely unusable predictor:
  76. * Those cases where the interval is fixed, for example due to hardware
  77. * interrupt mitigation, but also due to fixed transfer rate devices such as
  78. * mice.
  79. * For this, we use a different predictor: We track the duration of the last 8
  80. * intervals and if the stand deviation of these 8 intervals is below a
  81. * threshold value, we use the average of these intervals as prediction.
  82. *
  83. * Limiting Performance Impact
  84. * ---------------------------
  85. * C states, especially those with large exit latencies, can have a real
  86. * noticeable impact on workloads, which is not acceptable for most sysadmins,
  87. * and in addition, less performance has a power price of its own.
  88. *
  89. * As a general rule of thumb, menu assumes that the following heuristic
  90. * holds:
  91. * The busier the system, the less impact of C states is acceptable
  92. *
  93. * This rule-of-thumb is implemented using a performance-multiplier:
  94. * If the exit latency times the performance multiplier is longer than
  95. * the predicted duration, the C state is not considered a candidate
  96. * for selection due to a too high performance impact. So the higher
  97. * this multiplier is, the longer we need to be idle to pick a deep C
  98. * state, and thus the less likely a busy CPU will hit such a deep
  99. * C state.
  100. *
  101. * Two factors are used in determing this multiplier:
  102. * a value of 10 is added for each point of "per cpu load average" we have.
  103. * a value of 5 points is added for each process that is waiting for
  104. * IO on this CPU.
  105. * (these values are experimentally determined)
  106. *
  107. * The load average factor gives a longer term (few seconds) input to the
  108. * decision, while the iowait value gives a cpu local instantanious input.
  109. * The iowait factor may look low, but realize that this is also already
  110. * represented in the system load average.
  111. *
  112. */
  113. struct menu_device {
  114. int last_state_idx;
  115. int needs_update;
  116. unsigned int expected_us;
  117. u64 predicted_us;
  118. unsigned int exit_us;
  119. unsigned int bucket;
  120. u64 correction_factor[BUCKETS];
  121. u32 intervals[INTERVALS];
  122. int interval_ptr;
  123. };
  124. #define LOAD_INT(x) ((x) >> FSHIFT)
  125. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  126. static int get_loadavg(void)
  127. {
  128. unsigned long this = this_cpu_load();
  129. return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
  130. }
  131. static inline int which_bucket(unsigned int duration)
  132. {
  133. int bucket = 0;
  134. /*
  135. * We keep two groups of stats; one with no
  136. * IO pending, one without.
  137. * This allows us to calculate
  138. * E(duration)|iowait
  139. */
  140. if (nr_iowait_cpu(smp_processor_id()))
  141. bucket = BUCKETS/2;
  142. if (duration < 10)
  143. return bucket;
  144. if (duration < 100)
  145. return bucket + 1;
  146. if (duration < 1000)
  147. return bucket + 2;
  148. if (duration < 10000)
  149. return bucket + 3;
  150. if (duration < 100000)
  151. return bucket + 4;
  152. return bucket + 5;
  153. }
  154. /*
  155. * Return a multiplier for the exit latency that is intended
  156. * to take performance requirements into account.
  157. * The more performance critical we estimate the system
  158. * to be, the higher this multiplier, and thus the higher
  159. * the barrier to go to an expensive C state.
  160. */
  161. static inline int performance_multiplier(void)
  162. {
  163. int mult = 1;
  164. /* for higher loadavg, we are more reluctant */
  165. mult += 2 * get_loadavg();
  166. /* for IO wait tasks (per cpu!) we add 5x each */
  167. mult += 10 * nr_iowait_cpu(smp_processor_id());
  168. return mult;
  169. }
  170. static DEFINE_PER_CPU(struct menu_device, menu_devices);
  171. static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
  172. /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
  173. static u64 div_round64(u64 dividend, u32 divisor)
  174. {
  175. return div_u64(dividend + (divisor / 2), divisor);
  176. }
  177. /* Cancel the hrtimer if it is not triggered yet */
  178. void menu_hrtimer_cancel(void)
  179. {
  180. int cpu = smp_processor_id();
  181. struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
  182. /* The timer is still not time out*/
  183. if (per_cpu(hrtimer_status, cpu)) {
  184. hrtimer_cancel(hrtmr);
  185. per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
  186. }
  187. }
  188. EXPORT_SYMBOL_GPL(menu_hrtimer_cancel);
  189. /* Call back for hrtimer is triggered */
  190. static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer)
  191. {
  192. int cpu = smp_processor_id();
  193. per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
  194. return HRTIMER_NORESTART;
  195. }
  196. /*
  197. * Try detecting repeating patterns by keeping track of the last 8
  198. * intervals, and checking if the standard deviation of that set
  199. * of points is below a threshold. If it is... then use the
  200. * average of these 8 points as the estimated value.
  201. */
  202. static int detect_repeating_patterns(struct menu_device *data)
  203. {
  204. int i;
  205. uint64_t avg = 0;
  206. uint64_t stddev = 0; /* contains the square of the std deviation */
  207. int ret = 0;
  208. /* first calculate average and standard deviation of the past */
  209. for (i = 0; i < INTERVALS; i++)
  210. avg += data->intervals[i];
  211. avg = avg / INTERVALS;
  212. /* if the avg is beyond the known next tick, it's worthless */
  213. if (avg > data->expected_us)
  214. return 0;
  215. for (i = 0; i < INTERVALS; i++)
  216. stddev += (data->intervals[i] - avg) *
  217. (data->intervals[i] - avg);
  218. stddev = stddev / INTERVALS;
  219. /*
  220. * now.. if stddev is small.. then assume we have a
  221. * repeating pattern and predict we keep doing this.
  222. */
  223. if (avg && stddev < STDDEV_THRESH) {
  224. data->predicted_us = avg;
  225. ret = 1;
  226. }
  227. return ret;
  228. }
  229. /**
  230. * menu_select - selects the next idle state to enter
  231. * @drv: cpuidle driver containing state data
  232. * @dev: the CPU
  233. */
  234. static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
  235. {
  236. struct menu_device *data = &__get_cpu_var(menu_devices);
  237. int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
  238. int power_usage = -1;
  239. int i;
  240. int multiplier;
  241. struct timespec t;
  242. int repeat = 0, low_predicted = 0;
  243. int cpu = smp_processor_id();
  244. struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
  245. if (data->needs_update) {
  246. menu_update(drv, dev);
  247. data->needs_update = 0;
  248. }
  249. data->last_state_idx = 0;
  250. data->exit_us = 0;
  251. /* Special case when user has set very strict latency requirement */
  252. if (unlikely(latency_req == 0))
  253. return 0;
  254. /* determine the expected residency time, round up */
  255. t = ktime_to_timespec(tick_nohz_get_sleep_length());
  256. data->expected_us =
  257. t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
  258. data->bucket = which_bucket(data->expected_us);
  259. multiplier = performance_multiplier();
  260. /*
  261. * if the correction factor is 0 (eg first time init or cpu hotplug
  262. * etc), we actually want to start out with a unity factor.
  263. */
  264. if (data->correction_factor[data->bucket] == 0)
  265. data->correction_factor[data->bucket] = RESOLUTION * DECAY;
  266. /* Make sure to round up for half microseconds */
  267. data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
  268. RESOLUTION * DECAY);
  269. repeat = detect_repeating_patterns(data);
  270. /*
  271. * We want to default to C1 (hlt), not to busy polling
  272. * unless the timer is happening really really soon.
  273. */
  274. if (data->expected_us > 5 &&
  275. !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
  276. dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
  277. data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
  278. /*
  279. * Find the idle state with the lowest power while satisfying
  280. * our constraints.
  281. */
  282. for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
  283. struct cpuidle_state *s = &drv->states[i];
  284. struct cpuidle_state_usage *su = &dev->states_usage[i];
  285. if (s->disabled || su->disable)
  286. continue;
  287. if (s->target_residency > data->predicted_us) {
  288. low_predicted = 1;
  289. continue;
  290. }
  291. if (s->exit_latency > latency_req)
  292. continue;
  293. if (s->exit_latency * multiplier > data->predicted_us)
  294. continue;
  295. if (s->power_usage < power_usage) {
  296. power_usage = s->power_usage;
  297. data->last_state_idx = i;
  298. data->exit_us = s->exit_latency;
  299. }
  300. }
  301. /* not deepest C-state chosen for low predicted residency */
  302. if (low_predicted) {
  303. unsigned int timer_us = 0;
  304. /*
  305. * Set a timer to detect whether this sleep is much
  306. * longer than repeat mode predicted. If the timer
  307. * triggers, the code will evaluate whether to put
  308. * the CPU into a deeper C-state.
  309. * The timer is cancelled on CPU wakeup.
  310. */
  311. timer_us = 2 * (data->predicted_us + MAX_DEVIATION);
  312. if (repeat && (4 * timer_us < data->expected_us)) {
  313. hrtimer_start(hrtmr, ns_to_ktime(1000 * timer_us),
  314. HRTIMER_MODE_REL_PINNED);
  315. /* In repeat case, menu hrtimer is started */
  316. per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT;
  317. }
  318. }
  319. return data->last_state_idx;
  320. }
  321. /**
  322. * menu_reflect - records that data structures need update
  323. * @dev: the CPU
  324. * @index: the index of actual entered state
  325. *
  326. * NOTE: it's important to be fast here because this operation will add to
  327. * the overall exit latency.
  328. */
  329. static void menu_reflect(struct cpuidle_device *dev, int index)
  330. {
  331. struct menu_device *data = &__get_cpu_var(menu_devices);
  332. data->last_state_idx = index;
  333. if (index >= 0)
  334. data->needs_update = 1;
  335. }
  336. /**
  337. * menu_update - attempts to guess what happened after entry
  338. * @drv: cpuidle driver containing state data
  339. * @dev: the CPU
  340. */
  341. static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
  342. {
  343. struct menu_device *data = &__get_cpu_var(menu_devices);
  344. int last_idx = data->last_state_idx;
  345. unsigned int last_idle_us = cpuidle_get_last_residency(dev);
  346. struct cpuidle_state *target = &drv->states[last_idx];
  347. unsigned int measured_us;
  348. u64 new_factor;
  349. /*
  350. * Ugh, this idle state doesn't support residency measurements, so we
  351. * are basically lost in the dark. As a compromise, assume we slept
  352. * for the whole expected time.
  353. */
  354. if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
  355. last_idle_us = data->expected_us;
  356. measured_us = last_idle_us;
  357. /*
  358. * We correct for the exit latency; we are assuming here that the
  359. * exit latency happens after the event that we're interested in.
  360. */
  361. if (measured_us > data->exit_us)
  362. measured_us -= data->exit_us;
  363. /* update our correction ratio */
  364. new_factor = data->correction_factor[data->bucket]
  365. * (DECAY - 1) / DECAY;
  366. if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
  367. new_factor += RESOLUTION * measured_us / data->expected_us;
  368. else
  369. /*
  370. * we were idle so long that we count it as a perfect
  371. * prediction
  372. */
  373. new_factor += RESOLUTION;
  374. /*
  375. * We don't want 0 as factor; we always want at least
  376. * a tiny bit of estimated time.
  377. */
  378. if (new_factor == 0)
  379. new_factor = 1;
  380. data->correction_factor[data->bucket] = new_factor;
  381. /* update the repeating-pattern data */
  382. data->intervals[data->interval_ptr++] = last_idle_us;
  383. if (data->interval_ptr >= INTERVALS)
  384. data->interval_ptr = 0;
  385. }
  386. /**
  387. * menu_enable_device - scans a CPU's states and does setup
  388. * @drv: cpuidle driver
  389. * @dev: the CPU
  390. */
  391. static int menu_enable_device(struct cpuidle_driver *drv,
  392. struct cpuidle_device *dev)
  393. {
  394. struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
  395. struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu);
  396. hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  397. t->function = menu_hrtimer_notify;
  398. memset(data, 0, sizeof(struct menu_device));
  399. return 0;
  400. }
  401. static struct cpuidle_governor menu_governor = {
  402. .name = "menu",
  403. .rating = 20,
  404. .enable = menu_enable_device,
  405. .select = menu_select,
  406. .reflect = menu_reflect,
  407. .owner = THIS_MODULE,
  408. };
  409. /**
  410. * init_menu - initializes the governor
  411. */
  412. static int __init init_menu(void)
  413. {
  414. return cpuidle_register_governor(&menu_governor);
  415. }
  416. /**
  417. * exit_menu - exits the governor
  418. */
  419. static void __exit exit_menu(void)
  420. {
  421. cpuidle_unregister_governor(&menu_governor);
  422. }
  423. MODULE_LICENSE("GPL");
  424. module_init(init_menu);
  425. module_exit(exit_menu);