cpuset.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Tracks how many cpusets are currently defined in system.
  62. * When there is only one cpuset (the root cpuset) we can
  63. * short circuit some hooks.
  64. */
  65. int number_of_cpusets __read_mostly;
  66. /* Forward declare cgroup structures */
  67. struct cgroup_subsys cpuset_subsys;
  68. struct cpuset;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. struct cpuset *parent; /* my parent */
  82. struct fmeter fmeter; /* memory_pressure filter */
  83. /* partition number for rebuild_sched_domains() */
  84. int pn;
  85. /* for custom sched domain */
  86. int relax_domain_level;
  87. /* used for walking a cpuset hierarchy */
  88. struct list_head stack_list;
  89. };
  90. /* Retrieve the cpuset for a cgroup */
  91. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  92. {
  93. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  94. struct cpuset, css);
  95. }
  96. /* Retrieve the cpuset for a task */
  97. static inline struct cpuset *task_cs(struct task_struct *task)
  98. {
  99. return container_of(task_subsys_state(task, cpuset_subsys_id),
  100. struct cpuset, css);
  101. }
  102. #ifdef CONFIG_NUMA
  103. static inline bool task_has_mempolicy(struct task_struct *task)
  104. {
  105. return task->mempolicy;
  106. }
  107. #else
  108. static inline bool task_has_mempolicy(struct task_struct *task)
  109. {
  110. return false;
  111. }
  112. #endif
  113. /* bits in struct cpuset flags field */
  114. typedef enum {
  115. CS_ONLINE,
  116. CS_CPU_EXCLUSIVE,
  117. CS_MEM_EXCLUSIVE,
  118. CS_MEM_HARDWALL,
  119. CS_MEMORY_MIGRATE,
  120. CS_SCHED_LOAD_BALANCE,
  121. CS_SPREAD_PAGE,
  122. CS_SPREAD_SLAB,
  123. } cpuset_flagbits_t;
  124. /* convenient tests for these bits */
  125. static inline bool is_cpuset_online(const struct cpuset *cs)
  126. {
  127. return test_bit(CS_ONLINE, &cs->flags);
  128. }
  129. static inline int is_cpu_exclusive(const struct cpuset *cs)
  130. {
  131. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  132. }
  133. static inline int is_mem_exclusive(const struct cpuset *cs)
  134. {
  135. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  136. }
  137. static inline int is_mem_hardwall(const struct cpuset *cs)
  138. {
  139. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  140. }
  141. static inline int is_sched_load_balance(const struct cpuset *cs)
  142. {
  143. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  144. }
  145. static inline int is_memory_migrate(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  148. }
  149. static inline int is_spread_page(const struct cpuset *cs)
  150. {
  151. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  152. }
  153. static inline int is_spread_slab(const struct cpuset *cs)
  154. {
  155. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  156. }
  157. static struct cpuset top_cpuset = {
  158. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  159. (1 << CS_MEM_EXCLUSIVE)),
  160. };
  161. /**
  162. * cpuset_for_each_child - traverse online children of a cpuset
  163. * @child_cs: loop cursor pointing to the current child
  164. * @pos_cgrp: used for iteration
  165. * @parent_cs: target cpuset to walk children of
  166. *
  167. * Walk @child_cs through the online children of @parent_cs. Must be used
  168. * with RCU read locked.
  169. */
  170. #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
  171. cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
  172. if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
  173. /*
  174. * There are two global mutexes guarding cpuset structures. The first
  175. * is the main control groups cgroup_mutex, accessed via
  176. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  177. * callback_mutex, below. They can nest. It is ok to first take
  178. * cgroup_mutex, then nest callback_mutex. We also require taking
  179. * task_lock() when dereferencing a task's cpuset pointer. See "The
  180. * task_lock() exception", at the end of this comment.
  181. *
  182. * A task must hold both mutexes to modify cpusets. If a task
  183. * holds cgroup_mutex, then it blocks others wanting that mutex,
  184. * ensuring that it is the only task able to also acquire callback_mutex
  185. * and be able to modify cpusets. It can perform various checks on
  186. * the cpuset structure first, knowing nothing will change. It can
  187. * also allocate memory while just holding cgroup_mutex. While it is
  188. * performing these checks, various callback routines can briefly
  189. * acquire callback_mutex to query cpusets. Once it is ready to make
  190. * the changes, it takes callback_mutex, blocking everyone else.
  191. *
  192. * Calls to the kernel memory allocator can not be made while holding
  193. * callback_mutex, as that would risk double tripping on callback_mutex
  194. * from one of the callbacks into the cpuset code from within
  195. * __alloc_pages().
  196. *
  197. * If a task is only holding callback_mutex, then it has read-only
  198. * access to cpusets.
  199. *
  200. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  201. * by other task, we use alloc_lock in the task_struct fields to protect
  202. * them.
  203. *
  204. * The cpuset_common_file_read() handlers only hold callback_mutex across
  205. * small pieces of code, such as when reading out possibly multi-word
  206. * cpumasks and nodemasks.
  207. *
  208. * Accessing a task's cpuset should be done in accordance with the
  209. * guidelines for accessing subsystem state in kernel/cgroup.c
  210. */
  211. static DEFINE_MUTEX(callback_mutex);
  212. /*
  213. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  214. * buffers. They are statically allocated to prevent using excess stack
  215. * when calling cpuset_print_task_mems_allowed().
  216. */
  217. #define CPUSET_NAME_LEN (128)
  218. #define CPUSET_NODELIST_LEN (256)
  219. static char cpuset_name[CPUSET_NAME_LEN];
  220. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  221. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  222. /*
  223. * CPU / memory hotplug is handled asynchronously.
  224. */
  225. static void cpuset_hotplug_workfn(struct work_struct *work);
  226. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  227. /*
  228. * This is ugly, but preserves the userspace API for existing cpuset
  229. * users. If someone tries to mount the "cpuset" filesystem, we
  230. * silently switch it to mount "cgroup" instead
  231. */
  232. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  233. int flags, const char *unused_dev_name, void *data)
  234. {
  235. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  236. struct dentry *ret = ERR_PTR(-ENODEV);
  237. if (cgroup_fs) {
  238. char mountopts[] =
  239. "cpuset,noprefix,"
  240. "release_agent=/sbin/cpuset_release_agent";
  241. ret = cgroup_fs->mount(cgroup_fs, flags,
  242. unused_dev_name, mountopts);
  243. put_filesystem(cgroup_fs);
  244. }
  245. return ret;
  246. }
  247. static struct file_system_type cpuset_fs_type = {
  248. .name = "cpuset",
  249. .mount = cpuset_mount,
  250. };
  251. /*
  252. * Return in pmask the portion of a cpusets's cpus_allowed that
  253. * are online. If none are online, walk up the cpuset hierarchy
  254. * until we find one that does have some online cpus. If we get
  255. * all the way to the top and still haven't found any online cpus,
  256. * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
  257. * task, return cpu_online_mask.
  258. *
  259. * One way or another, we guarantee to return some non-empty subset
  260. * of cpu_online_mask.
  261. *
  262. * Call with callback_mutex held.
  263. */
  264. static void guarantee_online_cpus(const struct cpuset *cs,
  265. struct cpumask *pmask)
  266. {
  267. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  268. cs = cs->parent;
  269. if (cs)
  270. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  271. else
  272. cpumask_copy(pmask, cpu_online_mask);
  273. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  274. }
  275. /*
  276. * Return in *pmask the portion of a cpusets's mems_allowed that
  277. * are online, with memory. If none are online with memory, walk
  278. * up the cpuset hierarchy until we find one that does have some
  279. * online mems. If we get all the way to the top and still haven't
  280. * found any online mems, return node_states[N_MEMORY].
  281. *
  282. * One way or another, we guarantee to return some non-empty subset
  283. * of node_states[N_MEMORY].
  284. *
  285. * Call with callback_mutex held.
  286. */
  287. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  288. {
  289. while (cs && !nodes_intersects(cs->mems_allowed,
  290. node_states[N_MEMORY]))
  291. cs = cs->parent;
  292. if (cs)
  293. nodes_and(*pmask, cs->mems_allowed,
  294. node_states[N_MEMORY]);
  295. else
  296. *pmask = node_states[N_MEMORY];
  297. BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
  298. }
  299. /*
  300. * update task's spread flag if cpuset's page/slab spread flag is set
  301. *
  302. * Called with callback_mutex/cgroup_mutex held
  303. */
  304. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  305. struct task_struct *tsk)
  306. {
  307. if (is_spread_page(cs))
  308. tsk->flags |= PF_SPREAD_PAGE;
  309. else
  310. tsk->flags &= ~PF_SPREAD_PAGE;
  311. if (is_spread_slab(cs))
  312. tsk->flags |= PF_SPREAD_SLAB;
  313. else
  314. tsk->flags &= ~PF_SPREAD_SLAB;
  315. }
  316. /*
  317. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  318. *
  319. * One cpuset is a subset of another if all its allowed CPUs and
  320. * Memory Nodes are a subset of the other, and its exclusive flags
  321. * are only set if the other's are set. Call holding cgroup_mutex.
  322. */
  323. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  324. {
  325. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  326. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  327. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  328. is_mem_exclusive(p) <= is_mem_exclusive(q);
  329. }
  330. /**
  331. * alloc_trial_cpuset - allocate a trial cpuset
  332. * @cs: the cpuset that the trial cpuset duplicates
  333. */
  334. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  335. {
  336. struct cpuset *trial;
  337. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  338. if (!trial)
  339. return NULL;
  340. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  341. kfree(trial);
  342. return NULL;
  343. }
  344. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  345. return trial;
  346. }
  347. /**
  348. * free_trial_cpuset - free the trial cpuset
  349. * @trial: the trial cpuset to be freed
  350. */
  351. static void free_trial_cpuset(struct cpuset *trial)
  352. {
  353. free_cpumask_var(trial->cpus_allowed);
  354. kfree(trial);
  355. }
  356. /*
  357. * validate_change() - Used to validate that any proposed cpuset change
  358. * follows the structural rules for cpusets.
  359. *
  360. * If we replaced the flag and mask values of the current cpuset
  361. * (cur) with those values in the trial cpuset (trial), would
  362. * our various subset and exclusive rules still be valid? Presumes
  363. * cgroup_mutex held.
  364. *
  365. * 'cur' is the address of an actual, in-use cpuset. Operations
  366. * such as list traversal that depend on the actual address of the
  367. * cpuset in the list must use cur below, not trial.
  368. *
  369. * 'trial' is the address of bulk structure copy of cur, with
  370. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  371. * or flags changed to new, trial values.
  372. *
  373. * Return 0 if valid, -errno if not.
  374. */
  375. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  376. {
  377. struct cgroup *cont;
  378. struct cpuset *c, *par;
  379. int ret;
  380. rcu_read_lock();
  381. /* Each of our child cpusets must be a subset of us */
  382. ret = -EBUSY;
  383. cpuset_for_each_child(c, cont, cur)
  384. if (!is_cpuset_subset(c, trial))
  385. goto out;
  386. /* Remaining checks don't apply to root cpuset */
  387. ret = 0;
  388. if (cur == &top_cpuset)
  389. goto out;
  390. par = cur->parent;
  391. /* We must be a subset of our parent cpuset */
  392. ret = -EACCES;
  393. if (!is_cpuset_subset(trial, par))
  394. goto out;
  395. /*
  396. * If either I or some sibling (!= me) is exclusive, we can't
  397. * overlap
  398. */
  399. ret = -EINVAL;
  400. cpuset_for_each_child(c, cont, par) {
  401. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  402. c != cur &&
  403. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  404. goto out;
  405. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  406. c != cur &&
  407. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  408. goto out;
  409. }
  410. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  411. ret = -ENOSPC;
  412. if (cgroup_task_count(cur->css.cgroup) &&
  413. (cpumask_empty(trial->cpus_allowed) ||
  414. nodes_empty(trial->mems_allowed)))
  415. goto out;
  416. ret = 0;
  417. out:
  418. rcu_read_unlock();
  419. return ret;
  420. }
  421. #ifdef CONFIG_SMP
  422. /*
  423. * Helper routine for generate_sched_domains().
  424. * Do cpusets a, b have overlapping cpus_allowed masks?
  425. */
  426. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  427. {
  428. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  429. }
  430. static void
  431. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  432. {
  433. if (dattr->relax_domain_level < c->relax_domain_level)
  434. dattr->relax_domain_level = c->relax_domain_level;
  435. return;
  436. }
  437. static void
  438. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  439. {
  440. LIST_HEAD(q);
  441. list_add(&c->stack_list, &q);
  442. while (!list_empty(&q)) {
  443. struct cpuset *cp;
  444. struct cgroup *cont;
  445. struct cpuset *child;
  446. cp = list_first_entry(&q, struct cpuset, stack_list);
  447. list_del(q.next);
  448. if (cpumask_empty(cp->cpus_allowed))
  449. continue;
  450. if (is_sched_load_balance(cp))
  451. update_domain_attr(dattr, cp);
  452. rcu_read_lock();
  453. cpuset_for_each_child(child, cont, cp)
  454. list_add_tail(&child->stack_list, &q);
  455. rcu_read_unlock();
  456. }
  457. }
  458. /*
  459. * generate_sched_domains()
  460. *
  461. * This function builds a partial partition of the systems CPUs
  462. * A 'partial partition' is a set of non-overlapping subsets whose
  463. * union is a subset of that set.
  464. * The output of this function needs to be passed to kernel/sched.c
  465. * partition_sched_domains() routine, which will rebuild the scheduler's
  466. * load balancing domains (sched domains) as specified by that partial
  467. * partition.
  468. *
  469. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  470. * for a background explanation of this.
  471. *
  472. * Does not return errors, on the theory that the callers of this
  473. * routine would rather not worry about failures to rebuild sched
  474. * domains when operating in the severe memory shortage situations
  475. * that could cause allocation failures below.
  476. *
  477. * Must be called with cgroup_lock held.
  478. *
  479. * The three key local variables below are:
  480. * q - a linked-list queue of cpuset pointers, used to implement a
  481. * top-down scan of all cpusets. This scan loads a pointer
  482. * to each cpuset marked is_sched_load_balance into the
  483. * array 'csa'. For our purposes, rebuilding the schedulers
  484. * sched domains, we can ignore !is_sched_load_balance cpusets.
  485. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  486. * that need to be load balanced, for convenient iterative
  487. * access by the subsequent code that finds the best partition,
  488. * i.e the set of domains (subsets) of CPUs such that the
  489. * cpus_allowed of every cpuset marked is_sched_load_balance
  490. * is a subset of one of these domains, while there are as
  491. * many such domains as possible, each as small as possible.
  492. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  493. * the kernel/sched.c routine partition_sched_domains() in a
  494. * convenient format, that can be easily compared to the prior
  495. * value to determine what partition elements (sched domains)
  496. * were changed (added or removed.)
  497. *
  498. * Finding the best partition (set of domains):
  499. * The triple nested loops below over i, j, k scan over the
  500. * load balanced cpusets (using the array of cpuset pointers in
  501. * csa[]) looking for pairs of cpusets that have overlapping
  502. * cpus_allowed, but which don't have the same 'pn' partition
  503. * number and gives them in the same partition number. It keeps
  504. * looping on the 'restart' label until it can no longer find
  505. * any such pairs.
  506. *
  507. * The union of the cpus_allowed masks from the set of
  508. * all cpusets having the same 'pn' value then form the one
  509. * element of the partition (one sched domain) to be passed to
  510. * partition_sched_domains().
  511. */
  512. static int generate_sched_domains(cpumask_var_t **domains,
  513. struct sched_domain_attr **attributes)
  514. {
  515. LIST_HEAD(q); /* queue of cpusets to be scanned */
  516. struct cpuset *cp; /* scans q */
  517. struct cpuset **csa; /* array of all cpuset ptrs */
  518. int csn; /* how many cpuset ptrs in csa so far */
  519. int i, j, k; /* indices for partition finding loops */
  520. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  521. struct sched_domain_attr *dattr; /* attributes for custom domains */
  522. int ndoms = 0; /* number of sched domains in result */
  523. int nslot; /* next empty doms[] struct cpumask slot */
  524. doms = NULL;
  525. dattr = NULL;
  526. csa = NULL;
  527. /* Special case for the 99% of systems with one, full, sched domain */
  528. if (is_sched_load_balance(&top_cpuset)) {
  529. ndoms = 1;
  530. doms = alloc_sched_domains(ndoms);
  531. if (!doms)
  532. goto done;
  533. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  534. if (dattr) {
  535. *dattr = SD_ATTR_INIT;
  536. update_domain_attr_tree(dattr, &top_cpuset);
  537. }
  538. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  539. goto done;
  540. }
  541. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  542. if (!csa)
  543. goto done;
  544. csn = 0;
  545. list_add(&top_cpuset.stack_list, &q);
  546. while (!list_empty(&q)) {
  547. struct cgroup *cont;
  548. struct cpuset *child; /* scans child cpusets of cp */
  549. cp = list_first_entry(&q, struct cpuset, stack_list);
  550. list_del(q.next);
  551. if (cpumask_empty(cp->cpus_allowed))
  552. continue;
  553. /*
  554. * All child cpusets contain a subset of the parent's cpus, so
  555. * just skip them, and then we call update_domain_attr_tree()
  556. * to calc relax_domain_level of the corresponding sched
  557. * domain.
  558. */
  559. if (is_sched_load_balance(cp)) {
  560. csa[csn++] = cp;
  561. continue;
  562. }
  563. rcu_read_lock();
  564. cpuset_for_each_child(child, cont, cp)
  565. list_add_tail(&child->stack_list, &q);
  566. rcu_read_unlock();
  567. }
  568. for (i = 0; i < csn; i++)
  569. csa[i]->pn = i;
  570. ndoms = csn;
  571. restart:
  572. /* Find the best partition (set of sched domains) */
  573. for (i = 0; i < csn; i++) {
  574. struct cpuset *a = csa[i];
  575. int apn = a->pn;
  576. for (j = 0; j < csn; j++) {
  577. struct cpuset *b = csa[j];
  578. int bpn = b->pn;
  579. if (apn != bpn && cpusets_overlap(a, b)) {
  580. for (k = 0; k < csn; k++) {
  581. struct cpuset *c = csa[k];
  582. if (c->pn == bpn)
  583. c->pn = apn;
  584. }
  585. ndoms--; /* one less element */
  586. goto restart;
  587. }
  588. }
  589. }
  590. /*
  591. * Now we know how many domains to create.
  592. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  593. */
  594. doms = alloc_sched_domains(ndoms);
  595. if (!doms)
  596. goto done;
  597. /*
  598. * The rest of the code, including the scheduler, can deal with
  599. * dattr==NULL case. No need to abort if alloc fails.
  600. */
  601. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  602. for (nslot = 0, i = 0; i < csn; i++) {
  603. struct cpuset *a = csa[i];
  604. struct cpumask *dp;
  605. int apn = a->pn;
  606. if (apn < 0) {
  607. /* Skip completed partitions */
  608. continue;
  609. }
  610. dp = doms[nslot];
  611. if (nslot == ndoms) {
  612. static int warnings = 10;
  613. if (warnings) {
  614. printk(KERN_WARNING
  615. "rebuild_sched_domains confused:"
  616. " nslot %d, ndoms %d, csn %d, i %d,"
  617. " apn %d\n",
  618. nslot, ndoms, csn, i, apn);
  619. warnings--;
  620. }
  621. continue;
  622. }
  623. cpumask_clear(dp);
  624. if (dattr)
  625. *(dattr + nslot) = SD_ATTR_INIT;
  626. for (j = i; j < csn; j++) {
  627. struct cpuset *b = csa[j];
  628. if (apn == b->pn) {
  629. cpumask_or(dp, dp, b->cpus_allowed);
  630. if (dattr)
  631. update_domain_attr_tree(dattr + nslot, b);
  632. /* Done with this partition */
  633. b->pn = -1;
  634. }
  635. }
  636. nslot++;
  637. }
  638. BUG_ON(nslot != ndoms);
  639. done:
  640. kfree(csa);
  641. /*
  642. * Fallback to the default domain if kmalloc() failed.
  643. * See comments in partition_sched_domains().
  644. */
  645. if (doms == NULL)
  646. ndoms = 1;
  647. *domains = doms;
  648. *attributes = dattr;
  649. return ndoms;
  650. }
  651. /*
  652. * Rebuild scheduler domains.
  653. *
  654. * If the flag 'sched_load_balance' of any cpuset with non-empty
  655. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  656. * which has that flag enabled, or if any cpuset with a non-empty
  657. * 'cpus' is removed, then call this routine to rebuild the
  658. * scheduler's dynamic sched domains.
  659. *
  660. * Call with cgroup_mutex held. Takes get_online_cpus().
  661. */
  662. static void rebuild_sched_domains_locked(void)
  663. {
  664. struct sched_domain_attr *attr;
  665. cpumask_var_t *doms;
  666. int ndoms;
  667. WARN_ON_ONCE(!cgroup_lock_is_held());
  668. get_online_cpus();
  669. /* Generate domain masks and attrs */
  670. ndoms = generate_sched_domains(&doms, &attr);
  671. /* Have scheduler rebuild the domains */
  672. partition_sched_domains(ndoms, doms, attr);
  673. put_online_cpus();
  674. }
  675. #else /* !CONFIG_SMP */
  676. static void rebuild_sched_domains_locked(void)
  677. {
  678. }
  679. static int generate_sched_domains(cpumask_var_t **domains,
  680. struct sched_domain_attr **attributes)
  681. {
  682. *domains = NULL;
  683. return 1;
  684. }
  685. #endif /* CONFIG_SMP */
  686. void rebuild_sched_domains(void)
  687. {
  688. cgroup_lock();
  689. rebuild_sched_domains_locked();
  690. cgroup_unlock();
  691. }
  692. /**
  693. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  694. * @tsk: task to test
  695. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  696. *
  697. * Call with cgroup_mutex held. May take callback_mutex during call.
  698. * Called for each task in a cgroup by cgroup_scan_tasks().
  699. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  700. * words, if its mask is not equal to its cpuset's mask).
  701. */
  702. static int cpuset_test_cpumask(struct task_struct *tsk,
  703. struct cgroup_scanner *scan)
  704. {
  705. return !cpumask_equal(&tsk->cpus_allowed,
  706. (cgroup_cs(scan->cg))->cpus_allowed);
  707. }
  708. /**
  709. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  710. * @tsk: task to test
  711. * @scan: struct cgroup_scanner containing the cgroup of the task
  712. *
  713. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  714. * cpus_allowed mask needs to be changed.
  715. *
  716. * We don't need to re-check for the cgroup/cpuset membership, since we're
  717. * holding cgroup_lock() at this point.
  718. */
  719. static void cpuset_change_cpumask(struct task_struct *tsk,
  720. struct cgroup_scanner *scan)
  721. {
  722. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  723. }
  724. /**
  725. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  726. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  727. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  728. *
  729. * Called with cgroup_mutex held
  730. *
  731. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  732. * calling callback functions for each.
  733. *
  734. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  735. * if @heap != NULL.
  736. */
  737. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  738. {
  739. struct cgroup_scanner scan;
  740. scan.cg = cs->css.cgroup;
  741. scan.test_task = cpuset_test_cpumask;
  742. scan.process_task = cpuset_change_cpumask;
  743. scan.heap = heap;
  744. cgroup_scan_tasks(&scan);
  745. }
  746. /**
  747. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  748. * @cs: the cpuset to consider
  749. * @buf: buffer of cpu numbers written to this cpuset
  750. */
  751. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  752. const char *buf)
  753. {
  754. struct ptr_heap heap;
  755. int retval;
  756. int is_load_balanced;
  757. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  758. if (cs == &top_cpuset)
  759. return -EACCES;
  760. /*
  761. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  762. * Since cpulist_parse() fails on an empty mask, we special case
  763. * that parsing. The validate_change() call ensures that cpusets
  764. * with tasks have cpus.
  765. */
  766. if (!*buf) {
  767. cpumask_clear(trialcs->cpus_allowed);
  768. } else {
  769. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  770. if (retval < 0)
  771. return retval;
  772. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  773. return -EINVAL;
  774. }
  775. retval = validate_change(cs, trialcs);
  776. if (retval < 0)
  777. return retval;
  778. /* Nothing to do if the cpus didn't change */
  779. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  780. return 0;
  781. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  782. if (retval)
  783. return retval;
  784. is_load_balanced = is_sched_load_balance(trialcs);
  785. mutex_lock(&callback_mutex);
  786. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  787. mutex_unlock(&callback_mutex);
  788. /*
  789. * Scan tasks in the cpuset, and update the cpumasks of any
  790. * that need an update.
  791. */
  792. update_tasks_cpumask(cs, &heap);
  793. heap_free(&heap);
  794. if (is_load_balanced)
  795. rebuild_sched_domains_locked();
  796. return 0;
  797. }
  798. /*
  799. * cpuset_migrate_mm
  800. *
  801. * Migrate memory region from one set of nodes to another.
  802. *
  803. * Temporarilly set tasks mems_allowed to target nodes of migration,
  804. * so that the migration code can allocate pages on these nodes.
  805. *
  806. * Call holding cgroup_mutex, so current's cpuset won't change
  807. * during this call, as manage_mutex holds off any cpuset_attach()
  808. * calls. Therefore we don't need to take task_lock around the
  809. * call to guarantee_online_mems(), as we know no one is changing
  810. * our task's cpuset.
  811. *
  812. * While the mm_struct we are migrating is typically from some
  813. * other task, the task_struct mems_allowed that we are hacking
  814. * is for our current task, which must allocate new pages for that
  815. * migrating memory region.
  816. */
  817. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  818. const nodemask_t *to)
  819. {
  820. struct task_struct *tsk = current;
  821. tsk->mems_allowed = *to;
  822. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  823. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  824. }
  825. /*
  826. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  827. * @tsk: the task to change
  828. * @newmems: new nodes that the task will be set
  829. *
  830. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  831. * we structure updates as setting all new allowed nodes, then clearing newly
  832. * disallowed ones.
  833. */
  834. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  835. nodemask_t *newmems)
  836. {
  837. bool need_loop;
  838. /*
  839. * Allow tasks that have access to memory reserves because they have
  840. * been OOM killed to get memory anywhere.
  841. */
  842. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  843. return;
  844. if (current->flags & PF_EXITING) /* Let dying task have memory */
  845. return;
  846. task_lock(tsk);
  847. /*
  848. * Determine if a loop is necessary if another thread is doing
  849. * get_mems_allowed(). If at least one node remains unchanged and
  850. * tsk does not have a mempolicy, then an empty nodemask will not be
  851. * possible when mems_allowed is larger than a word.
  852. */
  853. need_loop = task_has_mempolicy(tsk) ||
  854. !nodes_intersects(*newmems, tsk->mems_allowed);
  855. if (need_loop)
  856. write_seqcount_begin(&tsk->mems_allowed_seq);
  857. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  858. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  859. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  860. tsk->mems_allowed = *newmems;
  861. if (need_loop)
  862. write_seqcount_end(&tsk->mems_allowed_seq);
  863. task_unlock(tsk);
  864. }
  865. /*
  866. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  867. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  868. * memory_migrate flag is set. Called with cgroup_mutex held.
  869. */
  870. static void cpuset_change_nodemask(struct task_struct *p,
  871. struct cgroup_scanner *scan)
  872. {
  873. struct mm_struct *mm;
  874. struct cpuset *cs;
  875. int migrate;
  876. const nodemask_t *oldmem = scan->data;
  877. static nodemask_t newmems; /* protected by cgroup_mutex */
  878. cs = cgroup_cs(scan->cg);
  879. guarantee_online_mems(cs, &newmems);
  880. cpuset_change_task_nodemask(p, &newmems);
  881. mm = get_task_mm(p);
  882. if (!mm)
  883. return;
  884. migrate = is_memory_migrate(cs);
  885. mpol_rebind_mm(mm, &cs->mems_allowed);
  886. if (migrate)
  887. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  888. mmput(mm);
  889. }
  890. static void *cpuset_being_rebound;
  891. /**
  892. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  893. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  894. * @oldmem: old mems_allowed of cpuset cs
  895. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  896. *
  897. * Called with cgroup_mutex held
  898. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  899. * if @heap != NULL.
  900. */
  901. static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
  902. struct ptr_heap *heap)
  903. {
  904. struct cgroup_scanner scan;
  905. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  906. scan.cg = cs->css.cgroup;
  907. scan.test_task = NULL;
  908. scan.process_task = cpuset_change_nodemask;
  909. scan.heap = heap;
  910. scan.data = (nodemask_t *)oldmem;
  911. /*
  912. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  913. * take while holding tasklist_lock. Forks can happen - the
  914. * mpol_dup() cpuset_being_rebound check will catch such forks,
  915. * and rebind their vma mempolicies too. Because we still hold
  916. * the global cgroup_mutex, we know that no other rebind effort
  917. * will be contending for the global variable cpuset_being_rebound.
  918. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  919. * is idempotent. Also migrate pages in each mm to new nodes.
  920. */
  921. cgroup_scan_tasks(&scan);
  922. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  923. cpuset_being_rebound = NULL;
  924. }
  925. /*
  926. * Handle user request to change the 'mems' memory placement
  927. * of a cpuset. Needs to validate the request, update the
  928. * cpusets mems_allowed, and for each task in the cpuset,
  929. * update mems_allowed and rebind task's mempolicy and any vma
  930. * mempolicies and if the cpuset is marked 'memory_migrate',
  931. * migrate the tasks pages to the new memory.
  932. *
  933. * Call with cgroup_mutex held. May take callback_mutex during call.
  934. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  935. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  936. * their mempolicies to the cpusets new mems_allowed.
  937. */
  938. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  939. const char *buf)
  940. {
  941. NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
  942. int retval;
  943. struct ptr_heap heap;
  944. if (!oldmem)
  945. return -ENOMEM;
  946. /*
  947. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  948. * it's read-only
  949. */
  950. if (cs == &top_cpuset) {
  951. retval = -EACCES;
  952. goto done;
  953. }
  954. /*
  955. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  956. * Since nodelist_parse() fails on an empty mask, we special case
  957. * that parsing. The validate_change() call ensures that cpusets
  958. * with tasks have memory.
  959. */
  960. if (!*buf) {
  961. nodes_clear(trialcs->mems_allowed);
  962. } else {
  963. retval = nodelist_parse(buf, trialcs->mems_allowed);
  964. if (retval < 0)
  965. goto done;
  966. if (!nodes_subset(trialcs->mems_allowed,
  967. node_states[N_MEMORY])) {
  968. retval = -EINVAL;
  969. goto done;
  970. }
  971. }
  972. *oldmem = cs->mems_allowed;
  973. if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
  974. retval = 0; /* Too easy - nothing to do */
  975. goto done;
  976. }
  977. retval = validate_change(cs, trialcs);
  978. if (retval < 0)
  979. goto done;
  980. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  981. if (retval < 0)
  982. goto done;
  983. mutex_lock(&callback_mutex);
  984. cs->mems_allowed = trialcs->mems_allowed;
  985. mutex_unlock(&callback_mutex);
  986. update_tasks_nodemask(cs, oldmem, &heap);
  987. heap_free(&heap);
  988. done:
  989. NODEMASK_FREE(oldmem);
  990. return retval;
  991. }
  992. int current_cpuset_is_being_rebound(void)
  993. {
  994. return task_cs(current) == cpuset_being_rebound;
  995. }
  996. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  997. {
  998. #ifdef CONFIG_SMP
  999. if (val < -1 || val >= sched_domain_level_max)
  1000. return -EINVAL;
  1001. #endif
  1002. if (val != cs->relax_domain_level) {
  1003. cs->relax_domain_level = val;
  1004. if (!cpumask_empty(cs->cpus_allowed) &&
  1005. is_sched_load_balance(cs))
  1006. rebuild_sched_domains_locked();
  1007. }
  1008. return 0;
  1009. }
  1010. /*
  1011. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1012. * @tsk: task to be updated
  1013. * @scan: struct cgroup_scanner containing the cgroup of the task
  1014. *
  1015. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1016. *
  1017. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1018. * holding cgroup_lock() at this point.
  1019. */
  1020. static void cpuset_change_flag(struct task_struct *tsk,
  1021. struct cgroup_scanner *scan)
  1022. {
  1023. cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
  1024. }
  1025. /*
  1026. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1027. * @cs: the cpuset in which each task's spread flags needs to be changed
  1028. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1029. *
  1030. * Called with cgroup_mutex held
  1031. *
  1032. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1033. * calling callback functions for each.
  1034. *
  1035. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1036. * if @heap != NULL.
  1037. */
  1038. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1039. {
  1040. struct cgroup_scanner scan;
  1041. scan.cg = cs->css.cgroup;
  1042. scan.test_task = NULL;
  1043. scan.process_task = cpuset_change_flag;
  1044. scan.heap = heap;
  1045. cgroup_scan_tasks(&scan);
  1046. }
  1047. /*
  1048. * update_flag - read a 0 or a 1 in a file and update associated flag
  1049. * bit: the bit to update (see cpuset_flagbits_t)
  1050. * cs: the cpuset to update
  1051. * turning_on: whether the flag is being set or cleared
  1052. *
  1053. * Call with cgroup_mutex held.
  1054. */
  1055. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1056. int turning_on)
  1057. {
  1058. struct cpuset *trialcs;
  1059. int balance_flag_changed;
  1060. int spread_flag_changed;
  1061. struct ptr_heap heap;
  1062. int err;
  1063. trialcs = alloc_trial_cpuset(cs);
  1064. if (!trialcs)
  1065. return -ENOMEM;
  1066. if (turning_on)
  1067. set_bit(bit, &trialcs->flags);
  1068. else
  1069. clear_bit(bit, &trialcs->flags);
  1070. err = validate_change(cs, trialcs);
  1071. if (err < 0)
  1072. goto out;
  1073. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1074. if (err < 0)
  1075. goto out;
  1076. balance_flag_changed = (is_sched_load_balance(cs) !=
  1077. is_sched_load_balance(trialcs));
  1078. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1079. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1080. mutex_lock(&callback_mutex);
  1081. cs->flags = trialcs->flags;
  1082. mutex_unlock(&callback_mutex);
  1083. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1084. rebuild_sched_domains_locked();
  1085. if (spread_flag_changed)
  1086. update_tasks_flags(cs, &heap);
  1087. heap_free(&heap);
  1088. out:
  1089. free_trial_cpuset(trialcs);
  1090. return err;
  1091. }
  1092. /*
  1093. * Frequency meter - How fast is some event occurring?
  1094. *
  1095. * These routines manage a digitally filtered, constant time based,
  1096. * event frequency meter. There are four routines:
  1097. * fmeter_init() - initialize a frequency meter.
  1098. * fmeter_markevent() - called each time the event happens.
  1099. * fmeter_getrate() - returns the recent rate of such events.
  1100. * fmeter_update() - internal routine used to update fmeter.
  1101. *
  1102. * A common data structure is passed to each of these routines,
  1103. * which is used to keep track of the state required to manage the
  1104. * frequency meter and its digital filter.
  1105. *
  1106. * The filter works on the number of events marked per unit time.
  1107. * The filter is single-pole low-pass recursive (IIR). The time unit
  1108. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1109. * simulate 3 decimal digits of precision (multiplied by 1000).
  1110. *
  1111. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1112. * has a half-life of 10 seconds, meaning that if the events quit
  1113. * happening, then the rate returned from the fmeter_getrate()
  1114. * will be cut in half each 10 seconds, until it converges to zero.
  1115. *
  1116. * It is not worth doing a real infinitely recursive filter. If more
  1117. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1118. * just compute FM_MAXTICKS ticks worth, by which point the level
  1119. * will be stable.
  1120. *
  1121. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1122. * arithmetic overflow in the fmeter_update() routine.
  1123. *
  1124. * Given the simple 32 bit integer arithmetic used, this meter works
  1125. * best for reporting rates between one per millisecond (msec) and
  1126. * one per 32 (approx) seconds. At constant rates faster than one
  1127. * per msec it maxes out at values just under 1,000,000. At constant
  1128. * rates between one per msec, and one per second it will stabilize
  1129. * to a value N*1000, where N is the rate of events per second.
  1130. * At constant rates between one per second and one per 32 seconds,
  1131. * it will be choppy, moving up on the seconds that have an event,
  1132. * and then decaying until the next event. At rates slower than
  1133. * about one in 32 seconds, it decays all the way back to zero between
  1134. * each event.
  1135. */
  1136. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1137. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1138. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1139. #define FM_SCALE 1000 /* faux fixed point scale */
  1140. /* Initialize a frequency meter */
  1141. static void fmeter_init(struct fmeter *fmp)
  1142. {
  1143. fmp->cnt = 0;
  1144. fmp->val = 0;
  1145. fmp->time = 0;
  1146. spin_lock_init(&fmp->lock);
  1147. }
  1148. /* Internal meter update - process cnt events and update value */
  1149. static void fmeter_update(struct fmeter *fmp)
  1150. {
  1151. time_t now = get_seconds();
  1152. time_t ticks = now - fmp->time;
  1153. if (ticks == 0)
  1154. return;
  1155. ticks = min(FM_MAXTICKS, ticks);
  1156. while (ticks-- > 0)
  1157. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1158. fmp->time = now;
  1159. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1160. fmp->cnt = 0;
  1161. }
  1162. /* Process any previous ticks, then bump cnt by one (times scale). */
  1163. static void fmeter_markevent(struct fmeter *fmp)
  1164. {
  1165. spin_lock(&fmp->lock);
  1166. fmeter_update(fmp);
  1167. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1168. spin_unlock(&fmp->lock);
  1169. }
  1170. /* Process any previous ticks, then return current value. */
  1171. static int fmeter_getrate(struct fmeter *fmp)
  1172. {
  1173. int val;
  1174. spin_lock(&fmp->lock);
  1175. fmeter_update(fmp);
  1176. val = fmp->val;
  1177. spin_unlock(&fmp->lock);
  1178. return val;
  1179. }
  1180. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1181. static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1182. {
  1183. struct cpuset *cs = cgroup_cs(cgrp);
  1184. struct task_struct *task;
  1185. int ret;
  1186. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1187. return -ENOSPC;
  1188. cgroup_taskset_for_each(task, cgrp, tset) {
  1189. /*
  1190. * Kthreads bound to specific cpus cannot be moved to a new
  1191. * cpuset; we cannot change their cpu affinity and
  1192. * isolating such threads by their set of allowed nodes is
  1193. * unnecessary. Thus, cpusets are not applicable for such
  1194. * threads. This prevents checking for success of
  1195. * set_cpus_allowed_ptr() on all attached tasks before
  1196. * cpus_allowed may be changed.
  1197. */
  1198. if (task->flags & PF_THREAD_BOUND)
  1199. return -EINVAL;
  1200. if ((ret = security_task_setscheduler(task)))
  1201. return ret;
  1202. }
  1203. return 0;
  1204. }
  1205. /*
  1206. * Protected by cgroup_mutex. cpus_attach is used only by cpuset_attach()
  1207. * but we can't allocate it dynamically there. Define it global and
  1208. * allocate from cpuset_init().
  1209. */
  1210. static cpumask_var_t cpus_attach;
  1211. static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1212. {
  1213. /* static bufs protected by cgroup_mutex */
  1214. static nodemask_t cpuset_attach_nodemask_from;
  1215. static nodemask_t cpuset_attach_nodemask_to;
  1216. struct mm_struct *mm;
  1217. struct task_struct *task;
  1218. struct task_struct *leader = cgroup_taskset_first(tset);
  1219. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1220. struct cpuset *cs = cgroup_cs(cgrp);
  1221. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1222. /* prepare for attach */
  1223. if (cs == &top_cpuset)
  1224. cpumask_copy(cpus_attach, cpu_possible_mask);
  1225. else
  1226. guarantee_online_cpus(cs, cpus_attach);
  1227. guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
  1228. cgroup_taskset_for_each(task, cgrp, tset) {
  1229. /*
  1230. * can_attach beforehand should guarantee that this doesn't
  1231. * fail. TODO: have a better way to handle failure here
  1232. */
  1233. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1234. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1235. cpuset_update_task_spread_flag(cs, task);
  1236. }
  1237. /*
  1238. * Change mm, possibly for multiple threads in a threadgroup. This is
  1239. * expensive and may sleep.
  1240. */
  1241. cpuset_attach_nodemask_from = oldcs->mems_allowed;
  1242. cpuset_attach_nodemask_to = cs->mems_allowed;
  1243. mm = get_task_mm(leader);
  1244. if (mm) {
  1245. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1246. if (is_memory_migrate(cs))
  1247. cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
  1248. &cpuset_attach_nodemask_to);
  1249. mmput(mm);
  1250. }
  1251. }
  1252. /* The various types of files and directories in a cpuset file system */
  1253. typedef enum {
  1254. FILE_MEMORY_MIGRATE,
  1255. FILE_CPULIST,
  1256. FILE_MEMLIST,
  1257. FILE_CPU_EXCLUSIVE,
  1258. FILE_MEM_EXCLUSIVE,
  1259. FILE_MEM_HARDWALL,
  1260. FILE_SCHED_LOAD_BALANCE,
  1261. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1262. FILE_MEMORY_PRESSURE_ENABLED,
  1263. FILE_MEMORY_PRESSURE,
  1264. FILE_SPREAD_PAGE,
  1265. FILE_SPREAD_SLAB,
  1266. } cpuset_filetype_t;
  1267. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1268. {
  1269. int retval = 0;
  1270. struct cpuset *cs = cgroup_cs(cgrp);
  1271. cpuset_filetype_t type = cft->private;
  1272. if (!cgroup_lock_live_group(cgrp))
  1273. return -ENODEV;
  1274. switch (type) {
  1275. case FILE_CPU_EXCLUSIVE:
  1276. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1277. break;
  1278. case FILE_MEM_EXCLUSIVE:
  1279. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1280. break;
  1281. case FILE_MEM_HARDWALL:
  1282. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1283. break;
  1284. case FILE_SCHED_LOAD_BALANCE:
  1285. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1286. break;
  1287. case FILE_MEMORY_MIGRATE:
  1288. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1289. break;
  1290. case FILE_MEMORY_PRESSURE_ENABLED:
  1291. cpuset_memory_pressure_enabled = !!val;
  1292. break;
  1293. case FILE_MEMORY_PRESSURE:
  1294. retval = -EACCES;
  1295. break;
  1296. case FILE_SPREAD_PAGE:
  1297. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1298. break;
  1299. case FILE_SPREAD_SLAB:
  1300. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1301. break;
  1302. default:
  1303. retval = -EINVAL;
  1304. break;
  1305. }
  1306. cgroup_unlock();
  1307. return retval;
  1308. }
  1309. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1310. {
  1311. int retval = 0;
  1312. struct cpuset *cs = cgroup_cs(cgrp);
  1313. cpuset_filetype_t type = cft->private;
  1314. if (!cgroup_lock_live_group(cgrp))
  1315. return -ENODEV;
  1316. switch (type) {
  1317. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1318. retval = update_relax_domain_level(cs, val);
  1319. break;
  1320. default:
  1321. retval = -EINVAL;
  1322. break;
  1323. }
  1324. cgroup_unlock();
  1325. return retval;
  1326. }
  1327. /*
  1328. * Common handling for a write to a "cpus" or "mems" file.
  1329. */
  1330. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1331. const char *buf)
  1332. {
  1333. int retval = 0;
  1334. struct cpuset *cs = cgroup_cs(cgrp);
  1335. struct cpuset *trialcs;
  1336. /*
  1337. * CPU or memory hotunplug may leave @cs w/o any execution
  1338. * resources, in which case the hotplug code asynchronously updates
  1339. * configuration and transfers all tasks to the nearest ancestor
  1340. * which can execute.
  1341. *
  1342. * As writes to "cpus" or "mems" may restore @cs's execution
  1343. * resources, wait for the previously scheduled operations before
  1344. * proceeding, so that we don't end up keep removing tasks added
  1345. * after execution capability is restored.
  1346. */
  1347. flush_work(&cpuset_hotplug_work);
  1348. if (!cgroup_lock_live_group(cgrp))
  1349. return -ENODEV;
  1350. trialcs = alloc_trial_cpuset(cs);
  1351. if (!trialcs) {
  1352. retval = -ENOMEM;
  1353. goto out;
  1354. }
  1355. switch (cft->private) {
  1356. case FILE_CPULIST:
  1357. retval = update_cpumask(cs, trialcs, buf);
  1358. break;
  1359. case FILE_MEMLIST:
  1360. retval = update_nodemask(cs, trialcs, buf);
  1361. break;
  1362. default:
  1363. retval = -EINVAL;
  1364. break;
  1365. }
  1366. free_trial_cpuset(trialcs);
  1367. out:
  1368. cgroup_unlock();
  1369. return retval;
  1370. }
  1371. /*
  1372. * These ascii lists should be read in a single call, by using a user
  1373. * buffer large enough to hold the entire map. If read in smaller
  1374. * chunks, there is no guarantee of atomicity. Since the display format
  1375. * used, list of ranges of sequential numbers, is variable length,
  1376. * and since these maps can change value dynamically, one could read
  1377. * gibberish by doing partial reads while a list was changing.
  1378. * A single large read to a buffer that crosses a page boundary is
  1379. * ok, because the result being copied to user land is not recomputed
  1380. * across a page fault.
  1381. */
  1382. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1383. {
  1384. size_t count;
  1385. mutex_lock(&callback_mutex);
  1386. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1387. mutex_unlock(&callback_mutex);
  1388. return count;
  1389. }
  1390. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1391. {
  1392. size_t count;
  1393. mutex_lock(&callback_mutex);
  1394. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1395. mutex_unlock(&callback_mutex);
  1396. return count;
  1397. }
  1398. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1399. struct cftype *cft,
  1400. struct file *file,
  1401. char __user *buf,
  1402. size_t nbytes, loff_t *ppos)
  1403. {
  1404. struct cpuset *cs = cgroup_cs(cont);
  1405. cpuset_filetype_t type = cft->private;
  1406. char *page;
  1407. ssize_t retval = 0;
  1408. char *s;
  1409. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1410. return -ENOMEM;
  1411. s = page;
  1412. switch (type) {
  1413. case FILE_CPULIST:
  1414. s += cpuset_sprintf_cpulist(s, cs);
  1415. break;
  1416. case FILE_MEMLIST:
  1417. s += cpuset_sprintf_memlist(s, cs);
  1418. break;
  1419. default:
  1420. retval = -EINVAL;
  1421. goto out;
  1422. }
  1423. *s++ = '\n';
  1424. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1425. out:
  1426. free_page((unsigned long)page);
  1427. return retval;
  1428. }
  1429. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1430. {
  1431. struct cpuset *cs = cgroup_cs(cont);
  1432. cpuset_filetype_t type = cft->private;
  1433. switch (type) {
  1434. case FILE_CPU_EXCLUSIVE:
  1435. return is_cpu_exclusive(cs);
  1436. case FILE_MEM_EXCLUSIVE:
  1437. return is_mem_exclusive(cs);
  1438. case FILE_MEM_HARDWALL:
  1439. return is_mem_hardwall(cs);
  1440. case FILE_SCHED_LOAD_BALANCE:
  1441. return is_sched_load_balance(cs);
  1442. case FILE_MEMORY_MIGRATE:
  1443. return is_memory_migrate(cs);
  1444. case FILE_MEMORY_PRESSURE_ENABLED:
  1445. return cpuset_memory_pressure_enabled;
  1446. case FILE_MEMORY_PRESSURE:
  1447. return fmeter_getrate(&cs->fmeter);
  1448. case FILE_SPREAD_PAGE:
  1449. return is_spread_page(cs);
  1450. case FILE_SPREAD_SLAB:
  1451. return is_spread_slab(cs);
  1452. default:
  1453. BUG();
  1454. }
  1455. /* Unreachable but makes gcc happy */
  1456. return 0;
  1457. }
  1458. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1459. {
  1460. struct cpuset *cs = cgroup_cs(cont);
  1461. cpuset_filetype_t type = cft->private;
  1462. switch (type) {
  1463. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1464. return cs->relax_domain_level;
  1465. default:
  1466. BUG();
  1467. }
  1468. /* Unrechable but makes gcc happy */
  1469. return 0;
  1470. }
  1471. /*
  1472. * for the common functions, 'private' gives the type of file
  1473. */
  1474. static struct cftype files[] = {
  1475. {
  1476. .name = "cpus",
  1477. .read = cpuset_common_file_read,
  1478. .write_string = cpuset_write_resmask,
  1479. .max_write_len = (100U + 6 * NR_CPUS),
  1480. .private = FILE_CPULIST,
  1481. },
  1482. {
  1483. .name = "mems",
  1484. .read = cpuset_common_file_read,
  1485. .write_string = cpuset_write_resmask,
  1486. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1487. .private = FILE_MEMLIST,
  1488. },
  1489. {
  1490. .name = "cpu_exclusive",
  1491. .read_u64 = cpuset_read_u64,
  1492. .write_u64 = cpuset_write_u64,
  1493. .private = FILE_CPU_EXCLUSIVE,
  1494. },
  1495. {
  1496. .name = "mem_exclusive",
  1497. .read_u64 = cpuset_read_u64,
  1498. .write_u64 = cpuset_write_u64,
  1499. .private = FILE_MEM_EXCLUSIVE,
  1500. },
  1501. {
  1502. .name = "mem_hardwall",
  1503. .read_u64 = cpuset_read_u64,
  1504. .write_u64 = cpuset_write_u64,
  1505. .private = FILE_MEM_HARDWALL,
  1506. },
  1507. {
  1508. .name = "sched_load_balance",
  1509. .read_u64 = cpuset_read_u64,
  1510. .write_u64 = cpuset_write_u64,
  1511. .private = FILE_SCHED_LOAD_BALANCE,
  1512. },
  1513. {
  1514. .name = "sched_relax_domain_level",
  1515. .read_s64 = cpuset_read_s64,
  1516. .write_s64 = cpuset_write_s64,
  1517. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1518. },
  1519. {
  1520. .name = "memory_migrate",
  1521. .read_u64 = cpuset_read_u64,
  1522. .write_u64 = cpuset_write_u64,
  1523. .private = FILE_MEMORY_MIGRATE,
  1524. },
  1525. {
  1526. .name = "memory_pressure",
  1527. .read_u64 = cpuset_read_u64,
  1528. .write_u64 = cpuset_write_u64,
  1529. .private = FILE_MEMORY_PRESSURE,
  1530. .mode = S_IRUGO,
  1531. },
  1532. {
  1533. .name = "memory_spread_page",
  1534. .read_u64 = cpuset_read_u64,
  1535. .write_u64 = cpuset_write_u64,
  1536. .private = FILE_SPREAD_PAGE,
  1537. },
  1538. {
  1539. .name = "memory_spread_slab",
  1540. .read_u64 = cpuset_read_u64,
  1541. .write_u64 = cpuset_write_u64,
  1542. .private = FILE_SPREAD_SLAB,
  1543. },
  1544. {
  1545. .name = "memory_pressure_enabled",
  1546. .flags = CFTYPE_ONLY_ON_ROOT,
  1547. .read_u64 = cpuset_read_u64,
  1548. .write_u64 = cpuset_write_u64,
  1549. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1550. },
  1551. { } /* terminate */
  1552. };
  1553. /*
  1554. * cpuset_css_alloc - allocate a cpuset css
  1555. * cont: control group that the new cpuset will be part of
  1556. */
  1557. static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
  1558. {
  1559. struct cpuset *cs;
  1560. if (!cont->parent)
  1561. return &top_cpuset.css;
  1562. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1563. if (!cs)
  1564. return ERR_PTR(-ENOMEM);
  1565. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1566. kfree(cs);
  1567. return ERR_PTR(-ENOMEM);
  1568. }
  1569. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1570. cpumask_clear(cs->cpus_allowed);
  1571. nodes_clear(cs->mems_allowed);
  1572. fmeter_init(&cs->fmeter);
  1573. cs->relax_domain_level = -1;
  1574. cs->parent = cgroup_cs(cont->parent);
  1575. return &cs->css;
  1576. }
  1577. static int cpuset_css_online(struct cgroup *cgrp)
  1578. {
  1579. struct cpuset *cs = cgroup_cs(cgrp);
  1580. struct cpuset *parent = cs->parent;
  1581. struct cpuset *tmp_cs;
  1582. struct cgroup *pos_cg;
  1583. if (!parent)
  1584. return 0;
  1585. set_bit(CS_ONLINE, &cs->flags);
  1586. if (is_spread_page(parent))
  1587. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1588. if (is_spread_slab(parent))
  1589. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1590. number_of_cpusets++;
  1591. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
  1592. return 0;
  1593. /*
  1594. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1595. * set. This flag handling is implemented in cgroup core for
  1596. * histrical reasons - the flag may be specified during mount.
  1597. *
  1598. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1599. * refuse to clone the configuration - thereby refusing the task to
  1600. * be entered, and as a result refusing the sys_unshare() or
  1601. * clone() which initiated it. If this becomes a problem for some
  1602. * users who wish to allow that scenario, then this could be
  1603. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1604. * (and likewise for mems) to the new cgroup.
  1605. */
  1606. rcu_read_lock();
  1607. cpuset_for_each_child(tmp_cs, pos_cg, parent) {
  1608. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1609. rcu_read_unlock();
  1610. return 0;
  1611. }
  1612. }
  1613. rcu_read_unlock();
  1614. mutex_lock(&callback_mutex);
  1615. cs->mems_allowed = parent->mems_allowed;
  1616. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1617. mutex_unlock(&callback_mutex);
  1618. return 0;
  1619. }
  1620. static void cpuset_css_offline(struct cgroup *cgrp)
  1621. {
  1622. struct cpuset *cs = cgroup_cs(cgrp);
  1623. /* css_offline is called w/o cgroup_mutex, grab it */
  1624. cgroup_lock();
  1625. if (is_sched_load_balance(cs))
  1626. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1627. number_of_cpusets--;
  1628. clear_bit(CS_ONLINE, &cs->flags);
  1629. cgroup_unlock();
  1630. }
  1631. /*
  1632. * If the cpuset being removed has its flag 'sched_load_balance'
  1633. * enabled, then simulate turning sched_load_balance off, which
  1634. * will call rebuild_sched_domains_locked().
  1635. */
  1636. static void cpuset_css_free(struct cgroup *cont)
  1637. {
  1638. struct cpuset *cs = cgroup_cs(cont);
  1639. free_cpumask_var(cs->cpus_allowed);
  1640. kfree(cs);
  1641. }
  1642. struct cgroup_subsys cpuset_subsys = {
  1643. .name = "cpuset",
  1644. .css_alloc = cpuset_css_alloc,
  1645. .css_online = cpuset_css_online,
  1646. .css_offline = cpuset_css_offline,
  1647. .css_free = cpuset_css_free,
  1648. .can_attach = cpuset_can_attach,
  1649. .attach = cpuset_attach,
  1650. .subsys_id = cpuset_subsys_id,
  1651. .base_cftypes = files,
  1652. .early_init = 1,
  1653. };
  1654. /**
  1655. * cpuset_init - initialize cpusets at system boot
  1656. *
  1657. * Description: Initialize top_cpuset and the cpuset internal file system,
  1658. **/
  1659. int __init cpuset_init(void)
  1660. {
  1661. int err = 0;
  1662. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1663. BUG();
  1664. cpumask_setall(top_cpuset.cpus_allowed);
  1665. nodes_setall(top_cpuset.mems_allowed);
  1666. fmeter_init(&top_cpuset.fmeter);
  1667. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1668. top_cpuset.relax_domain_level = -1;
  1669. err = register_filesystem(&cpuset_fs_type);
  1670. if (err < 0)
  1671. return err;
  1672. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1673. BUG();
  1674. number_of_cpusets = 1;
  1675. return 0;
  1676. }
  1677. /**
  1678. * cpuset_do_move_task - move a given task to another cpuset
  1679. * @tsk: pointer to task_struct the task to move
  1680. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1681. *
  1682. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1683. * Return nonzero to stop the walk through the tasks.
  1684. */
  1685. static void cpuset_do_move_task(struct task_struct *tsk,
  1686. struct cgroup_scanner *scan)
  1687. {
  1688. struct cgroup *new_cgroup = scan->data;
  1689. cgroup_attach_task(new_cgroup, tsk);
  1690. }
  1691. /**
  1692. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1693. * @from: cpuset in which the tasks currently reside
  1694. * @to: cpuset to which the tasks will be moved
  1695. *
  1696. * Called with cgroup_mutex held
  1697. * callback_mutex must not be held, as cpuset_attach() will take it.
  1698. *
  1699. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1700. * calling callback functions for each.
  1701. */
  1702. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1703. {
  1704. struct cgroup_scanner scan;
  1705. scan.cg = from->css.cgroup;
  1706. scan.test_task = NULL; /* select all tasks in cgroup */
  1707. scan.process_task = cpuset_do_move_task;
  1708. scan.heap = NULL;
  1709. scan.data = to->css.cgroup;
  1710. if (cgroup_scan_tasks(&scan))
  1711. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1712. "cgroup_scan_tasks failed\n");
  1713. }
  1714. /*
  1715. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1716. * or memory nodes, we need to walk over the cpuset hierarchy,
  1717. * removing that CPU or node from all cpusets. If this removes the
  1718. * last CPU or node from a cpuset, then move the tasks in the empty
  1719. * cpuset to its next-highest non-empty parent.
  1720. *
  1721. * Called with cgroup_mutex held
  1722. * callback_mutex must not be held, as cpuset_attach() will take it.
  1723. */
  1724. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1725. {
  1726. struct cpuset *parent;
  1727. /*
  1728. * Find its next-highest non-empty parent, (top cpuset
  1729. * has online cpus, so can't be empty).
  1730. */
  1731. parent = cs->parent;
  1732. while (cpumask_empty(parent->cpus_allowed) ||
  1733. nodes_empty(parent->mems_allowed))
  1734. parent = parent->parent;
  1735. move_member_tasks_to_cpuset(cs, parent);
  1736. }
  1737. /*
  1738. * Helper function to traverse cpusets.
  1739. * It can be used to walk the cpuset tree from top to bottom, completing
  1740. * one layer before dropping down to the next (thus always processing a
  1741. * node before any of its children).
  1742. */
  1743. static struct cpuset *cpuset_next(struct list_head *queue)
  1744. {
  1745. struct cpuset *cp;
  1746. struct cpuset *child; /* scans child cpusets of cp */
  1747. struct cgroup *cont;
  1748. if (list_empty(queue))
  1749. return NULL;
  1750. cp = list_first_entry(queue, struct cpuset, stack_list);
  1751. list_del(queue->next);
  1752. rcu_read_lock();
  1753. cpuset_for_each_child(child, cont, cp)
  1754. list_add_tail(&child->stack_list, queue);
  1755. rcu_read_unlock();
  1756. return cp;
  1757. }
  1758. /**
  1759. * cpuset_propagate_hotplug - propagate CPU/memory hotplug to a cpuset
  1760. * @cs: cpuset in interest
  1761. *
  1762. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1763. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1764. * all its tasks are moved to the nearest ancestor with both resources.
  1765. *
  1766. * Should be called with cgroup_mutex held.
  1767. */
  1768. static void cpuset_propagate_hotplug(struct cpuset *cs)
  1769. {
  1770. static cpumask_t off_cpus;
  1771. static nodemask_t off_mems, tmp_mems;
  1772. WARN_ON_ONCE(!cgroup_lock_is_held());
  1773. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1774. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1775. /* remove offline cpus from @cs */
  1776. if (!cpumask_empty(&off_cpus)) {
  1777. mutex_lock(&callback_mutex);
  1778. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1779. mutex_unlock(&callback_mutex);
  1780. update_tasks_cpumask(cs, NULL);
  1781. }
  1782. /* remove offline mems from @cs */
  1783. if (!nodes_empty(off_mems)) {
  1784. tmp_mems = cs->mems_allowed;
  1785. mutex_lock(&callback_mutex);
  1786. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1787. mutex_unlock(&callback_mutex);
  1788. update_tasks_nodemask(cs, &tmp_mems, NULL);
  1789. }
  1790. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1791. remove_tasks_in_empty_cpuset(cs);
  1792. }
  1793. /**
  1794. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1795. *
  1796. * This function is called after either CPU or memory configuration has
  1797. * changed and updates cpuset accordingly. The top_cpuset is always
  1798. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1799. * order to make cpusets transparent (of no affect) on systems that are
  1800. * actively using CPU hotplug but making no active use of cpusets.
  1801. *
  1802. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1803. * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
  1804. * descendants.
  1805. *
  1806. * Note that CPU offlining during suspend is ignored. We don't modify
  1807. * cpusets across suspend/resume cycles at all.
  1808. */
  1809. static void cpuset_hotplug_workfn(struct work_struct *work)
  1810. {
  1811. static cpumask_t new_cpus, tmp_cpus;
  1812. static nodemask_t new_mems, tmp_mems;
  1813. bool cpus_updated, mems_updated;
  1814. bool cpus_offlined, mems_offlined;
  1815. cgroup_lock();
  1816. /* fetch the available cpus/mems and find out which changed how */
  1817. cpumask_copy(&new_cpus, cpu_active_mask);
  1818. new_mems = node_states[N_MEMORY];
  1819. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1820. cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
  1821. &new_cpus);
  1822. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1823. nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
  1824. mems_offlined = !nodes_empty(tmp_mems);
  1825. /* synchronize cpus_allowed to cpu_active_mask */
  1826. if (cpus_updated) {
  1827. mutex_lock(&callback_mutex);
  1828. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1829. mutex_unlock(&callback_mutex);
  1830. /* we don't mess with cpumasks of tasks in top_cpuset */
  1831. }
  1832. /* synchronize mems_allowed to N_MEMORY */
  1833. if (mems_updated) {
  1834. tmp_mems = top_cpuset.mems_allowed;
  1835. mutex_lock(&callback_mutex);
  1836. top_cpuset.mems_allowed = new_mems;
  1837. mutex_unlock(&callback_mutex);
  1838. update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
  1839. }
  1840. /* if cpus or mems went down, we need to propagate to descendants */
  1841. if (cpus_offlined || mems_offlined) {
  1842. struct cpuset *cs;
  1843. LIST_HEAD(queue);
  1844. list_add_tail(&top_cpuset.stack_list, &queue);
  1845. while ((cs = cpuset_next(&queue)))
  1846. if (cs != &top_cpuset)
  1847. cpuset_propagate_hotplug(cs);
  1848. }
  1849. cgroup_unlock();
  1850. /* rebuild sched domains if cpus_allowed has changed */
  1851. if (cpus_updated) {
  1852. struct sched_domain_attr *attr;
  1853. cpumask_var_t *doms;
  1854. int ndoms;
  1855. cgroup_lock();
  1856. ndoms = generate_sched_domains(&doms, &attr);
  1857. cgroup_unlock();
  1858. partition_sched_domains(ndoms, doms, attr);
  1859. }
  1860. }
  1861. void cpuset_update_active_cpus(bool cpu_online)
  1862. {
  1863. /*
  1864. * We're inside cpu hotplug critical region which usually nests
  1865. * inside cgroup synchronization. Bounce actual hotplug processing
  1866. * to a work item to avoid reverse locking order.
  1867. *
  1868. * We still need to do partition_sched_domains() synchronously;
  1869. * otherwise, the scheduler will get confused and put tasks to the
  1870. * dead CPU. Fall back to the default single domain.
  1871. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1872. */
  1873. partition_sched_domains(1, NULL, NULL);
  1874. schedule_work(&cpuset_hotplug_work);
  1875. }
  1876. #ifdef CONFIG_MEMORY_HOTPLUG
  1877. /*
  1878. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1879. * Call this routine anytime after node_states[N_MEMORY] changes.
  1880. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1881. */
  1882. static int cpuset_track_online_nodes(struct notifier_block *self,
  1883. unsigned long action, void *arg)
  1884. {
  1885. schedule_work(&cpuset_hotplug_work);
  1886. return NOTIFY_OK;
  1887. }
  1888. #endif
  1889. /**
  1890. * cpuset_init_smp - initialize cpus_allowed
  1891. *
  1892. * Description: Finish top cpuset after cpu, node maps are initialized
  1893. **/
  1894. void __init cpuset_init_smp(void)
  1895. {
  1896. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1897. top_cpuset.mems_allowed = node_states[N_MEMORY];
  1898. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1899. }
  1900. /**
  1901. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1902. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1903. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1904. *
  1905. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1906. * attached to the specified @tsk. Guaranteed to return some non-empty
  1907. * subset of cpu_online_mask, even if this means going outside the
  1908. * tasks cpuset.
  1909. **/
  1910. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1911. {
  1912. mutex_lock(&callback_mutex);
  1913. task_lock(tsk);
  1914. guarantee_online_cpus(task_cs(tsk), pmask);
  1915. task_unlock(tsk);
  1916. mutex_unlock(&callback_mutex);
  1917. }
  1918. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  1919. {
  1920. const struct cpuset *cs;
  1921. rcu_read_lock();
  1922. cs = task_cs(tsk);
  1923. if (cs)
  1924. do_set_cpus_allowed(tsk, cs->cpus_allowed);
  1925. rcu_read_unlock();
  1926. /*
  1927. * We own tsk->cpus_allowed, nobody can change it under us.
  1928. *
  1929. * But we used cs && cs->cpus_allowed lockless and thus can
  1930. * race with cgroup_attach_task() or update_cpumask() and get
  1931. * the wrong tsk->cpus_allowed. However, both cases imply the
  1932. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  1933. * which takes task_rq_lock().
  1934. *
  1935. * If we are called after it dropped the lock we must see all
  1936. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  1937. * set any mask even if it is not right from task_cs() pov,
  1938. * the pending set_cpus_allowed_ptr() will fix things.
  1939. *
  1940. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  1941. * if required.
  1942. */
  1943. }
  1944. void cpuset_init_current_mems_allowed(void)
  1945. {
  1946. nodes_setall(current->mems_allowed);
  1947. }
  1948. /**
  1949. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1950. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1951. *
  1952. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1953. * attached to the specified @tsk. Guaranteed to return some non-empty
  1954. * subset of node_states[N_MEMORY], even if this means going outside the
  1955. * tasks cpuset.
  1956. **/
  1957. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1958. {
  1959. nodemask_t mask;
  1960. mutex_lock(&callback_mutex);
  1961. task_lock(tsk);
  1962. guarantee_online_mems(task_cs(tsk), &mask);
  1963. task_unlock(tsk);
  1964. mutex_unlock(&callback_mutex);
  1965. return mask;
  1966. }
  1967. /**
  1968. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1969. * @nodemask: the nodemask to be checked
  1970. *
  1971. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1972. */
  1973. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1974. {
  1975. return nodes_intersects(*nodemask, current->mems_allowed);
  1976. }
  1977. /*
  1978. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1979. * mem_hardwall ancestor to the specified cpuset. Call holding
  1980. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1981. * (an unusual configuration), then returns the root cpuset.
  1982. */
  1983. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1984. {
  1985. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1986. cs = cs->parent;
  1987. return cs;
  1988. }
  1989. /**
  1990. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  1991. * @node: is this an allowed node?
  1992. * @gfp_mask: memory allocation flags
  1993. *
  1994. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  1995. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  1996. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  1997. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  1998. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  1999. * flag, yes.
  2000. * Otherwise, no.
  2001. *
  2002. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2003. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2004. * might sleep, and might allow a node from an enclosing cpuset.
  2005. *
  2006. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2007. * cpusets, and never sleeps.
  2008. *
  2009. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2010. * by forcibly using a zonelist starting at a specified node, and by
  2011. * (in get_page_from_freelist()) refusing to consider the zones for
  2012. * any node on the zonelist except the first. By the time any such
  2013. * calls get to this routine, we should just shut up and say 'yes'.
  2014. *
  2015. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2016. * and do not allow allocations outside the current tasks cpuset
  2017. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2018. * GFP_KERNEL allocations are not so marked, so can escape to the
  2019. * nearest enclosing hardwalled ancestor cpuset.
  2020. *
  2021. * Scanning up parent cpusets requires callback_mutex. The
  2022. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2023. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2024. * current tasks mems_allowed came up empty on the first pass over
  2025. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2026. * cpuset are short of memory, might require taking the callback_mutex
  2027. * mutex.
  2028. *
  2029. * The first call here from mm/page_alloc:get_page_from_freelist()
  2030. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2031. * so no allocation on a node outside the cpuset is allowed (unless
  2032. * in interrupt, of course).
  2033. *
  2034. * The second pass through get_page_from_freelist() doesn't even call
  2035. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2036. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2037. * in alloc_flags. That logic and the checks below have the combined
  2038. * affect that:
  2039. * in_interrupt - any node ok (current task context irrelevant)
  2040. * GFP_ATOMIC - any node ok
  2041. * TIF_MEMDIE - any node ok
  2042. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2043. * GFP_USER - only nodes in current tasks mems allowed ok.
  2044. *
  2045. * Rule:
  2046. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2047. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2048. * the code that might scan up ancestor cpusets and sleep.
  2049. */
  2050. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2051. {
  2052. const struct cpuset *cs; /* current cpuset ancestors */
  2053. int allowed; /* is allocation in zone z allowed? */
  2054. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2055. return 1;
  2056. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2057. if (node_isset(node, current->mems_allowed))
  2058. return 1;
  2059. /*
  2060. * Allow tasks that have access to memory reserves because they have
  2061. * been OOM killed to get memory anywhere.
  2062. */
  2063. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2064. return 1;
  2065. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2066. return 0;
  2067. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2068. return 1;
  2069. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2070. mutex_lock(&callback_mutex);
  2071. task_lock(current);
  2072. cs = nearest_hardwall_ancestor(task_cs(current));
  2073. task_unlock(current);
  2074. allowed = node_isset(node, cs->mems_allowed);
  2075. mutex_unlock(&callback_mutex);
  2076. return allowed;
  2077. }
  2078. /*
  2079. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2080. * @node: is this an allowed node?
  2081. * @gfp_mask: memory allocation flags
  2082. *
  2083. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2084. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2085. * yes. If the task has been OOM killed and has access to memory reserves as
  2086. * specified by the TIF_MEMDIE flag, yes.
  2087. * Otherwise, no.
  2088. *
  2089. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2090. * by forcibly using a zonelist starting at a specified node, and by
  2091. * (in get_page_from_freelist()) refusing to consider the zones for
  2092. * any node on the zonelist except the first. By the time any such
  2093. * calls get to this routine, we should just shut up and say 'yes'.
  2094. *
  2095. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2096. * this variant requires that the node be in the current task's
  2097. * mems_allowed or that we're in interrupt. It does not scan up the
  2098. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2099. * It never sleeps.
  2100. */
  2101. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2102. {
  2103. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2104. return 1;
  2105. if (node_isset(node, current->mems_allowed))
  2106. return 1;
  2107. /*
  2108. * Allow tasks that have access to memory reserves because they have
  2109. * been OOM killed to get memory anywhere.
  2110. */
  2111. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2112. return 1;
  2113. return 0;
  2114. }
  2115. /**
  2116. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2117. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2118. *
  2119. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2120. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2121. * and if the memory allocation used cpuset_mem_spread_node()
  2122. * to determine on which node to start looking, as it will for
  2123. * certain page cache or slab cache pages such as used for file
  2124. * system buffers and inode caches, then instead of starting on the
  2125. * local node to look for a free page, rather spread the starting
  2126. * node around the tasks mems_allowed nodes.
  2127. *
  2128. * We don't have to worry about the returned node being offline
  2129. * because "it can't happen", and even if it did, it would be ok.
  2130. *
  2131. * The routines calling guarantee_online_mems() are careful to
  2132. * only set nodes in task->mems_allowed that are online. So it
  2133. * should not be possible for the following code to return an
  2134. * offline node. But if it did, that would be ok, as this routine
  2135. * is not returning the node where the allocation must be, only
  2136. * the node where the search should start. The zonelist passed to
  2137. * __alloc_pages() will include all nodes. If the slab allocator
  2138. * is passed an offline node, it will fall back to the local node.
  2139. * See kmem_cache_alloc_node().
  2140. */
  2141. static int cpuset_spread_node(int *rotor)
  2142. {
  2143. int node;
  2144. node = next_node(*rotor, current->mems_allowed);
  2145. if (node == MAX_NUMNODES)
  2146. node = first_node(current->mems_allowed);
  2147. *rotor = node;
  2148. return node;
  2149. }
  2150. int cpuset_mem_spread_node(void)
  2151. {
  2152. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2153. current->cpuset_mem_spread_rotor =
  2154. node_random(&current->mems_allowed);
  2155. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2156. }
  2157. int cpuset_slab_spread_node(void)
  2158. {
  2159. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2160. current->cpuset_slab_spread_rotor =
  2161. node_random(&current->mems_allowed);
  2162. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2163. }
  2164. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2165. /**
  2166. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2167. * @tsk1: pointer to task_struct of some task.
  2168. * @tsk2: pointer to task_struct of some other task.
  2169. *
  2170. * Description: Return true if @tsk1's mems_allowed intersects the
  2171. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2172. * one of the task's memory usage might impact the memory available
  2173. * to the other.
  2174. **/
  2175. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2176. const struct task_struct *tsk2)
  2177. {
  2178. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2179. }
  2180. /**
  2181. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2182. * @task: pointer to task_struct of some task.
  2183. *
  2184. * Description: Prints @task's name, cpuset name, and cached copy of its
  2185. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2186. * dereferencing task_cs(task).
  2187. */
  2188. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2189. {
  2190. struct dentry *dentry;
  2191. dentry = task_cs(tsk)->css.cgroup->dentry;
  2192. spin_lock(&cpuset_buffer_lock);
  2193. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2194. dentry ? (const char *)dentry->d_name.name : "/");
  2195. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2196. tsk->mems_allowed);
  2197. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2198. tsk->comm, cpuset_name, cpuset_nodelist);
  2199. spin_unlock(&cpuset_buffer_lock);
  2200. }
  2201. /*
  2202. * Collection of memory_pressure is suppressed unless
  2203. * this flag is enabled by writing "1" to the special
  2204. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2205. */
  2206. int cpuset_memory_pressure_enabled __read_mostly;
  2207. /**
  2208. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2209. *
  2210. * Keep a running average of the rate of synchronous (direct)
  2211. * page reclaim efforts initiated by tasks in each cpuset.
  2212. *
  2213. * This represents the rate at which some task in the cpuset
  2214. * ran low on memory on all nodes it was allowed to use, and
  2215. * had to enter the kernels page reclaim code in an effort to
  2216. * create more free memory by tossing clean pages or swapping
  2217. * or writing dirty pages.
  2218. *
  2219. * Display to user space in the per-cpuset read-only file
  2220. * "memory_pressure". Value displayed is an integer
  2221. * representing the recent rate of entry into the synchronous
  2222. * (direct) page reclaim by any task attached to the cpuset.
  2223. **/
  2224. void __cpuset_memory_pressure_bump(void)
  2225. {
  2226. task_lock(current);
  2227. fmeter_markevent(&task_cs(current)->fmeter);
  2228. task_unlock(current);
  2229. }
  2230. #ifdef CONFIG_PROC_PID_CPUSET
  2231. /*
  2232. * proc_cpuset_show()
  2233. * - Print tasks cpuset path into seq_file.
  2234. * - Used for /proc/<pid>/cpuset.
  2235. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2236. * doesn't really matter if tsk->cpuset changes after we read it,
  2237. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2238. * anyway.
  2239. */
  2240. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2241. {
  2242. struct pid *pid;
  2243. struct task_struct *tsk;
  2244. char *buf;
  2245. struct cgroup_subsys_state *css;
  2246. int retval;
  2247. retval = -ENOMEM;
  2248. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2249. if (!buf)
  2250. goto out;
  2251. retval = -ESRCH;
  2252. pid = m->private;
  2253. tsk = get_pid_task(pid, PIDTYPE_PID);
  2254. if (!tsk)
  2255. goto out_free;
  2256. retval = -EINVAL;
  2257. cgroup_lock();
  2258. css = task_subsys_state(tsk, cpuset_subsys_id);
  2259. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2260. if (retval < 0)
  2261. goto out_unlock;
  2262. seq_puts(m, buf);
  2263. seq_putc(m, '\n');
  2264. out_unlock:
  2265. cgroup_unlock();
  2266. put_task_struct(tsk);
  2267. out_free:
  2268. kfree(buf);
  2269. out:
  2270. return retval;
  2271. }
  2272. static int cpuset_open(struct inode *inode, struct file *file)
  2273. {
  2274. struct pid *pid = PROC_I(inode)->pid;
  2275. return single_open(file, proc_cpuset_show, pid);
  2276. }
  2277. const struct file_operations proc_cpuset_operations = {
  2278. .open = cpuset_open,
  2279. .read = seq_read,
  2280. .llseek = seq_lseek,
  2281. .release = single_release,
  2282. };
  2283. #endif /* CONFIG_PROC_PID_CPUSET */
  2284. /* Display task mems_allowed in /proc/<pid>/status file. */
  2285. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2286. {
  2287. seq_printf(m, "Mems_allowed:\t");
  2288. seq_nodemask(m, &task->mems_allowed);
  2289. seq_printf(m, "\n");
  2290. seq_printf(m, "Mems_allowed_list:\t");
  2291. seq_nodemask_list(m, &task->mems_allowed);
  2292. seq_printf(m, "\n");
  2293. }