process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /*
  2. * linux/arch/i386/kernel/process.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of process handling..
  11. */
  12. #include <stdarg.h>
  13. #include <linux/cpu.h>
  14. #include <linux/errno.h>
  15. #include <linux/sched.h>
  16. #include <linux/fs.h>
  17. #include <linux/kernel.h>
  18. #include <linux/mm.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/smp.h>
  21. #include <linux/smp_lock.h>
  22. #include <linux/stddef.h>
  23. #include <linux/slab.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/user.h>
  26. #include <linux/a.out.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/utsname.h>
  29. #include <linux/delay.h>
  30. #include <linux/reboot.h>
  31. #include <linux/init.h>
  32. #include <linux/mc146818rtc.h>
  33. #include <linux/module.h>
  34. #include <linux/kallsyms.h>
  35. #include <linux/ptrace.h>
  36. #include <linux/random.h>
  37. #include <linux/personality.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/system.h>
  41. #include <asm/io.h>
  42. #include <asm/ldt.h>
  43. #include <asm/processor.h>
  44. #include <asm/i387.h>
  45. #include <asm/desc.h>
  46. #include <asm/vm86.h>
  47. #ifdef CONFIG_MATH_EMULATION
  48. #include <asm/math_emu.h>
  49. #endif
  50. #include <linux/err.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/cpu.h>
  53. #include <asm/pda.h>
  54. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  55. static int hlt_counter;
  56. unsigned long boot_option_idle_override = 0;
  57. EXPORT_SYMBOL(boot_option_idle_override);
  58. /*
  59. * Return saved PC of a blocked thread.
  60. */
  61. unsigned long thread_saved_pc(struct task_struct *tsk)
  62. {
  63. return ((unsigned long *)tsk->thread.esp)[3];
  64. }
  65. /*
  66. * Powermanagement idle function, if any..
  67. */
  68. void (*pm_idle)(void);
  69. EXPORT_SYMBOL(pm_idle);
  70. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  71. void disable_hlt(void)
  72. {
  73. hlt_counter++;
  74. }
  75. EXPORT_SYMBOL(disable_hlt);
  76. void enable_hlt(void)
  77. {
  78. hlt_counter--;
  79. }
  80. EXPORT_SYMBOL(enable_hlt);
  81. /*
  82. * We use this if we don't have any better
  83. * idle routine..
  84. */
  85. void default_idle(void)
  86. {
  87. if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
  88. current_thread_info()->status &= ~TS_POLLING;
  89. smp_mb__after_clear_bit();
  90. local_irq_disable();
  91. if (!need_resched())
  92. safe_halt(); /* enables interrupts racelessly */
  93. else
  94. local_irq_enable();
  95. current_thread_info()->status |= TS_POLLING;
  96. } else {
  97. /* loop is done by the caller */
  98. cpu_relax();
  99. }
  100. }
  101. #ifdef CONFIG_APM_MODULE
  102. EXPORT_SYMBOL(default_idle);
  103. #endif
  104. /*
  105. * On SMP it's slightly faster (but much more power-consuming!)
  106. * to poll the ->work.need_resched flag instead of waiting for the
  107. * cross-CPU IPI to arrive. Use this option with caution.
  108. */
  109. static void poll_idle (void)
  110. {
  111. cpu_relax();
  112. }
  113. #ifdef CONFIG_HOTPLUG_CPU
  114. #include <asm/nmi.h>
  115. /* We don't actually take CPU down, just spin without interrupts. */
  116. static inline void play_dead(void)
  117. {
  118. /* This must be done before dead CPU ack */
  119. cpu_exit_clear();
  120. wbinvd();
  121. mb();
  122. /* Ack it */
  123. __get_cpu_var(cpu_state) = CPU_DEAD;
  124. /*
  125. * With physical CPU hotplug, we should halt the cpu
  126. */
  127. local_irq_disable();
  128. while (1)
  129. halt();
  130. }
  131. #else
  132. static inline void play_dead(void)
  133. {
  134. BUG();
  135. }
  136. #endif /* CONFIG_HOTPLUG_CPU */
  137. /*
  138. * The idle thread. There's no useful work to be
  139. * done, so just try to conserve power and have a
  140. * low exit latency (ie sit in a loop waiting for
  141. * somebody to say that they'd like to reschedule)
  142. */
  143. void cpu_idle(void)
  144. {
  145. int cpu = smp_processor_id();
  146. current_thread_info()->status |= TS_POLLING;
  147. /* endless idle loop with no priority at all */
  148. while (1) {
  149. while (!need_resched()) {
  150. void (*idle)(void);
  151. if (__get_cpu_var(cpu_idle_state))
  152. __get_cpu_var(cpu_idle_state) = 0;
  153. rmb();
  154. idle = pm_idle;
  155. if (!idle)
  156. idle = default_idle;
  157. if (cpu_is_offline(cpu))
  158. play_dead();
  159. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  160. idle();
  161. }
  162. preempt_enable_no_resched();
  163. schedule();
  164. preempt_disable();
  165. }
  166. }
  167. void cpu_idle_wait(void)
  168. {
  169. unsigned int cpu, this_cpu = get_cpu();
  170. cpumask_t map, tmp = current->cpus_allowed;
  171. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  172. put_cpu();
  173. cpus_clear(map);
  174. for_each_online_cpu(cpu) {
  175. per_cpu(cpu_idle_state, cpu) = 1;
  176. cpu_set(cpu, map);
  177. }
  178. __get_cpu_var(cpu_idle_state) = 0;
  179. wmb();
  180. do {
  181. ssleep(1);
  182. for_each_online_cpu(cpu) {
  183. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  184. cpu_clear(cpu, map);
  185. }
  186. cpus_and(map, map, cpu_online_map);
  187. } while (!cpus_empty(map));
  188. set_cpus_allowed(current, tmp);
  189. }
  190. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  191. /*
  192. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  193. * which can obviate IPI to trigger checking of need_resched.
  194. * We execute MONITOR against need_resched and enter optimized wait state
  195. * through MWAIT. Whenever someone changes need_resched, we would be woken
  196. * up from MWAIT (without an IPI).
  197. *
  198. * New with Core Duo processors, MWAIT can take some hints based on CPU
  199. * capability.
  200. */
  201. void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
  202. {
  203. if (!need_resched()) {
  204. __monitor((void *)&current_thread_info()->flags, 0, 0);
  205. smp_mb();
  206. if (!need_resched())
  207. __mwait(eax, ecx);
  208. }
  209. }
  210. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  211. static void mwait_idle(void)
  212. {
  213. local_irq_enable();
  214. mwait_idle_with_hints(0, 0);
  215. }
  216. void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
  217. {
  218. if (cpu_has(c, X86_FEATURE_MWAIT)) {
  219. printk("monitor/mwait feature present.\n");
  220. /*
  221. * Skip, if setup has overridden idle.
  222. * One CPU supports mwait => All CPUs supports mwait
  223. */
  224. if (!pm_idle) {
  225. printk("using mwait in idle threads.\n");
  226. pm_idle = mwait_idle;
  227. }
  228. }
  229. }
  230. static int __init idle_setup (char *str)
  231. {
  232. if (!strncmp(str, "poll", 4)) {
  233. printk("using polling idle threads.\n");
  234. pm_idle = poll_idle;
  235. #ifdef CONFIG_X86_SMP
  236. if (smp_num_siblings > 1)
  237. printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
  238. #endif
  239. } else if (!strncmp(str, "halt", 4)) {
  240. printk("using halt in idle threads.\n");
  241. pm_idle = default_idle;
  242. }
  243. boot_option_idle_override = 1;
  244. return 1;
  245. }
  246. __setup("idle=", idle_setup);
  247. void show_regs(struct pt_regs * regs)
  248. {
  249. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  250. printk("\n");
  251. printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
  252. printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
  253. print_symbol("EIP is at %s\n", regs->eip);
  254. if (user_mode_vm(regs))
  255. printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
  256. printk(" EFLAGS: %08lx %s (%s %.*s)\n",
  257. regs->eflags, print_tainted(), init_utsname()->release,
  258. (int)strcspn(init_utsname()->version, " "),
  259. init_utsname()->version);
  260. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  261. regs->eax,regs->ebx,regs->ecx,regs->edx);
  262. printk("ESI: %08lx EDI: %08lx EBP: %08lx",
  263. regs->esi, regs->edi, regs->ebp);
  264. printk(" DS: %04x ES: %04x GS: %04x\n",
  265. 0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xgs);
  266. cr0 = read_cr0();
  267. cr2 = read_cr2();
  268. cr3 = read_cr3();
  269. cr4 = read_cr4_safe();
  270. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
  271. show_trace(NULL, regs, &regs->esp);
  272. }
  273. /*
  274. * This gets run with %ebx containing the
  275. * function to call, and %edx containing
  276. * the "args".
  277. */
  278. extern void kernel_thread_helper(void);
  279. /*
  280. * Create a kernel thread
  281. */
  282. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  283. {
  284. struct pt_regs regs;
  285. memset(&regs, 0, sizeof(regs));
  286. regs.ebx = (unsigned long) fn;
  287. regs.edx = (unsigned long) arg;
  288. regs.xds = __USER_DS;
  289. regs.xes = __USER_DS;
  290. regs.xgs = __KERNEL_PDA;
  291. regs.orig_eax = -1;
  292. regs.eip = (unsigned long) kernel_thread_helper;
  293. regs.xcs = __KERNEL_CS | get_kernel_rpl();
  294. regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  295. /* Ok, create the new process.. */
  296. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  297. }
  298. EXPORT_SYMBOL(kernel_thread);
  299. /*
  300. * Free current thread data structures etc..
  301. */
  302. void exit_thread(void)
  303. {
  304. /* The process may have allocated an io port bitmap... nuke it. */
  305. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  306. struct task_struct *tsk = current;
  307. struct thread_struct *t = &tsk->thread;
  308. int cpu = get_cpu();
  309. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  310. kfree(t->io_bitmap_ptr);
  311. t->io_bitmap_ptr = NULL;
  312. clear_thread_flag(TIF_IO_BITMAP);
  313. /*
  314. * Careful, clear this in the TSS too:
  315. */
  316. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  317. t->io_bitmap_max = 0;
  318. tss->io_bitmap_owner = NULL;
  319. tss->io_bitmap_max = 0;
  320. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  321. put_cpu();
  322. }
  323. }
  324. void flush_thread(void)
  325. {
  326. struct task_struct *tsk = current;
  327. memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
  328. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  329. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  330. /*
  331. * Forget coprocessor state..
  332. */
  333. clear_fpu(tsk);
  334. clear_used_math();
  335. }
  336. void release_thread(struct task_struct *dead_task)
  337. {
  338. BUG_ON(dead_task->mm);
  339. release_vm86_irqs(dead_task);
  340. }
  341. /*
  342. * This gets called before we allocate a new thread and copy
  343. * the current task into it.
  344. */
  345. void prepare_to_copy(struct task_struct *tsk)
  346. {
  347. unlazy_fpu(tsk);
  348. }
  349. int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
  350. unsigned long unused,
  351. struct task_struct * p, struct pt_regs * regs)
  352. {
  353. struct pt_regs * childregs;
  354. struct task_struct *tsk;
  355. int err;
  356. childregs = task_pt_regs(p);
  357. *childregs = *regs;
  358. childregs->eax = 0;
  359. childregs->esp = esp;
  360. p->thread.esp = (unsigned long) childregs;
  361. p->thread.esp0 = (unsigned long) (childregs+1);
  362. p->thread.eip = (unsigned long) ret_from_fork;
  363. savesegment(fs,p->thread.fs);
  364. tsk = current;
  365. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  366. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  367. IO_BITMAP_BYTES, GFP_KERNEL);
  368. if (!p->thread.io_bitmap_ptr) {
  369. p->thread.io_bitmap_max = 0;
  370. return -ENOMEM;
  371. }
  372. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  373. }
  374. /*
  375. * Set a new TLS for the child thread?
  376. */
  377. if (clone_flags & CLONE_SETTLS) {
  378. struct desc_struct *desc;
  379. struct user_desc info;
  380. int idx;
  381. err = -EFAULT;
  382. if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
  383. goto out;
  384. err = -EINVAL;
  385. if (LDT_empty(&info))
  386. goto out;
  387. idx = info.entry_number;
  388. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  389. goto out;
  390. desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  391. desc->a = LDT_entry_a(&info);
  392. desc->b = LDT_entry_b(&info);
  393. }
  394. err = 0;
  395. out:
  396. if (err && p->thread.io_bitmap_ptr) {
  397. kfree(p->thread.io_bitmap_ptr);
  398. p->thread.io_bitmap_max = 0;
  399. }
  400. return err;
  401. }
  402. /*
  403. * fill in the user structure for a core dump..
  404. */
  405. void dump_thread(struct pt_regs * regs, struct user * dump)
  406. {
  407. int i;
  408. /* changed the size calculations - should hopefully work better. lbt */
  409. dump->magic = CMAGIC;
  410. dump->start_code = 0;
  411. dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
  412. dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
  413. dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
  414. dump->u_dsize -= dump->u_tsize;
  415. dump->u_ssize = 0;
  416. for (i = 0; i < 8; i++)
  417. dump->u_debugreg[i] = current->thread.debugreg[i];
  418. if (dump->start_stack < TASK_SIZE)
  419. dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
  420. dump->regs.ebx = regs->ebx;
  421. dump->regs.ecx = regs->ecx;
  422. dump->regs.edx = regs->edx;
  423. dump->regs.esi = regs->esi;
  424. dump->regs.edi = regs->edi;
  425. dump->regs.ebp = regs->ebp;
  426. dump->regs.eax = regs->eax;
  427. dump->regs.ds = regs->xds;
  428. dump->regs.es = regs->xes;
  429. savesegment(fs,dump->regs.fs);
  430. dump->regs.gs = regs->xgs;
  431. dump->regs.orig_eax = regs->orig_eax;
  432. dump->regs.eip = regs->eip;
  433. dump->regs.cs = regs->xcs;
  434. dump->regs.eflags = regs->eflags;
  435. dump->regs.esp = regs->esp;
  436. dump->regs.ss = regs->xss;
  437. dump->u_fpvalid = dump_fpu (regs, &dump->i387);
  438. }
  439. EXPORT_SYMBOL(dump_thread);
  440. /*
  441. * Capture the user space registers if the task is not running (in user space)
  442. */
  443. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  444. {
  445. struct pt_regs ptregs = *task_pt_regs(tsk);
  446. ptregs.xcs &= 0xffff;
  447. ptregs.xds &= 0xffff;
  448. ptregs.xes &= 0xffff;
  449. ptregs.xss &= 0xffff;
  450. elf_core_copy_regs(regs, &ptregs);
  451. return 1;
  452. }
  453. static noinline void __switch_to_xtra(struct task_struct *next_p,
  454. struct tss_struct *tss)
  455. {
  456. struct thread_struct *next;
  457. next = &next_p->thread;
  458. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  459. set_debugreg(next->debugreg[0], 0);
  460. set_debugreg(next->debugreg[1], 1);
  461. set_debugreg(next->debugreg[2], 2);
  462. set_debugreg(next->debugreg[3], 3);
  463. /* no 4 and 5 */
  464. set_debugreg(next->debugreg[6], 6);
  465. set_debugreg(next->debugreg[7], 7);
  466. }
  467. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  468. /*
  469. * Disable the bitmap via an invalid offset. We still cache
  470. * the previous bitmap owner and the IO bitmap contents:
  471. */
  472. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  473. return;
  474. }
  475. if (likely(next == tss->io_bitmap_owner)) {
  476. /*
  477. * Previous owner of the bitmap (hence the bitmap content)
  478. * matches the next task, we dont have to do anything but
  479. * to set a valid offset in the TSS:
  480. */
  481. tss->io_bitmap_base = IO_BITMAP_OFFSET;
  482. return;
  483. }
  484. /*
  485. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  486. * and we let the task to get a GPF in case an I/O instruction
  487. * is performed. The handler of the GPF will verify that the
  488. * faulting task has a valid I/O bitmap and, it true, does the
  489. * real copy and restart the instruction. This will save us
  490. * redundant copies when the currently switched task does not
  491. * perform any I/O during its timeslice.
  492. */
  493. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  494. }
  495. /*
  496. * This function selects if the context switch from prev to next
  497. * has to tweak the TSC disable bit in the cr4.
  498. */
  499. static inline void disable_tsc(struct task_struct *prev_p,
  500. struct task_struct *next_p)
  501. {
  502. struct thread_info *prev, *next;
  503. /*
  504. * gcc should eliminate the ->thread_info dereference if
  505. * has_secure_computing returns 0 at compile time (SECCOMP=n).
  506. */
  507. prev = task_thread_info(prev_p);
  508. next = task_thread_info(next_p);
  509. if (has_secure_computing(prev) || has_secure_computing(next)) {
  510. /* slow path here */
  511. if (has_secure_computing(prev) &&
  512. !has_secure_computing(next)) {
  513. write_cr4(read_cr4() & ~X86_CR4_TSD);
  514. } else if (!has_secure_computing(prev) &&
  515. has_secure_computing(next))
  516. write_cr4(read_cr4() | X86_CR4_TSD);
  517. }
  518. }
  519. /*
  520. * switch_to(x,yn) should switch tasks from x to y.
  521. *
  522. * We fsave/fwait so that an exception goes off at the right time
  523. * (as a call from the fsave or fwait in effect) rather than to
  524. * the wrong process. Lazy FP saving no longer makes any sense
  525. * with modern CPU's, and this simplifies a lot of things (SMP
  526. * and UP become the same).
  527. *
  528. * NOTE! We used to use the x86 hardware context switching. The
  529. * reason for not using it any more becomes apparent when you
  530. * try to recover gracefully from saved state that is no longer
  531. * valid (stale segment register values in particular). With the
  532. * hardware task-switch, there is no way to fix up bad state in
  533. * a reasonable manner.
  534. *
  535. * The fact that Intel documents the hardware task-switching to
  536. * be slow is a fairly red herring - this code is not noticeably
  537. * faster. However, there _is_ some room for improvement here,
  538. * so the performance issues may eventually be a valid point.
  539. * More important, however, is the fact that this allows us much
  540. * more flexibility.
  541. *
  542. * The return value (in %eax) will be the "prev" task after
  543. * the task-switch, and shows up in ret_from_fork in entry.S,
  544. * for example.
  545. */
  546. struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  547. {
  548. struct thread_struct *prev = &prev_p->thread,
  549. *next = &next_p->thread;
  550. int cpu = smp_processor_id();
  551. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  552. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  553. __unlazy_fpu(prev_p);
  554. /* we're going to use this soon, after a few expensive things */
  555. if (next_p->fpu_counter > 5)
  556. prefetch(&next->i387.fxsave);
  557. /*
  558. * Reload esp0.
  559. */
  560. load_esp0(tss, next);
  561. /*
  562. * Save away %fs. No need to save %gs, as it was saved on the
  563. * stack on entry. No need to save %es and %ds, as those are
  564. * always kernel segments while inside the kernel. Doing this
  565. * before setting the new TLS descriptors avoids the situation
  566. * where we temporarily have non-reloadable segments in %fs
  567. * and %gs. This could be an issue if the NMI handler ever
  568. * used %fs or %gs (it does not today), or if the kernel is
  569. * running inside of a hypervisor layer.
  570. */
  571. savesegment(fs, prev->fs);
  572. /*
  573. * Load the per-thread Thread-Local Storage descriptor.
  574. */
  575. load_TLS(next, cpu);
  576. /*
  577. * Restore %fs if needed.
  578. *
  579. * Glibc normally makes %fs be zero.
  580. */
  581. if (unlikely(prev->fs | next->fs))
  582. loadsegment(fs, next->fs);
  583. write_pda(pcurrent, next_p);
  584. /*
  585. * Now maybe handle debug registers and/or IO bitmaps
  586. */
  587. if (unlikely((task_thread_info(next_p)->flags & _TIF_WORK_CTXSW)
  588. || test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)))
  589. __switch_to_xtra(next_p, tss);
  590. disable_tsc(prev_p, next_p);
  591. /* If the task has used fpu the last 5 timeslices, just do a full
  592. * restore of the math state immediately to avoid the trap; the
  593. * chances of needing FPU soon are obviously high now
  594. */
  595. if (next_p->fpu_counter > 5)
  596. math_state_restore();
  597. return prev_p;
  598. }
  599. asmlinkage int sys_fork(struct pt_regs regs)
  600. {
  601. return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  602. }
  603. asmlinkage int sys_clone(struct pt_regs regs)
  604. {
  605. unsigned long clone_flags;
  606. unsigned long newsp;
  607. int __user *parent_tidptr, *child_tidptr;
  608. clone_flags = regs.ebx;
  609. newsp = regs.ecx;
  610. parent_tidptr = (int __user *)regs.edx;
  611. child_tidptr = (int __user *)regs.edi;
  612. if (!newsp)
  613. newsp = regs.esp;
  614. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  615. }
  616. /*
  617. * This is trivial, and on the face of it looks like it
  618. * could equally well be done in user mode.
  619. *
  620. * Not so, for quite unobvious reasons - register pressure.
  621. * In user mode vfork() cannot have a stack frame, and if
  622. * done by calling the "clone()" system call directly, you
  623. * do not have enough call-clobbered registers to hold all
  624. * the information you need.
  625. */
  626. asmlinkage int sys_vfork(struct pt_regs regs)
  627. {
  628. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  629. }
  630. /*
  631. * sys_execve() executes a new program.
  632. */
  633. asmlinkage int sys_execve(struct pt_regs regs)
  634. {
  635. int error;
  636. char * filename;
  637. filename = getname((char __user *) regs.ebx);
  638. error = PTR_ERR(filename);
  639. if (IS_ERR(filename))
  640. goto out;
  641. error = do_execve(filename,
  642. (char __user * __user *) regs.ecx,
  643. (char __user * __user *) regs.edx,
  644. &regs);
  645. if (error == 0) {
  646. task_lock(current);
  647. current->ptrace &= ~PT_DTRACE;
  648. task_unlock(current);
  649. /* Make sure we don't return using sysenter.. */
  650. set_thread_flag(TIF_IRET);
  651. }
  652. putname(filename);
  653. out:
  654. return error;
  655. }
  656. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  657. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  658. unsigned long get_wchan(struct task_struct *p)
  659. {
  660. unsigned long ebp, esp, eip;
  661. unsigned long stack_page;
  662. int count = 0;
  663. if (!p || p == current || p->state == TASK_RUNNING)
  664. return 0;
  665. stack_page = (unsigned long)task_stack_page(p);
  666. esp = p->thread.esp;
  667. if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
  668. return 0;
  669. /* include/asm-i386/system.h:switch_to() pushes ebp last. */
  670. ebp = *(unsigned long *) esp;
  671. do {
  672. if (ebp < stack_page || ebp > top_ebp+stack_page)
  673. return 0;
  674. eip = *(unsigned long *) (ebp+4);
  675. if (!in_sched_functions(eip))
  676. return eip;
  677. ebp = *(unsigned long *) ebp;
  678. } while (count++ < 16);
  679. return 0;
  680. }
  681. /*
  682. * sys_alloc_thread_area: get a yet unused TLS descriptor index.
  683. */
  684. static int get_free_idx(void)
  685. {
  686. struct thread_struct *t = &current->thread;
  687. int idx;
  688. for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
  689. if (desc_empty(t->tls_array + idx))
  690. return idx + GDT_ENTRY_TLS_MIN;
  691. return -ESRCH;
  692. }
  693. /*
  694. * Set a given TLS descriptor:
  695. */
  696. asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
  697. {
  698. struct thread_struct *t = &current->thread;
  699. struct user_desc info;
  700. struct desc_struct *desc;
  701. int cpu, idx;
  702. if (copy_from_user(&info, u_info, sizeof(info)))
  703. return -EFAULT;
  704. idx = info.entry_number;
  705. /*
  706. * index -1 means the kernel should try to find and
  707. * allocate an empty descriptor:
  708. */
  709. if (idx == -1) {
  710. idx = get_free_idx();
  711. if (idx < 0)
  712. return idx;
  713. if (put_user(idx, &u_info->entry_number))
  714. return -EFAULT;
  715. }
  716. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  717. return -EINVAL;
  718. desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
  719. /*
  720. * We must not get preempted while modifying the TLS.
  721. */
  722. cpu = get_cpu();
  723. if (LDT_empty(&info)) {
  724. desc->a = 0;
  725. desc->b = 0;
  726. } else {
  727. desc->a = LDT_entry_a(&info);
  728. desc->b = LDT_entry_b(&info);
  729. }
  730. load_TLS(t, cpu);
  731. put_cpu();
  732. return 0;
  733. }
  734. /*
  735. * Get the current Thread-Local Storage area:
  736. */
  737. #define GET_BASE(desc) ( \
  738. (((desc)->a >> 16) & 0x0000ffff) | \
  739. (((desc)->b << 16) & 0x00ff0000) | \
  740. ( (desc)->b & 0xff000000) )
  741. #define GET_LIMIT(desc) ( \
  742. ((desc)->a & 0x0ffff) | \
  743. ((desc)->b & 0xf0000) )
  744. #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
  745. #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
  746. #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
  747. #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
  748. #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
  749. #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
  750. asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
  751. {
  752. struct user_desc info;
  753. struct desc_struct *desc;
  754. int idx;
  755. if (get_user(idx, &u_info->entry_number))
  756. return -EFAULT;
  757. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  758. return -EINVAL;
  759. memset(&info, 0, sizeof(info));
  760. desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  761. info.entry_number = idx;
  762. info.base_addr = GET_BASE(desc);
  763. info.limit = GET_LIMIT(desc);
  764. info.seg_32bit = GET_32BIT(desc);
  765. info.contents = GET_CONTENTS(desc);
  766. info.read_exec_only = !GET_WRITABLE(desc);
  767. info.limit_in_pages = GET_LIMIT_PAGES(desc);
  768. info.seg_not_present = !GET_PRESENT(desc);
  769. info.useable = GET_USEABLE(desc);
  770. if (copy_to_user(u_info, &info, sizeof(info)))
  771. return -EFAULT;
  772. return 0;
  773. }
  774. unsigned long arch_align_stack(unsigned long sp)
  775. {
  776. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  777. sp -= get_random_int() % 8192;
  778. return sp & ~0xf;
  779. }