ll_rw_blk.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/scatterlist.h>
  33. /*
  34. * for max sense size
  35. */
  36. #include <scsi/scsi_cmnd.h>
  37. static void blk_unplug_work(struct work_struct *work);
  38. static void blk_unplug_timeout(unsigned long data);
  39. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  40. static void init_request_from_bio(struct request *req, struct bio *bio);
  41. static int __make_request(struct request_queue *q, struct bio *bio);
  42. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  43. static void blk_recalc_rq_segments(struct request *rq);
  44. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  45. struct bio *bio);
  46. /*
  47. * For the allocated request tables
  48. */
  49. static struct kmem_cache *request_cachep;
  50. /*
  51. * For queue allocation
  52. */
  53. static struct kmem_cache *requestq_cachep;
  54. /*
  55. * For io context allocations
  56. */
  57. static struct kmem_cache *iocontext_cachep;
  58. /*
  59. * Controlling structure to kblockd
  60. */
  61. static struct workqueue_struct *kblockd_workqueue;
  62. unsigned long blk_max_low_pfn, blk_max_pfn;
  63. EXPORT_SYMBOL(blk_max_low_pfn);
  64. EXPORT_SYMBOL(blk_max_pfn);
  65. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  66. /* Amount of time in which a process may batch requests */
  67. #define BLK_BATCH_TIME (HZ/50UL)
  68. /* Number of requests a "batching" process may submit */
  69. #define BLK_BATCH_REQ 32
  70. /*
  71. * Return the threshold (number of used requests) at which the queue is
  72. * considered to be congested. It include a little hysteresis to keep the
  73. * context switch rate down.
  74. */
  75. static inline int queue_congestion_on_threshold(struct request_queue *q)
  76. {
  77. return q->nr_congestion_on;
  78. }
  79. /*
  80. * The threshold at which a queue is considered to be uncongested
  81. */
  82. static inline int queue_congestion_off_threshold(struct request_queue *q)
  83. {
  84. return q->nr_congestion_off;
  85. }
  86. static void blk_queue_congestion_threshold(struct request_queue *q)
  87. {
  88. int nr;
  89. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  90. if (nr > q->nr_requests)
  91. nr = q->nr_requests;
  92. q->nr_congestion_on = nr;
  93. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  94. if (nr < 1)
  95. nr = 1;
  96. q->nr_congestion_off = nr;
  97. }
  98. /**
  99. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  100. * @bdev: device
  101. *
  102. * Locates the passed device's request queue and returns the address of its
  103. * backing_dev_info
  104. *
  105. * Will return NULL if the request queue cannot be located.
  106. */
  107. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  108. {
  109. struct backing_dev_info *ret = NULL;
  110. struct request_queue *q = bdev_get_queue(bdev);
  111. if (q)
  112. ret = &q->backing_dev_info;
  113. return ret;
  114. }
  115. EXPORT_SYMBOL(blk_get_backing_dev_info);
  116. /**
  117. * blk_queue_prep_rq - set a prepare_request function for queue
  118. * @q: queue
  119. * @pfn: prepare_request function
  120. *
  121. * It's possible for a queue to register a prepare_request callback which
  122. * is invoked before the request is handed to the request_fn. The goal of
  123. * the function is to prepare a request for I/O, it can be used to build a
  124. * cdb from the request data for instance.
  125. *
  126. */
  127. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  128. {
  129. q->prep_rq_fn = pfn;
  130. }
  131. EXPORT_SYMBOL(blk_queue_prep_rq);
  132. /**
  133. * blk_queue_merge_bvec - set a merge_bvec function for queue
  134. * @q: queue
  135. * @mbfn: merge_bvec_fn
  136. *
  137. * Usually queues have static limitations on the max sectors or segments that
  138. * we can put in a request. Stacking drivers may have some settings that
  139. * are dynamic, and thus we have to query the queue whether it is ok to
  140. * add a new bio_vec to a bio at a given offset or not. If the block device
  141. * has such limitations, it needs to register a merge_bvec_fn to control
  142. * the size of bio's sent to it. Note that a block device *must* allow a
  143. * single page to be added to an empty bio. The block device driver may want
  144. * to use the bio_split() function to deal with these bio's. By default
  145. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  146. * honored.
  147. */
  148. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  149. {
  150. q->merge_bvec_fn = mbfn;
  151. }
  152. EXPORT_SYMBOL(blk_queue_merge_bvec);
  153. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  154. {
  155. q->softirq_done_fn = fn;
  156. }
  157. EXPORT_SYMBOL(blk_queue_softirq_done);
  158. /**
  159. * blk_queue_make_request - define an alternate make_request function for a device
  160. * @q: the request queue for the device to be affected
  161. * @mfn: the alternate make_request function
  162. *
  163. * Description:
  164. * The normal way for &struct bios to be passed to a device
  165. * driver is for them to be collected into requests on a request
  166. * queue, and then to allow the device driver to select requests
  167. * off that queue when it is ready. This works well for many block
  168. * devices. However some block devices (typically virtual devices
  169. * such as md or lvm) do not benefit from the processing on the
  170. * request queue, and are served best by having the requests passed
  171. * directly to them. This can be achieved by providing a function
  172. * to blk_queue_make_request().
  173. *
  174. * Caveat:
  175. * The driver that does this *must* be able to deal appropriately
  176. * with buffers in "highmemory". This can be accomplished by either calling
  177. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  178. * blk_queue_bounce() to create a buffer in normal memory.
  179. **/
  180. void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
  181. {
  182. /*
  183. * set defaults
  184. */
  185. q->nr_requests = BLKDEV_MAX_RQ;
  186. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  187. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  188. q->make_request_fn = mfn;
  189. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  190. q->backing_dev_info.state = 0;
  191. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  192. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  193. blk_queue_hardsect_size(q, 512);
  194. blk_queue_dma_alignment(q, 511);
  195. blk_queue_congestion_threshold(q);
  196. q->nr_batching = BLK_BATCH_REQ;
  197. q->unplug_thresh = 4; /* hmm */
  198. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  199. if (q->unplug_delay == 0)
  200. q->unplug_delay = 1;
  201. INIT_WORK(&q->unplug_work, blk_unplug_work);
  202. q->unplug_timer.function = blk_unplug_timeout;
  203. q->unplug_timer.data = (unsigned long)q;
  204. /*
  205. * by default assume old behaviour and bounce for any highmem page
  206. */
  207. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  208. }
  209. EXPORT_SYMBOL(blk_queue_make_request);
  210. static void rq_init(struct request_queue *q, struct request *rq)
  211. {
  212. INIT_LIST_HEAD(&rq->queuelist);
  213. INIT_LIST_HEAD(&rq->donelist);
  214. rq->errors = 0;
  215. rq->bio = rq->biotail = NULL;
  216. INIT_HLIST_NODE(&rq->hash);
  217. RB_CLEAR_NODE(&rq->rb_node);
  218. rq->ioprio = 0;
  219. rq->buffer = NULL;
  220. rq->ref_count = 1;
  221. rq->q = q;
  222. rq->special = NULL;
  223. rq->data_len = 0;
  224. rq->data = NULL;
  225. rq->nr_phys_segments = 0;
  226. rq->sense = NULL;
  227. rq->end_io = NULL;
  228. rq->end_io_data = NULL;
  229. rq->completion_data = NULL;
  230. rq->next_rq = NULL;
  231. }
  232. /**
  233. * blk_queue_ordered - does this queue support ordered writes
  234. * @q: the request queue
  235. * @ordered: one of QUEUE_ORDERED_*
  236. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  237. *
  238. * Description:
  239. * For journalled file systems, doing ordered writes on a commit
  240. * block instead of explicitly doing wait_on_buffer (which is bad
  241. * for performance) can be a big win. Block drivers supporting this
  242. * feature should call this function and indicate so.
  243. *
  244. **/
  245. int blk_queue_ordered(struct request_queue *q, unsigned ordered,
  246. prepare_flush_fn *prepare_flush_fn)
  247. {
  248. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  249. prepare_flush_fn == NULL) {
  250. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  251. return -EINVAL;
  252. }
  253. if (ordered != QUEUE_ORDERED_NONE &&
  254. ordered != QUEUE_ORDERED_DRAIN &&
  255. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  256. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  257. ordered != QUEUE_ORDERED_TAG &&
  258. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  259. ordered != QUEUE_ORDERED_TAG_FUA) {
  260. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  261. return -EINVAL;
  262. }
  263. q->ordered = ordered;
  264. q->next_ordered = ordered;
  265. q->prepare_flush_fn = prepare_flush_fn;
  266. return 0;
  267. }
  268. EXPORT_SYMBOL(blk_queue_ordered);
  269. /*
  270. * Cache flushing for ordered writes handling
  271. */
  272. inline unsigned blk_ordered_cur_seq(struct request_queue *q)
  273. {
  274. if (!q->ordseq)
  275. return 0;
  276. return 1 << ffz(q->ordseq);
  277. }
  278. unsigned blk_ordered_req_seq(struct request *rq)
  279. {
  280. struct request_queue *q = rq->q;
  281. BUG_ON(q->ordseq == 0);
  282. if (rq == &q->pre_flush_rq)
  283. return QUEUE_ORDSEQ_PREFLUSH;
  284. if (rq == &q->bar_rq)
  285. return QUEUE_ORDSEQ_BAR;
  286. if (rq == &q->post_flush_rq)
  287. return QUEUE_ORDSEQ_POSTFLUSH;
  288. /*
  289. * !fs requests don't need to follow barrier ordering. Always
  290. * put them at the front. This fixes the following deadlock.
  291. *
  292. * http://thread.gmane.org/gmane.linux.kernel/537473
  293. */
  294. if (!blk_fs_request(rq))
  295. return QUEUE_ORDSEQ_DRAIN;
  296. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  297. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  298. return QUEUE_ORDSEQ_DRAIN;
  299. else
  300. return QUEUE_ORDSEQ_DONE;
  301. }
  302. void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
  303. {
  304. struct request *rq;
  305. int uptodate;
  306. if (error && !q->orderr)
  307. q->orderr = error;
  308. BUG_ON(q->ordseq & seq);
  309. q->ordseq |= seq;
  310. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  311. return;
  312. /*
  313. * Okay, sequence complete.
  314. */
  315. uptodate = 1;
  316. if (q->orderr)
  317. uptodate = q->orderr;
  318. q->ordseq = 0;
  319. rq = q->orig_bar_rq;
  320. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  321. end_that_request_last(rq, uptodate);
  322. }
  323. static void pre_flush_end_io(struct request *rq, int error)
  324. {
  325. elv_completed_request(rq->q, rq);
  326. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  327. }
  328. static void bar_end_io(struct request *rq, int error)
  329. {
  330. elv_completed_request(rq->q, rq);
  331. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  332. }
  333. static void post_flush_end_io(struct request *rq, int error)
  334. {
  335. elv_completed_request(rq->q, rq);
  336. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  337. }
  338. static void queue_flush(struct request_queue *q, unsigned which)
  339. {
  340. struct request *rq;
  341. rq_end_io_fn *end_io;
  342. if (which == QUEUE_ORDERED_PREFLUSH) {
  343. rq = &q->pre_flush_rq;
  344. end_io = pre_flush_end_io;
  345. } else {
  346. rq = &q->post_flush_rq;
  347. end_io = post_flush_end_io;
  348. }
  349. rq->cmd_flags = REQ_HARDBARRIER;
  350. rq_init(q, rq);
  351. rq->elevator_private = NULL;
  352. rq->elevator_private2 = NULL;
  353. rq->rq_disk = q->bar_rq.rq_disk;
  354. rq->end_io = end_io;
  355. q->prepare_flush_fn(q, rq);
  356. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  357. }
  358. static inline struct request *start_ordered(struct request_queue *q,
  359. struct request *rq)
  360. {
  361. q->orderr = 0;
  362. q->ordered = q->next_ordered;
  363. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  364. /*
  365. * Prep proxy barrier request.
  366. */
  367. blkdev_dequeue_request(rq);
  368. q->orig_bar_rq = rq;
  369. rq = &q->bar_rq;
  370. rq->cmd_flags = 0;
  371. rq_init(q, rq);
  372. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  373. rq->cmd_flags |= REQ_RW;
  374. if (q->ordered & QUEUE_ORDERED_FUA)
  375. rq->cmd_flags |= REQ_FUA;
  376. rq->elevator_private = NULL;
  377. rq->elevator_private2 = NULL;
  378. init_request_from_bio(rq, q->orig_bar_rq->bio);
  379. rq->end_io = bar_end_io;
  380. /*
  381. * Queue ordered sequence. As we stack them at the head, we
  382. * need to queue in reverse order. Note that we rely on that
  383. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  384. * request gets inbetween ordered sequence. If this request is
  385. * an empty barrier, we don't need to do a postflush ever since
  386. * there will be no data written between the pre and post flush.
  387. * Hence a single flush will suffice.
  388. */
  389. if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
  390. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  391. else
  392. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  393. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  394. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  395. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  396. rq = &q->pre_flush_rq;
  397. } else
  398. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  399. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  400. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  401. else
  402. rq = NULL;
  403. return rq;
  404. }
  405. int blk_do_ordered(struct request_queue *q, struct request **rqp)
  406. {
  407. struct request *rq = *rqp;
  408. const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  409. if (!q->ordseq) {
  410. if (!is_barrier)
  411. return 1;
  412. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  413. *rqp = start_ordered(q, rq);
  414. return 1;
  415. } else {
  416. /*
  417. * This can happen when the queue switches to
  418. * ORDERED_NONE while this request is on it.
  419. */
  420. blkdev_dequeue_request(rq);
  421. end_that_request_first(rq, -EOPNOTSUPP,
  422. rq->hard_nr_sectors);
  423. end_that_request_last(rq, -EOPNOTSUPP);
  424. *rqp = NULL;
  425. return 0;
  426. }
  427. }
  428. /*
  429. * Ordered sequence in progress
  430. */
  431. /* Special requests are not subject to ordering rules. */
  432. if (!blk_fs_request(rq) &&
  433. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  434. return 1;
  435. if (q->ordered & QUEUE_ORDERED_TAG) {
  436. /* Ordered by tag. Blocking the next barrier is enough. */
  437. if (is_barrier && rq != &q->bar_rq)
  438. *rqp = NULL;
  439. } else {
  440. /* Ordered by draining. Wait for turn. */
  441. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  442. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  443. *rqp = NULL;
  444. }
  445. return 1;
  446. }
  447. static void req_bio_endio(struct request *rq, struct bio *bio,
  448. unsigned int nbytes, int error)
  449. {
  450. struct request_queue *q = rq->q;
  451. if (&q->bar_rq != rq) {
  452. if (error)
  453. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  454. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  455. error = -EIO;
  456. if (unlikely(nbytes > bio->bi_size)) {
  457. printk("%s: want %u bytes done, only %u left\n",
  458. __FUNCTION__, nbytes, bio->bi_size);
  459. nbytes = bio->bi_size;
  460. }
  461. bio->bi_size -= nbytes;
  462. bio->bi_sector += (nbytes >> 9);
  463. if (bio->bi_size == 0)
  464. bio_endio(bio, error);
  465. } else {
  466. /*
  467. * Okay, this is the barrier request in progress, just
  468. * record the error;
  469. */
  470. if (error && !q->orderr)
  471. q->orderr = error;
  472. }
  473. }
  474. /**
  475. * blk_queue_bounce_limit - set bounce buffer limit for queue
  476. * @q: the request queue for the device
  477. * @dma_addr: bus address limit
  478. *
  479. * Description:
  480. * Different hardware can have different requirements as to what pages
  481. * it can do I/O directly to. A low level driver can call
  482. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  483. * buffers for doing I/O to pages residing above @page.
  484. **/
  485. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  486. {
  487. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  488. int dma = 0;
  489. q->bounce_gfp = GFP_NOIO;
  490. #if BITS_PER_LONG == 64
  491. /* Assume anything <= 4GB can be handled by IOMMU.
  492. Actually some IOMMUs can handle everything, but I don't
  493. know of a way to test this here. */
  494. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  495. dma = 1;
  496. q->bounce_pfn = max_low_pfn;
  497. #else
  498. if (bounce_pfn < blk_max_low_pfn)
  499. dma = 1;
  500. q->bounce_pfn = bounce_pfn;
  501. #endif
  502. if (dma) {
  503. init_emergency_isa_pool();
  504. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  505. q->bounce_pfn = bounce_pfn;
  506. }
  507. }
  508. EXPORT_SYMBOL(blk_queue_bounce_limit);
  509. /**
  510. * blk_queue_max_sectors - set max sectors for a request for this queue
  511. * @q: the request queue for the device
  512. * @max_sectors: max sectors in the usual 512b unit
  513. *
  514. * Description:
  515. * Enables a low level driver to set an upper limit on the size of
  516. * received requests.
  517. **/
  518. void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  519. {
  520. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  521. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  522. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  523. }
  524. if (BLK_DEF_MAX_SECTORS > max_sectors)
  525. q->max_hw_sectors = q->max_sectors = max_sectors;
  526. else {
  527. q->max_sectors = BLK_DEF_MAX_SECTORS;
  528. q->max_hw_sectors = max_sectors;
  529. }
  530. }
  531. EXPORT_SYMBOL(blk_queue_max_sectors);
  532. /**
  533. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  534. * @q: the request queue for the device
  535. * @max_segments: max number of segments
  536. *
  537. * Description:
  538. * Enables a low level driver to set an upper limit on the number of
  539. * physical data segments in a request. This would be the largest sized
  540. * scatter list the driver could handle.
  541. **/
  542. void blk_queue_max_phys_segments(struct request_queue *q,
  543. unsigned short max_segments)
  544. {
  545. if (!max_segments) {
  546. max_segments = 1;
  547. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  548. }
  549. q->max_phys_segments = max_segments;
  550. }
  551. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  552. /**
  553. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  554. * @q: the request queue for the device
  555. * @max_segments: max number of segments
  556. *
  557. * Description:
  558. * Enables a low level driver to set an upper limit on the number of
  559. * hw data segments in a request. This would be the largest number of
  560. * address/length pairs the host adapter can actually give as once
  561. * to the device.
  562. **/
  563. void blk_queue_max_hw_segments(struct request_queue *q,
  564. unsigned short max_segments)
  565. {
  566. if (!max_segments) {
  567. max_segments = 1;
  568. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  569. }
  570. q->max_hw_segments = max_segments;
  571. }
  572. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  573. /**
  574. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  575. * @q: the request queue for the device
  576. * @max_size: max size of segment in bytes
  577. *
  578. * Description:
  579. * Enables a low level driver to set an upper limit on the size of a
  580. * coalesced segment
  581. **/
  582. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  583. {
  584. if (max_size < PAGE_CACHE_SIZE) {
  585. max_size = PAGE_CACHE_SIZE;
  586. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  587. }
  588. q->max_segment_size = max_size;
  589. }
  590. EXPORT_SYMBOL(blk_queue_max_segment_size);
  591. /**
  592. * blk_queue_hardsect_size - set hardware sector size for the queue
  593. * @q: the request queue for the device
  594. * @size: the hardware sector size, in bytes
  595. *
  596. * Description:
  597. * This should typically be set to the lowest possible sector size
  598. * that the hardware can operate on (possible without reverting to
  599. * even internal read-modify-write operations). Usually the default
  600. * of 512 covers most hardware.
  601. **/
  602. void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  603. {
  604. q->hardsect_size = size;
  605. }
  606. EXPORT_SYMBOL(blk_queue_hardsect_size);
  607. /*
  608. * Returns the minimum that is _not_ zero, unless both are zero.
  609. */
  610. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  611. /**
  612. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  613. * @t: the stacking driver (top)
  614. * @b: the underlying device (bottom)
  615. **/
  616. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  617. {
  618. /* zero is "infinity" */
  619. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  620. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  621. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  622. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  623. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  624. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  625. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  626. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  627. }
  628. EXPORT_SYMBOL(blk_queue_stack_limits);
  629. /**
  630. * blk_queue_segment_boundary - set boundary rules for segment merging
  631. * @q: the request queue for the device
  632. * @mask: the memory boundary mask
  633. **/
  634. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  635. {
  636. if (mask < PAGE_CACHE_SIZE - 1) {
  637. mask = PAGE_CACHE_SIZE - 1;
  638. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  639. }
  640. q->seg_boundary_mask = mask;
  641. }
  642. EXPORT_SYMBOL(blk_queue_segment_boundary);
  643. /**
  644. * blk_queue_dma_alignment - set dma length and memory alignment
  645. * @q: the request queue for the device
  646. * @mask: alignment mask
  647. *
  648. * description:
  649. * set required memory and length aligment for direct dma transactions.
  650. * this is used when buiding direct io requests for the queue.
  651. *
  652. **/
  653. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  654. {
  655. q->dma_alignment = mask;
  656. }
  657. EXPORT_SYMBOL(blk_queue_dma_alignment);
  658. /**
  659. * blk_queue_find_tag - find a request by its tag and queue
  660. * @q: The request queue for the device
  661. * @tag: The tag of the request
  662. *
  663. * Notes:
  664. * Should be used when a device returns a tag and you want to match
  665. * it with a request.
  666. *
  667. * no locks need be held.
  668. **/
  669. struct request *blk_queue_find_tag(struct request_queue *q, int tag)
  670. {
  671. return blk_map_queue_find_tag(q->queue_tags, tag);
  672. }
  673. EXPORT_SYMBOL(blk_queue_find_tag);
  674. /**
  675. * __blk_free_tags - release a given set of tag maintenance info
  676. * @bqt: the tag map to free
  677. *
  678. * Tries to free the specified @bqt@. Returns true if it was
  679. * actually freed and false if there are still references using it
  680. */
  681. static int __blk_free_tags(struct blk_queue_tag *bqt)
  682. {
  683. int retval;
  684. retval = atomic_dec_and_test(&bqt->refcnt);
  685. if (retval) {
  686. BUG_ON(bqt->busy);
  687. BUG_ON(!list_empty(&bqt->busy_list));
  688. kfree(bqt->tag_index);
  689. bqt->tag_index = NULL;
  690. kfree(bqt->tag_map);
  691. bqt->tag_map = NULL;
  692. kfree(bqt);
  693. }
  694. return retval;
  695. }
  696. /**
  697. * __blk_queue_free_tags - release tag maintenance info
  698. * @q: the request queue for the device
  699. *
  700. * Notes:
  701. * blk_cleanup_queue() will take care of calling this function, if tagging
  702. * has been used. So there's no need to call this directly.
  703. **/
  704. static void __blk_queue_free_tags(struct request_queue *q)
  705. {
  706. struct blk_queue_tag *bqt = q->queue_tags;
  707. if (!bqt)
  708. return;
  709. __blk_free_tags(bqt);
  710. q->queue_tags = NULL;
  711. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  712. }
  713. /**
  714. * blk_free_tags - release a given set of tag maintenance info
  715. * @bqt: the tag map to free
  716. *
  717. * For externally managed @bqt@ frees the map. Callers of this
  718. * function must guarantee to have released all the queues that
  719. * might have been using this tag map.
  720. */
  721. void blk_free_tags(struct blk_queue_tag *bqt)
  722. {
  723. if (unlikely(!__blk_free_tags(bqt)))
  724. BUG();
  725. }
  726. EXPORT_SYMBOL(blk_free_tags);
  727. /**
  728. * blk_queue_free_tags - release tag maintenance info
  729. * @q: the request queue for the device
  730. *
  731. * Notes:
  732. * This is used to disabled tagged queuing to a device, yet leave
  733. * queue in function.
  734. **/
  735. void blk_queue_free_tags(struct request_queue *q)
  736. {
  737. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  738. }
  739. EXPORT_SYMBOL(blk_queue_free_tags);
  740. static int
  741. init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
  742. {
  743. struct request **tag_index;
  744. unsigned long *tag_map;
  745. int nr_ulongs;
  746. if (q && depth > q->nr_requests * 2) {
  747. depth = q->nr_requests * 2;
  748. printk(KERN_ERR "%s: adjusted depth to %d\n",
  749. __FUNCTION__, depth);
  750. }
  751. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  752. if (!tag_index)
  753. goto fail;
  754. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  755. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  756. if (!tag_map)
  757. goto fail;
  758. tags->real_max_depth = depth;
  759. tags->max_depth = depth;
  760. tags->tag_index = tag_index;
  761. tags->tag_map = tag_map;
  762. return 0;
  763. fail:
  764. kfree(tag_index);
  765. return -ENOMEM;
  766. }
  767. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  768. int depth)
  769. {
  770. struct blk_queue_tag *tags;
  771. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  772. if (!tags)
  773. goto fail;
  774. if (init_tag_map(q, tags, depth))
  775. goto fail;
  776. INIT_LIST_HEAD(&tags->busy_list);
  777. tags->busy = 0;
  778. atomic_set(&tags->refcnt, 1);
  779. return tags;
  780. fail:
  781. kfree(tags);
  782. return NULL;
  783. }
  784. /**
  785. * blk_init_tags - initialize the tag info for an external tag map
  786. * @depth: the maximum queue depth supported
  787. * @tags: the tag to use
  788. **/
  789. struct blk_queue_tag *blk_init_tags(int depth)
  790. {
  791. return __blk_queue_init_tags(NULL, depth);
  792. }
  793. EXPORT_SYMBOL(blk_init_tags);
  794. /**
  795. * blk_queue_init_tags - initialize the queue tag info
  796. * @q: the request queue for the device
  797. * @depth: the maximum queue depth supported
  798. * @tags: the tag to use
  799. **/
  800. int blk_queue_init_tags(struct request_queue *q, int depth,
  801. struct blk_queue_tag *tags)
  802. {
  803. int rc;
  804. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  805. if (!tags && !q->queue_tags) {
  806. tags = __blk_queue_init_tags(q, depth);
  807. if (!tags)
  808. goto fail;
  809. } else if (q->queue_tags) {
  810. if ((rc = blk_queue_resize_tags(q, depth)))
  811. return rc;
  812. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  813. return 0;
  814. } else
  815. atomic_inc(&tags->refcnt);
  816. /*
  817. * assign it, all done
  818. */
  819. q->queue_tags = tags;
  820. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  821. return 0;
  822. fail:
  823. kfree(tags);
  824. return -ENOMEM;
  825. }
  826. EXPORT_SYMBOL(blk_queue_init_tags);
  827. /**
  828. * blk_queue_resize_tags - change the queueing depth
  829. * @q: the request queue for the device
  830. * @new_depth: the new max command queueing depth
  831. *
  832. * Notes:
  833. * Must be called with the queue lock held.
  834. **/
  835. int blk_queue_resize_tags(struct request_queue *q, int new_depth)
  836. {
  837. struct blk_queue_tag *bqt = q->queue_tags;
  838. struct request **tag_index;
  839. unsigned long *tag_map;
  840. int max_depth, nr_ulongs;
  841. if (!bqt)
  842. return -ENXIO;
  843. /*
  844. * if we already have large enough real_max_depth. just
  845. * adjust max_depth. *NOTE* as requests with tag value
  846. * between new_depth and real_max_depth can be in-flight, tag
  847. * map can not be shrunk blindly here.
  848. */
  849. if (new_depth <= bqt->real_max_depth) {
  850. bqt->max_depth = new_depth;
  851. return 0;
  852. }
  853. /*
  854. * Currently cannot replace a shared tag map with a new
  855. * one, so error out if this is the case
  856. */
  857. if (atomic_read(&bqt->refcnt) != 1)
  858. return -EBUSY;
  859. /*
  860. * save the old state info, so we can copy it back
  861. */
  862. tag_index = bqt->tag_index;
  863. tag_map = bqt->tag_map;
  864. max_depth = bqt->real_max_depth;
  865. if (init_tag_map(q, bqt, new_depth))
  866. return -ENOMEM;
  867. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  868. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  869. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  870. kfree(tag_index);
  871. kfree(tag_map);
  872. return 0;
  873. }
  874. EXPORT_SYMBOL(blk_queue_resize_tags);
  875. /**
  876. * blk_queue_end_tag - end tag operations for a request
  877. * @q: the request queue for the device
  878. * @rq: the request that has completed
  879. *
  880. * Description:
  881. * Typically called when end_that_request_first() returns 0, meaning
  882. * all transfers have been done for a request. It's important to call
  883. * this function before end_that_request_last(), as that will put the
  884. * request back on the free list thus corrupting the internal tag list.
  885. *
  886. * Notes:
  887. * queue lock must be held.
  888. **/
  889. void blk_queue_end_tag(struct request_queue *q, struct request *rq)
  890. {
  891. struct blk_queue_tag *bqt = q->queue_tags;
  892. int tag = rq->tag;
  893. BUG_ON(tag == -1);
  894. if (unlikely(tag >= bqt->real_max_depth))
  895. /*
  896. * This can happen after tag depth has been reduced.
  897. * FIXME: how about a warning or info message here?
  898. */
  899. return;
  900. list_del_init(&rq->queuelist);
  901. rq->cmd_flags &= ~REQ_QUEUED;
  902. rq->tag = -1;
  903. if (unlikely(bqt->tag_index[tag] == NULL))
  904. printk(KERN_ERR "%s: tag %d is missing\n",
  905. __FUNCTION__, tag);
  906. bqt->tag_index[tag] = NULL;
  907. /*
  908. * We use test_and_clear_bit's memory ordering properties here.
  909. * The tag_map bit acts as a lock for tag_index[bit], so we need
  910. * a barrer before clearing the bit (precisely: release semantics).
  911. * Could use clear_bit_unlock when it is merged.
  912. */
  913. if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
  914. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  915. __FUNCTION__, tag);
  916. return;
  917. }
  918. bqt->busy--;
  919. }
  920. EXPORT_SYMBOL(blk_queue_end_tag);
  921. /**
  922. * blk_queue_start_tag - find a free tag and assign it
  923. * @q: the request queue for the device
  924. * @rq: the block request that needs tagging
  925. *
  926. * Description:
  927. * This can either be used as a stand-alone helper, or possibly be
  928. * assigned as the queue &prep_rq_fn (in which case &struct request
  929. * automagically gets a tag assigned). Note that this function
  930. * assumes that any type of request can be queued! if this is not
  931. * true for your device, you must check the request type before
  932. * calling this function. The request will also be removed from
  933. * the request queue, so it's the drivers responsibility to readd
  934. * it if it should need to be restarted for some reason.
  935. *
  936. * Notes:
  937. * queue lock must be held.
  938. **/
  939. int blk_queue_start_tag(struct request_queue *q, struct request *rq)
  940. {
  941. struct blk_queue_tag *bqt = q->queue_tags;
  942. int tag;
  943. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  944. printk(KERN_ERR
  945. "%s: request %p for device [%s] already tagged %d",
  946. __FUNCTION__, rq,
  947. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  948. BUG();
  949. }
  950. /*
  951. * Protect against shared tag maps, as we may not have exclusive
  952. * access to the tag map.
  953. */
  954. do {
  955. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  956. if (tag >= bqt->max_depth)
  957. return 1;
  958. } while (test_and_set_bit(tag, bqt->tag_map));
  959. /*
  960. * We rely on test_and_set_bit providing lock memory ordering semantics
  961. * (could use test_and_set_bit_lock when it is merged).
  962. */
  963. rq->cmd_flags |= REQ_QUEUED;
  964. rq->tag = tag;
  965. bqt->tag_index[tag] = rq;
  966. blkdev_dequeue_request(rq);
  967. list_add(&rq->queuelist, &bqt->busy_list);
  968. bqt->busy++;
  969. return 0;
  970. }
  971. EXPORT_SYMBOL(blk_queue_start_tag);
  972. /**
  973. * blk_queue_invalidate_tags - invalidate all pending tags
  974. * @q: the request queue for the device
  975. *
  976. * Description:
  977. * Hardware conditions may dictate a need to stop all pending requests.
  978. * In this case, we will safely clear the block side of the tag queue and
  979. * readd all requests to the request queue in the right order.
  980. *
  981. * Notes:
  982. * queue lock must be held.
  983. **/
  984. void blk_queue_invalidate_tags(struct request_queue *q)
  985. {
  986. struct blk_queue_tag *bqt = q->queue_tags;
  987. struct list_head *tmp, *n;
  988. struct request *rq;
  989. list_for_each_safe(tmp, n, &bqt->busy_list) {
  990. rq = list_entry_rq(tmp);
  991. if (rq->tag == -1) {
  992. printk(KERN_ERR
  993. "%s: bad tag found on list\n", __FUNCTION__);
  994. list_del_init(&rq->queuelist);
  995. rq->cmd_flags &= ~REQ_QUEUED;
  996. } else
  997. blk_queue_end_tag(q, rq);
  998. rq->cmd_flags &= ~REQ_STARTED;
  999. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1000. }
  1001. }
  1002. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1003. void blk_dump_rq_flags(struct request *rq, char *msg)
  1004. {
  1005. int bit;
  1006. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1007. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1008. rq->cmd_flags);
  1009. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1010. rq->nr_sectors,
  1011. rq->current_nr_sectors);
  1012. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1013. if (blk_pc_request(rq)) {
  1014. printk("cdb: ");
  1015. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1016. printk("%02x ", rq->cmd[bit]);
  1017. printk("\n");
  1018. }
  1019. }
  1020. EXPORT_SYMBOL(blk_dump_rq_flags);
  1021. void blk_recount_segments(struct request_queue *q, struct bio *bio)
  1022. {
  1023. struct request rq;
  1024. struct bio *nxt = bio->bi_next;
  1025. rq.q = q;
  1026. rq.bio = rq.biotail = bio;
  1027. bio->bi_next = NULL;
  1028. blk_recalc_rq_segments(&rq);
  1029. bio->bi_next = nxt;
  1030. bio->bi_phys_segments = rq.nr_phys_segments;
  1031. bio->bi_hw_segments = rq.nr_hw_segments;
  1032. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1033. }
  1034. EXPORT_SYMBOL(blk_recount_segments);
  1035. static void blk_recalc_rq_segments(struct request *rq)
  1036. {
  1037. int nr_phys_segs;
  1038. int nr_hw_segs;
  1039. unsigned int phys_size;
  1040. unsigned int hw_size;
  1041. struct bio_vec *bv, *bvprv = NULL;
  1042. int seg_size;
  1043. int hw_seg_size;
  1044. int cluster;
  1045. struct req_iterator iter;
  1046. int high, highprv = 1;
  1047. struct request_queue *q = rq->q;
  1048. if (!rq->bio)
  1049. return;
  1050. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1051. hw_seg_size = seg_size = 0;
  1052. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  1053. rq_for_each_segment(bv, rq, iter) {
  1054. /*
  1055. * the trick here is making sure that a high page is never
  1056. * considered part of another segment, since that might
  1057. * change with the bounce page.
  1058. */
  1059. high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
  1060. if (high || highprv)
  1061. goto new_hw_segment;
  1062. if (cluster) {
  1063. if (seg_size + bv->bv_len > q->max_segment_size)
  1064. goto new_segment;
  1065. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1066. goto new_segment;
  1067. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1068. goto new_segment;
  1069. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1070. goto new_hw_segment;
  1071. seg_size += bv->bv_len;
  1072. hw_seg_size += bv->bv_len;
  1073. bvprv = bv;
  1074. continue;
  1075. }
  1076. new_segment:
  1077. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1078. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1079. hw_seg_size += bv->bv_len;
  1080. else {
  1081. new_hw_segment:
  1082. if (nr_hw_segs == 1 &&
  1083. hw_seg_size > rq->bio->bi_hw_front_size)
  1084. rq->bio->bi_hw_front_size = hw_seg_size;
  1085. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1086. nr_hw_segs++;
  1087. }
  1088. nr_phys_segs++;
  1089. bvprv = bv;
  1090. seg_size = bv->bv_len;
  1091. highprv = high;
  1092. }
  1093. if (nr_hw_segs == 1 &&
  1094. hw_seg_size > rq->bio->bi_hw_front_size)
  1095. rq->bio->bi_hw_front_size = hw_seg_size;
  1096. if (hw_seg_size > rq->biotail->bi_hw_back_size)
  1097. rq->biotail->bi_hw_back_size = hw_seg_size;
  1098. rq->nr_phys_segments = nr_phys_segs;
  1099. rq->nr_hw_segments = nr_hw_segs;
  1100. }
  1101. static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
  1102. struct bio *nxt)
  1103. {
  1104. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1105. return 0;
  1106. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1107. return 0;
  1108. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1109. return 0;
  1110. /*
  1111. * bio and nxt are contigous in memory, check if the queue allows
  1112. * these two to be merged into one
  1113. */
  1114. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1115. return 1;
  1116. return 0;
  1117. }
  1118. static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
  1119. struct bio *nxt)
  1120. {
  1121. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1122. blk_recount_segments(q, bio);
  1123. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1124. blk_recount_segments(q, nxt);
  1125. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1126. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
  1127. return 0;
  1128. if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
  1129. return 0;
  1130. return 1;
  1131. }
  1132. /*
  1133. * map a request to scatterlist, return number of sg entries setup. Caller
  1134. * must make sure sg can hold rq->nr_phys_segments entries
  1135. */
  1136. int blk_rq_map_sg(struct request_queue *q, struct request *rq,
  1137. struct scatterlist *sglist)
  1138. {
  1139. struct bio_vec *bvec, *bvprv;
  1140. struct req_iterator iter;
  1141. struct scatterlist *sg;
  1142. int nsegs, cluster;
  1143. nsegs = 0;
  1144. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1145. /*
  1146. * for each bio in rq
  1147. */
  1148. bvprv = NULL;
  1149. sg = NULL;
  1150. rq_for_each_segment(bvec, rq, iter) {
  1151. int nbytes = bvec->bv_len;
  1152. if (bvprv && cluster) {
  1153. if (sg->length + nbytes > q->max_segment_size)
  1154. goto new_segment;
  1155. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1156. goto new_segment;
  1157. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1158. goto new_segment;
  1159. sg->length += nbytes;
  1160. } else {
  1161. new_segment:
  1162. if (!sg)
  1163. sg = sglist;
  1164. else
  1165. sg = sg_next(sg);
  1166. sg_dma_len(sg) = 0;
  1167. sg_dma_address(sg) = 0;
  1168. sg_set_page(sg, bvec->bv_page);
  1169. sg->length = nbytes;
  1170. sg->offset = bvec->bv_offset;
  1171. nsegs++;
  1172. }
  1173. bvprv = bvec;
  1174. } /* segments in rq */
  1175. if (sg)
  1176. __sg_mark_end(sg);
  1177. return nsegs;
  1178. }
  1179. EXPORT_SYMBOL(blk_rq_map_sg);
  1180. /*
  1181. * the standard queue merge functions, can be overridden with device
  1182. * specific ones if so desired
  1183. */
  1184. static inline int ll_new_mergeable(struct request_queue *q,
  1185. struct request *req,
  1186. struct bio *bio)
  1187. {
  1188. int nr_phys_segs = bio_phys_segments(q, bio);
  1189. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1190. req->cmd_flags |= REQ_NOMERGE;
  1191. if (req == q->last_merge)
  1192. q->last_merge = NULL;
  1193. return 0;
  1194. }
  1195. /*
  1196. * A hw segment is just getting larger, bump just the phys
  1197. * counter.
  1198. */
  1199. req->nr_phys_segments += nr_phys_segs;
  1200. return 1;
  1201. }
  1202. static inline int ll_new_hw_segment(struct request_queue *q,
  1203. struct request *req,
  1204. struct bio *bio)
  1205. {
  1206. int nr_hw_segs = bio_hw_segments(q, bio);
  1207. int nr_phys_segs = bio_phys_segments(q, bio);
  1208. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1209. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1210. req->cmd_flags |= REQ_NOMERGE;
  1211. if (req == q->last_merge)
  1212. q->last_merge = NULL;
  1213. return 0;
  1214. }
  1215. /*
  1216. * This will form the start of a new hw segment. Bump both
  1217. * counters.
  1218. */
  1219. req->nr_hw_segments += nr_hw_segs;
  1220. req->nr_phys_segments += nr_phys_segs;
  1221. return 1;
  1222. }
  1223. static int ll_back_merge_fn(struct request_queue *q, struct request *req,
  1224. struct bio *bio)
  1225. {
  1226. unsigned short max_sectors;
  1227. int len;
  1228. if (unlikely(blk_pc_request(req)))
  1229. max_sectors = q->max_hw_sectors;
  1230. else
  1231. max_sectors = q->max_sectors;
  1232. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1233. req->cmd_flags |= REQ_NOMERGE;
  1234. if (req == q->last_merge)
  1235. q->last_merge = NULL;
  1236. return 0;
  1237. }
  1238. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1239. blk_recount_segments(q, req->biotail);
  1240. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1241. blk_recount_segments(q, bio);
  1242. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1243. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1244. !BIOVEC_VIRT_OVERSIZE(len)) {
  1245. int mergeable = ll_new_mergeable(q, req, bio);
  1246. if (mergeable) {
  1247. if (req->nr_hw_segments == 1)
  1248. req->bio->bi_hw_front_size = len;
  1249. if (bio->bi_hw_segments == 1)
  1250. bio->bi_hw_back_size = len;
  1251. }
  1252. return mergeable;
  1253. }
  1254. return ll_new_hw_segment(q, req, bio);
  1255. }
  1256. static int ll_front_merge_fn(struct request_queue *q, struct request *req,
  1257. struct bio *bio)
  1258. {
  1259. unsigned short max_sectors;
  1260. int len;
  1261. if (unlikely(blk_pc_request(req)))
  1262. max_sectors = q->max_hw_sectors;
  1263. else
  1264. max_sectors = q->max_sectors;
  1265. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1266. req->cmd_flags |= REQ_NOMERGE;
  1267. if (req == q->last_merge)
  1268. q->last_merge = NULL;
  1269. return 0;
  1270. }
  1271. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1272. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1273. blk_recount_segments(q, bio);
  1274. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1275. blk_recount_segments(q, req->bio);
  1276. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1277. !BIOVEC_VIRT_OVERSIZE(len)) {
  1278. int mergeable = ll_new_mergeable(q, req, bio);
  1279. if (mergeable) {
  1280. if (bio->bi_hw_segments == 1)
  1281. bio->bi_hw_front_size = len;
  1282. if (req->nr_hw_segments == 1)
  1283. req->biotail->bi_hw_back_size = len;
  1284. }
  1285. return mergeable;
  1286. }
  1287. return ll_new_hw_segment(q, req, bio);
  1288. }
  1289. static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
  1290. struct request *next)
  1291. {
  1292. int total_phys_segments;
  1293. int total_hw_segments;
  1294. /*
  1295. * First check if the either of the requests are re-queued
  1296. * requests. Can't merge them if they are.
  1297. */
  1298. if (req->special || next->special)
  1299. return 0;
  1300. /*
  1301. * Will it become too large?
  1302. */
  1303. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1304. return 0;
  1305. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1306. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1307. total_phys_segments--;
  1308. if (total_phys_segments > q->max_phys_segments)
  1309. return 0;
  1310. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1311. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1312. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1313. /*
  1314. * propagate the combined length to the end of the requests
  1315. */
  1316. if (req->nr_hw_segments == 1)
  1317. req->bio->bi_hw_front_size = len;
  1318. if (next->nr_hw_segments == 1)
  1319. next->biotail->bi_hw_back_size = len;
  1320. total_hw_segments--;
  1321. }
  1322. if (total_hw_segments > q->max_hw_segments)
  1323. return 0;
  1324. /* Merge is OK... */
  1325. req->nr_phys_segments = total_phys_segments;
  1326. req->nr_hw_segments = total_hw_segments;
  1327. return 1;
  1328. }
  1329. /*
  1330. * "plug" the device if there are no outstanding requests: this will
  1331. * force the transfer to start only after we have put all the requests
  1332. * on the list.
  1333. *
  1334. * This is called with interrupts off and no requests on the queue and
  1335. * with the queue lock held.
  1336. */
  1337. void blk_plug_device(struct request_queue *q)
  1338. {
  1339. WARN_ON(!irqs_disabled());
  1340. /*
  1341. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1342. * which will restart the queueing
  1343. */
  1344. if (blk_queue_stopped(q))
  1345. return;
  1346. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1347. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1348. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1349. }
  1350. }
  1351. EXPORT_SYMBOL(blk_plug_device);
  1352. /*
  1353. * remove the queue from the plugged list, if present. called with
  1354. * queue lock held and interrupts disabled.
  1355. */
  1356. int blk_remove_plug(struct request_queue *q)
  1357. {
  1358. WARN_ON(!irqs_disabled());
  1359. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1360. return 0;
  1361. del_timer(&q->unplug_timer);
  1362. return 1;
  1363. }
  1364. EXPORT_SYMBOL(blk_remove_plug);
  1365. /*
  1366. * remove the plug and let it rip..
  1367. */
  1368. void __generic_unplug_device(struct request_queue *q)
  1369. {
  1370. if (unlikely(blk_queue_stopped(q)))
  1371. return;
  1372. if (!blk_remove_plug(q))
  1373. return;
  1374. q->request_fn(q);
  1375. }
  1376. EXPORT_SYMBOL(__generic_unplug_device);
  1377. /**
  1378. * generic_unplug_device - fire a request queue
  1379. * @q: The &struct request_queue in question
  1380. *
  1381. * Description:
  1382. * Linux uses plugging to build bigger requests queues before letting
  1383. * the device have at them. If a queue is plugged, the I/O scheduler
  1384. * is still adding and merging requests on the queue. Once the queue
  1385. * gets unplugged, the request_fn defined for the queue is invoked and
  1386. * transfers started.
  1387. **/
  1388. void generic_unplug_device(struct request_queue *q)
  1389. {
  1390. spin_lock_irq(q->queue_lock);
  1391. __generic_unplug_device(q);
  1392. spin_unlock_irq(q->queue_lock);
  1393. }
  1394. EXPORT_SYMBOL(generic_unplug_device);
  1395. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1396. struct page *page)
  1397. {
  1398. struct request_queue *q = bdi->unplug_io_data;
  1399. /*
  1400. * devices don't necessarily have an ->unplug_fn defined
  1401. */
  1402. if (q->unplug_fn) {
  1403. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1404. q->rq.count[READ] + q->rq.count[WRITE]);
  1405. q->unplug_fn(q);
  1406. }
  1407. }
  1408. static void blk_unplug_work(struct work_struct *work)
  1409. {
  1410. struct request_queue *q =
  1411. container_of(work, struct request_queue, unplug_work);
  1412. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1413. q->rq.count[READ] + q->rq.count[WRITE]);
  1414. q->unplug_fn(q);
  1415. }
  1416. static void blk_unplug_timeout(unsigned long data)
  1417. {
  1418. struct request_queue *q = (struct request_queue *)data;
  1419. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1420. q->rq.count[READ] + q->rq.count[WRITE]);
  1421. kblockd_schedule_work(&q->unplug_work);
  1422. }
  1423. /**
  1424. * blk_start_queue - restart a previously stopped queue
  1425. * @q: The &struct request_queue in question
  1426. *
  1427. * Description:
  1428. * blk_start_queue() will clear the stop flag on the queue, and call
  1429. * the request_fn for the queue if it was in a stopped state when
  1430. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1431. **/
  1432. void blk_start_queue(struct request_queue *q)
  1433. {
  1434. WARN_ON(!irqs_disabled());
  1435. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1436. /*
  1437. * one level of recursion is ok and is much faster than kicking
  1438. * the unplug handling
  1439. */
  1440. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1441. q->request_fn(q);
  1442. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1443. } else {
  1444. blk_plug_device(q);
  1445. kblockd_schedule_work(&q->unplug_work);
  1446. }
  1447. }
  1448. EXPORT_SYMBOL(blk_start_queue);
  1449. /**
  1450. * blk_stop_queue - stop a queue
  1451. * @q: The &struct request_queue in question
  1452. *
  1453. * Description:
  1454. * The Linux block layer assumes that a block driver will consume all
  1455. * entries on the request queue when the request_fn strategy is called.
  1456. * Often this will not happen, because of hardware limitations (queue
  1457. * depth settings). If a device driver gets a 'queue full' response,
  1458. * or if it simply chooses not to queue more I/O at one point, it can
  1459. * call this function to prevent the request_fn from being called until
  1460. * the driver has signalled it's ready to go again. This happens by calling
  1461. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1462. **/
  1463. void blk_stop_queue(struct request_queue *q)
  1464. {
  1465. blk_remove_plug(q);
  1466. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1467. }
  1468. EXPORT_SYMBOL(blk_stop_queue);
  1469. /**
  1470. * blk_sync_queue - cancel any pending callbacks on a queue
  1471. * @q: the queue
  1472. *
  1473. * Description:
  1474. * The block layer may perform asynchronous callback activity
  1475. * on a queue, such as calling the unplug function after a timeout.
  1476. * A block device may call blk_sync_queue to ensure that any
  1477. * such activity is cancelled, thus allowing it to release resources
  1478. * that the callbacks might use. The caller must already have made sure
  1479. * that its ->make_request_fn will not re-add plugging prior to calling
  1480. * this function.
  1481. *
  1482. */
  1483. void blk_sync_queue(struct request_queue *q)
  1484. {
  1485. del_timer_sync(&q->unplug_timer);
  1486. }
  1487. EXPORT_SYMBOL(blk_sync_queue);
  1488. /**
  1489. * blk_run_queue - run a single device queue
  1490. * @q: The queue to run
  1491. */
  1492. void blk_run_queue(struct request_queue *q)
  1493. {
  1494. unsigned long flags;
  1495. spin_lock_irqsave(q->queue_lock, flags);
  1496. blk_remove_plug(q);
  1497. /*
  1498. * Only recurse once to avoid overrunning the stack, let the unplug
  1499. * handling reinvoke the handler shortly if we already got there.
  1500. */
  1501. if (!elv_queue_empty(q)) {
  1502. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1503. q->request_fn(q);
  1504. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1505. } else {
  1506. blk_plug_device(q);
  1507. kblockd_schedule_work(&q->unplug_work);
  1508. }
  1509. }
  1510. spin_unlock_irqrestore(q->queue_lock, flags);
  1511. }
  1512. EXPORT_SYMBOL(blk_run_queue);
  1513. /**
  1514. * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
  1515. * @kobj: the kobj belonging of the request queue to be released
  1516. *
  1517. * Description:
  1518. * blk_cleanup_queue is the pair to blk_init_queue() or
  1519. * blk_queue_make_request(). It should be called when a request queue is
  1520. * being released; typically when a block device is being de-registered.
  1521. * Currently, its primary task it to free all the &struct request
  1522. * structures that were allocated to the queue and the queue itself.
  1523. *
  1524. * Caveat:
  1525. * Hopefully the low level driver will have finished any
  1526. * outstanding requests first...
  1527. **/
  1528. static void blk_release_queue(struct kobject *kobj)
  1529. {
  1530. struct request_queue *q =
  1531. container_of(kobj, struct request_queue, kobj);
  1532. struct request_list *rl = &q->rq;
  1533. blk_sync_queue(q);
  1534. if (rl->rq_pool)
  1535. mempool_destroy(rl->rq_pool);
  1536. if (q->queue_tags)
  1537. __blk_queue_free_tags(q);
  1538. blk_trace_shutdown(q);
  1539. bdi_destroy(&q->backing_dev_info);
  1540. kmem_cache_free(requestq_cachep, q);
  1541. }
  1542. void blk_put_queue(struct request_queue *q)
  1543. {
  1544. kobject_put(&q->kobj);
  1545. }
  1546. EXPORT_SYMBOL(blk_put_queue);
  1547. void blk_cleanup_queue(struct request_queue * q)
  1548. {
  1549. mutex_lock(&q->sysfs_lock);
  1550. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1551. mutex_unlock(&q->sysfs_lock);
  1552. if (q->elevator)
  1553. elevator_exit(q->elevator);
  1554. blk_put_queue(q);
  1555. }
  1556. EXPORT_SYMBOL(blk_cleanup_queue);
  1557. static int blk_init_free_list(struct request_queue *q)
  1558. {
  1559. struct request_list *rl = &q->rq;
  1560. rl->count[READ] = rl->count[WRITE] = 0;
  1561. rl->starved[READ] = rl->starved[WRITE] = 0;
  1562. rl->elvpriv = 0;
  1563. init_waitqueue_head(&rl->wait[READ]);
  1564. init_waitqueue_head(&rl->wait[WRITE]);
  1565. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1566. mempool_free_slab, request_cachep, q->node);
  1567. if (!rl->rq_pool)
  1568. return -ENOMEM;
  1569. return 0;
  1570. }
  1571. struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
  1572. {
  1573. return blk_alloc_queue_node(gfp_mask, -1);
  1574. }
  1575. EXPORT_SYMBOL(blk_alloc_queue);
  1576. static struct kobj_type queue_ktype;
  1577. struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1578. {
  1579. struct request_queue *q;
  1580. int err;
  1581. q = kmem_cache_alloc_node(requestq_cachep,
  1582. gfp_mask | __GFP_ZERO, node_id);
  1583. if (!q)
  1584. return NULL;
  1585. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1586. q->backing_dev_info.unplug_io_data = q;
  1587. err = bdi_init(&q->backing_dev_info);
  1588. if (err) {
  1589. kmem_cache_free(requestq_cachep, q);
  1590. return NULL;
  1591. }
  1592. init_timer(&q->unplug_timer);
  1593. kobject_set_name(&q->kobj, "%s", "queue");
  1594. q->kobj.ktype = &queue_ktype;
  1595. kobject_init(&q->kobj);
  1596. mutex_init(&q->sysfs_lock);
  1597. return q;
  1598. }
  1599. EXPORT_SYMBOL(blk_alloc_queue_node);
  1600. /**
  1601. * blk_init_queue - prepare a request queue for use with a block device
  1602. * @rfn: The function to be called to process requests that have been
  1603. * placed on the queue.
  1604. * @lock: Request queue spin lock
  1605. *
  1606. * Description:
  1607. * If a block device wishes to use the standard request handling procedures,
  1608. * which sorts requests and coalesces adjacent requests, then it must
  1609. * call blk_init_queue(). The function @rfn will be called when there
  1610. * are requests on the queue that need to be processed. If the device
  1611. * supports plugging, then @rfn may not be called immediately when requests
  1612. * are available on the queue, but may be called at some time later instead.
  1613. * Plugged queues are generally unplugged when a buffer belonging to one
  1614. * of the requests on the queue is needed, or due to memory pressure.
  1615. *
  1616. * @rfn is not required, or even expected, to remove all requests off the
  1617. * queue, but only as many as it can handle at a time. If it does leave
  1618. * requests on the queue, it is responsible for arranging that the requests
  1619. * get dealt with eventually.
  1620. *
  1621. * The queue spin lock must be held while manipulating the requests on the
  1622. * request queue; this lock will be taken also from interrupt context, so irq
  1623. * disabling is needed for it.
  1624. *
  1625. * Function returns a pointer to the initialized request queue, or NULL if
  1626. * it didn't succeed.
  1627. *
  1628. * Note:
  1629. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1630. * when the block device is deactivated (such as at module unload).
  1631. **/
  1632. struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1633. {
  1634. return blk_init_queue_node(rfn, lock, -1);
  1635. }
  1636. EXPORT_SYMBOL(blk_init_queue);
  1637. struct request_queue *
  1638. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1639. {
  1640. struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1641. if (!q)
  1642. return NULL;
  1643. q->node = node_id;
  1644. if (blk_init_free_list(q)) {
  1645. kmem_cache_free(requestq_cachep, q);
  1646. return NULL;
  1647. }
  1648. /*
  1649. * if caller didn't supply a lock, they get per-queue locking with
  1650. * our embedded lock
  1651. */
  1652. if (!lock) {
  1653. spin_lock_init(&q->__queue_lock);
  1654. lock = &q->__queue_lock;
  1655. }
  1656. q->request_fn = rfn;
  1657. q->prep_rq_fn = NULL;
  1658. q->unplug_fn = generic_unplug_device;
  1659. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1660. q->queue_lock = lock;
  1661. blk_queue_segment_boundary(q, 0xffffffff);
  1662. blk_queue_make_request(q, __make_request);
  1663. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1664. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1665. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1666. q->sg_reserved_size = INT_MAX;
  1667. /*
  1668. * all done
  1669. */
  1670. if (!elevator_init(q, NULL)) {
  1671. blk_queue_congestion_threshold(q);
  1672. return q;
  1673. }
  1674. blk_put_queue(q);
  1675. return NULL;
  1676. }
  1677. EXPORT_SYMBOL(blk_init_queue_node);
  1678. int blk_get_queue(struct request_queue *q)
  1679. {
  1680. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1681. kobject_get(&q->kobj);
  1682. return 0;
  1683. }
  1684. return 1;
  1685. }
  1686. EXPORT_SYMBOL(blk_get_queue);
  1687. static inline void blk_free_request(struct request_queue *q, struct request *rq)
  1688. {
  1689. if (rq->cmd_flags & REQ_ELVPRIV)
  1690. elv_put_request(q, rq);
  1691. mempool_free(rq, q->rq.rq_pool);
  1692. }
  1693. static struct request *
  1694. blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
  1695. {
  1696. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1697. if (!rq)
  1698. return NULL;
  1699. /*
  1700. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1701. * see bio.h and blkdev.h
  1702. */
  1703. rq->cmd_flags = rw | REQ_ALLOCED;
  1704. if (priv) {
  1705. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1706. mempool_free(rq, q->rq.rq_pool);
  1707. return NULL;
  1708. }
  1709. rq->cmd_flags |= REQ_ELVPRIV;
  1710. }
  1711. return rq;
  1712. }
  1713. /*
  1714. * ioc_batching returns true if the ioc is a valid batching request and
  1715. * should be given priority access to a request.
  1716. */
  1717. static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
  1718. {
  1719. if (!ioc)
  1720. return 0;
  1721. /*
  1722. * Make sure the process is able to allocate at least 1 request
  1723. * even if the batch times out, otherwise we could theoretically
  1724. * lose wakeups.
  1725. */
  1726. return ioc->nr_batch_requests == q->nr_batching ||
  1727. (ioc->nr_batch_requests > 0
  1728. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1729. }
  1730. /*
  1731. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1732. * will cause the process to be a "batcher" on all queues in the system. This
  1733. * is the behaviour we want though - once it gets a wakeup it should be given
  1734. * a nice run.
  1735. */
  1736. static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
  1737. {
  1738. if (!ioc || ioc_batching(q, ioc))
  1739. return;
  1740. ioc->nr_batch_requests = q->nr_batching;
  1741. ioc->last_waited = jiffies;
  1742. }
  1743. static void __freed_request(struct request_queue *q, int rw)
  1744. {
  1745. struct request_list *rl = &q->rq;
  1746. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1747. blk_clear_queue_congested(q, rw);
  1748. if (rl->count[rw] + 1 <= q->nr_requests) {
  1749. if (waitqueue_active(&rl->wait[rw]))
  1750. wake_up(&rl->wait[rw]);
  1751. blk_clear_queue_full(q, rw);
  1752. }
  1753. }
  1754. /*
  1755. * A request has just been released. Account for it, update the full and
  1756. * congestion status, wake up any waiters. Called under q->queue_lock.
  1757. */
  1758. static void freed_request(struct request_queue *q, int rw, int priv)
  1759. {
  1760. struct request_list *rl = &q->rq;
  1761. rl->count[rw]--;
  1762. if (priv)
  1763. rl->elvpriv--;
  1764. __freed_request(q, rw);
  1765. if (unlikely(rl->starved[rw ^ 1]))
  1766. __freed_request(q, rw ^ 1);
  1767. }
  1768. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1769. /*
  1770. * Get a free request, queue_lock must be held.
  1771. * Returns NULL on failure, with queue_lock held.
  1772. * Returns !NULL on success, with queue_lock *not held*.
  1773. */
  1774. static struct request *get_request(struct request_queue *q, int rw_flags,
  1775. struct bio *bio, gfp_t gfp_mask)
  1776. {
  1777. struct request *rq = NULL;
  1778. struct request_list *rl = &q->rq;
  1779. struct io_context *ioc = NULL;
  1780. const int rw = rw_flags & 0x01;
  1781. int may_queue, priv;
  1782. may_queue = elv_may_queue(q, rw_flags);
  1783. if (may_queue == ELV_MQUEUE_NO)
  1784. goto rq_starved;
  1785. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1786. if (rl->count[rw]+1 >= q->nr_requests) {
  1787. ioc = current_io_context(GFP_ATOMIC, q->node);
  1788. /*
  1789. * The queue will fill after this allocation, so set
  1790. * it as full, and mark this process as "batching".
  1791. * This process will be allowed to complete a batch of
  1792. * requests, others will be blocked.
  1793. */
  1794. if (!blk_queue_full(q, rw)) {
  1795. ioc_set_batching(q, ioc);
  1796. blk_set_queue_full(q, rw);
  1797. } else {
  1798. if (may_queue != ELV_MQUEUE_MUST
  1799. && !ioc_batching(q, ioc)) {
  1800. /*
  1801. * The queue is full and the allocating
  1802. * process is not a "batcher", and not
  1803. * exempted by the IO scheduler
  1804. */
  1805. goto out;
  1806. }
  1807. }
  1808. }
  1809. blk_set_queue_congested(q, rw);
  1810. }
  1811. /*
  1812. * Only allow batching queuers to allocate up to 50% over the defined
  1813. * limit of requests, otherwise we could have thousands of requests
  1814. * allocated with any setting of ->nr_requests
  1815. */
  1816. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1817. goto out;
  1818. rl->count[rw]++;
  1819. rl->starved[rw] = 0;
  1820. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1821. if (priv)
  1822. rl->elvpriv++;
  1823. spin_unlock_irq(q->queue_lock);
  1824. rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
  1825. if (unlikely(!rq)) {
  1826. /*
  1827. * Allocation failed presumably due to memory. Undo anything
  1828. * we might have messed up.
  1829. *
  1830. * Allocating task should really be put onto the front of the
  1831. * wait queue, but this is pretty rare.
  1832. */
  1833. spin_lock_irq(q->queue_lock);
  1834. freed_request(q, rw, priv);
  1835. /*
  1836. * in the very unlikely event that allocation failed and no
  1837. * requests for this direction was pending, mark us starved
  1838. * so that freeing of a request in the other direction will
  1839. * notice us. another possible fix would be to split the
  1840. * rq mempool into READ and WRITE
  1841. */
  1842. rq_starved:
  1843. if (unlikely(rl->count[rw] == 0))
  1844. rl->starved[rw] = 1;
  1845. goto out;
  1846. }
  1847. /*
  1848. * ioc may be NULL here, and ioc_batching will be false. That's
  1849. * OK, if the queue is under the request limit then requests need
  1850. * not count toward the nr_batch_requests limit. There will always
  1851. * be some limit enforced by BLK_BATCH_TIME.
  1852. */
  1853. if (ioc_batching(q, ioc))
  1854. ioc->nr_batch_requests--;
  1855. rq_init(q, rq);
  1856. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1857. out:
  1858. return rq;
  1859. }
  1860. /*
  1861. * No available requests for this queue, unplug the device and wait for some
  1862. * requests to become available.
  1863. *
  1864. * Called with q->queue_lock held, and returns with it unlocked.
  1865. */
  1866. static struct request *get_request_wait(struct request_queue *q, int rw_flags,
  1867. struct bio *bio)
  1868. {
  1869. const int rw = rw_flags & 0x01;
  1870. struct request *rq;
  1871. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1872. while (!rq) {
  1873. DEFINE_WAIT(wait);
  1874. struct request_list *rl = &q->rq;
  1875. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1876. TASK_UNINTERRUPTIBLE);
  1877. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1878. if (!rq) {
  1879. struct io_context *ioc;
  1880. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1881. __generic_unplug_device(q);
  1882. spin_unlock_irq(q->queue_lock);
  1883. io_schedule();
  1884. /*
  1885. * After sleeping, we become a "batching" process and
  1886. * will be able to allocate at least one request, and
  1887. * up to a big batch of them for a small period time.
  1888. * See ioc_batching, ioc_set_batching
  1889. */
  1890. ioc = current_io_context(GFP_NOIO, q->node);
  1891. ioc_set_batching(q, ioc);
  1892. spin_lock_irq(q->queue_lock);
  1893. }
  1894. finish_wait(&rl->wait[rw], &wait);
  1895. }
  1896. return rq;
  1897. }
  1898. struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
  1899. {
  1900. struct request *rq;
  1901. BUG_ON(rw != READ && rw != WRITE);
  1902. spin_lock_irq(q->queue_lock);
  1903. if (gfp_mask & __GFP_WAIT) {
  1904. rq = get_request_wait(q, rw, NULL);
  1905. } else {
  1906. rq = get_request(q, rw, NULL, gfp_mask);
  1907. if (!rq)
  1908. spin_unlock_irq(q->queue_lock);
  1909. }
  1910. /* q->queue_lock is unlocked at this point */
  1911. return rq;
  1912. }
  1913. EXPORT_SYMBOL(blk_get_request);
  1914. /**
  1915. * blk_start_queueing - initiate dispatch of requests to device
  1916. * @q: request queue to kick into gear
  1917. *
  1918. * This is basically a helper to remove the need to know whether a queue
  1919. * is plugged or not if someone just wants to initiate dispatch of requests
  1920. * for this queue.
  1921. *
  1922. * The queue lock must be held with interrupts disabled.
  1923. */
  1924. void blk_start_queueing(struct request_queue *q)
  1925. {
  1926. if (!blk_queue_plugged(q))
  1927. q->request_fn(q);
  1928. else
  1929. __generic_unplug_device(q);
  1930. }
  1931. EXPORT_SYMBOL(blk_start_queueing);
  1932. /**
  1933. * blk_requeue_request - put a request back on queue
  1934. * @q: request queue where request should be inserted
  1935. * @rq: request to be inserted
  1936. *
  1937. * Description:
  1938. * Drivers often keep queueing requests until the hardware cannot accept
  1939. * more, when that condition happens we need to put the request back
  1940. * on the queue. Must be called with queue lock held.
  1941. */
  1942. void blk_requeue_request(struct request_queue *q, struct request *rq)
  1943. {
  1944. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1945. if (blk_rq_tagged(rq))
  1946. blk_queue_end_tag(q, rq);
  1947. elv_requeue_request(q, rq);
  1948. }
  1949. EXPORT_SYMBOL(blk_requeue_request);
  1950. /**
  1951. * blk_insert_request - insert a special request in to a request queue
  1952. * @q: request queue where request should be inserted
  1953. * @rq: request to be inserted
  1954. * @at_head: insert request at head or tail of queue
  1955. * @data: private data
  1956. *
  1957. * Description:
  1958. * Many block devices need to execute commands asynchronously, so they don't
  1959. * block the whole kernel from preemption during request execution. This is
  1960. * accomplished normally by inserting aritficial requests tagged as
  1961. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1962. * scheduled for actual execution by the request queue.
  1963. *
  1964. * We have the option of inserting the head or the tail of the queue.
  1965. * Typically we use the tail for new ioctls and so forth. We use the head
  1966. * of the queue for things like a QUEUE_FULL message from a device, or a
  1967. * host that is unable to accept a particular command.
  1968. */
  1969. void blk_insert_request(struct request_queue *q, struct request *rq,
  1970. int at_head, void *data)
  1971. {
  1972. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1973. unsigned long flags;
  1974. /*
  1975. * tell I/O scheduler that this isn't a regular read/write (ie it
  1976. * must not attempt merges on this) and that it acts as a soft
  1977. * barrier
  1978. */
  1979. rq->cmd_type = REQ_TYPE_SPECIAL;
  1980. rq->cmd_flags |= REQ_SOFTBARRIER;
  1981. rq->special = data;
  1982. spin_lock_irqsave(q->queue_lock, flags);
  1983. /*
  1984. * If command is tagged, release the tag
  1985. */
  1986. if (blk_rq_tagged(rq))
  1987. blk_queue_end_tag(q, rq);
  1988. drive_stat_acct(rq, rq->nr_sectors, 1);
  1989. __elv_add_request(q, rq, where, 0);
  1990. blk_start_queueing(q);
  1991. spin_unlock_irqrestore(q->queue_lock, flags);
  1992. }
  1993. EXPORT_SYMBOL(blk_insert_request);
  1994. static int __blk_rq_unmap_user(struct bio *bio)
  1995. {
  1996. int ret = 0;
  1997. if (bio) {
  1998. if (bio_flagged(bio, BIO_USER_MAPPED))
  1999. bio_unmap_user(bio);
  2000. else
  2001. ret = bio_uncopy_user(bio);
  2002. }
  2003. return ret;
  2004. }
  2005. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  2006. struct bio *bio)
  2007. {
  2008. if (!rq->bio)
  2009. blk_rq_bio_prep(q, rq, bio);
  2010. else if (!ll_back_merge_fn(q, rq, bio))
  2011. return -EINVAL;
  2012. else {
  2013. rq->biotail->bi_next = bio;
  2014. rq->biotail = bio;
  2015. rq->data_len += bio->bi_size;
  2016. }
  2017. return 0;
  2018. }
  2019. EXPORT_SYMBOL(blk_rq_append_bio);
  2020. static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
  2021. void __user *ubuf, unsigned int len)
  2022. {
  2023. unsigned long uaddr;
  2024. struct bio *bio, *orig_bio;
  2025. int reading, ret;
  2026. reading = rq_data_dir(rq) == READ;
  2027. /*
  2028. * if alignment requirement is satisfied, map in user pages for
  2029. * direct dma. else, set up kernel bounce buffers
  2030. */
  2031. uaddr = (unsigned long) ubuf;
  2032. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2033. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2034. else
  2035. bio = bio_copy_user(q, uaddr, len, reading);
  2036. if (IS_ERR(bio))
  2037. return PTR_ERR(bio);
  2038. orig_bio = bio;
  2039. blk_queue_bounce(q, &bio);
  2040. /*
  2041. * We link the bounce buffer in and could have to traverse it
  2042. * later so we have to get a ref to prevent it from being freed
  2043. */
  2044. bio_get(bio);
  2045. ret = blk_rq_append_bio(q, rq, bio);
  2046. if (!ret)
  2047. return bio->bi_size;
  2048. /* if it was boucned we must call the end io function */
  2049. bio_endio(bio, 0);
  2050. __blk_rq_unmap_user(orig_bio);
  2051. bio_put(bio);
  2052. return ret;
  2053. }
  2054. /**
  2055. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2056. * @q: request queue where request should be inserted
  2057. * @rq: request structure to fill
  2058. * @ubuf: the user buffer
  2059. * @len: length of user data
  2060. *
  2061. * Description:
  2062. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2063. * a kernel bounce buffer is used.
  2064. *
  2065. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2066. * still in process context.
  2067. *
  2068. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2069. * before being submitted to the device, as pages mapped may be out of
  2070. * reach. It's the callers responsibility to make sure this happens. The
  2071. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2072. * unmapping.
  2073. */
  2074. int blk_rq_map_user(struct request_queue *q, struct request *rq,
  2075. void __user *ubuf, unsigned long len)
  2076. {
  2077. unsigned long bytes_read = 0;
  2078. struct bio *bio = NULL;
  2079. int ret;
  2080. if (len > (q->max_hw_sectors << 9))
  2081. return -EINVAL;
  2082. if (!len || !ubuf)
  2083. return -EINVAL;
  2084. while (bytes_read != len) {
  2085. unsigned long map_len, end, start;
  2086. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2087. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2088. >> PAGE_SHIFT;
  2089. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2090. /*
  2091. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2092. * pages. If this happens we just lower the requested
  2093. * mapping len by a page so that we can fit
  2094. */
  2095. if (end - start > BIO_MAX_PAGES)
  2096. map_len -= PAGE_SIZE;
  2097. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2098. if (ret < 0)
  2099. goto unmap_rq;
  2100. if (!bio)
  2101. bio = rq->bio;
  2102. bytes_read += ret;
  2103. ubuf += ret;
  2104. }
  2105. rq->buffer = rq->data = NULL;
  2106. return 0;
  2107. unmap_rq:
  2108. blk_rq_unmap_user(bio);
  2109. return ret;
  2110. }
  2111. EXPORT_SYMBOL(blk_rq_map_user);
  2112. /**
  2113. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2114. * @q: request queue where request should be inserted
  2115. * @rq: request to map data to
  2116. * @iov: pointer to the iovec
  2117. * @iov_count: number of elements in the iovec
  2118. * @len: I/O byte count
  2119. *
  2120. * Description:
  2121. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2122. * a kernel bounce buffer is used.
  2123. *
  2124. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2125. * still in process context.
  2126. *
  2127. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2128. * before being submitted to the device, as pages mapped may be out of
  2129. * reach. It's the callers responsibility to make sure this happens. The
  2130. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2131. * unmapping.
  2132. */
  2133. int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
  2134. struct sg_iovec *iov, int iov_count, unsigned int len)
  2135. {
  2136. struct bio *bio;
  2137. if (!iov || iov_count <= 0)
  2138. return -EINVAL;
  2139. /* we don't allow misaligned data like bio_map_user() does. If the
  2140. * user is using sg, they're expected to know the alignment constraints
  2141. * and respect them accordingly */
  2142. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2143. if (IS_ERR(bio))
  2144. return PTR_ERR(bio);
  2145. if (bio->bi_size != len) {
  2146. bio_endio(bio, 0);
  2147. bio_unmap_user(bio);
  2148. return -EINVAL;
  2149. }
  2150. bio_get(bio);
  2151. blk_rq_bio_prep(q, rq, bio);
  2152. rq->buffer = rq->data = NULL;
  2153. return 0;
  2154. }
  2155. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2156. /**
  2157. * blk_rq_unmap_user - unmap a request with user data
  2158. * @bio: start of bio list
  2159. *
  2160. * Description:
  2161. * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
  2162. * supply the original rq->bio from the blk_rq_map_user() return, since
  2163. * the io completion may have changed rq->bio.
  2164. */
  2165. int blk_rq_unmap_user(struct bio *bio)
  2166. {
  2167. struct bio *mapped_bio;
  2168. int ret = 0, ret2;
  2169. while (bio) {
  2170. mapped_bio = bio;
  2171. if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
  2172. mapped_bio = bio->bi_private;
  2173. ret2 = __blk_rq_unmap_user(mapped_bio);
  2174. if (ret2 && !ret)
  2175. ret = ret2;
  2176. mapped_bio = bio;
  2177. bio = bio->bi_next;
  2178. bio_put(mapped_bio);
  2179. }
  2180. return ret;
  2181. }
  2182. EXPORT_SYMBOL(blk_rq_unmap_user);
  2183. /**
  2184. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2185. * @q: request queue where request should be inserted
  2186. * @rq: request to fill
  2187. * @kbuf: the kernel buffer
  2188. * @len: length of user data
  2189. * @gfp_mask: memory allocation flags
  2190. */
  2191. int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
  2192. unsigned int len, gfp_t gfp_mask)
  2193. {
  2194. struct bio *bio;
  2195. if (len > (q->max_hw_sectors << 9))
  2196. return -EINVAL;
  2197. if (!len || !kbuf)
  2198. return -EINVAL;
  2199. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2200. if (IS_ERR(bio))
  2201. return PTR_ERR(bio);
  2202. if (rq_data_dir(rq) == WRITE)
  2203. bio->bi_rw |= (1 << BIO_RW);
  2204. blk_rq_bio_prep(q, rq, bio);
  2205. blk_queue_bounce(q, &rq->bio);
  2206. rq->buffer = rq->data = NULL;
  2207. return 0;
  2208. }
  2209. EXPORT_SYMBOL(blk_rq_map_kern);
  2210. /**
  2211. * blk_execute_rq_nowait - insert a request into queue for execution
  2212. * @q: queue to insert the request in
  2213. * @bd_disk: matching gendisk
  2214. * @rq: request to insert
  2215. * @at_head: insert request at head or tail of queue
  2216. * @done: I/O completion handler
  2217. *
  2218. * Description:
  2219. * Insert a fully prepared request at the back of the io scheduler queue
  2220. * for execution. Don't wait for completion.
  2221. */
  2222. void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
  2223. struct request *rq, int at_head,
  2224. rq_end_io_fn *done)
  2225. {
  2226. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2227. rq->rq_disk = bd_disk;
  2228. rq->cmd_flags |= REQ_NOMERGE;
  2229. rq->end_io = done;
  2230. WARN_ON(irqs_disabled());
  2231. spin_lock_irq(q->queue_lock);
  2232. __elv_add_request(q, rq, where, 1);
  2233. __generic_unplug_device(q);
  2234. spin_unlock_irq(q->queue_lock);
  2235. }
  2236. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2237. /**
  2238. * blk_execute_rq - insert a request into queue for execution
  2239. * @q: queue to insert the request in
  2240. * @bd_disk: matching gendisk
  2241. * @rq: request to insert
  2242. * @at_head: insert request at head or tail of queue
  2243. *
  2244. * Description:
  2245. * Insert a fully prepared request at the back of the io scheduler queue
  2246. * for execution and wait for completion.
  2247. */
  2248. int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
  2249. struct request *rq, int at_head)
  2250. {
  2251. DECLARE_COMPLETION_ONSTACK(wait);
  2252. char sense[SCSI_SENSE_BUFFERSIZE];
  2253. int err = 0;
  2254. /*
  2255. * we need an extra reference to the request, so we can look at
  2256. * it after io completion
  2257. */
  2258. rq->ref_count++;
  2259. if (!rq->sense) {
  2260. memset(sense, 0, sizeof(sense));
  2261. rq->sense = sense;
  2262. rq->sense_len = 0;
  2263. }
  2264. rq->end_io_data = &wait;
  2265. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2266. wait_for_completion(&wait);
  2267. if (rq->errors)
  2268. err = -EIO;
  2269. return err;
  2270. }
  2271. EXPORT_SYMBOL(blk_execute_rq);
  2272. static void bio_end_empty_barrier(struct bio *bio, int err)
  2273. {
  2274. if (err)
  2275. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2276. complete(bio->bi_private);
  2277. }
  2278. /**
  2279. * blkdev_issue_flush - queue a flush
  2280. * @bdev: blockdev to issue flush for
  2281. * @error_sector: error sector
  2282. *
  2283. * Description:
  2284. * Issue a flush for the block device in question. Caller can supply
  2285. * room for storing the error offset in case of a flush error, if they
  2286. * wish to. Caller must run wait_for_completion() on its own.
  2287. */
  2288. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2289. {
  2290. DECLARE_COMPLETION_ONSTACK(wait);
  2291. struct request_queue *q;
  2292. struct bio *bio;
  2293. int ret;
  2294. if (bdev->bd_disk == NULL)
  2295. return -ENXIO;
  2296. q = bdev_get_queue(bdev);
  2297. if (!q)
  2298. return -ENXIO;
  2299. bio = bio_alloc(GFP_KERNEL, 0);
  2300. if (!bio)
  2301. return -ENOMEM;
  2302. bio->bi_end_io = bio_end_empty_barrier;
  2303. bio->bi_private = &wait;
  2304. bio->bi_bdev = bdev;
  2305. submit_bio(1 << BIO_RW_BARRIER, bio);
  2306. wait_for_completion(&wait);
  2307. /*
  2308. * The driver must store the error location in ->bi_sector, if
  2309. * it supports it. For non-stacked drivers, this should be copied
  2310. * from rq->sector.
  2311. */
  2312. if (error_sector)
  2313. *error_sector = bio->bi_sector;
  2314. ret = 0;
  2315. if (!bio_flagged(bio, BIO_UPTODATE))
  2316. ret = -EIO;
  2317. bio_put(bio);
  2318. return ret;
  2319. }
  2320. EXPORT_SYMBOL(blkdev_issue_flush);
  2321. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2322. {
  2323. int rw = rq_data_dir(rq);
  2324. if (!blk_fs_request(rq) || !rq->rq_disk)
  2325. return;
  2326. if (!new_io) {
  2327. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2328. } else {
  2329. disk_round_stats(rq->rq_disk);
  2330. rq->rq_disk->in_flight++;
  2331. }
  2332. }
  2333. /*
  2334. * add-request adds a request to the linked list.
  2335. * queue lock is held and interrupts disabled, as we muck with the
  2336. * request queue list.
  2337. */
  2338. static inline void add_request(struct request_queue * q, struct request * req)
  2339. {
  2340. drive_stat_acct(req, req->nr_sectors, 1);
  2341. /*
  2342. * elevator indicated where it wants this request to be
  2343. * inserted at elevator_merge time
  2344. */
  2345. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2346. }
  2347. /*
  2348. * disk_round_stats() - Round off the performance stats on a struct
  2349. * disk_stats.
  2350. *
  2351. * The average IO queue length and utilisation statistics are maintained
  2352. * by observing the current state of the queue length and the amount of
  2353. * time it has been in this state for.
  2354. *
  2355. * Normally, that accounting is done on IO completion, but that can result
  2356. * in more than a second's worth of IO being accounted for within any one
  2357. * second, leading to >100% utilisation. To deal with that, we call this
  2358. * function to do a round-off before returning the results when reading
  2359. * /proc/diskstats. This accounts immediately for all queue usage up to
  2360. * the current jiffies and restarts the counters again.
  2361. */
  2362. void disk_round_stats(struct gendisk *disk)
  2363. {
  2364. unsigned long now = jiffies;
  2365. if (now == disk->stamp)
  2366. return;
  2367. if (disk->in_flight) {
  2368. __disk_stat_add(disk, time_in_queue,
  2369. disk->in_flight * (now - disk->stamp));
  2370. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2371. }
  2372. disk->stamp = now;
  2373. }
  2374. EXPORT_SYMBOL_GPL(disk_round_stats);
  2375. /*
  2376. * queue lock must be held
  2377. */
  2378. void __blk_put_request(struct request_queue *q, struct request *req)
  2379. {
  2380. if (unlikely(!q))
  2381. return;
  2382. if (unlikely(--req->ref_count))
  2383. return;
  2384. elv_completed_request(q, req);
  2385. /*
  2386. * Request may not have originated from ll_rw_blk. if not,
  2387. * it didn't come out of our reserved rq pools
  2388. */
  2389. if (req->cmd_flags & REQ_ALLOCED) {
  2390. int rw = rq_data_dir(req);
  2391. int priv = req->cmd_flags & REQ_ELVPRIV;
  2392. BUG_ON(!list_empty(&req->queuelist));
  2393. BUG_ON(!hlist_unhashed(&req->hash));
  2394. blk_free_request(q, req);
  2395. freed_request(q, rw, priv);
  2396. }
  2397. }
  2398. EXPORT_SYMBOL_GPL(__blk_put_request);
  2399. void blk_put_request(struct request *req)
  2400. {
  2401. unsigned long flags;
  2402. struct request_queue *q = req->q;
  2403. /*
  2404. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2405. * following if (q) test.
  2406. */
  2407. if (q) {
  2408. spin_lock_irqsave(q->queue_lock, flags);
  2409. __blk_put_request(q, req);
  2410. spin_unlock_irqrestore(q->queue_lock, flags);
  2411. }
  2412. }
  2413. EXPORT_SYMBOL(blk_put_request);
  2414. /**
  2415. * blk_end_sync_rq - executes a completion event on a request
  2416. * @rq: request to complete
  2417. * @error: end io status of the request
  2418. */
  2419. void blk_end_sync_rq(struct request *rq, int error)
  2420. {
  2421. struct completion *waiting = rq->end_io_data;
  2422. rq->end_io_data = NULL;
  2423. __blk_put_request(rq->q, rq);
  2424. /*
  2425. * complete last, if this is a stack request the process (and thus
  2426. * the rq pointer) could be invalid right after this complete()
  2427. */
  2428. complete(waiting);
  2429. }
  2430. EXPORT_SYMBOL(blk_end_sync_rq);
  2431. /*
  2432. * Has to be called with the request spinlock acquired
  2433. */
  2434. static int attempt_merge(struct request_queue *q, struct request *req,
  2435. struct request *next)
  2436. {
  2437. if (!rq_mergeable(req) || !rq_mergeable(next))
  2438. return 0;
  2439. /*
  2440. * not contiguous
  2441. */
  2442. if (req->sector + req->nr_sectors != next->sector)
  2443. return 0;
  2444. if (rq_data_dir(req) != rq_data_dir(next)
  2445. || req->rq_disk != next->rq_disk
  2446. || next->special)
  2447. return 0;
  2448. /*
  2449. * If we are allowed to merge, then append bio list
  2450. * from next to rq and release next. merge_requests_fn
  2451. * will have updated segment counts, update sector
  2452. * counts here.
  2453. */
  2454. if (!ll_merge_requests_fn(q, req, next))
  2455. return 0;
  2456. /*
  2457. * At this point we have either done a back merge
  2458. * or front merge. We need the smaller start_time of
  2459. * the merged requests to be the current request
  2460. * for accounting purposes.
  2461. */
  2462. if (time_after(req->start_time, next->start_time))
  2463. req->start_time = next->start_time;
  2464. req->biotail->bi_next = next->bio;
  2465. req->biotail = next->biotail;
  2466. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2467. elv_merge_requests(q, req, next);
  2468. if (req->rq_disk) {
  2469. disk_round_stats(req->rq_disk);
  2470. req->rq_disk->in_flight--;
  2471. }
  2472. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2473. __blk_put_request(q, next);
  2474. return 1;
  2475. }
  2476. static inline int attempt_back_merge(struct request_queue *q,
  2477. struct request *rq)
  2478. {
  2479. struct request *next = elv_latter_request(q, rq);
  2480. if (next)
  2481. return attempt_merge(q, rq, next);
  2482. return 0;
  2483. }
  2484. static inline int attempt_front_merge(struct request_queue *q,
  2485. struct request *rq)
  2486. {
  2487. struct request *prev = elv_former_request(q, rq);
  2488. if (prev)
  2489. return attempt_merge(q, prev, rq);
  2490. return 0;
  2491. }
  2492. static void init_request_from_bio(struct request *req, struct bio *bio)
  2493. {
  2494. req->cmd_type = REQ_TYPE_FS;
  2495. /*
  2496. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2497. */
  2498. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2499. req->cmd_flags |= REQ_FAILFAST;
  2500. /*
  2501. * REQ_BARRIER implies no merging, but lets make it explicit
  2502. */
  2503. if (unlikely(bio_barrier(bio)))
  2504. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2505. if (bio_sync(bio))
  2506. req->cmd_flags |= REQ_RW_SYNC;
  2507. if (bio_rw_meta(bio))
  2508. req->cmd_flags |= REQ_RW_META;
  2509. req->errors = 0;
  2510. req->hard_sector = req->sector = bio->bi_sector;
  2511. req->ioprio = bio_prio(bio);
  2512. req->start_time = jiffies;
  2513. blk_rq_bio_prep(req->q, req, bio);
  2514. }
  2515. static int __make_request(struct request_queue *q, struct bio *bio)
  2516. {
  2517. struct request *req;
  2518. int el_ret, nr_sectors, barrier, err;
  2519. const unsigned short prio = bio_prio(bio);
  2520. const int sync = bio_sync(bio);
  2521. int rw_flags;
  2522. nr_sectors = bio_sectors(bio);
  2523. /*
  2524. * low level driver can indicate that it wants pages above a
  2525. * certain limit bounced to low memory (ie for highmem, or even
  2526. * ISA dma in theory)
  2527. */
  2528. blk_queue_bounce(q, &bio);
  2529. barrier = bio_barrier(bio);
  2530. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2531. err = -EOPNOTSUPP;
  2532. goto end_io;
  2533. }
  2534. spin_lock_irq(q->queue_lock);
  2535. if (unlikely(barrier) || elv_queue_empty(q))
  2536. goto get_rq;
  2537. el_ret = elv_merge(q, &req, bio);
  2538. switch (el_ret) {
  2539. case ELEVATOR_BACK_MERGE:
  2540. BUG_ON(!rq_mergeable(req));
  2541. if (!ll_back_merge_fn(q, req, bio))
  2542. break;
  2543. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2544. req->biotail->bi_next = bio;
  2545. req->biotail = bio;
  2546. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2547. req->ioprio = ioprio_best(req->ioprio, prio);
  2548. drive_stat_acct(req, nr_sectors, 0);
  2549. if (!attempt_back_merge(q, req))
  2550. elv_merged_request(q, req, el_ret);
  2551. goto out;
  2552. case ELEVATOR_FRONT_MERGE:
  2553. BUG_ON(!rq_mergeable(req));
  2554. if (!ll_front_merge_fn(q, req, bio))
  2555. break;
  2556. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2557. bio->bi_next = req->bio;
  2558. req->bio = bio;
  2559. /*
  2560. * may not be valid. if the low level driver said
  2561. * it didn't need a bounce buffer then it better
  2562. * not touch req->buffer either...
  2563. */
  2564. req->buffer = bio_data(bio);
  2565. req->current_nr_sectors = bio_cur_sectors(bio);
  2566. req->hard_cur_sectors = req->current_nr_sectors;
  2567. req->sector = req->hard_sector = bio->bi_sector;
  2568. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2569. req->ioprio = ioprio_best(req->ioprio, prio);
  2570. drive_stat_acct(req, nr_sectors, 0);
  2571. if (!attempt_front_merge(q, req))
  2572. elv_merged_request(q, req, el_ret);
  2573. goto out;
  2574. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2575. default:
  2576. ;
  2577. }
  2578. get_rq:
  2579. /*
  2580. * This sync check and mask will be re-done in init_request_from_bio(),
  2581. * but we need to set it earlier to expose the sync flag to the
  2582. * rq allocator and io schedulers.
  2583. */
  2584. rw_flags = bio_data_dir(bio);
  2585. if (sync)
  2586. rw_flags |= REQ_RW_SYNC;
  2587. /*
  2588. * Grab a free request. This is might sleep but can not fail.
  2589. * Returns with the queue unlocked.
  2590. */
  2591. req = get_request_wait(q, rw_flags, bio);
  2592. /*
  2593. * After dropping the lock and possibly sleeping here, our request
  2594. * may now be mergeable after it had proven unmergeable (above).
  2595. * We don't worry about that case for efficiency. It won't happen
  2596. * often, and the elevators are able to handle it.
  2597. */
  2598. init_request_from_bio(req, bio);
  2599. spin_lock_irq(q->queue_lock);
  2600. if (elv_queue_empty(q))
  2601. blk_plug_device(q);
  2602. add_request(q, req);
  2603. out:
  2604. if (sync)
  2605. __generic_unplug_device(q);
  2606. spin_unlock_irq(q->queue_lock);
  2607. return 0;
  2608. end_io:
  2609. bio_endio(bio, err);
  2610. return 0;
  2611. }
  2612. /*
  2613. * If bio->bi_dev is a partition, remap the location
  2614. */
  2615. static inline void blk_partition_remap(struct bio *bio)
  2616. {
  2617. struct block_device *bdev = bio->bi_bdev;
  2618. if (bio_sectors(bio) && bdev != bdev->bd_contains) {
  2619. struct hd_struct *p = bdev->bd_part;
  2620. const int rw = bio_data_dir(bio);
  2621. p->sectors[rw] += bio_sectors(bio);
  2622. p->ios[rw]++;
  2623. bio->bi_sector += p->start_sect;
  2624. bio->bi_bdev = bdev->bd_contains;
  2625. blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
  2626. bdev->bd_dev, bio->bi_sector,
  2627. bio->bi_sector - p->start_sect);
  2628. }
  2629. }
  2630. static void handle_bad_sector(struct bio *bio)
  2631. {
  2632. char b[BDEVNAME_SIZE];
  2633. printk(KERN_INFO "attempt to access beyond end of device\n");
  2634. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2635. bdevname(bio->bi_bdev, b),
  2636. bio->bi_rw,
  2637. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2638. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2639. set_bit(BIO_EOF, &bio->bi_flags);
  2640. }
  2641. #ifdef CONFIG_FAIL_MAKE_REQUEST
  2642. static DECLARE_FAULT_ATTR(fail_make_request);
  2643. static int __init setup_fail_make_request(char *str)
  2644. {
  2645. return setup_fault_attr(&fail_make_request, str);
  2646. }
  2647. __setup("fail_make_request=", setup_fail_make_request);
  2648. static int should_fail_request(struct bio *bio)
  2649. {
  2650. if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
  2651. (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
  2652. return should_fail(&fail_make_request, bio->bi_size);
  2653. return 0;
  2654. }
  2655. static int __init fail_make_request_debugfs(void)
  2656. {
  2657. return init_fault_attr_dentries(&fail_make_request,
  2658. "fail_make_request");
  2659. }
  2660. late_initcall(fail_make_request_debugfs);
  2661. #else /* CONFIG_FAIL_MAKE_REQUEST */
  2662. static inline int should_fail_request(struct bio *bio)
  2663. {
  2664. return 0;
  2665. }
  2666. #endif /* CONFIG_FAIL_MAKE_REQUEST */
  2667. /*
  2668. * Check whether this bio extends beyond the end of the device.
  2669. */
  2670. static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
  2671. {
  2672. sector_t maxsector;
  2673. if (!nr_sectors)
  2674. return 0;
  2675. /* Test device or partition size, when known. */
  2676. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2677. if (maxsector) {
  2678. sector_t sector = bio->bi_sector;
  2679. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2680. /*
  2681. * This may well happen - the kernel calls bread()
  2682. * without checking the size of the device, e.g., when
  2683. * mounting a device.
  2684. */
  2685. handle_bad_sector(bio);
  2686. return 1;
  2687. }
  2688. }
  2689. return 0;
  2690. }
  2691. /**
  2692. * generic_make_request: hand a buffer to its device driver for I/O
  2693. * @bio: The bio describing the location in memory and on the device.
  2694. *
  2695. * generic_make_request() is used to make I/O requests of block
  2696. * devices. It is passed a &struct bio, which describes the I/O that needs
  2697. * to be done.
  2698. *
  2699. * generic_make_request() does not return any status. The
  2700. * success/failure status of the request, along with notification of
  2701. * completion, is delivered asynchronously through the bio->bi_end_io
  2702. * function described (one day) else where.
  2703. *
  2704. * The caller of generic_make_request must make sure that bi_io_vec
  2705. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2706. * set to describe the device address, and the
  2707. * bi_end_io and optionally bi_private are set to describe how
  2708. * completion notification should be signaled.
  2709. *
  2710. * generic_make_request and the drivers it calls may use bi_next if this
  2711. * bio happens to be merged with someone else, and may change bi_dev and
  2712. * bi_sector for remaps as it sees fit. So the values of these fields
  2713. * should NOT be depended on after the call to generic_make_request.
  2714. */
  2715. static inline void __generic_make_request(struct bio *bio)
  2716. {
  2717. struct request_queue *q;
  2718. sector_t old_sector;
  2719. int ret, nr_sectors = bio_sectors(bio);
  2720. dev_t old_dev;
  2721. might_sleep();
  2722. if (bio_check_eod(bio, nr_sectors))
  2723. goto end_io;
  2724. /*
  2725. * Resolve the mapping until finished. (drivers are
  2726. * still free to implement/resolve their own stacking
  2727. * by explicitly returning 0)
  2728. *
  2729. * NOTE: we don't repeat the blk_size check for each new device.
  2730. * Stacking drivers are expected to know what they are doing.
  2731. */
  2732. old_sector = -1;
  2733. old_dev = 0;
  2734. do {
  2735. char b[BDEVNAME_SIZE];
  2736. q = bdev_get_queue(bio->bi_bdev);
  2737. if (!q) {
  2738. printk(KERN_ERR
  2739. "generic_make_request: Trying to access "
  2740. "nonexistent block-device %s (%Lu)\n",
  2741. bdevname(bio->bi_bdev, b),
  2742. (long long) bio->bi_sector);
  2743. end_io:
  2744. bio_endio(bio, -EIO);
  2745. break;
  2746. }
  2747. if (unlikely(nr_sectors > q->max_hw_sectors)) {
  2748. printk("bio too big device %s (%u > %u)\n",
  2749. bdevname(bio->bi_bdev, b),
  2750. bio_sectors(bio),
  2751. q->max_hw_sectors);
  2752. goto end_io;
  2753. }
  2754. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2755. goto end_io;
  2756. if (should_fail_request(bio))
  2757. goto end_io;
  2758. /*
  2759. * If this device has partitions, remap block n
  2760. * of partition p to block n+start(p) of the disk.
  2761. */
  2762. blk_partition_remap(bio);
  2763. if (old_sector != -1)
  2764. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2765. old_sector);
  2766. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2767. old_sector = bio->bi_sector;
  2768. old_dev = bio->bi_bdev->bd_dev;
  2769. if (bio_check_eod(bio, nr_sectors))
  2770. goto end_io;
  2771. ret = q->make_request_fn(q, bio);
  2772. } while (ret);
  2773. }
  2774. /*
  2775. * We only want one ->make_request_fn to be active at a time,
  2776. * else stack usage with stacked devices could be a problem.
  2777. * So use current->bio_{list,tail} to keep a list of requests
  2778. * submited by a make_request_fn function.
  2779. * current->bio_tail is also used as a flag to say if
  2780. * generic_make_request is currently active in this task or not.
  2781. * If it is NULL, then no make_request is active. If it is non-NULL,
  2782. * then a make_request is active, and new requests should be added
  2783. * at the tail
  2784. */
  2785. void generic_make_request(struct bio *bio)
  2786. {
  2787. if (current->bio_tail) {
  2788. /* make_request is active */
  2789. *(current->bio_tail) = bio;
  2790. bio->bi_next = NULL;
  2791. current->bio_tail = &bio->bi_next;
  2792. return;
  2793. }
  2794. /* following loop may be a bit non-obvious, and so deserves some
  2795. * explanation.
  2796. * Before entering the loop, bio->bi_next is NULL (as all callers
  2797. * ensure that) so we have a list with a single bio.
  2798. * We pretend that we have just taken it off a longer list, so
  2799. * we assign bio_list to the next (which is NULL) and bio_tail
  2800. * to &bio_list, thus initialising the bio_list of new bios to be
  2801. * added. __generic_make_request may indeed add some more bios
  2802. * through a recursive call to generic_make_request. If it
  2803. * did, we find a non-NULL value in bio_list and re-enter the loop
  2804. * from the top. In this case we really did just take the bio
  2805. * of the top of the list (no pretending) and so fixup bio_list and
  2806. * bio_tail or bi_next, and call into __generic_make_request again.
  2807. *
  2808. * The loop was structured like this to make only one call to
  2809. * __generic_make_request (which is important as it is large and
  2810. * inlined) and to keep the structure simple.
  2811. */
  2812. BUG_ON(bio->bi_next);
  2813. do {
  2814. current->bio_list = bio->bi_next;
  2815. if (bio->bi_next == NULL)
  2816. current->bio_tail = &current->bio_list;
  2817. else
  2818. bio->bi_next = NULL;
  2819. __generic_make_request(bio);
  2820. bio = current->bio_list;
  2821. } while (bio);
  2822. current->bio_tail = NULL; /* deactivate */
  2823. }
  2824. EXPORT_SYMBOL(generic_make_request);
  2825. /**
  2826. * submit_bio: submit a bio to the block device layer for I/O
  2827. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2828. * @bio: The &struct bio which describes the I/O
  2829. *
  2830. * submit_bio() is very similar in purpose to generic_make_request(), and
  2831. * uses that function to do most of the work. Both are fairly rough
  2832. * interfaces, @bio must be presetup and ready for I/O.
  2833. *
  2834. */
  2835. void submit_bio(int rw, struct bio *bio)
  2836. {
  2837. int count = bio_sectors(bio);
  2838. bio->bi_rw |= rw;
  2839. /*
  2840. * If it's a regular read/write or a barrier with data attached,
  2841. * go through the normal accounting stuff before submission.
  2842. */
  2843. if (!bio_empty_barrier(bio)) {
  2844. BIO_BUG_ON(!bio->bi_size);
  2845. BIO_BUG_ON(!bio->bi_io_vec);
  2846. if (rw & WRITE) {
  2847. count_vm_events(PGPGOUT, count);
  2848. } else {
  2849. task_io_account_read(bio->bi_size);
  2850. count_vm_events(PGPGIN, count);
  2851. }
  2852. if (unlikely(block_dump)) {
  2853. char b[BDEVNAME_SIZE];
  2854. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2855. current->comm, task_pid_nr(current),
  2856. (rw & WRITE) ? "WRITE" : "READ",
  2857. (unsigned long long)bio->bi_sector,
  2858. bdevname(bio->bi_bdev,b));
  2859. }
  2860. }
  2861. generic_make_request(bio);
  2862. }
  2863. EXPORT_SYMBOL(submit_bio);
  2864. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2865. {
  2866. if (blk_fs_request(rq)) {
  2867. rq->hard_sector += nsect;
  2868. rq->hard_nr_sectors -= nsect;
  2869. /*
  2870. * Move the I/O submission pointers ahead if required.
  2871. */
  2872. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2873. (rq->sector <= rq->hard_sector)) {
  2874. rq->sector = rq->hard_sector;
  2875. rq->nr_sectors = rq->hard_nr_sectors;
  2876. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2877. rq->current_nr_sectors = rq->hard_cur_sectors;
  2878. rq->buffer = bio_data(rq->bio);
  2879. }
  2880. /*
  2881. * if total number of sectors is less than the first segment
  2882. * size, something has gone terribly wrong
  2883. */
  2884. if (rq->nr_sectors < rq->current_nr_sectors) {
  2885. printk("blk: request botched\n");
  2886. rq->nr_sectors = rq->current_nr_sectors;
  2887. }
  2888. }
  2889. }
  2890. static int __end_that_request_first(struct request *req, int uptodate,
  2891. int nr_bytes)
  2892. {
  2893. int total_bytes, bio_nbytes, error, next_idx = 0;
  2894. struct bio *bio;
  2895. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2896. /*
  2897. * extend uptodate bool to allow < 0 value to be direct io error
  2898. */
  2899. error = 0;
  2900. if (end_io_error(uptodate))
  2901. error = !uptodate ? -EIO : uptodate;
  2902. /*
  2903. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2904. * sense key with us all the way through
  2905. */
  2906. if (!blk_pc_request(req))
  2907. req->errors = 0;
  2908. if (!uptodate) {
  2909. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2910. printk("end_request: I/O error, dev %s, sector %llu\n",
  2911. req->rq_disk ? req->rq_disk->disk_name : "?",
  2912. (unsigned long long)req->sector);
  2913. }
  2914. if (blk_fs_request(req) && req->rq_disk) {
  2915. const int rw = rq_data_dir(req);
  2916. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2917. }
  2918. total_bytes = bio_nbytes = 0;
  2919. while ((bio = req->bio) != NULL) {
  2920. int nbytes;
  2921. /*
  2922. * For an empty barrier request, the low level driver must
  2923. * store a potential error location in ->sector. We pass
  2924. * that back up in ->bi_sector.
  2925. */
  2926. if (blk_empty_barrier(req))
  2927. bio->bi_sector = req->sector;
  2928. if (nr_bytes >= bio->bi_size) {
  2929. req->bio = bio->bi_next;
  2930. nbytes = bio->bi_size;
  2931. req_bio_endio(req, bio, nbytes, error);
  2932. next_idx = 0;
  2933. bio_nbytes = 0;
  2934. } else {
  2935. int idx = bio->bi_idx + next_idx;
  2936. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2937. blk_dump_rq_flags(req, "__end_that");
  2938. printk("%s: bio idx %d >= vcnt %d\n",
  2939. __FUNCTION__,
  2940. bio->bi_idx, bio->bi_vcnt);
  2941. break;
  2942. }
  2943. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2944. BIO_BUG_ON(nbytes > bio->bi_size);
  2945. /*
  2946. * not a complete bvec done
  2947. */
  2948. if (unlikely(nbytes > nr_bytes)) {
  2949. bio_nbytes += nr_bytes;
  2950. total_bytes += nr_bytes;
  2951. break;
  2952. }
  2953. /*
  2954. * advance to the next vector
  2955. */
  2956. next_idx++;
  2957. bio_nbytes += nbytes;
  2958. }
  2959. total_bytes += nbytes;
  2960. nr_bytes -= nbytes;
  2961. if ((bio = req->bio)) {
  2962. /*
  2963. * end more in this run, or just return 'not-done'
  2964. */
  2965. if (unlikely(nr_bytes <= 0))
  2966. break;
  2967. }
  2968. }
  2969. /*
  2970. * completely done
  2971. */
  2972. if (!req->bio)
  2973. return 0;
  2974. /*
  2975. * if the request wasn't completed, update state
  2976. */
  2977. if (bio_nbytes) {
  2978. req_bio_endio(req, bio, bio_nbytes, error);
  2979. bio->bi_idx += next_idx;
  2980. bio_iovec(bio)->bv_offset += nr_bytes;
  2981. bio_iovec(bio)->bv_len -= nr_bytes;
  2982. }
  2983. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2984. blk_recalc_rq_segments(req);
  2985. return 1;
  2986. }
  2987. /**
  2988. * end_that_request_first - end I/O on a request
  2989. * @req: the request being processed
  2990. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2991. * @nr_sectors: number of sectors to end I/O on
  2992. *
  2993. * Description:
  2994. * Ends I/O on a number of sectors attached to @req, and sets it up
  2995. * for the next range of segments (if any) in the cluster.
  2996. *
  2997. * Return:
  2998. * 0 - we are done with this request, call end_that_request_last()
  2999. * 1 - still buffers pending for this request
  3000. **/
  3001. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  3002. {
  3003. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  3004. }
  3005. EXPORT_SYMBOL(end_that_request_first);
  3006. /**
  3007. * end_that_request_chunk - end I/O on a request
  3008. * @req: the request being processed
  3009. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  3010. * @nr_bytes: number of bytes to complete
  3011. *
  3012. * Description:
  3013. * Ends I/O on a number of bytes attached to @req, and sets it up
  3014. * for the next range of segments (if any). Like end_that_request_first(),
  3015. * but deals with bytes instead of sectors.
  3016. *
  3017. * Return:
  3018. * 0 - we are done with this request, call end_that_request_last()
  3019. * 1 - still buffers pending for this request
  3020. **/
  3021. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  3022. {
  3023. return __end_that_request_first(req, uptodate, nr_bytes);
  3024. }
  3025. EXPORT_SYMBOL(end_that_request_chunk);
  3026. /*
  3027. * splice the completion data to a local structure and hand off to
  3028. * process_completion_queue() to complete the requests
  3029. */
  3030. static void blk_done_softirq(struct softirq_action *h)
  3031. {
  3032. struct list_head *cpu_list, local_list;
  3033. local_irq_disable();
  3034. cpu_list = &__get_cpu_var(blk_cpu_done);
  3035. list_replace_init(cpu_list, &local_list);
  3036. local_irq_enable();
  3037. while (!list_empty(&local_list)) {
  3038. struct request *rq = list_entry(local_list.next, struct request, donelist);
  3039. list_del_init(&rq->donelist);
  3040. rq->q->softirq_done_fn(rq);
  3041. }
  3042. }
  3043. static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
  3044. void *hcpu)
  3045. {
  3046. /*
  3047. * If a CPU goes away, splice its entries to the current CPU
  3048. * and trigger a run of the softirq
  3049. */
  3050. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3051. int cpu = (unsigned long) hcpu;
  3052. local_irq_disable();
  3053. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  3054. &__get_cpu_var(blk_cpu_done));
  3055. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3056. local_irq_enable();
  3057. }
  3058. return NOTIFY_OK;
  3059. }
  3060. static struct notifier_block blk_cpu_notifier __cpuinitdata = {
  3061. .notifier_call = blk_cpu_notify,
  3062. };
  3063. /**
  3064. * blk_complete_request - end I/O on a request
  3065. * @req: the request being processed
  3066. *
  3067. * Description:
  3068. * Ends all I/O on a request. It does not handle partial completions,
  3069. * unless the driver actually implements this in its completion callback
  3070. * through requeueing. The actual completion happens out-of-order,
  3071. * through a softirq handler. The user must have registered a completion
  3072. * callback through blk_queue_softirq_done().
  3073. **/
  3074. void blk_complete_request(struct request *req)
  3075. {
  3076. struct list_head *cpu_list;
  3077. unsigned long flags;
  3078. BUG_ON(!req->q->softirq_done_fn);
  3079. local_irq_save(flags);
  3080. cpu_list = &__get_cpu_var(blk_cpu_done);
  3081. list_add_tail(&req->donelist, cpu_list);
  3082. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3083. local_irq_restore(flags);
  3084. }
  3085. EXPORT_SYMBOL(blk_complete_request);
  3086. /*
  3087. * queue lock must be held
  3088. */
  3089. void end_that_request_last(struct request *req, int uptodate)
  3090. {
  3091. struct gendisk *disk = req->rq_disk;
  3092. int error;
  3093. /*
  3094. * extend uptodate bool to allow < 0 value to be direct io error
  3095. */
  3096. error = 0;
  3097. if (end_io_error(uptodate))
  3098. error = !uptodate ? -EIO : uptodate;
  3099. if (unlikely(laptop_mode) && blk_fs_request(req))
  3100. laptop_io_completion();
  3101. /*
  3102. * Account IO completion. bar_rq isn't accounted as a normal
  3103. * IO on queueing nor completion. Accounting the containing
  3104. * request is enough.
  3105. */
  3106. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  3107. unsigned long duration = jiffies - req->start_time;
  3108. const int rw = rq_data_dir(req);
  3109. __disk_stat_inc(disk, ios[rw]);
  3110. __disk_stat_add(disk, ticks[rw], duration);
  3111. disk_round_stats(disk);
  3112. disk->in_flight--;
  3113. }
  3114. if (req->end_io)
  3115. req->end_io(req, error);
  3116. else
  3117. __blk_put_request(req->q, req);
  3118. }
  3119. EXPORT_SYMBOL(end_that_request_last);
  3120. static inline void __end_request(struct request *rq, int uptodate,
  3121. unsigned int nr_bytes, int dequeue)
  3122. {
  3123. if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
  3124. if (dequeue)
  3125. blkdev_dequeue_request(rq);
  3126. add_disk_randomness(rq->rq_disk);
  3127. end_that_request_last(rq, uptodate);
  3128. }
  3129. }
  3130. static unsigned int rq_byte_size(struct request *rq)
  3131. {
  3132. if (blk_fs_request(rq))
  3133. return rq->hard_nr_sectors << 9;
  3134. return rq->data_len;
  3135. }
  3136. /**
  3137. * end_queued_request - end all I/O on a queued request
  3138. * @rq: the request being processed
  3139. * @uptodate: error value or 0/1 uptodate flag
  3140. *
  3141. * Description:
  3142. * Ends all I/O on a request, and removes it from the block layer queues.
  3143. * Not suitable for normal IO completion, unless the driver still has
  3144. * the request attached to the block layer.
  3145. *
  3146. **/
  3147. void end_queued_request(struct request *rq, int uptodate)
  3148. {
  3149. __end_request(rq, uptodate, rq_byte_size(rq), 1);
  3150. }
  3151. EXPORT_SYMBOL(end_queued_request);
  3152. /**
  3153. * end_dequeued_request - end all I/O on a dequeued request
  3154. * @rq: the request being processed
  3155. * @uptodate: error value or 0/1 uptodate flag
  3156. *
  3157. * Description:
  3158. * Ends all I/O on a request. The request must already have been
  3159. * dequeued using blkdev_dequeue_request(), as is normally the case
  3160. * for most drivers.
  3161. *
  3162. **/
  3163. void end_dequeued_request(struct request *rq, int uptodate)
  3164. {
  3165. __end_request(rq, uptodate, rq_byte_size(rq), 0);
  3166. }
  3167. EXPORT_SYMBOL(end_dequeued_request);
  3168. /**
  3169. * end_request - end I/O on the current segment of the request
  3170. * @req: the request being processed
  3171. * @uptodate: error value or 0/1 uptodate flag
  3172. *
  3173. * Description:
  3174. * Ends I/O on the current segment of a request. If that is the only
  3175. * remaining segment, the request is also completed and freed.
  3176. *
  3177. * This is a remnant of how older block drivers handled IO completions.
  3178. * Modern drivers typically end IO on the full request in one go, unless
  3179. * they have a residual value to account for. For that case this function
  3180. * isn't really useful, unless the residual just happens to be the
  3181. * full current segment. In other words, don't use this function in new
  3182. * code. Either use end_request_completely(), or the
  3183. * end_that_request_chunk() (along with end_that_request_last()) for
  3184. * partial completions.
  3185. *
  3186. **/
  3187. void end_request(struct request *req, int uptodate)
  3188. {
  3189. __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
  3190. }
  3191. EXPORT_SYMBOL(end_request);
  3192. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  3193. struct bio *bio)
  3194. {
  3195. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3196. rq->cmd_flags |= (bio->bi_rw & 3);
  3197. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3198. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3199. rq->current_nr_sectors = bio_cur_sectors(bio);
  3200. rq->hard_cur_sectors = rq->current_nr_sectors;
  3201. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3202. rq->buffer = bio_data(bio);
  3203. rq->data_len = bio->bi_size;
  3204. rq->bio = rq->biotail = bio;
  3205. if (bio->bi_bdev)
  3206. rq->rq_disk = bio->bi_bdev->bd_disk;
  3207. }
  3208. int kblockd_schedule_work(struct work_struct *work)
  3209. {
  3210. return queue_work(kblockd_workqueue, work);
  3211. }
  3212. EXPORT_SYMBOL(kblockd_schedule_work);
  3213. void kblockd_flush_work(struct work_struct *work)
  3214. {
  3215. cancel_work_sync(work);
  3216. }
  3217. EXPORT_SYMBOL(kblockd_flush_work);
  3218. int __init blk_dev_init(void)
  3219. {
  3220. int i;
  3221. kblockd_workqueue = create_workqueue("kblockd");
  3222. if (!kblockd_workqueue)
  3223. panic("Failed to create kblockd\n");
  3224. request_cachep = kmem_cache_create("blkdev_requests",
  3225. sizeof(struct request), 0, SLAB_PANIC, NULL);
  3226. requestq_cachep = kmem_cache_create("blkdev_queue",
  3227. sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
  3228. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3229. sizeof(struct io_context), 0, SLAB_PANIC, NULL);
  3230. for_each_possible_cpu(i)
  3231. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3232. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3233. register_hotcpu_notifier(&blk_cpu_notifier);
  3234. blk_max_low_pfn = max_low_pfn - 1;
  3235. blk_max_pfn = max_pfn - 1;
  3236. return 0;
  3237. }
  3238. /*
  3239. * IO Context helper functions
  3240. */
  3241. void put_io_context(struct io_context *ioc)
  3242. {
  3243. if (ioc == NULL)
  3244. return;
  3245. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3246. if (atomic_dec_and_test(&ioc->refcount)) {
  3247. struct cfq_io_context *cic;
  3248. rcu_read_lock();
  3249. if (ioc->aic && ioc->aic->dtor)
  3250. ioc->aic->dtor(ioc->aic);
  3251. if (ioc->cic_root.rb_node != NULL) {
  3252. struct rb_node *n = rb_first(&ioc->cic_root);
  3253. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3254. cic->dtor(ioc);
  3255. }
  3256. rcu_read_unlock();
  3257. kmem_cache_free(iocontext_cachep, ioc);
  3258. }
  3259. }
  3260. EXPORT_SYMBOL(put_io_context);
  3261. /* Called by the exitting task */
  3262. void exit_io_context(void)
  3263. {
  3264. struct io_context *ioc;
  3265. struct cfq_io_context *cic;
  3266. task_lock(current);
  3267. ioc = current->io_context;
  3268. current->io_context = NULL;
  3269. task_unlock(current);
  3270. ioc->task = NULL;
  3271. if (ioc->aic && ioc->aic->exit)
  3272. ioc->aic->exit(ioc->aic);
  3273. if (ioc->cic_root.rb_node != NULL) {
  3274. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3275. cic->exit(ioc);
  3276. }
  3277. put_io_context(ioc);
  3278. }
  3279. /*
  3280. * If the current task has no IO context then create one and initialise it.
  3281. * Otherwise, return its existing IO context.
  3282. *
  3283. * This returned IO context doesn't have a specifically elevated refcount,
  3284. * but since the current task itself holds a reference, the context can be
  3285. * used in general code, so long as it stays within `current` context.
  3286. */
  3287. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3288. {
  3289. struct task_struct *tsk = current;
  3290. struct io_context *ret;
  3291. ret = tsk->io_context;
  3292. if (likely(ret))
  3293. return ret;
  3294. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3295. if (ret) {
  3296. atomic_set(&ret->refcount, 1);
  3297. ret->task = current;
  3298. ret->ioprio_changed = 0;
  3299. ret->last_waited = jiffies; /* doesn't matter... */
  3300. ret->nr_batch_requests = 0; /* because this is 0 */
  3301. ret->aic = NULL;
  3302. ret->cic_root.rb_node = NULL;
  3303. ret->ioc_data = NULL;
  3304. /* make sure set_task_ioprio() sees the settings above */
  3305. smp_wmb();
  3306. tsk->io_context = ret;
  3307. }
  3308. return ret;
  3309. }
  3310. /*
  3311. * If the current task has no IO context then create one and initialise it.
  3312. * If it does have a context, take a ref on it.
  3313. *
  3314. * This is always called in the context of the task which submitted the I/O.
  3315. */
  3316. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3317. {
  3318. struct io_context *ret;
  3319. ret = current_io_context(gfp_flags, node);
  3320. if (likely(ret))
  3321. atomic_inc(&ret->refcount);
  3322. return ret;
  3323. }
  3324. EXPORT_SYMBOL(get_io_context);
  3325. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3326. {
  3327. struct io_context *src = *psrc;
  3328. struct io_context *dst = *pdst;
  3329. if (src) {
  3330. BUG_ON(atomic_read(&src->refcount) == 0);
  3331. atomic_inc(&src->refcount);
  3332. put_io_context(dst);
  3333. *pdst = src;
  3334. }
  3335. }
  3336. EXPORT_SYMBOL(copy_io_context);
  3337. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3338. {
  3339. struct io_context *temp;
  3340. temp = *ioc1;
  3341. *ioc1 = *ioc2;
  3342. *ioc2 = temp;
  3343. }
  3344. EXPORT_SYMBOL(swap_io_context);
  3345. /*
  3346. * sysfs parts below
  3347. */
  3348. struct queue_sysfs_entry {
  3349. struct attribute attr;
  3350. ssize_t (*show)(struct request_queue *, char *);
  3351. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3352. };
  3353. static ssize_t
  3354. queue_var_show(unsigned int var, char *page)
  3355. {
  3356. return sprintf(page, "%d\n", var);
  3357. }
  3358. static ssize_t
  3359. queue_var_store(unsigned long *var, const char *page, size_t count)
  3360. {
  3361. char *p = (char *) page;
  3362. *var = simple_strtoul(p, &p, 10);
  3363. return count;
  3364. }
  3365. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3366. {
  3367. return queue_var_show(q->nr_requests, (page));
  3368. }
  3369. static ssize_t
  3370. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3371. {
  3372. struct request_list *rl = &q->rq;
  3373. unsigned long nr;
  3374. int ret = queue_var_store(&nr, page, count);
  3375. if (nr < BLKDEV_MIN_RQ)
  3376. nr = BLKDEV_MIN_RQ;
  3377. spin_lock_irq(q->queue_lock);
  3378. q->nr_requests = nr;
  3379. blk_queue_congestion_threshold(q);
  3380. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3381. blk_set_queue_congested(q, READ);
  3382. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3383. blk_clear_queue_congested(q, READ);
  3384. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3385. blk_set_queue_congested(q, WRITE);
  3386. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3387. blk_clear_queue_congested(q, WRITE);
  3388. if (rl->count[READ] >= q->nr_requests) {
  3389. blk_set_queue_full(q, READ);
  3390. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3391. blk_clear_queue_full(q, READ);
  3392. wake_up(&rl->wait[READ]);
  3393. }
  3394. if (rl->count[WRITE] >= q->nr_requests) {
  3395. blk_set_queue_full(q, WRITE);
  3396. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3397. blk_clear_queue_full(q, WRITE);
  3398. wake_up(&rl->wait[WRITE]);
  3399. }
  3400. spin_unlock_irq(q->queue_lock);
  3401. return ret;
  3402. }
  3403. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3404. {
  3405. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3406. return queue_var_show(ra_kb, (page));
  3407. }
  3408. static ssize_t
  3409. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3410. {
  3411. unsigned long ra_kb;
  3412. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3413. spin_lock_irq(q->queue_lock);
  3414. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3415. spin_unlock_irq(q->queue_lock);
  3416. return ret;
  3417. }
  3418. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3419. {
  3420. int max_sectors_kb = q->max_sectors >> 1;
  3421. return queue_var_show(max_sectors_kb, (page));
  3422. }
  3423. static ssize_t
  3424. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3425. {
  3426. unsigned long max_sectors_kb,
  3427. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3428. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3429. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3430. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3431. return -EINVAL;
  3432. /*
  3433. * Take the queue lock to update the readahead and max_sectors
  3434. * values synchronously:
  3435. */
  3436. spin_lock_irq(q->queue_lock);
  3437. q->max_sectors = max_sectors_kb << 1;
  3438. spin_unlock_irq(q->queue_lock);
  3439. return ret;
  3440. }
  3441. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3442. {
  3443. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3444. return queue_var_show(max_hw_sectors_kb, (page));
  3445. }
  3446. static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
  3447. {
  3448. return queue_var_show(q->max_phys_segments, page);
  3449. }
  3450. static ssize_t queue_max_segments_store(struct request_queue *q,
  3451. const char *page, size_t count)
  3452. {
  3453. unsigned long segments;
  3454. ssize_t ret = queue_var_store(&segments, page, count);
  3455. spin_lock_irq(q->queue_lock);
  3456. q->max_phys_segments = segments;
  3457. spin_unlock_irq(q->queue_lock);
  3458. return ret;
  3459. }
  3460. static struct queue_sysfs_entry queue_requests_entry = {
  3461. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3462. .show = queue_requests_show,
  3463. .store = queue_requests_store,
  3464. };
  3465. static struct queue_sysfs_entry queue_ra_entry = {
  3466. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3467. .show = queue_ra_show,
  3468. .store = queue_ra_store,
  3469. };
  3470. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3471. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3472. .show = queue_max_sectors_show,
  3473. .store = queue_max_sectors_store,
  3474. };
  3475. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3476. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3477. .show = queue_max_hw_sectors_show,
  3478. };
  3479. static struct queue_sysfs_entry queue_max_segments_entry = {
  3480. .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
  3481. .show = queue_max_segments_show,
  3482. .store = queue_max_segments_store,
  3483. };
  3484. static struct queue_sysfs_entry queue_iosched_entry = {
  3485. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3486. .show = elv_iosched_show,
  3487. .store = elv_iosched_store,
  3488. };
  3489. static struct attribute *default_attrs[] = {
  3490. &queue_requests_entry.attr,
  3491. &queue_ra_entry.attr,
  3492. &queue_max_hw_sectors_entry.attr,
  3493. &queue_max_sectors_entry.attr,
  3494. &queue_max_segments_entry.attr,
  3495. &queue_iosched_entry.attr,
  3496. NULL,
  3497. };
  3498. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3499. static ssize_t
  3500. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3501. {
  3502. struct queue_sysfs_entry *entry = to_queue(attr);
  3503. struct request_queue *q =
  3504. container_of(kobj, struct request_queue, kobj);
  3505. ssize_t res;
  3506. if (!entry->show)
  3507. return -EIO;
  3508. mutex_lock(&q->sysfs_lock);
  3509. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3510. mutex_unlock(&q->sysfs_lock);
  3511. return -ENOENT;
  3512. }
  3513. res = entry->show(q, page);
  3514. mutex_unlock(&q->sysfs_lock);
  3515. return res;
  3516. }
  3517. static ssize_t
  3518. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3519. const char *page, size_t length)
  3520. {
  3521. struct queue_sysfs_entry *entry = to_queue(attr);
  3522. struct request_queue *q = container_of(kobj, struct request_queue, kobj);
  3523. ssize_t res;
  3524. if (!entry->store)
  3525. return -EIO;
  3526. mutex_lock(&q->sysfs_lock);
  3527. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3528. mutex_unlock(&q->sysfs_lock);
  3529. return -ENOENT;
  3530. }
  3531. res = entry->store(q, page, length);
  3532. mutex_unlock(&q->sysfs_lock);
  3533. return res;
  3534. }
  3535. static struct sysfs_ops queue_sysfs_ops = {
  3536. .show = queue_attr_show,
  3537. .store = queue_attr_store,
  3538. };
  3539. static struct kobj_type queue_ktype = {
  3540. .sysfs_ops = &queue_sysfs_ops,
  3541. .default_attrs = default_attrs,
  3542. .release = blk_release_queue,
  3543. };
  3544. int blk_register_queue(struct gendisk *disk)
  3545. {
  3546. int ret;
  3547. struct request_queue *q = disk->queue;
  3548. if (!q || !q->request_fn)
  3549. return -ENXIO;
  3550. q->kobj.parent = kobject_get(&disk->kobj);
  3551. ret = kobject_add(&q->kobj);
  3552. if (ret < 0)
  3553. return ret;
  3554. kobject_uevent(&q->kobj, KOBJ_ADD);
  3555. ret = elv_register_queue(q);
  3556. if (ret) {
  3557. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3558. kobject_del(&q->kobj);
  3559. return ret;
  3560. }
  3561. return 0;
  3562. }
  3563. void blk_unregister_queue(struct gendisk *disk)
  3564. {
  3565. struct request_queue *q = disk->queue;
  3566. if (q && q->request_fn) {
  3567. elv_unregister_queue(q);
  3568. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3569. kobject_del(&q->kobj);
  3570. kobject_put(&disk->kobj);
  3571. }
  3572. }