page-writeback.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834
  1. /*
  2. * mm/page-writeback.c.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains functions related to writing back dirty pages at the
  7. * address_space level.
  8. *
  9. * 10Apr2002 akpm@zip.com.au
  10. * Initial version
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/fs.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/slab.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/init.h>
  22. #include <linux/backing-dev.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/mpage.h>
  25. #include <linux/percpu.h>
  26. #include <linux/notifier.h>
  27. #include <linux/smp.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/cpu.h>
  30. #include <linux/syscalls.h>
  31. /*
  32. * The maximum number of pages to writeout in a single bdflush/kupdate
  33. * operation. We do this so we don't hold I_LOCK against an inode for
  34. * enormous amounts of time, which would block a userspace task which has
  35. * been forced to throttle against that inode. Also, the code reevaluates
  36. * the dirty each time it has written this many pages.
  37. */
  38. #define MAX_WRITEBACK_PAGES 1024
  39. /*
  40. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  41. * will look to see if it needs to force writeback or throttling.
  42. */
  43. static long ratelimit_pages = 32;
  44. static long total_pages; /* The total number of pages in the machine. */
  45. static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
  46. /*
  47. * When balance_dirty_pages decides that the caller needs to perform some
  48. * non-background writeback, this is how many pages it will attempt to write.
  49. * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  50. * large amounts of I/O are submitted.
  51. */
  52. static inline long sync_writeback_pages(void)
  53. {
  54. return ratelimit_pages + ratelimit_pages / 2;
  55. }
  56. /* The following parameters are exported via /proc/sys/vm */
  57. /*
  58. * Start background writeback (via pdflush) at this percentage
  59. */
  60. int dirty_background_ratio = 10;
  61. /*
  62. * The generator of dirty data starts writeback at this percentage
  63. */
  64. int vm_dirty_ratio = 40;
  65. /*
  66. * The interval between `kupdate'-style writebacks, in jiffies
  67. */
  68. int dirty_writeback_interval = 5 * HZ;
  69. /*
  70. * The longest number of jiffies for which data is allowed to remain dirty
  71. */
  72. int dirty_expire_interval = 30 * HZ;
  73. /*
  74. * Flag that makes the machine dump writes/reads and block dirtyings.
  75. */
  76. int block_dump;
  77. /*
  78. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  79. * a full sync is triggered after this time elapses without any disk activity.
  80. */
  81. int laptop_mode;
  82. EXPORT_SYMBOL(laptop_mode);
  83. /* End of sysctl-exported parameters */
  84. static void background_writeout(unsigned long _min_pages);
  85. struct writeback_state
  86. {
  87. unsigned long nr_dirty;
  88. unsigned long nr_unstable;
  89. unsigned long nr_mapped;
  90. unsigned long nr_writeback;
  91. };
  92. static void get_writeback_state(struct writeback_state *wbs)
  93. {
  94. wbs->nr_dirty = read_page_state(nr_dirty);
  95. wbs->nr_unstable = read_page_state(nr_unstable);
  96. wbs->nr_mapped = read_page_state(nr_mapped);
  97. wbs->nr_writeback = read_page_state(nr_writeback);
  98. }
  99. /*
  100. * Work out the current dirty-memory clamping and background writeout
  101. * thresholds.
  102. *
  103. * The main aim here is to lower them aggressively if there is a lot of mapped
  104. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  105. * pages. It is better to clamp down on writers than to start swapping, and
  106. * performing lots of scanning.
  107. *
  108. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  109. *
  110. * We don't permit the clamping level to fall below 5% - that is getting rather
  111. * excessive.
  112. *
  113. * We make sure that the background writeout level is below the adjusted
  114. * clamping level.
  115. */
  116. static void
  117. get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
  118. struct address_space *mapping)
  119. {
  120. int background_ratio; /* Percentages */
  121. int dirty_ratio;
  122. int unmapped_ratio;
  123. long background;
  124. long dirty;
  125. unsigned long available_memory = total_pages;
  126. struct task_struct *tsk;
  127. get_writeback_state(wbs);
  128. #ifdef CONFIG_HIGHMEM
  129. /*
  130. * If this mapping can only allocate from low memory,
  131. * we exclude high memory from our count.
  132. */
  133. if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
  134. available_memory -= totalhigh_pages;
  135. #endif
  136. unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
  137. dirty_ratio = vm_dirty_ratio;
  138. if (dirty_ratio > unmapped_ratio / 2)
  139. dirty_ratio = unmapped_ratio / 2;
  140. if (dirty_ratio < 5)
  141. dirty_ratio = 5;
  142. background_ratio = dirty_background_ratio;
  143. if (background_ratio >= dirty_ratio)
  144. background_ratio = dirty_ratio / 2;
  145. background = (background_ratio * available_memory) / 100;
  146. dirty = (dirty_ratio * available_memory) / 100;
  147. tsk = current;
  148. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  149. background += background / 4;
  150. dirty += dirty / 4;
  151. }
  152. *pbackground = background;
  153. *pdirty = dirty;
  154. }
  155. /*
  156. * balance_dirty_pages() must be called by processes which are generating dirty
  157. * data. It looks at the number of dirty pages in the machine and will force
  158. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  159. * If we're over `background_thresh' then pdflush is woken to perform some
  160. * writeout.
  161. */
  162. static void balance_dirty_pages(struct address_space *mapping)
  163. {
  164. struct writeback_state wbs;
  165. long nr_reclaimable;
  166. long background_thresh;
  167. long dirty_thresh;
  168. unsigned long pages_written = 0;
  169. unsigned long write_chunk = sync_writeback_pages();
  170. struct backing_dev_info *bdi = mapping->backing_dev_info;
  171. for (;;) {
  172. struct writeback_control wbc = {
  173. .bdi = bdi,
  174. .sync_mode = WB_SYNC_NONE,
  175. .older_than_this = NULL,
  176. .nr_to_write = write_chunk,
  177. .range_cyclic = 1,
  178. };
  179. get_dirty_limits(&wbs, &background_thresh,
  180. &dirty_thresh, mapping);
  181. nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
  182. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  183. break;
  184. if (!dirty_exceeded)
  185. dirty_exceeded = 1;
  186. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  187. * Unstable writes are a feature of certain networked
  188. * filesystems (i.e. NFS) in which data may have been
  189. * written to the server's write cache, but has not yet
  190. * been flushed to permanent storage.
  191. */
  192. if (nr_reclaimable) {
  193. writeback_inodes(&wbc);
  194. get_dirty_limits(&wbs, &background_thresh,
  195. &dirty_thresh, mapping);
  196. nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
  197. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  198. break;
  199. pages_written += write_chunk - wbc.nr_to_write;
  200. if (pages_written >= write_chunk)
  201. break; /* We've done our duty */
  202. }
  203. blk_congestion_wait(WRITE, HZ/10);
  204. }
  205. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
  206. dirty_exceeded = 0;
  207. if (writeback_in_progress(bdi))
  208. return; /* pdflush is already working this queue */
  209. /*
  210. * In laptop mode, we wait until hitting the higher threshold before
  211. * starting background writeout, and then write out all the way down
  212. * to the lower threshold. So slow writers cause minimal disk activity.
  213. *
  214. * In normal mode, we start background writeout at the lower
  215. * background_thresh, to keep the amount of dirty memory low.
  216. */
  217. if ((laptop_mode && pages_written) ||
  218. (!laptop_mode && (nr_reclaimable > background_thresh)))
  219. pdflush_operation(background_writeout, 0);
  220. }
  221. /**
  222. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  223. * @mapping: address_space which was dirtied
  224. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  225. *
  226. * Processes which are dirtying memory should call in here once for each page
  227. * which was newly dirtied. The function will periodically check the system's
  228. * dirty state and will initiate writeback if needed.
  229. *
  230. * On really big machines, get_writeback_state is expensive, so try to avoid
  231. * calling it too often (ratelimiting). But once we're over the dirty memory
  232. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  233. * from overshooting the limit by (ratelimit_pages) each.
  234. */
  235. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  236. unsigned long nr_pages_dirtied)
  237. {
  238. static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
  239. unsigned long ratelimit;
  240. unsigned long *p;
  241. ratelimit = ratelimit_pages;
  242. if (dirty_exceeded)
  243. ratelimit = 8;
  244. /*
  245. * Check the rate limiting. Also, we do not want to throttle real-time
  246. * tasks in balance_dirty_pages(). Period.
  247. */
  248. preempt_disable();
  249. p = &__get_cpu_var(ratelimits);
  250. *p += nr_pages_dirtied;
  251. if (unlikely(*p >= ratelimit)) {
  252. *p = 0;
  253. preempt_enable();
  254. balance_dirty_pages(mapping);
  255. return;
  256. }
  257. preempt_enable();
  258. }
  259. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  260. void throttle_vm_writeout(void)
  261. {
  262. struct writeback_state wbs;
  263. long background_thresh;
  264. long dirty_thresh;
  265. for ( ; ; ) {
  266. get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
  267. /*
  268. * Boost the allowable dirty threshold a bit for page
  269. * allocators so they don't get DoS'ed by heavy writers
  270. */
  271. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  272. if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
  273. break;
  274. blk_congestion_wait(WRITE, HZ/10);
  275. }
  276. }
  277. /*
  278. * writeback at least _min_pages, and keep writing until the amount of dirty
  279. * memory is less than the background threshold, or until we're all clean.
  280. */
  281. static void background_writeout(unsigned long _min_pages)
  282. {
  283. long min_pages = _min_pages;
  284. struct writeback_control wbc = {
  285. .bdi = NULL,
  286. .sync_mode = WB_SYNC_NONE,
  287. .older_than_this = NULL,
  288. .nr_to_write = 0,
  289. .nonblocking = 1,
  290. .range_cyclic = 1,
  291. };
  292. for ( ; ; ) {
  293. struct writeback_state wbs;
  294. long background_thresh;
  295. long dirty_thresh;
  296. get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
  297. if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
  298. && min_pages <= 0)
  299. break;
  300. wbc.encountered_congestion = 0;
  301. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  302. wbc.pages_skipped = 0;
  303. writeback_inodes(&wbc);
  304. min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  305. if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
  306. /* Wrote less than expected */
  307. blk_congestion_wait(WRITE, HZ/10);
  308. if (!wbc.encountered_congestion)
  309. break;
  310. }
  311. }
  312. }
  313. /*
  314. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  315. * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
  316. * -1 if all pdflush threads were busy.
  317. */
  318. int wakeup_pdflush(long nr_pages)
  319. {
  320. if (nr_pages == 0) {
  321. struct writeback_state wbs;
  322. get_writeback_state(&wbs);
  323. nr_pages = wbs.nr_dirty + wbs.nr_unstable;
  324. }
  325. return pdflush_operation(background_writeout, nr_pages);
  326. }
  327. static void wb_timer_fn(unsigned long unused);
  328. static void laptop_timer_fn(unsigned long unused);
  329. static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
  330. static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
  331. /*
  332. * Periodic writeback of "old" data.
  333. *
  334. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  335. * dirtying-time in the inode's address_space. So this periodic writeback code
  336. * just walks the superblock inode list, writing back any inodes which are
  337. * older than a specific point in time.
  338. *
  339. * Try to run once per dirty_writeback_interval. But if a writeback event
  340. * takes longer than a dirty_writeback_interval interval, then leave a
  341. * one-second gap.
  342. *
  343. * older_than_this takes precedence over nr_to_write. So we'll only write back
  344. * all dirty pages if they are all attached to "old" mappings.
  345. */
  346. static void wb_kupdate(unsigned long arg)
  347. {
  348. unsigned long oldest_jif;
  349. unsigned long start_jif;
  350. unsigned long next_jif;
  351. long nr_to_write;
  352. struct writeback_state wbs;
  353. struct writeback_control wbc = {
  354. .bdi = NULL,
  355. .sync_mode = WB_SYNC_NONE,
  356. .older_than_this = &oldest_jif,
  357. .nr_to_write = 0,
  358. .nonblocking = 1,
  359. .for_kupdate = 1,
  360. .range_cyclic = 1,
  361. };
  362. sync_supers();
  363. get_writeback_state(&wbs);
  364. oldest_jif = jiffies - dirty_expire_interval;
  365. start_jif = jiffies;
  366. next_jif = start_jif + dirty_writeback_interval;
  367. nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
  368. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  369. while (nr_to_write > 0) {
  370. wbc.encountered_congestion = 0;
  371. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  372. writeback_inodes(&wbc);
  373. if (wbc.nr_to_write > 0) {
  374. if (wbc.encountered_congestion)
  375. blk_congestion_wait(WRITE, HZ/10);
  376. else
  377. break; /* All the old data is written */
  378. }
  379. nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  380. }
  381. if (time_before(next_jif, jiffies + HZ))
  382. next_jif = jiffies + HZ;
  383. if (dirty_writeback_interval)
  384. mod_timer(&wb_timer, next_jif);
  385. }
  386. /*
  387. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  388. */
  389. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  390. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  391. {
  392. proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
  393. if (dirty_writeback_interval) {
  394. mod_timer(&wb_timer,
  395. jiffies + dirty_writeback_interval);
  396. } else {
  397. del_timer(&wb_timer);
  398. }
  399. return 0;
  400. }
  401. static void wb_timer_fn(unsigned long unused)
  402. {
  403. if (pdflush_operation(wb_kupdate, 0) < 0)
  404. mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
  405. }
  406. static void laptop_flush(unsigned long unused)
  407. {
  408. sys_sync();
  409. }
  410. static void laptop_timer_fn(unsigned long unused)
  411. {
  412. pdflush_operation(laptop_flush, 0);
  413. }
  414. /*
  415. * We've spun up the disk and we're in laptop mode: schedule writeback
  416. * of all dirty data a few seconds from now. If the flush is already scheduled
  417. * then push it back - the user is still using the disk.
  418. */
  419. void laptop_io_completion(void)
  420. {
  421. mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
  422. }
  423. /*
  424. * We're in laptop mode and we've just synced. The sync's writes will have
  425. * caused another writeback to be scheduled by laptop_io_completion.
  426. * Nothing needs to be written back anymore, so we unschedule the writeback.
  427. */
  428. void laptop_sync_completion(void)
  429. {
  430. del_timer(&laptop_mode_wb_timer);
  431. }
  432. /*
  433. * If ratelimit_pages is too high then we can get into dirty-data overload
  434. * if a large number of processes all perform writes at the same time.
  435. * If it is too low then SMP machines will call the (expensive)
  436. * get_writeback_state too often.
  437. *
  438. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  439. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  440. * thresholds before writeback cuts in.
  441. *
  442. * But the limit should not be set too high. Because it also controls the
  443. * amount of memory which the balance_dirty_pages() caller has to write back.
  444. * If this is too large then the caller will block on the IO queue all the
  445. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  446. * will write six megabyte chunks, max.
  447. */
  448. static void set_ratelimit(void)
  449. {
  450. ratelimit_pages = total_pages / (num_online_cpus() * 32);
  451. if (ratelimit_pages < 16)
  452. ratelimit_pages = 16;
  453. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  454. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  455. }
  456. static int
  457. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  458. {
  459. set_ratelimit();
  460. return 0;
  461. }
  462. static struct notifier_block ratelimit_nb = {
  463. .notifier_call = ratelimit_handler,
  464. .next = NULL,
  465. };
  466. /*
  467. * If the machine has a large highmem:lowmem ratio then scale back the default
  468. * dirty memory thresholds: allowing too much dirty highmem pins an excessive
  469. * number of buffer_heads.
  470. */
  471. void __init page_writeback_init(void)
  472. {
  473. long buffer_pages = nr_free_buffer_pages();
  474. long correction;
  475. total_pages = nr_free_pagecache_pages();
  476. correction = (100 * 4 * buffer_pages) / total_pages;
  477. if (correction < 100) {
  478. dirty_background_ratio *= correction;
  479. dirty_background_ratio /= 100;
  480. vm_dirty_ratio *= correction;
  481. vm_dirty_ratio /= 100;
  482. if (dirty_background_ratio <= 0)
  483. dirty_background_ratio = 1;
  484. if (vm_dirty_ratio <= 0)
  485. vm_dirty_ratio = 1;
  486. }
  487. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  488. set_ratelimit();
  489. register_cpu_notifier(&ratelimit_nb);
  490. }
  491. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  492. {
  493. int ret;
  494. if (wbc->nr_to_write <= 0)
  495. return 0;
  496. wbc->for_writepages = 1;
  497. if (mapping->a_ops->writepages)
  498. ret = mapping->a_ops->writepages(mapping, wbc);
  499. else
  500. ret = generic_writepages(mapping, wbc);
  501. wbc->for_writepages = 0;
  502. return ret;
  503. }
  504. /**
  505. * write_one_page - write out a single page and optionally wait on I/O
  506. *
  507. * @page: the page to write
  508. * @wait: if true, wait on writeout
  509. *
  510. * The page must be locked by the caller and will be unlocked upon return.
  511. *
  512. * write_one_page() returns a negative error code if I/O failed.
  513. */
  514. int write_one_page(struct page *page, int wait)
  515. {
  516. struct address_space *mapping = page->mapping;
  517. int ret = 0;
  518. struct writeback_control wbc = {
  519. .sync_mode = WB_SYNC_ALL,
  520. .nr_to_write = 1,
  521. };
  522. BUG_ON(!PageLocked(page));
  523. if (wait)
  524. wait_on_page_writeback(page);
  525. if (clear_page_dirty_for_io(page)) {
  526. page_cache_get(page);
  527. ret = mapping->a_ops->writepage(page, &wbc);
  528. if (ret == 0 && wait) {
  529. wait_on_page_writeback(page);
  530. if (PageError(page))
  531. ret = -EIO;
  532. }
  533. page_cache_release(page);
  534. } else {
  535. unlock_page(page);
  536. }
  537. return ret;
  538. }
  539. EXPORT_SYMBOL(write_one_page);
  540. /*
  541. * For address_spaces which do not use buffers. Just tag the page as dirty in
  542. * its radix tree.
  543. *
  544. * This is also used when a single buffer is being dirtied: we want to set the
  545. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  546. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  547. *
  548. * Most callers have locked the page, which pins the address_space in memory.
  549. * But zap_pte_range() does not lock the page, however in that case the
  550. * mapping is pinned by the vma's ->vm_file reference.
  551. *
  552. * We take care to handle the case where the page was truncated from the
  553. * mapping by re-checking page_mapping() insode tree_lock.
  554. */
  555. int __set_page_dirty_nobuffers(struct page *page)
  556. {
  557. if (!TestSetPageDirty(page)) {
  558. struct address_space *mapping = page_mapping(page);
  559. struct address_space *mapping2;
  560. if (mapping) {
  561. write_lock_irq(&mapping->tree_lock);
  562. mapping2 = page_mapping(page);
  563. if (mapping2) { /* Race with truncate? */
  564. BUG_ON(mapping2 != mapping);
  565. if (mapping_cap_account_dirty(mapping))
  566. inc_page_state(nr_dirty);
  567. radix_tree_tag_set(&mapping->page_tree,
  568. page_index(page), PAGECACHE_TAG_DIRTY);
  569. }
  570. write_unlock_irq(&mapping->tree_lock);
  571. if (mapping->host) {
  572. /* !PageAnon && !swapper_space */
  573. __mark_inode_dirty(mapping->host,
  574. I_DIRTY_PAGES);
  575. }
  576. }
  577. return 1;
  578. }
  579. return 0;
  580. }
  581. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  582. /*
  583. * When a writepage implementation decides that it doesn't want to write this
  584. * page for some reason, it should redirty the locked page via
  585. * redirty_page_for_writepage() and it should then unlock the page and return 0
  586. */
  587. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  588. {
  589. wbc->pages_skipped++;
  590. return __set_page_dirty_nobuffers(page);
  591. }
  592. EXPORT_SYMBOL(redirty_page_for_writepage);
  593. /*
  594. * If the mapping doesn't provide a set_page_dirty a_op, then
  595. * just fall through and assume that it wants buffer_heads.
  596. */
  597. int fastcall set_page_dirty(struct page *page)
  598. {
  599. struct address_space *mapping = page_mapping(page);
  600. if (likely(mapping)) {
  601. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  602. if (spd)
  603. return (*spd)(page);
  604. return __set_page_dirty_buffers(page);
  605. }
  606. if (!PageDirty(page)) {
  607. if (!TestSetPageDirty(page))
  608. return 1;
  609. }
  610. return 0;
  611. }
  612. EXPORT_SYMBOL(set_page_dirty);
  613. /*
  614. * set_page_dirty() is racy if the caller has no reference against
  615. * page->mapping->host, and if the page is unlocked. This is because another
  616. * CPU could truncate the page off the mapping and then free the mapping.
  617. *
  618. * Usually, the page _is_ locked, or the caller is a user-space process which
  619. * holds a reference on the inode by having an open file.
  620. *
  621. * In other cases, the page should be locked before running set_page_dirty().
  622. */
  623. int set_page_dirty_lock(struct page *page)
  624. {
  625. int ret;
  626. lock_page(page);
  627. ret = set_page_dirty(page);
  628. unlock_page(page);
  629. return ret;
  630. }
  631. EXPORT_SYMBOL(set_page_dirty_lock);
  632. /*
  633. * Clear a page's dirty flag, while caring for dirty memory accounting.
  634. * Returns true if the page was previously dirty.
  635. */
  636. int test_clear_page_dirty(struct page *page)
  637. {
  638. struct address_space *mapping = page_mapping(page);
  639. unsigned long flags;
  640. if (mapping) {
  641. write_lock_irqsave(&mapping->tree_lock, flags);
  642. if (TestClearPageDirty(page)) {
  643. radix_tree_tag_clear(&mapping->page_tree,
  644. page_index(page),
  645. PAGECACHE_TAG_DIRTY);
  646. write_unlock_irqrestore(&mapping->tree_lock, flags);
  647. if (mapping_cap_account_dirty(mapping))
  648. dec_page_state(nr_dirty);
  649. return 1;
  650. }
  651. write_unlock_irqrestore(&mapping->tree_lock, flags);
  652. return 0;
  653. }
  654. return TestClearPageDirty(page);
  655. }
  656. EXPORT_SYMBOL(test_clear_page_dirty);
  657. /*
  658. * Clear a page's dirty flag, while caring for dirty memory accounting.
  659. * Returns true if the page was previously dirty.
  660. *
  661. * This is for preparing to put the page under writeout. We leave the page
  662. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  663. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  664. * implementation will run either set_page_writeback() or set_page_dirty(),
  665. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  666. * back into sync.
  667. *
  668. * This incoherency between the page's dirty flag and radix-tree tag is
  669. * unfortunate, but it only exists while the page is locked.
  670. */
  671. int clear_page_dirty_for_io(struct page *page)
  672. {
  673. struct address_space *mapping = page_mapping(page);
  674. if (mapping) {
  675. if (TestClearPageDirty(page)) {
  676. if (mapping_cap_account_dirty(mapping))
  677. dec_page_state(nr_dirty);
  678. return 1;
  679. }
  680. return 0;
  681. }
  682. return TestClearPageDirty(page);
  683. }
  684. EXPORT_SYMBOL(clear_page_dirty_for_io);
  685. int test_clear_page_writeback(struct page *page)
  686. {
  687. struct address_space *mapping = page_mapping(page);
  688. int ret;
  689. if (mapping) {
  690. unsigned long flags;
  691. write_lock_irqsave(&mapping->tree_lock, flags);
  692. ret = TestClearPageWriteback(page);
  693. if (ret)
  694. radix_tree_tag_clear(&mapping->page_tree,
  695. page_index(page),
  696. PAGECACHE_TAG_WRITEBACK);
  697. write_unlock_irqrestore(&mapping->tree_lock, flags);
  698. } else {
  699. ret = TestClearPageWriteback(page);
  700. }
  701. return ret;
  702. }
  703. int test_set_page_writeback(struct page *page)
  704. {
  705. struct address_space *mapping = page_mapping(page);
  706. int ret;
  707. if (mapping) {
  708. unsigned long flags;
  709. write_lock_irqsave(&mapping->tree_lock, flags);
  710. ret = TestSetPageWriteback(page);
  711. if (!ret)
  712. radix_tree_tag_set(&mapping->page_tree,
  713. page_index(page),
  714. PAGECACHE_TAG_WRITEBACK);
  715. if (!PageDirty(page))
  716. radix_tree_tag_clear(&mapping->page_tree,
  717. page_index(page),
  718. PAGECACHE_TAG_DIRTY);
  719. write_unlock_irqrestore(&mapping->tree_lock, flags);
  720. } else {
  721. ret = TestSetPageWriteback(page);
  722. }
  723. return ret;
  724. }
  725. EXPORT_SYMBOL(test_set_page_writeback);
  726. /*
  727. * Return true if any of the pages in the mapping are marged with the
  728. * passed tag.
  729. */
  730. int mapping_tagged(struct address_space *mapping, int tag)
  731. {
  732. unsigned long flags;
  733. int ret;
  734. read_lock_irqsave(&mapping->tree_lock, flags);
  735. ret = radix_tree_tagged(&mapping->page_tree, tag);
  736. read_unlock_irqrestore(&mapping->tree_lock, flags);
  737. return ret;
  738. }
  739. EXPORT_SYMBOL(mapping_tagged);