memory.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/init.h>
  46. #include <asm/pgalloc.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/tlb.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/pgtable.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #ifndef CONFIG_NEED_MULTIPLE_NODES
  54. /* use the per-pgdat data instead for discontigmem - mbligh */
  55. unsigned long max_mapnr;
  56. struct page *mem_map;
  57. EXPORT_SYMBOL(max_mapnr);
  58. EXPORT_SYMBOL(mem_map);
  59. #endif
  60. unsigned long num_physpages;
  61. /*
  62. * A number of key systems in x86 including ioremap() rely on the assumption
  63. * that high_memory defines the upper bound on direct map memory, then end
  64. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  65. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  66. * and ZONE_HIGHMEM.
  67. */
  68. void * high_memory;
  69. unsigned long vmalloc_earlyreserve;
  70. EXPORT_SYMBOL(num_physpages);
  71. EXPORT_SYMBOL(high_memory);
  72. EXPORT_SYMBOL(vmalloc_earlyreserve);
  73. int randomize_va_space __read_mostly = 1;
  74. static int __init disable_randmaps(char *s)
  75. {
  76. randomize_va_space = 0;
  77. return 1;
  78. }
  79. __setup("norandmaps", disable_randmaps);
  80. /*
  81. * If a p?d_bad entry is found while walking page tables, report
  82. * the error, before resetting entry to p?d_none. Usually (but
  83. * very seldom) called out from the p?d_none_or_clear_bad macros.
  84. */
  85. void pgd_clear_bad(pgd_t *pgd)
  86. {
  87. pgd_ERROR(*pgd);
  88. pgd_clear(pgd);
  89. }
  90. void pud_clear_bad(pud_t *pud)
  91. {
  92. pud_ERROR(*pud);
  93. pud_clear(pud);
  94. }
  95. void pmd_clear_bad(pmd_t *pmd)
  96. {
  97. pmd_ERROR(*pmd);
  98. pmd_clear(pmd);
  99. }
  100. /*
  101. * Note: this doesn't free the actual pages themselves. That
  102. * has been handled earlier when unmapping all the memory regions.
  103. */
  104. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  105. {
  106. struct page *page = pmd_page(*pmd);
  107. pmd_clear(pmd);
  108. pte_lock_deinit(page);
  109. pte_free_tlb(tlb, page);
  110. dec_page_state(nr_page_table_pages);
  111. tlb->mm->nr_ptes--;
  112. }
  113. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  114. unsigned long addr, unsigned long end,
  115. unsigned long floor, unsigned long ceiling)
  116. {
  117. pmd_t *pmd;
  118. unsigned long next;
  119. unsigned long start;
  120. start = addr;
  121. pmd = pmd_offset(pud, addr);
  122. do {
  123. next = pmd_addr_end(addr, end);
  124. if (pmd_none_or_clear_bad(pmd))
  125. continue;
  126. free_pte_range(tlb, pmd);
  127. } while (pmd++, addr = next, addr != end);
  128. start &= PUD_MASK;
  129. if (start < floor)
  130. return;
  131. if (ceiling) {
  132. ceiling &= PUD_MASK;
  133. if (!ceiling)
  134. return;
  135. }
  136. if (end - 1 > ceiling - 1)
  137. return;
  138. pmd = pmd_offset(pud, start);
  139. pud_clear(pud);
  140. pmd_free_tlb(tlb, pmd);
  141. }
  142. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  143. unsigned long addr, unsigned long end,
  144. unsigned long floor, unsigned long ceiling)
  145. {
  146. pud_t *pud;
  147. unsigned long next;
  148. unsigned long start;
  149. start = addr;
  150. pud = pud_offset(pgd, addr);
  151. do {
  152. next = pud_addr_end(addr, end);
  153. if (pud_none_or_clear_bad(pud))
  154. continue;
  155. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  156. } while (pud++, addr = next, addr != end);
  157. start &= PGDIR_MASK;
  158. if (start < floor)
  159. return;
  160. if (ceiling) {
  161. ceiling &= PGDIR_MASK;
  162. if (!ceiling)
  163. return;
  164. }
  165. if (end - 1 > ceiling - 1)
  166. return;
  167. pud = pud_offset(pgd, start);
  168. pgd_clear(pgd);
  169. pud_free_tlb(tlb, pud);
  170. }
  171. /*
  172. * This function frees user-level page tables of a process.
  173. *
  174. * Must be called with pagetable lock held.
  175. */
  176. void free_pgd_range(struct mmu_gather **tlb,
  177. unsigned long addr, unsigned long end,
  178. unsigned long floor, unsigned long ceiling)
  179. {
  180. pgd_t *pgd;
  181. unsigned long next;
  182. unsigned long start;
  183. /*
  184. * The next few lines have given us lots of grief...
  185. *
  186. * Why are we testing PMD* at this top level? Because often
  187. * there will be no work to do at all, and we'd prefer not to
  188. * go all the way down to the bottom just to discover that.
  189. *
  190. * Why all these "- 1"s? Because 0 represents both the bottom
  191. * of the address space and the top of it (using -1 for the
  192. * top wouldn't help much: the masks would do the wrong thing).
  193. * The rule is that addr 0 and floor 0 refer to the bottom of
  194. * the address space, but end 0 and ceiling 0 refer to the top
  195. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  196. * that end 0 case should be mythical).
  197. *
  198. * Wherever addr is brought up or ceiling brought down, we must
  199. * be careful to reject "the opposite 0" before it confuses the
  200. * subsequent tests. But what about where end is brought down
  201. * by PMD_SIZE below? no, end can't go down to 0 there.
  202. *
  203. * Whereas we round start (addr) and ceiling down, by different
  204. * masks at different levels, in order to test whether a table
  205. * now has no other vmas using it, so can be freed, we don't
  206. * bother to round floor or end up - the tests don't need that.
  207. */
  208. addr &= PMD_MASK;
  209. if (addr < floor) {
  210. addr += PMD_SIZE;
  211. if (!addr)
  212. return;
  213. }
  214. if (ceiling) {
  215. ceiling &= PMD_MASK;
  216. if (!ceiling)
  217. return;
  218. }
  219. if (end - 1 > ceiling - 1)
  220. end -= PMD_SIZE;
  221. if (addr > end - 1)
  222. return;
  223. start = addr;
  224. pgd = pgd_offset((*tlb)->mm, addr);
  225. do {
  226. next = pgd_addr_end(addr, end);
  227. if (pgd_none_or_clear_bad(pgd))
  228. continue;
  229. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  230. } while (pgd++, addr = next, addr != end);
  231. if (!(*tlb)->fullmm)
  232. flush_tlb_pgtables((*tlb)->mm, start, end);
  233. }
  234. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  235. unsigned long floor, unsigned long ceiling)
  236. {
  237. while (vma) {
  238. struct vm_area_struct *next = vma->vm_next;
  239. unsigned long addr = vma->vm_start;
  240. /*
  241. * Hide vma from rmap and vmtruncate before freeing pgtables
  242. */
  243. anon_vma_unlink(vma);
  244. unlink_file_vma(vma);
  245. if (is_vm_hugetlb_page(vma)) {
  246. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  247. floor, next? next->vm_start: ceiling);
  248. } else {
  249. /*
  250. * Optimization: gather nearby vmas into one call down
  251. */
  252. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  253. && !is_vm_hugetlb_page(next)) {
  254. vma = next;
  255. next = vma->vm_next;
  256. anon_vma_unlink(vma);
  257. unlink_file_vma(vma);
  258. }
  259. free_pgd_range(tlb, addr, vma->vm_end,
  260. floor, next? next->vm_start: ceiling);
  261. }
  262. vma = next;
  263. }
  264. }
  265. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  266. {
  267. struct page *new = pte_alloc_one(mm, address);
  268. if (!new)
  269. return -ENOMEM;
  270. pte_lock_init(new);
  271. spin_lock(&mm->page_table_lock);
  272. if (pmd_present(*pmd)) { /* Another has populated it */
  273. pte_lock_deinit(new);
  274. pte_free(new);
  275. } else {
  276. mm->nr_ptes++;
  277. inc_page_state(nr_page_table_pages);
  278. pmd_populate(mm, pmd, new);
  279. }
  280. spin_unlock(&mm->page_table_lock);
  281. return 0;
  282. }
  283. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  284. {
  285. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  286. if (!new)
  287. return -ENOMEM;
  288. spin_lock(&init_mm.page_table_lock);
  289. if (pmd_present(*pmd)) /* Another has populated it */
  290. pte_free_kernel(new);
  291. else
  292. pmd_populate_kernel(&init_mm, pmd, new);
  293. spin_unlock(&init_mm.page_table_lock);
  294. return 0;
  295. }
  296. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  297. {
  298. if (file_rss)
  299. add_mm_counter(mm, file_rss, file_rss);
  300. if (anon_rss)
  301. add_mm_counter(mm, anon_rss, anon_rss);
  302. }
  303. /*
  304. * This function is called to print an error when a bad pte
  305. * is found. For example, we might have a PFN-mapped pte in
  306. * a region that doesn't allow it.
  307. *
  308. * The calling function must still handle the error.
  309. */
  310. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  311. {
  312. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  313. "vm_flags = %lx, vaddr = %lx\n",
  314. (long long)pte_val(pte),
  315. (vma->vm_mm == current->mm ? current->comm : "???"),
  316. vma->vm_flags, vaddr);
  317. dump_stack();
  318. }
  319. static inline int is_cow_mapping(unsigned int flags)
  320. {
  321. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  322. }
  323. /*
  324. * This function gets the "struct page" associated with a pte.
  325. *
  326. * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
  327. * will have each page table entry just pointing to a raw page frame
  328. * number, and as far as the VM layer is concerned, those do not have
  329. * pages associated with them - even if the PFN might point to memory
  330. * that otherwise is perfectly fine and has a "struct page".
  331. *
  332. * The way we recognize those mappings is through the rules set up
  333. * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
  334. * and the vm_pgoff will point to the first PFN mapped: thus every
  335. * page that is a raw mapping will always honor the rule
  336. *
  337. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  338. *
  339. * and if that isn't true, the page has been COW'ed (in which case it
  340. * _does_ have a "struct page" associated with it even if it is in a
  341. * VM_PFNMAP range).
  342. */
  343. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  344. {
  345. unsigned long pfn = pte_pfn(pte);
  346. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  347. unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
  348. if (pfn == vma->vm_pgoff + off)
  349. return NULL;
  350. if (!is_cow_mapping(vma->vm_flags))
  351. return NULL;
  352. }
  353. /*
  354. * Add some anal sanity checks for now. Eventually,
  355. * we should just do "return pfn_to_page(pfn)", but
  356. * in the meantime we check that we get a valid pfn,
  357. * and that the resulting page looks ok.
  358. */
  359. if (unlikely(!pfn_valid(pfn))) {
  360. print_bad_pte(vma, pte, addr);
  361. return NULL;
  362. }
  363. /*
  364. * NOTE! We still have PageReserved() pages in the page
  365. * tables.
  366. *
  367. * The PAGE_ZERO() pages and various VDSO mappings can
  368. * cause them to exist.
  369. */
  370. return pfn_to_page(pfn);
  371. }
  372. /*
  373. * copy one vm_area from one task to the other. Assumes the page tables
  374. * already present in the new task to be cleared in the whole range
  375. * covered by this vma.
  376. */
  377. static inline void
  378. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  379. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  380. unsigned long addr, int *rss)
  381. {
  382. unsigned long vm_flags = vma->vm_flags;
  383. pte_t pte = *src_pte;
  384. struct page *page;
  385. /* pte contains position in swap or file, so copy. */
  386. if (unlikely(!pte_present(pte))) {
  387. if (!pte_file(pte)) {
  388. swp_entry_t entry = pte_to_swp_entry(pte);
  389. swap_duplicate(entry);
  390. /* make sure dst_mm is on swapoff's mmlist. */
  391. if (unlikely(list_empty(&dst_mm->mmlist))) {
  392. spin_lock(&mmlist_lock);
  393. if (list_empty(&dst_mm->mmlist))
  394. list_add(&dst_mm->mmlist,
  395. &src_mm->mmlist);
  396. spin_unlock(&mmlist_lock);
  397. }
  398. if (is_write_migration_entry(entry) &&
  399. is_cow_mapping(vm_flags)) {
  400. /*
  401. * COW mappings require pages in both parent
  402. * and child to be set to read.
  403. */
  404. make_migration_entry_read(&entry);
  405. pte = swp_entry_to_pte(entry);
  406. set_pte_at(src_mm, addr, src_pte, pte);
  407. }
  408. }
  409. goto out_set_pte;
  410. }
  411. /*
  412. * If it's a COW mapping, write protect it both
  413. * in the parent and the child
  414. */
  415. if (is_cow_mapping(vm_flags)) {
  416. ptep_set_wrprotect(src_mm, addr, src_pte);
  417. pte = *src_pte;
  418. }
  419. /*
  420. * If it's a shared mapping, mark it clean in
  421. * the child
  422. */
  423. if (vm_flags & VM_SHARED)
  424. pte = pte_mkclean(pte);
  425. pte = pte_mkold(pte);
  426. page = vm_normal_page(vma, addr, pte);
  427. if (page) {
  428. get_page(page);
  429. page_dup_rmap(page);
  430. rss[!!PageAnon(page)]++;
  431. }
  432. out_set_pte:
  433. set_pte_at(dst_mm, addr, dst_pte, pte);
  434. }
  435. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  436. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  437. unsigned long addr, unsigned long end)
  438. {
  439. pte_t *src_pte, *dst_pte;
  440. spinlock_t *src_ptl, *dst_ptl;
  441. int progress = 0;
  442. int rss[2];
  443. again:
  444. rss[1] = rss[0] = 0;
  445. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  446. if (!dst_pte)
  447. return -ENOMEM;
  448. src_pte = pte_offset_map_nested(src_pmd, addr);
  449. src_ptl = pte_lockptr(src_mm, src_pmd);
  450. spin_lock(src_ptl);
  451. do {
  452. /*
  453. * We are holding two locks at this point - either of them
  454. * could generate latencies in another task on another CPU.
  455. */
  456. if (progress >= 32) {
  457. progress = 0;
  458. if (need_resched() ||
  459. need_lockbreak(src_ptl) ||
  460. need_lockbreak(dst_ptl))
  461. break;
  462. }
  463. if (pte_none(*src_pte)) {
  464. progress++;
  465. continue;
  466. }
  467. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  468. progress += 8;
  469. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  470. spin_unlock(src_ptl);
  471. pte_unmap_nested(src_pte - 1);
  472. add_mm_rss(dst_mm, rss[0], rss[1]);
  473. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  474. cond_resched();
  475. if (addr != end)
  476. goto again;
  477. return 0;
  478. }
  479. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  480. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  481. unsigned long addr, unsigned long end)
  482. {
  483. pmd_t *src_pmd, *dst_pmd;
  484. unsigned long next;
  485. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  486. if (!dst_pmd)
  487. return -ENOMEM;
  488. src_pmd = pmd_offset(src_pud, addr);
  489. do {
  490. next = pmd_addr_end(addr, end);
  491. if (pmd_none_or_clear_bad(src_pmd))
  492. continue;
  493. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  494. vma, addr, next))
  495. return -ENOMEM;
  496. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  497. return 0;
  498. }
  499. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  500. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  501. unsigned long addr, unsigned long end)
  502. {
  503. pud_t *src_pud, *dst_pud;
  504. unsigned long next;
  505. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  506. if (!dst_pud)
  507. return -ENOMEM;
  508. src_pud = pud_offset(src_pgd, addr);
  509. do {
  510. next = pud_addr_end(addr, end);
  511. if (pud_none_or_clear_bad(src_pud))
  512. continue;
  513. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  514. vma, addr, next))
  515. return -ENOMEM;
  516. } while (dst_pud++, src_pud++, addr = next, addr != end);
  517. return 0;
  518. }
  519. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  520. struct vm_area_struct *vma)
  521. {
  522. pgd_t *src_pgd, *dst_pgd;
  523. unsigned long next;
  524. unsigned long addr = vma->vm_start;
  525. unsigned long end = vma->vm_end;
  526. /*
  527. * Don't copy ptes where a page fault will fill them correctly.
  528. * Fork becomes much lighter when there are big shared or private
  529. * readonly mappings. The tradeoff is that copy_page_range is more
  530. * efficient than faulting.
  531. */
  532. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  533. if (!vma->anon_vma)
  534. return 0;
  535. }
  536. if (is_vm_hugetlb_page(vma))
  537. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  538. dst_pgd = pgd_offset(dst_mm, addr);
  539. src_pgd = pgd_offset(src_mm, addr);
  540. do {
  541. next = pgd_addr_end(addr, end);
  542. if (pgd_none_or_clear_bad(src_pgd))
  543. continue;
  544. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  545. vma, addr, next))
  546. return -ENOMEM;
  547. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  548. return 0;
  549. }
  550. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  551. struct vm_area_struct *vma, pmd_t *pmd,
  552. unsigned long addr, unsigned long end,
  553. long *zap_work, struct zap_details *details)
  554. {
  555. struct mm_struct *mm = tlb->mm;
  556. pte_t *pte;
  557. spinlock_t *ptl;
  558. int file_rss = 0;
  559. int anon_rss = 0;
  560. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  561. do {
  562. pte_t ptent = *pte;
  563. if (pte_none(ptent)) {
  564. (*zap_work)--;
  565. continue;
  566. }
  567. (*zap_work) -= PAGE_SIZE;
  568. if (pte_present(ptent)) {
  569. struct page *page;
  570. page = vm_normal_page(vma, addr, ptent);
  571. if (unlikely(details) && page) {
  572. /*
  573. * unmap_shared_mapping_pages() wants to
  574. * invalidate cache without truncating:
  575. * unmap shared but keep private pages.
  576. */
  577. if (details->check_mapping &&
  578. details->check_mapping != page->mapping)
  579. continue;
  580. /*
  581. * Each page->index must be checked when
  582. * invalidating or truncating nonlinear.
  583. */
  584. if (details->nonlinear_vma &&
  585. (page->index < details->first_index ||
  586. page->index > details->last_index))
  587. continue;
  588. }
  589. ptent = ptep_get_and_clear_full(mm, addr, pte,
  590. tlb->fullmm);
  591. tlb_remove_tlb_entry(tlb, pte, addr);
  592. if (unlikely(!page))
  593. continue;
  594. if (unlikely(details) && details->nonlinear_vma
  595. && linear_page_index(details->nonlinear_vma,
  596. addr) != page->index)
  597. set_pte_at(mm, addr, pte,
  598. pgoff_to_pte(page->index));
  599. if (PageAnon(page))
  600. anon_rss--;
  601. else {
  602. if (pte_dirty(ptent))
  603. set_page_dirty(page);
  604. if (pte_young(ptent))
  605. mark_page_accessed(page);
  606. file_rss--;
  607. }
  608. page_remove_rmap(page);
  609. tlb_remove_page(tlb, page);
  610. continue;
  611. }
  612. /*
  613. * If details->check_mapping, we leave swap entries;
  614. * if details->nonlinear_vma, we leave file entries.
  615. */
  616. if (unlikely(details))
  617. continue;
  618. if (!pte_file(ptent))
  619. free_swap_and_cache(pte_to_swp_entry(ptent));
  620. pte_clear_full(mm, addr, pte, tlb->fullmm);
  621. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  622. add_mm_rss(mm, file_rss, anon_rss);
  623. pte_unmap_unlock(pte - 1, ptl);
  624. return addr;
  625. }
  626. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  627. struct vm_area_struct *vma, pud_t *pud,
  628. unsigned long addr, unsigned long end,
  629. long *zap_work, struct zap_details *details)
  630. {
  631. pmd_t *pmd;
  632. unsigned long next;
  633. pmd = pmd_offset(pud, addr);
  634. do {
  635. next = pmd_addr_end(addr, end);
  636. if (pmd_none_or_clear_bad(pmd)) {
  637. (*zap_work)--;
  638. continue;
  639. }
  640. next = zap_pte_range(tlb, vma, pmd, addr, next,
  641. zap_work, details);
  642. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  643. return addr;
  644. }
  645. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  646. struct vm_area_struct *vma, pgd_t *pgd,
  647. unsigned long addr, unsigned long end,
  648. long *zap_work, struct zap_details *details)
  649. {
  650. pud_t *pud;
  651. unsigned long next;
  652. pud = pud_offset(pgd, addr);
  653. do {
  654. next = pud_addr_end(addr, end);
  655. if (pud_none_or_clear_bad(pud)) {
  656. (*zap_work)--;
  657. continue;
  658. }
  659. next = zap_pmd_range(tlb, vma, pud, addr, next,
  660. zap_work, details);
  661. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  662. return addr;
  663. }
  664. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  665. struct vm_area_struct *vma,
  666. unsigned long addr, unsigned long end,
  667. long *zap_work, struct zap_details *details)
  668. {
  669. pgd_t *pgd;
  670. unsigned long next;
  671. if (details && !details->check_mapping && !details->nonlinear_vma)
  672. details = NULL;
  673. BUG_ON(addr >= end);
  674. tlb_start_vma(tlb, vma);
  675. pgd = pgd_offset(vma->vm_mm, addr);
  676. do {
  677. next = pgd_addr_end(addr, end);
  678. if (pgd_none_or_clear_bad(pgd)) {
  679. (*zap_work)--;
  680. continue;
  681. }
  682. next = zap_pud_range(tlb, vma, pgd, addr, next,
  683. zap_work, details);
  684. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  685. tlb_end_vma(tlb, vma);
  686. return addr;
  687. }
  688. #ifdef CONFIG_PREEMPT
  689. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  690. #else
  691. /* No preempt: go for improved straight-line efficiency */
  692. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  693. #endif
  694. /**
  695. * unmap_vmas - unmap a range of memory covered by a list of vma's
  696. * @tlbp: address of the caller's struct mmu_gather
  697. * @vma: the starting vma
  698. * @start_addr: virtual address at which to start unmapping
  699. * @end_addr: virtual address at which to end unmapping
  700. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  701. * @details: details of nonlinear truncation or shared cache invalidation
  702. *
  703. * Returns the end address of the unmapping (restart addr if interrupted).
  704. *
  705. * Unmap all pages in the vma list.
  706. *
  707. * We aim to not hold locks for too long (for scheduling latency reasons).
  708. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  709. * return the ending mmu_gather to the caller.
  710. *
  711. * Only addresses between `start' and `end' will be unmapped.
  712. *
  713. * The VMA list must be sorted in ascending virtual address order.
  714. *
  715. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  716. * range after unmap_vmas() returns. So the only responsibility here is to
  717. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  718. * drops the lock and schedules.
  719. */
  720. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  721. struct vm_area_struct *vma, unsigned long start_addr,
  722. unsigned long end_addr, unsigned long *nr_accounted,
  723. struct zap_details *details)
  724. {
  725. long zap_work = ZAP_BLOCK_SIZE;
  726. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  727. int tlb_start_valid = 0;
  728. unsigned long start = start_addr;
  729. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  730. int fullmm = (*tlbp)->fullmm;
  731. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  732. unsigned long end;
  733. start = max(vma->vm_start, start_addr);
  734. if (start >= vma->vm_end)
  735. continue;
  736. end = min(vma->vm_end, end_addr);
  737. if (end <= vma->vm_start)
  738. continue;
  739. if (vma->vm_flags & VM_ACCOUNT)
  740. *nr_accounted += (end - start) >> PAGE_SHIFT;
  741. while (start != end) {
  742. if (!tlb_start_valid) {
  743. tlb_start = start;
  744. tlb_start_valid = 1;
  745. }
  746. if (unlikely(is_vm_hugetlb_page(vma))) {
  747. unmap_hugepage_range(vma, start, end);
  748. zap_work -= (end - start) /
  749. (HPAGE_SIZE / PAGE_SIZE);
  750. start = end;
  751. } else
  752. start = unmap_page_range(*tlbp, vma,
  753. start, end, &zap_work, details);
  754. if (zap_work > 0) {
  755. BUG_ON(start != end);
  756. break;
  757. }
  758. tlb_finish_mmu(*tlbp, tlb_start, start);
  759. if (need_resched() ||
  760. (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
  761. if (i_mmap_lock) {
  762. *tlbp = NULL;
  763. goto out;
  764. }
  765. cond_resched();
  766. }
  767. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  768. tlb_start_valid = 0;
  769. zap_work = ZAP_BLOCK_SIZE;
  770. }
  771. }
  772. out:
  773. return start; /* which is now the end (or restart) address */
  774. }
  775. /**
  776. * zap_page_range - remove user pages in a given range
  777. * @vma: vm_area_struct holding the applicable pages
  778. * @address: starting address of pages to zap
  779. * @size: number of bytes to zap
  780. * @details: details of nonlinear truncation or shared cache invalidation
  781. */
  782. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  783. unsigned long size, struct zap_details *details)
  784. {
  785. struct mm_struct *mm = vma->vm_mm;
  786. struct mmu_gather *tlb;
  787. unsigned long end = address + size;
  788. unsigned long nr_accounted = 0;
  789. lru_add_drain();
  790. tlb = tlb_gather_mmu(mm, 0);
  791. update_hiwater_rss(mm);
  792. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  793. if (tlb)
  794. tlb_finish_mmu(tlb, address, end);
  795. return end;
  796. }
  797. /*
  798. * Do a quick page-table lookup for a single page.
  799. */
  800. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  801. unsigned int flags)
  802. {
  803. pgd_t *pgd;
  804. pud_t *pud;
  805. pmd_t *pmd;
  806. pte_t *ptep, pte;
  807. spinlock_t *ptl;
  808. struct page *page;
  809. struct mm_struct *mm = vma->vm_mm;
  810. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  811. if (!IS_ERR(page)) {
  812. BUG_ON(flags & FOLL_GET);
  813. goto out;
  814. }
  815. page = NULL;
  816. pgd = pgd_offset(mm, address);
  817. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  818. goto no_page_table;
  819. pud = pud_offset(pgd, address);
  820. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  821. goto no_page_table;
  822. pmd = pmd_offset(pud, address);
  823. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  824. goto no_page_table;
  825. if (pmd_huge(*pmd)) {
  826. BUG_ON(flags & FOLL_GET);
  827. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  828. goto out;
  829. }
  830. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  831. if (!ptep)
  832. goto out;
  833. pte = *ptep;
  834. if (!pte_present(pte))
  835. goto unlock;
  836. if ((flags & FOLL_WRITE) && !pte_write(pte))
  837. goto unlock;
  838. page = vm_normal_page(vma, address, pte);
  839. if (unlikely(!page))
  840. goto unlock;
  841. if (flags & FOLL_GET)
  842. get_page(page);
  843. if (flags & FOLL_TOUCH) {
  844. if ((flags & FOLL_WRITE) &&
  845. !pte_dirty(pte) && !PageDirty(page))
  846. set_page_dirty(page);
  847. mark_page_accessed(page);
  848. }
  849. unlock:
  850. pte_unmap_unlock(ptep, ptl);
  851. out:
  852. return page;
  853. no_page_table:
  854. /*
  855. * When core dumping an enormous anonymous area that nobody
  856. * has touched so far, we don't want to allocate page tables.
  857. */
  858. if (flags & FOLL_ANON) {
  859. page = ZERO_PAGE(address);
  860. if (flags & FOLL_GET)
  861. get_page(page);
  862. BUG_ON(flags & FOLL_WRITE);
  863. }
  864. return page;
  865. }
  866. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  867. unsigned long start, int len, int write, int force,
  868. struct page **pages, struct vm_area_struct **vmas)
  869. {
  870. int i;
  871. unsigned int vm_flags;
  872. /*
  873. * Require read or write permissions.
  874. * If 'force' is set, we only require the "MAY" flags.
  875. */
  876. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  877. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  878. i = 0;
  879. do {
  880. struct vm_area_struct *vma;
  881. unsigned int foll_flags;
  882. vma = find_extend_vma(mm, start);
  883. if (!vma && in_gate_area(tsk, start)) {
  884. unsigned long pg = start & PAGE_MASK;
  885. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  886. pgd_t *pgd;
  887. pud_t *pud;
  888. pmd_t *pmd;
  889. pte_t *pte;
  890. if (write) /* user gate pages are read-only */
  891. return i ? : -EFAULT;
  892. if (pg > TASK_SIZE)
  893. pgd = pgd_offset_k(pg);
  894. else
  895. pgd = pgd_offset_gate(mm, pg);
  896. BUG_ON(pgd_none(*pgd));
  897. pud = pud_offset(pgd, pg);
  898. BUG_ON(pud_none(*pud));
  899. pmd = pmd_offset(pud, pg);
  900. if (pmd_none(*pmd))
  901. return i ? : -EFAULT;
  902. pte = pte_offset_map(pmd, pg);
  903. if (pte_none(*pte)) {
  904. pte_unmap(pte);
  905. return i ? : -EFAULT;
  906. }
  907. if (pages) {
  908. struct page *page = vm_normal_page(gate_vma, start, *pte);
  909. pages[i] = page;
  910. if (page)
  911. get_page(page);
  912. }
  913. pte_unmap(pte);
  914. if (vmas)
  915. vmas[i] = gate_vma;
  916. i++;
  917. start += PAGE_SIZE;
  918. len--;
  919. continue;
  920. }
  921. if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
  922. || !(vm_flags & vma->vm_flags))
  923. return i ? : -EFAULT;
  924. if (is_vm_hugetlb_page(vma)) {
  925. i = follow_hugetlb_page(mm, vma, pages, vmas,
  926. &start, &len, i);
  927. continue;
  928. }
  929. foll_flags = FOLL_TOUCH;
  930. if (pages)
  931. foll_flags |= FOLL_GET;
  932. if (!write && !(vma->vm_flags & VM_LOCKED) &&
  933. (!vma->vm_ops || !vma->vm_ops->nopage))
  934. foll_flags |= FOLL_ANON;
  935. do {
  936. struct page *page;
  937. if (write)
  938. foll_flags |= FOLL_WRITE;
  939. cond_resched();
  940. while (!(page = follow_page(vma, start, foll_flags))) {
  941. int ret;
  942. ret = __handle_mm_fault(mm, vma, start,
  943. foll_flags & FOLL_WRITE);
  944. /*
  945. * The VM_FAULT_WRITE bit tells us that do_wp_page has
  946. * broken COW when necessary, even if maybe_mkwrite
  947. * decided not to set pte_write. We can thus safely do
  948. * subsequent page lookups as if they were reads.
  949. */
  950. if (ret & VM_FAULT_WRITE)
  951. foll_flags &= ~FOLL_WRITE;
  952. switch (ret & ~VM_FAULT_WRITE) {
  953. case VM_FAULT_MINOR:
  954. tsk->min_flt++;
  955. break;
  956. case VM_FAULT_MAJOR:
  957. tsk->maj_flt++;
  958. break;
  959. case VM_FAULT_SIGBUS:
  960. return i ? i : -EFAULT;
  961. case VM_FAULT_OOM:
  962. return i ? i : -ENOMEM;
  963. default:
  964. BUG();
  965. }
  966. }
  967. if (pages) {
  968. pages[i] = page;
  969. flush_anon_page(page, start);
  970. flush_dcache_page(page);
  971. }
  972. if (vmas)
  973. vmas[i] = vma;
  974. i++;
  975. start += PAGE_SIZE;
  976. len--;
  977. } while (len && start < vma->vm_end);
  978. } while (len);
  979. return i;
  980. }
  981. EXPORT_SYMBOL(get_user_pages);
  982. static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  983. unsigned long addr, unsigned long end, pgprot_t prot)
  984. {
  985. pte_t *pte;
  986. spinlock_t *ptl;
  987. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  988. if (!pte)
  989. return -ENOMEM;
  990. do {
  991. struct page *page = ZERO_PAGE(addr);
  992. pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
  993. page_cache_get(page);
  994. page_add_file_rmap(page);
  995. inc_mm_counter(mm, file_rss);
  996. BUG_ON(!pte_none(*pte));
  997. set_pte_at(mm, addr, pte, zero_pte);
  998. } while (pte++, addr += PAGE_SIZE, addr != end);
  999. pte_unmap_unlock(pte - 1, ptl);
  1000. return 0;
  1001. }
  1002. static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1003. unsigned long addr, unsigned long end, pgprot_t prot)
  1004. {
  1005. pmd_t *pmd;
  1006. unsigned long next;
  1007. pmd = pmd_alloc(mm, pud, addr);
  1008. if (!pmd)
  1009. return -ENOMEM;
  1010. do {
  1011. next = pmd_addr_end(addr, end);
  1012. if (zeromap_pte_range(mm, pmd, addr, next, prot))
  1013. return -ENOMEM;
  1014. } while (pmd++, addr = next, addr != end);
  1015. return 0;
  1016. }
  1017. static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1018. unsigned long addr, unsigned long end, pgprot_t prot)
  1019. {
  1020. pud_t *pud;
  1021. unsigned long next;
  1022. pud = pud_alloc(mm, pgd, addr);
  1023. if (!pud)
  1024. return -ENOMEM;
  1025. do {
  1026. next = pud_addr_end(addr, end);
  1027. if (zeromap_pmd_range(mm, pud, addr, next, prot))
  1028. return -ENOMEM;
  1029. } while (pud++, addr = next, addr != end);
  1030. return 0;
  1031. }
  1032. int zeromap_page_range(struct vm_area_struct *vma,
  1033. unsigned long addr, unsigned long size, pgprot_t prot)
  1034. {
  1035. pgd_t *pgd;
  1036. unsigned long next;
  1037. unsigned long end = addr + size;
  1038. struct mm_struct *mm = vma->vm_mm;
  1039. int err;
  1040. BUG_ON(addr >= end);
  1041. pgd = pgd_offset(mm, addr);
  1042. flush_cache_range(vma, addr, end);
  1043. do {
  1044. next = pgd_addr_end(addr, end);
  1045. err = zeromap_pud_range(mm, pgd, addr, next, prot);
  1046. if (err)
  1047. break;
  1048. } while (pgd++, addr = next, addr != end);
  1049. return err;
  1050. }
  1051. pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
  1052. {
  1053. pgd_t * pgd = pgd_offset(mm, addr);
  1054. pud_t * pud = pud_alloc(mm, pgd, addr);
  1055. if (pud) {
  1056. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1057. if (pmd)
  1058. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1059. }
  1060. return NULL;
  1061. }
  1062. /*
  1063. * This is the old fallback for page remapping.
  1064. *
  1065. * For historical reasons, it only allows reserved pages. Only
  1066. * old drivers should use this, and they needed to mark their
  1067. * pages reserved for the old functions anyway.
  1068. */
  1069. static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
  1070. {
  1071. int retval;
  1072. pte_t *pte;
  1073. spinlock_t *ptl;
  1074. retval = -EINVAL;
  1075. if (PageAnon(page))
  1076. goto out;
  1077. retval = -ENOMEM;
  1078. flush_dcache_page(page);
  1079. pte = get_locked_pte(mm, addr, &ptl);
  1080. if (!pte)
  1081. goto out;
  1082. retval = -EBUSY;
  1083. if (!pte_none(*pte))
  1084. goto out_unlock;
  1085. /* Ok, finally just insert the thing.. */
  1086. get_page(page);
  1087. inc_mm_counter(mm, file_rss);
  1088. page_add_file_rmap(page);
  1089. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1090. retval = 0;
  1091. out_unlock:
  1092. pte_unmap_unlock(pte, ptl);
  1093. out:
  1094. return retval;
  1095. }
  1096. /*
  1097. * This allows drivers to insert individual pages they've allocated
  1098. * into a user vma.
  1099. *
  1100. * The page has to be a nice clean _individual_ kernel allocation.
  1101. * If you allocate a compound page, you need to have marked it as
  1102. * such (__GFP_COMP), or manually just split the page up yourself
  1103. * (see split_page()).
  1104. *
  1105. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1106. * took an arbitrary page protection parameter. This doesn't allow
  1107. * that. Your vma protection will have to be set up correctly, which
  1108. * means that if you want a shared writable mapping, you'd better
  1109. * ask for a shared writable mapping!
  1110. *
  1111. * The page does not need to be reserved.
  1112. */
  1113. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
  1114. {
  1115. if (addr < vma->vm_start || addr >= vma->vm_end)
  1116. return -EFAULT;
  1117. if (!page_count(page))
  1118. return -EINVAL;
  1119. vma->vm_flags |= VM_INSERTPAGE;
  1120. return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
  1121. }
  1122. EXPORT_SYMBOL(vm_insert_page);
  1123. /*
  1124. * maps a range of physical memory into the requested pages. the old
  1125. * mappings are removed. any references to nonexistent pages results
  1126. * in null mappings (currently treated as "copy-on-access")
  1127. */
  1128. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1129. unsigned long addr, unsigned long end,
  1130. unsigned long pfn, pgprot_t prot)
  1131. {
  1132. pte_t *pte;
  1133. spinlock_t *ptl;
  1134. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1135. if (!pte)
  1136. return -ENOMEM;
  1137. do {
  1138. BUG_ON(!pte_none(*pte));
  1139. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  1140. pfn++;
  1141. } while (pte++, addr += PAGE_SIZE, addr != end);
  1142. pte_unmap_unlock(pte - 1, ptl);
  1143. return 0;
  1144. }
  1145. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1146. unsigned long addr, unsigned long end,
  1147. unsigned long pfn, pgprot_t prot)
  1148. {
  1149. pmd_t *pmd;
  1150. unsigned long next;
  1151. pfn -= addr >> PAGE_SHIFT;
  1152. pmd = pmd_alloc(mm, pud, addr);
  1153. if (!pmd)
  1154. return -ENOMEM;
  1155. do {
  1156. next = pmd_addr_end(addr, end);
  1157. if (remap_pte_range(mm, pmd, addr, next,
  1158. pfn + (addr >> PAGE_SHIFT), prot))
  1159. return -ENOMEM;
  1160. } while (pmd++, addr = next, addr != end);
  1161. return 0;
  1162. }
  1163. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1164. unsigned long addr, unsigned long end,
  1165. unsigned long pfn, pgprot_t prot)
  1166. {
  1167. pud_t *pud;
  1168. unsigned long next;
  1169. pfn -= addr >> PAGE_SHIFT;
  1170. pud = pud_alloc(mm, pgd, addr);
  1171. if (!pud)
  1172. return -ENOMEM;
  1173. do {
  1174. next = pud_addr_end(addr, end);
  1175. if (remap_pmd_range(mm, pud, addr, next,
  1176. pfn + (addr >> PAGE_SHIFT), prot))
  1177. return -ENOMEM;
  1178. } while (pud++, addr = next, addr != end);
  1179. return 0;
  1180. }
  1181. /* Note: this is only safe if the mm semaphore is held when called. */
  1182. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1183. unsigned long pfn, unsigned long size, pgprot_t prot)
  1184. {
  1185. pgd_t *pgd;
  1186. unsigned long next;
  1187. unsigned long end = addr + PAGE_ALIGN(size);
  1188. struct mm_struct *mm = vma->vm_mm;
  1189. int err;
  1190. /*
  1191. * Physically remapped pages are special. Tell the
  1192. * rest of the world about it:
  1193. * VM_IO tells people not to look at these pages
  1194. * (accesses can have side effects).
  1195. * VM_RESERVED is specified all over the place, because
  1196. * in 2.4 it kept swapout's vma scan off this vma; but
  1197. * in 2.6 the LRU scan won't even find its pages, so this
  1198. * flag means no more than count its pages in reserved_vm,
  1199. * and omit it from core dump, even when VM_IO turned off.
  1200. * VM_PFNMAP tells the core MM that the base pages are just
  1201. * raw PFN mappings, and do not have a "struct page" associated
  1202. * with them.
  1203. *
  1204. * There's a horrible special case to handle copy-on-write
  1205. * behaviour that some programs depend on. We mark the "original"
  1206. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1207. */
  1208. if (is_cow_mapping(vma->vm_flags)) {
  1209. if (addr != vma->vm_start || end != vma->vm_end)
  1210. return -EINVAL;
  1211. vma->vm_pgoff = pfn;
  1212. }
  1213. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1214. BUG_ON(addr >= end);
  1215. pfn -= addr >> PAGE_SHIFT;
  1216. pgd = pgd_offset(mm, addr);
  1217. flush_cache_range(vma, addr, end);
  1218. do {
  1219. next = pgd_addr_end(addr, end);
  1220. err = remap_pud_range(mm, pgd, addr, next,
  1221. pfn + (addr >> PAGE_SHIFT), prot);
  1222. if (err)
  1223. break;
  1224. } while (pgd++, addr = next, addr != end);
  1225. return err;
  1226. }
  1227. EXPORT_SYMBOL(remap_pfn_range);
  1228. /*
  1229. * handle_pte_fault chooses page fault handler according to an entry
  1230. * which was read non-atomically. Before making any commitment, on
  1231. * those architectures or configurations (e.g. i386 with PAE) which
  1232. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1233. * must check under lock before unmapping the pte and proceeding
  1234. * (but do_wp_page is only called after already making such a check;
  1235. * and do_anonymous_page and do_no_page can safely check later on).
  1236. */
  1237. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1238. pte_t *page_table, pte_t orig_pte)
  1239. {
  1240. int same = 1;
  1241. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1242. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1243. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1244. spin_lock(ptl);
  1245. same = pte_same(*page_table, orig_pte);
  1246. spin_unlock(ptl);
  1247. }
  1248. #endif
  1249. pte_unmap(page_table);
  1250. return same;
  1251. }
  1252. /*
  1253. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1254. * servicing faults for write access. In the normal case, do always want
  1255. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1256. * that do not have writing enabled, when used by access_process_vm.
  1257. */
  1258. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1259. {
  1260. if (likely(vma->vm_flags & VM_WRITE))
  1261. pte = pte_mkwrite(pte);
  1262. return pte;
  1263. }
  1264. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
  1265. {
  1266. /*
  1267. * If the source page was a PFN mapping, we don't have
  1268. * a "struct page" for it. We do a best-effort copy by
  1269. * just copying from the original user address. If that
  1270. * fails, we just zero-fill it. Live with it.
  1271. */
  1272. if (unlikely(!src)) {
  1273. void *kaddr = kmap_atomic(dst, KM_USER0);
  1274. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1275. /*
  1276. * This really shouldn't fail, because the page is there
  1277. * in the page tables. But it might just be unreadable,
  1278. * in which case we just give up and fill the result with
  1279. * zeroes.
  1280. */
  1281. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1282. memset(kaddr, 0, PAGE_SIZE);
  1283. kunmap_atomic(kaddr, KM_USER0);
  1284. return;
  1285. }
  1286. copy_user_highpage(dst, src, va);
  1287. }
  1288. /*
  1289. * This routine handles present pages, when users try to write
  1290. * to a shared page. It is done by copying the page to a new address
  1291. * and decrementing the shared-page counter for the old page.
  1292. *
  1293. * Note that this routine assumes that the protection checks have been
  1294. * done by the caller (the low-level page fault routine in most cases).
  1295. * Thus we can safely just mark it writable once we've done any necessary
  1296. * COW.
  1297. *
  1298. * We also mark the page dirty at this point even though the page will
  1299. * change only once the write actually happens. This avoids a few races,
  1300. * and potentially makes it more efficient.
  1301. *
  1302. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1303. * but allow concurrent faults), with pte both mapped and locked.
  1304. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1305. */
  1306. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1307. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1308. spinlock_t *ptl, pte_t orig_pte)
  1309. {
  1310. struct page *old_page, *new_page;
  1311. pte_t entry;
  1312. int reuse, ret = VM_FAULT_MINOR;
  1313. old_page = vm_normal_page(vma, address, orig_pte);
  1314. if (!old_page)
  1315. goto gotten;
  1316. if (unlikely((vma->vm_flags & (VM_SHARED|VM_WRITE)) ==
  1317. (VM_SHARED|VM_WRITE))) {
  1318. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1319. /*
  1320. * Notify the address space that the page is about to
  1321. * become writable so that it can prohibit this or wait
  1322. * for the page to get into an appropriate state.
  1323. *
  1324. * We do this without the lock held, so that it can
  1325. * sleep if it needs to.
  1326. */
  1327. page_cache_get(old_page);
  1328. pte_unmap_unlock(page_table, ptl);
  1329. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1330. goto unwritable_page;
  1331. page_cache_release(old_page);
  1332. /*
  1333. * Since we dropped the lock we need to revalidate
  1334. * the PTE as someone else may have changed it. If
  1335. * they did, we just return, as we can count on the
  1336. * MMU to tell us if they didn't also make it writable.
  1337. */
  1338. page_table = pte_offset_map_lock(mm, pmd, address,
  1339. &ptl);
  1340. if (!pte_same(*page_table, orig_pte))
  1341. goto unlock;
  1342. }
  1343. reuse = 1;
  1344. } else if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
  1345. reuse = can_share_swap_page(old_page);
  1346. unlock_page(old_page);
  1347. } else {
  1348. reuse = 0;
  1349. }
  1350. if (reuse) {
  1351. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1352. entry = pte_mkyoung(orig_pte);
  1353. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1354. ptep_set_access_flags(vma, address, page_table, entry, 1);
  1355. update_mmu_cache(vma, address, entry);
  1356. lazy_mmu_prot_update(entry);
  1357. ret |= VM_FAULT_WRITE;
  1358. goto unlock;
  1359. }
  1360. /*
  1361. * Ok, we need to copy. Oh, well..
  1362. */
  1363. page_cache_get(old_page);
  1364. gotten:
  1365. pte_unmap_unlock(page_table, ptl);
  1366. if (unlikely(anon_vma_prepare(vma)))
  1367. goto oom;
  1368. if (old_page == ZERO_PAGE(address)) {
  1369. new_page = alloc_zeroed_user_highpage(vma, address);
  1370. if (!new_page)
  1371. goto oom;
  1372. } else {
  1373. new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1374. if (!new_page)
  1375. goto oom;
  1376. cow_user_page(new_page, old_page, address);
  1377. }
  1378. /*
  1379. * Re-check the pte - we dropped the lock
  1380. */
  1381. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1382. if (likely(pte_same(*page_table, orig_pte))) {
  1383. if (old_page) {
  1384. page_remove_rmap(old_page);
  1385. if (!PageAnon(old_page)) {
  1386. dec_mm_counter(mm, file_rss);
  1387. inc_mm_counter(mm, anon_rss);
  1388. }
  1389. } else
  1390. inc_mm_counter(mm, anon_rss);
  1391. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1392. entry = mk_pte(new_page, vma->vm_page_prot);
  1393. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1394. ptep_establish(vma, address, page_table, entry);
  1395. update_mmu_cache(vma, address, entry);
  1396. lazy_mmu_prot_update(entry);
  1397. lru_cache_add_active(new_page);
  1398. page_add_new_anon_rmap(new_page, vma, address);
  1399. /* Free the old page.. */
  1400. new_page = old_page;
  1401. ret |= VM_FAULT_WRITE;
  1402. }
  1403. if (new_page)
  1404. page_cache_release(new_page);
  1405. if (old_page)
  1406. page_cache_release(old_page);
  1407. unlock:
  1408. pte_unmap_unlock(page_table, ptl);
  1409. return ret;
  1410. oom:
  1411. if (old_page)
  1412. page_cache_release(old_page);
  1413. return VM_FAULT_OOM;
  1414. unwritable_page:
  1415. page_cache_release(old_page);
  1416. return VM_FAULT_SIGBUS;
  1417. }
  1418. /*
  1419. * Helper functions for unmap_mapping_range().
  1420. *
  1421. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1422. *
  1423. * We have to restart searching the prio_tree whenever we drop the lock,
  1424. * since the iterator is only valid while the lock is held, and anyway
  1425. * a later vma might be split and reinserted earlier while lock dropped.
  1426. *
  1427. * The list of nonlinear vmas could be handled more efficiently, using
  1428. * a placeholder, but handle it in the same way until a need is shown.
  1429. * It is important to search the prio_tree before nonlinear list: a vma
  1430. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1431. * while the lock is dropped; but never shifted from list to prio_tree.
  1432. *
  1433. * In order to make forward progress despite restarting the search,
  1434. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1435. * quickly skip it next time around. Since the prio_tree search only
  1436. * shows us those vmas affected by unmapping the range in question, we
  1437. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1438. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1439. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1440. * i_mmap_lock.
  1441. *
  1442. * In order to make forward progress despite repeatedly restarting some
  1443. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1444. * and restart from that address when we reach that vma again. It might
  1445. * have been split or merged, shrunk or extended, but never shifted: so
  1446. * restart_addr remains valid so long as it remains in the vma's range.
  1447. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1448. * values so we can save vma's restart_addr in its truncate_count field.
  1449. */
  1450. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1451. static void reset_vma_truncate_counts(struct address_space *mapping)
  1452. {
  1453. struct vm_area_struct *vma;
  1454. struct prio_tree_iter iter;
  1455. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1456. vma->vm_truncate_count = 0;
  1457. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1458. vma->vm_truncate_count = 0;
  1459. }
  1460. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1461. unsigned long start_addr, unsigned long end_addr,
  1462. struct zap_details *details)
  1463. {
  1464. unsigned long restart_addr;
  1465. int need_break;
  1466. again:
  1467. restart_addr = vma->vm_truncate_count;
  1468. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1469. start_addr = restart_addr;
  1470. if (start_addr >= end_addr) {
  1471. /* Top of vma has been split off since last time */
  1472. vma->vm_truncate_count = details->truncate_count;
  1473. return 0;
  1474. }
  1475. }
  1476. restart_addr = zap_page_range(vma, start_addr,
  1477. end_addr - start_addr, details);
  1478. need_break = need_resched() ||
  1479. need_lockbreak(details->i_mmap_lock);
  1480. if (restart_addr >= end_addr) {
  1481. /* We have now completed this vma: mark it so */
  1482. vma->vm_truncate_count = details->truncate_count;
  1483. if (!need_break)
  1484. return 0;
  1485. } else {
  1486. /* Note restart_addr in vma's truncate_count field */
  1487. vma->vm_truncate_count = restart_addr;
  1488. if (!need_break)
  1489. goto again;
  1490. }
  1491. spin_unlock(details->i_mmap_lock);
  1492. cond_resched();
  1493. spin_lock(details->i_mmap_lock);
  1494. return -EINTR;
  1495. }
  1496. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1497. struct zap_details *details)
  1498. {
  1499. struct vm_area_struct *vma;
  1500. struct prio_tree_iter iter;
  1501. pgoff_t vba, vea, zba, zea;
  1502. restart:
  1503. vma_prio_tree_foreach(vma, &iter, root,
  1504. details->first_index, details->last_index) {
  1505. /* Skip quickly over those we have already dealt with */
  1506. if (vma->vm_truncate_count == details->truncate_count)
  1507. continue;
  1508. vba = vma->vm_pgoff;
  1509. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1510. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1511. zba = details->first_index;
  1512. if (zba < vba)
  1513. zba = vba;
  1514. zea = details->last_index;
  1515. if (zea > vea)
  1516. zea = vea;
  1517. if (unmap_mapping_range_vma(vma,
  1518. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1519. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1520. details) < 0)
  1521. goto restart;
  1522. }
  1523. }
  1524. static inline void unmap_mapping_range_list(struct list_head *head,
  1525. struct zap_details *details)
  1526. {
  1527. struct vm_area_struct *vma;
  1528. /*
  1529. * In nonlinear VMAs there is no correspondence between virtual address
  1530. * offset and file offset. So we must perform an exhaustive search
  1531. * across *all* the pages in each nonlinear VMA, not just the pages
  1532. * whose virtual address lies outside the file truncation point.
  1533. */
  1534. restart:
  1535. list_for_each_entry(vma, head, shared.vm_set.list) {
  1536. /* Skip quickly over those we have already dealt with */
  1537. if (vma->vm_truncate_count == details->truncate_count)
  1538. continue;
  1539. details->nonlinear_vma = vma;
  1540. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1541. vma->vm_end, details) < 0)
  1542. goto restart;
  1543. }
  1544. }
  1545. /**
  1546. * unmap_mapping_range - unmap the portion of all mmaps
  1547. * in the specified address_space corresponding to the specified
  1548. * page range in the underlying file.
  1549. * @mapping: the address space containing mmaps to be unmapped.
  1550. * @holebegin: byte in first page to unmap, relative to the start of
  1551. * the underlying file. This will be rounded down to a PAGE_SIZE
  1552. * boundary. Note that this is different from vmtruncate(), which
  1553. * must keep the partial page. In contrast, we must get rid of
  1554. * partial pages.
  1555. * @holelen: size of prospective hole in bytes. This will be rounded
  1556. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1557. * end of the file.
  1558. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1559. * but 0 when invalidating pagecache, don't throw away private data.
  1560. */
  1561. void unmap_mapping_range(struct address_space *mapping,
  1562. loff_t const holebegin, loff_t const holelen, int even_cows)
  1563. {
  1564. struct zap_details details;
  1565. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1566. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1567. /* Check for overflow. */
  1568. if (sizeof(holelen) > sizeof(hlen)) {
  1569. long long holeend =
  1570. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1571. if (holeend & ~(long long)ULONG_MAX)
  1572. hlen = ULONG_MAX - hba + 1;
  1573. }
  1574. details.check_mapping = even_cows? NULL: mapping;
  1575. details.nonlinear_vma = NULL;
  1576. details.first_index = hba;
  1577. details.last_index = hba + hlen - 1;
  1578. if (details.last_index < details.first_index)
  1579. details.last_index = ULONG_MAX;
  1580. details.i_mmap_lock = &mapping->i_mmap_lock;
  1581. spin_lock(&mapping->i_mmap_lock);
  1582. /* serialize i_size write against truncate_count write */
  1583. smp_wmb();
  1584. /* Protect against page faults, and endless unmapping loops */
  1585. mapping->truncate_count++;
  1586. /*
  1587. * For archs where spin_lock has inclusive semantics like ia64
  1588. * this smp_mb() will prevent to read pagetable contents
  1589. * before the truncate_count increment is visible to
  1590. * other cpus.
  1591. */
  1592. smp_mb();
  1593. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1594. if (mapping->truncate_count == 0)
  1595. reset_vma_truncate_counts(mapping);
  1596. mapping->truncate_count++;
  1597. }
  1598. details.truncate_count = mapping->truncate_count;
  1599. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1600. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1601. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1602. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1603. spin_unlock(&mapping->i_mmap_lock);
  1604. }
  1605. EXPORT_SYMBOL(unmap_mapping_range);
  1606. /*
  1607. * Handle all mappings that got truncated by a "truncate()"
  1608. * system call.
  1609. *
  1610. * NOTE! We have to be ready to update the memory sharing
  1611. * between the file and the memory map for a potential last
  1612. * incomplete page. Ugly, but necessary.
  1613. */
  1614. int vmtruncate(struct inode * inode, loff_t offset)
  1615. {
  1616. struct address_space *mapping = inode->i_mapping;
  1617. unsigned long limit;
  1618. if (inode->i_size < offset)
  1619. goto do_expand;
  1620. /*
  1621. * truncation of in-use swapfiles is disallowed - it would cause
  1622. * subsequent swapout to scribble on the now-freed blocks.
  1623. */
  1624. if (IS_SWAPFILE(inode))
  1625. goto out_busy;
  1626. i_size_write(inode, offset);
  1627. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1628. truncate_inode_pages(mapping, offset);
  1629. goto out_truncate;
  1630. do_expand:
  1631. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1632. if (limit != RLIM_INFINITY && offset > limit)
  1633. goto out_sig;
  1634. if (offset > inode->i_sb->s_maxbytes)
  1635. goto out_big;
  1636. i_size_write(inode, offset);
  1637. out_truncate:
  1638. if (inode->i_op && inode->i_op->truncate)
  1639. inode->i_op->truncate(inode);
  1640. return 0;
  1641. out_sig:
  1642. send_sig(SIGXFSZ, current, 0);
  1643. out_big:
  1644. return -EFBIG;
  1645. out_busy:
  1646. return -ETXTBSY;
  1647. }
  1648. EXPORT_SYMBOL(vmtruncate);
  1649. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  1650. {
  1651. struct address_space *mapping = inode->i_mapping;
  1652. /*
  1653. * If the underlying filesystem is not going to provide
  1654. * a way to truncate a range of blocks (punch a hole) -
  1655. * we should return failure right now.
  1656. */
  1657. if (!inode->i_op || !inode->i_op->truncate_range)
  1658. return -ENOSYS;
  1659. mutex_lock(&inode->i_mutex);
  1660. down_write(&inode->i_alloc_sem);
  1661. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1662. truncate_inode_pages_range(mapping, offset, end);
  1663. inode->i_op->truncate_range(inode, offset, end);
  1664. up_write(&inode->i_alloc_sem);
  1665. mutex_unlock(&inode->i_mutex);
  1666. return 0;
  1667. }
  1668. EXPORT_SYMBOL(vmtruncate_range);
  1669. /*
  1670. * Primitive swap readahead code. We simply read an aligned block of
  1671. * (1 << page_cluster) entries in the swap area. This method is chosen
  1672. * because it doesn't cost us any seek time. We also make sure to queue
  1673. * the 'original' request together with the readahead ones...
  1674. *
  1675. * This has been extended to use the NUMA policies from the mm triggering
  1676. * the readahead.
  1677. *
  1678. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  1679. */
  1680. void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
  1681. {
  1682. #ifdef CONFIG_NUMA
  1683. struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
  1684. #endif
  1685. int i, num;
  1686. struct page *new_page;
  1687. unsigned long offset;
  1688. /*
  1689. * Get the number of handles we should do readahead io to.
  1690. */
  1691. num = valid_swaphandles(entry, &offset);
  1692. for (i = 0; i < num; offset++, i++) {
  1693. /* Ok, do the async read-ahead now */
  1694. new_page = read_swap_cache_async(swp_entry(swp_type(entry),
  1695. offset), vma, addr);
  1696. if (!new_page)
  1697. break;
  1698. page_cache_release(new_page);
  1699. #ifdef CONFIG_NUMA
  1700. /*
  1701. * Find the next applicable VMA for the NUMA policy.
  1702. */
  1703. addr += PAGE_SIZE;
  1704. if (addr == 0)
  1705. vma = NULL;
  1706. if (vma) {
  1707. if (addr >= vma->vm_end) {
  1708. vma = next_vma;
  1709. next_vma = vma ? vma->vm_next : NULL;
  1710. }
  1711. if (vma && addr < vma->vm_start)
  1712. vma = NULL;
  1713. } else {
  1714. if (next_vma && addr >= next_vma->vm_start) {
  1715. vma = next_vma;
  1716. next_vma = vma->vm_next;
  1717. }
  1718. }
  1719. #endif
  1720. }
  1721. lru_add_drain(); /* Push any new pages onto the LRU now */
  1722. }
  1723. /*
  1724. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1725. * but allow concurrent faults), and pte mapped but not yet locked.
  1726. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1727. */
  1728. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1729. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1730. int write_access, pte_t orig_pte)
  1731. {
  1732. spinlock_t *ptl;
  1733. struct page *page;
  1734. swp_entry_t entry;
  1735. pte_t pte;
  1736. int ret = VM_FAULT_MINOR;
  1737. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  1738. goto out;
  1739. entry = pte_to_swp_entry(orig_pte);
  1740. if (is_migration_entry(entry)) {
  1741. migration_entry_wait(mm, pmd, address);
  1742. goto out;
  1743. }
  1744. page = lookup_swap_cache(entry);
  1745. if (!page) {
  1746. swapin_readahead(entry, address, vma);
  1747. page = read_swap_cache_async(entry, vma, address);
  1748. if (!page) {
  1749. /*
  1750. * Back out if somebody else faulted in this pte
  1751. * while we released the pte lock.
  1752. */
  1753. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1754. if (likely(pte_same(*page_table, orig_pte)))
  1755. ret = VM_FAULT_OOM;
  1756. goto unlock;
  1757. }
  1758. /* Had to read the page from swap area: Major fault */
  1759. ret = VM_FAULT_MAJOR;
  1760. inc_page_state(pgmajfault);
  1761. grab_swap_token();
  1762. }
  1763. mark_page_accessed(page);
  1764. lock_page(page);
  1765. /*
  1766. * Back out if somebody else already faulted in this pte.
  1767. */
  1768. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1769. if (unlikely(!pte_same(*page_table, orig_pte)))
  1770. goto out_nomap;
  1771. if (unlikely(!PageUptodate(page))) {
  1772. ret = VM_FAULT_SIGBUS;
  1773. goto out_nomap;
  1774. }
  1775. /* The page isn't present yet, go ahead with the fault. */
  1776. inc_mm_counter(mm, anon_rss);
  1777. pte = mk_pte(page, vma->vm_page_prot);
  1778. if (write_access && can_share_swap_page(page)) {
  1779. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1780. write_access = 0;
  1781. }
  1782. flush_icache_page(vma, page);
  1783. set_pte_at(mm, address, page_table, pte);
  1784. page_add_anon_rmap(page, vma, address);
  1785. swap_free(entry);
  1786. if (vm_swap_full())
  1787. remove_exclusive_swap_page(page);
  1788. unlock_page(page);
  1789. if (write_access) {
  1790. if (do_wp_page(mm, vma, address,
  1791. page_table, pmd, ptl, pte) == VM_FAULT_OOM)
  1792. ret = VM_FAULT_OOM;
  1793. goto out;
  1794. }
  1795. /* No need to invalidate - it was non-present before */
  1796. update_mmu_cache(vma, address, pte);
  1797. lazy_mmu_prot_update(pte);
  1798. unlock:
  1799. pte_unmap_unlock(page_table, ptl);
  1800. out:
  1801. return ret;
  1802. out_nomap:
  1803. pte_unmap_unlock(page_table, ptl);
  1804. unlock_page(page);
  1805. page_cache_release(page);
  1806. return ret;
  1807. }
  1808. /*
  1809. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1810. * but allow concurrent faults), and pte mapped but not yet locked.
  1811. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1812. */
  1813. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1814. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1815. int write_access)
  1816. {
  1817. struct page *page;
  1818. spinlock_t *ptl;
  1819. pte_t entry;
  1820. if (write_access) {
  1821. /* Allocate our own private page. */
  1822. pte_unmap(page_table);
  1823. if (unlikely(anon_vma_prepare(vma)))
  1824. goto oom;
  1825. page = alloc_zeroed_user_highpage(vma, address);
  1826. if (!page)
  1827. goto oom;
  1828. entry = mk_pte(page, vma->vm_page_prot);
  1829. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1830. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1831. if (!pte_none(*page_table))
  1832. goto release;
  1833. inc_mm_counter(mm, anon_rss);
  1834. lru_cache_add_active(page);
  1835. page_add_new_anon_rmap(page, vma, address);
  1836. } else {
  1837. /* Map the ZERO_PAGE - vm_page_prot is readonly */
  1838. page = ZERO_PAGE(address);
  1839. page_cache_get(page);
  1840. entry = mk_pte(page, vma->vm_page_prot);
  1841. ptl = pte_lockptr(mm, pmd);
  1842. spin_lock(ptl);
  1843. if (!pte_none(*page_table))
  1844. goto release;
  1845. inc_mm_counter(mm, file_rss);
  1846. page_add_file_rmap(page);
  1847. }
  1848. set_pte_at(mm, address, page_table, entry);
  1849. /* No need to invalidate - it was non-present before */
  1850. update_mmu_cache(vma, address, entry);
  1851. lazy_mmu_prot_update(entry);
  1852. unlock:
  1853. pte_unmap_unlock(page_table, ptl);
  1854. return VM_FAULT_MINOR;
  1855. release:
  1856. page_cache_release(page);
  1857. goto unlock;
  1858. oom:
  1859. return VM_FAULT_OOM;
  1860. }
  1861. /*
  1862. * do_no_page() tries to create a new page mapping. It aggressively
  1863. * tries to share with existing pages, but makes a separate copy if
  1864. * the "write_access" parameter is true in order to avoid the next
  1865. * page fault.
  1866. *
  1867. * As this is called only for pages that do not currently exist, we
  1868. * do not need to flush old virtual caches or the TLB.
  1869. *
  1870. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1871. * but allow concurrent faults), and pte mapped but not yet locked.
  1872. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1873. */
  1874. static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1875. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1876. int write_access)
  1877. {
  1878. spinlock_t *ptl;
  1879. struct page *new_page;
  1880. struct address_space *mapping = NULL;
  1881. pte_t entry;
  1882. unsigned int sequence = 0;
  1883. int ret = VM_FAULT_MINOR;
  1884. int anon = 0;
  1885. pte_unmap(page_table);
  1886. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1887. if (vma->vm_file) {
  1888. mapping = vma->vm_file->f_mapping;
  1889. sequence = mapping->truncate_count;
  1890. smp_rmb(); /* serializes i_size against truncate_count */
  1891. }
  1892. retry:
  1893. new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  1894. /*
  1895. * No smp_rmb is needed here as long as there's a full
  1896. * spin_lock/unlock sequence inside the ->nopage callback
  1897. * (for the pagecache lookup) that acts as an implicit
  1898. * smp_mb() and prevents the i_size read to happen
  1899. * after the next truncate_count read.
  1900. */
  1901. /* no page was available -- either SIGBUS or OOM */
  1902. if (new_page == NOPAGE_SIGBUS)
  1903. return VM_FAULT_SIGBUS;
  1904. if (new_page == NOPAGE_OOM)
  1905. return VM_FAULT_OOM;
  1906. /*
  1907. * Should we do an early C-O-W break?
  1908. */
  1909. if (write_access) {
  1910. if (!(vma->vm_flags & VM_SHARED)) {
  1911. struct page *page;
  1912. if (unlikely(anon_vma_prepare(vma)))
  1913. goto oom;
  1914. page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1915. if (!page)
  1916. goto oom;
  1917. copy_user_highpage(page, new_page, address);
  1918. page_cache_release(new_page);
  1919. new_page = page;
  1920. anon = 1;
  1921. } else {
  1922. /* if the page will be shareable, see if the backing
  1923. * address space wants to know that the page is about
  1924. * to become writable */
  1925. if (vma->vm_ops->page_mkwrite &&
  1926. vma->vm_ops->page_mkwrite(vma, new_page) < 0
  1927. ) {
  1928. page_cache_release(new_page);
  1929. return VM_FAULT_SIGBUS;
  1930. }
  1931. }
  1932. }
  1933. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1934. /*
  1935. * For a file-backed vma, someone could have truncated or otherwise
  1936. * invalidated this page. If unmap_mapping_range got called,
  1937. * retry getting the page.
  1938. */
  1939. if (mapping && unlikely(sequence != mapping->truncate_count)) {
  1940. pte_unmap_unlock(page_table, ptl);
  1941. page_cache_release(new_page);
  1942. cond_resched();
  1943. sequence = mapping->truncate_count;
  1944. smp_rmb();
  1945. goto retry;
  1946. }
  1947. /*
  1948. * This silly early PAGE_DIRTY setting removes a race
  1949. * due to the bad i386 page protection. But it's valid
  1950. * for other architectures too.
  1951. *
  1952. * Note that if write_access is true, we either now have
  1953. * an exclusive copy of the page, or this is a shared mapping,
  1954. * so we can make it writable and dirty to avoid having to
  1955. * handle that later.
  1956. */
  1957. /* Only go through if we didn't race with anybody else... */
  1958. if (pte_none(*page_table)) {
  1959. flush_icache_page(vma, new_page);
  1960. entry = mk_pte(new_page, vma->vm_page_prot);
  1961. if (write_access)
  1962. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1963. set_pte_at(mm, address, page_table, entry);
  1964. if (anon) {
  1965. inc_mm_counter(mm, anon_rss);
  1966. lru_cache_add_active(new_page);
  1967. page_add_new_anon_rmap(new_page, vma, address);
  1968. } else {
  1969. inc_mm_counter(mm, file_rss);
  1970. page_add_file_rmap(new_page);
  1971. }
  1972. } else {
  1973. /* One of our sibling threads was faster, back out. */
  1974. page_cache_release(new_page);
  1975. goto unlock;
  1976. }
  1977. /* no need to invalidate: a not-present page shouldn't be cached */
  1978. update_mmu_cache(vma, address, entry);
  1979. lazy_mmu_prot_update(entry);
  1980. unlock:
  1981. pte_unmap_unlock(page_table, ptl);
  1982. return ret;
  1983. oom:
  1984. page_cache_release(new_page);
  1985. return VM_FAULT_OOM;
  1986. }
  1987. /*
  1988. * Fault of a previously existing named mapping. Repopulate the pte
  1989. * from the encoded file_pte if possible. This enables swappable
  1990. * nonlinear vmas.
  1991. *
  1992. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1993. * but allow concurrent faults), and pte mapped but not yet locked.
  1994. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1995. */
  1996. static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1997. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1998. int write_access, pte_t orig_pte)
  1999. {
  2000. pgoff_t pgoff;
  2001. int err;
  2002. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2003. return VM_FAULT_MINOR;
  2004. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2005. /*
  2006. * Page table corrupted: show pte and kill process.
  2007. */
  2008. print_bad_pte(vma, orig_pte, address);
  2009. return VM_FAULT_OOM;
  2010. }
  2011. /* We can then assume vm->vm_ops && vma->vm_ops->populate */
  2012. pgoff = pte_to_pgoff(orig_pte);
  2013. err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
  2014. vma->vm_page_prot, pgoff, 0);
  2015. if (err == -ENOMEM)
  2016. return VM_FAULT_OOM;
  2017. if (err)
  2018. return VM_FAULT_SIGBUS;
  2019. return VM_FAULT_MAJOR;
  2020. }
  2021. /*
  2022. * These routines also need to handle stuff like marking pages dirty
  2023. * and/or accessed for architectures that don't do it in hardware (most
  2024. * RISC architectures). The early dirtying is also good on the i386.
  2025. *
  2026. * There is also a hook called "update_mmu_cache()" that architectures
  2027. * with external mmu caches can use to update those (ie the Sparc or
  2028. * PowerPC hashed page tables that act as extended TLBs).
  2029. *
  2030. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2031. * but allow concurrent faults), and pte mapped but not yet locked.
  2032. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2033. */
  2034. static inline int handle_pte_fault(struct mm_struct *mm,
  2035. struct vm_area_struct *vma, unsigned long address,
  2036. pte_t *pte, pmd_t *pmd, int write_access)
  2037. {
  2038. pte_t entry;
  2039. pte_t old_entry;
  2040. spinlock_t *ptl;
  2041. old_entry = entry = *pte;
  2042. if (!pte_present(entry)) {
  2043. if (pte_none(entry)) {
  2044. if (!vma->vm_ops || !vma->vm_ops->nopage)
  2045. return do_anonymous_page(mm, vma, address,
  2046. pte, pmd, write_access);
  2047. return do_no_page(mm, vma, address,
  2048. pte, pmd, write_access);
  2049. }
  2050. if (pte_file(entry))
  2051. return do_file_page(mm, vma, address,
  2052. pte, pmd, write_access, entry);
  2053. return do_swap_page(mm, vma, address,
  2054. pte, pmd, write_access, entry);
  2055. }
  2056. ptl = pte_lockptr(mm, pmd);
  2057. spin_lock(ptl);
  2058. if (unlikely(!pte_same(*pte, entry)))
  2059. goto unlock;
  2060. if (write_access) {
  2061. if (!pte_write(entry))
  2062. return do_wp_page(mm, vma, address,
  2063. pte, pmd, ptl, entry);
  2064. entry = pte_mkdirty(entry);
  2065. }
  2066. entry = pte_mkyoung(entry);
  2067. if (!pte_same(old_entry, entry)) {
  2068. ptep_set_access_flags(vma, address, pte, entry, write_access);
  2069. update_mmu_cache(vma, address, entry);
  2070. lazy_mmu_prot_update(entry);
  2071. } else {
  2072. /*
  2073. * This is needed only for protection faults but the arch code
  2074. * is not yet telling us if this is a protection fault or not.
  2075. * This still avoids useless tlb flushes for .text page faults
  2076. * with threads.
  2077. */
  2078. if (write_access)
  2079. flush_tlb_page(vma, address);
  2080. }
  2081. unlock:
  2082. pte_unmap_unlock(pte, ptl);
  2083. return VM_FAULT_MINOR;
  2084. }
  2085. /*
  2086. * By the time we get here, we already hold the mm semaphore
  2087. */
  2088. int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2089. unsigned long address, int write_access)
  2090. {
  2091. pgd_t *pgd;
  2092. pud_t *pud;
  2093. pmd_t *pmd;
  2094. pte_t *pte;
  2095. __set_current_state(TASK_RUNNING);
  2096. inc_page_state(pgfault);
  2097. if (unlikely(is_vm_hugetlb_page(vma)))
  2098. return hugetlb_fault(mm, vma, address, write_access);
  2099. pgd = pgd_offset(mm, address);
  2100. pud = pud_alloc(mm, pgd, address);
  2101. if (!pud)
  2102. return VM_FAULT_OOM;
  2103. pmd = pmd_alloc(mm, pud, address);
  2104. if (!pmd)
  2105. return VM_FAULT_OOM;
  2106. pte = pte_alloc_map(mm, pmd, address);
  2107. if (!pte)
  2108. return VM_FAULT_OOM;
  2109. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2110. }
  2111. EXPORT_SYMBOL_GPL(__handle_mm_fault);
  2112. #ifndef __PAGETABLE_PUD_FOLDED
  2113. /*
  2114. * Allocate page upper directory.
  2115. * We've already handled the fast-path in-line.
  2116. */
  2117. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2118. {
  2119. pud_t *new = pud_alloc_one(mm, address);
  2120. if (!new)
  2121. return -ENOMEM;
  2122. spin_lock(&mm->page_table_lock);
  2123. if (pgd_present(*pgd)) /* Another has populated it */
  2124. pud_free(new);
  2125. else
  2126. pgd_populate(mm, pgd, new);
  2127. spin_unlock(&mm->page_table_lock);
  2128. return 0;
  2129. }
  2130. #else
  2131. /* Workaround for gcc 2.96 */
  2132. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2133. {
  2134. return 0;
  2135. }
  2136. #endif /* __PAGETABLE_PUD_FOLDED */
  2137. #ifndef __PAGETABLE_PMD_FOLDED
  2138. /*
  2139. * Allocate page middle directory.
  2140. * We've already handled the fast-path in-line.
  2141. */
  2142. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2143. {
  2144. pmd_t *new = pmd_alloc_one(mm, address);
  2145. if (!new)
  2146. return -ENOMEM;
  2147. spin_lock(&mm->page_table_lock);
  2148. #ifndef __ARCH_HAS_4LEVEL_HACK
  2149. if (pud_present(*pud)) /* Another has populated it */
  2150. pmd_free(new);
  2151. else
  2152. pud_populate(mm, pud, new);
  2153. #else
  2154. if (pgd_present(*pud)) /* Another has populated it */
  2155. pmd_free(new);
  2156. else
  2157. pgd_populate(mm, pud, new);
  2158. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2159. spin_unlock(&mm->page_table_lock);
  2160. return 0;
  2161. }
  2162. #else
  2163. /* Workaround for gcc 2.96 */
  2164. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2165. {
  2166. return 0;
  2167. }
  2168. #endif /* __PAGETABLE_PMD_FOLDED */
  2169. int make_pages_present(unsigned long addr, unsigned long end)
  2170. {
  2171. int ret, len, write;
  2172. struct vm_area_struct * vma;
  2173. vma = find_vma(current->mm, addr);
  2174. if (!vma)
  2175. return -1;
  2176. write = (vma->vm_flags & VM_WRITE) != 0;
  2177. BUG_ON(addr >= end);
  2178. BUG_ON(end > vma->vm_end);
  2179. len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
  2180. ret = get_user_pages(current, current->mm, addr,
  2181. len, write, 0, NULL, NULL);
  2182. if (ret < 0)
  2183. return ret;
  2184. return ret == len ? 0 : -1;
  2185. }
  2186. /*
  2187. * Map a vmalloc()-space virtual address to the physical page.
  2188. */
  2189. struct page * vmalloc_to_page(void * vmalloc_addr)
  2190. {
  2191. unsigned long addr = (unsigned long) vmalloc_addr;
  2192. struct page *page = NULL;
  2193. pgd_t *pgd = pgd_offset_k(addr);
  2194. pud_t *pud;
  2195. pmd_t *pmd;
  2196. pte_t *ptep, pte;
  2197. if (!pgd_none(*pgd)) {
  2198. pud = pud_offset(pgd, addr);
  2199. if (!pud_none(*pud)) {
  2200. pmd = pmd_offset(pud, addr);
  2201. if (!pmd_none(*pmd)) {
  2202. ptep = pte_offset_map(pmd, addr);
  2203. pte = *ptep;
  2204. if (pte_present(pte))
  2205. page = pte_page(pte);
  2206. pte_unmap(ptep);
  2207. }
  2208. }
  2209. }
  2210. return page;
  2211. }
  2212. EXPORT_SYMBOL(vmalloc_to_page);
  2213. /*
  2214. * Map a vmalloc()-space virtual address to the physical page frame number.
  2215. */
  2216. unsigned long vmalloc_to_pfn(void * vmalloc_addr)
  2217. {
  2218. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  2219. }
  2220. EXPORT_SYMBOL(vmalloc_to_pfn);
  2221. #if !defined(__HAVE_ARCH_GATE_AREA)
  2222. #if defined(AT_SYSINFO_EHDR)
  2223. static struct vm_area_struct gate_vma;
  2224. static int __init gate_vma_init(void)
  2225. {
  2226. gate_vma.vm_mm = NULL;
  2227. gate_vma.vm_start = FIXADDR_USER_START;
  2228. gate_vma.vm_end = FIXADDR_USER_END;
  2229. gate_vma.vm_page_prot = PAGE_READONLY;
  2230. gate_vma.vm_flags = 0;
  2231. return 0;
  2232. }
  2233. __initcall(gate_vma_init);
  2234. #endif
  2235. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2236. {
  2237. #ifdef AT_SYSINFO_EHDR
  2238. return &gate_vma;
  2239. #else
  2240. return NULL;
  2241. #endif
  2242. }
  2243. int in_gate_area_no_task(unsigned long addr)
  2244. {
  2245. #ifdef AT_SYSINFO_EHDR
  2246. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2247. return 1;
  2248. #endif
  2249. return 0;
  2250. }
  2251. #endif /* __HAVE_ARCH_GATE_AREA */