namespace.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/config.h>
  11. #include <linux/syscalls.h>
  12. #include <linux/slab.h>
  13. #include <linux/sched.h>
  14. #include <linux/smp_lock.h>
  15. #include <linux/init.h>
  16. #include <linux/quotaops.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/module.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/namespace.h>
  22. #include <linux/namei.h>
  23. #include <linux/security.h>
  24. #include <linux/mount.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/unistd.h>
  27. #include "pnode.h"
  28. extern int __init init_rootfs(void);
  29. #ifdef CONFIG_SYSFS
  30. extern int __init sysfs_init(void);
  31. #else
  32. static inline int sysfs_init(void)
  33. {
  34. return 0;
  35. }
  36. #endif
  37. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  38. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  39. static int event;
  40. static struct list_head *mount_hashtable __read_mostly;
  41. static int hash_mask __read_mostly, hash_bits __read_mostly;
  42. static kmem_cache_t *mnt_cache __read_mostly;
  43. static struct rw_semaphore namespace_sem;
  44. /* /sys/fs */
  45. decl_subsys(fs, NULL, NULL);
  46. EXPORT_SYMBOL_GPL(fs_subsys);
  47. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  48. {
  49. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  50. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  51. tmp = tmp + (tmp >> hash_bits);
  52. return tmp & hash_mask;
  53. }
  54. struct vfsmount *alloc_vfsmnt(const char *name)
  55. {
  56. struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
  57. if (mnt) {
  58. memset(mnt, 0, sizeof(struct vfsmount));
  59. atomic_set(&mnt->mnt_count, 1);
  60. INIT_LIST_HEAD(&mnt->mnt_hash);
  61. INIT_LIST_HEAD(&mnt->mnt_child);
  62. INIT_LIST_HEAD(&mnt->mnt_mounts);
  63. INIT_LIST_HEAD(&mnt->mnt_list);
  64. INIT_LIST_HEAD(&mnt->mnt_expire);
  65. INIT_LIST_HEAD(&mnt->mnt_share);
  66. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  67. INIT_LIST_HEAD(&mnt->mnt_slave);
  68. if (name) {
  69. int size = strlen(name) + 1;
  70. char *newname = kmalloc(size, GFP_KERNEL);
  71. if (newname) {
  72. memcpy(newname, name, size);
  73. mnt->mnt_devname = newname;
  74. }
  75. }
  76. }
  77. return mnt;
  78. }
  79. int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  80. {
  81. mnt->mnt_sb = sb;
  82. mnt->mnt_root = dget(sb->s_root);
  83. return 0;
  84. }
  85. EXPORT_SYMBOL(simple_set_mnt);
  86. void free_vfsmnt(struct vfsmount *mnt)
  87. {
  88. kfree(mnt->mnt_devname);
  89. kmem_cache_free(mnt_cache, mnt);
  90. }
  91. /*
  92. * find the first or last mount at @dentry on vfsmount @mnt depending on
  93. * @dir. If @dir is set return the first mount else return the last mount.
  94. */
  95. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  96. int dir)
  97. {
  98. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  99. struct list_head *tmp = head;
  100. struct vfsmount *p, *found = NULL;
  101. for (;;) {
  102. tmp = dir ? tmp->next : tmp->prev;
  103. p = NULL;
  104. if (tmp == head)
  105. break;
  106. p = list_entry(tmp, struct vfsmount, mnt_hash);
  107. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  108. found = p;
  109. break;
  110. }
  111. }
  112. return found;
  113. }
  114. /*
  115. * lookup_mnt increments the ref count before returning
  116. * the vfsmount struct.
  117. */
  118. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  119. {
  120. struct vfsmount *child_mnt;
  121. spin_lock(&vfsmount_lock);
  122. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  123. mntget(child_mnt);
  124. spin_unlock(&vfsmount_lock);
  125. return child_mnt;
  126. }
  127. static inline int check_mnt(struct vfsmount *mnt)
  128. {
  129. return mnt->mnt_namespace == current->namespace;
  130. }
  131. static void touch_namespace(struct namespace *ns)
  132. {
  133. if (ns) {
  134. ns->event = ++event;
  135. wake_up_interruptible(&ns->poll);
  136. }
  137. }
  138. static void __touch_namespace(struct namespace *ns)
  139. {
  140. if (ns && ns->event != event) {
  141. ns->event = event;
  142. wake_up_interruptible(&ns->poll);
  143. }
  144. }
  145. static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
  146. {
  147. old_nd->dentry = mnt->mnt_mountpoint;
  148. old_nd->mnt = mnt->mnt_parent;
  149. mnt->mnt_parent = mnt;
  150. mnt->mnt_mountpoint = mnt->mnt_root;
  151. list_del_init(&mnt->mnt_child);
  152. list_del_init(&mnt->mnt_hash);
  153. old_nd->dentry->d_mounted--;
  154. }
  155. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  156. struct vfsmount *child_mnt)
  157. {
  158. child_mnt->mnt_parent = mntget(mnt);
  159. child_mnt->mnt_mountpoint = dget(dentry);
  160. dentry->d_mounted++;
  161. }
  162. static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
  163. {
  164. mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
  165. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  166. hash(nd->mnt, nd->dentry));
  167. list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
  168. }
  169. /*
  170. * the caller must hold vfsmount_lock
  171. */
  172. static void commit_tree(struct vfsmount *mnt)
  173. {
  174. struct vfsmount *parent = mnt->mnt_parent;
  175. struct vfsmount *m;
  176. LIST_HEAD(head);
  177. struct namespace *n = parent->mnt_namespace;
  178. BUG_ON(parent == mnt);
  179. list_add_tail(&head, &mnt->mnt_list);
  180. list_for_each_entry(m, &head, mnt_list)
  181. m->mnt_namespace = n;
  182. list_splice(&head, n->list.prev);
  183. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  184. hash(parent, mnt->mnt_mountpoint));
  185. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  186. touch_namespace(n);
  187. }
  188. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  189. {
  190. struct list_head *next = p->mnt_mounts.next;
  191. if (next == &p->mnt_mounts) {
  192. while (1) {
  193. if (p == root)
  194. return NULL;
  195. next = p->mnt_child.next;
  196. if (next != &p->mnt_parent->mnt_mounts)
  197. break;
  198. p = p->mnt_parent;
  199. }
  200. }
  201. return list_entry(next, struct vfsmount, mnt_child);
  202. }
  203. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  204. {
  205. struct list_head *prev = p->mnt_mounts.prev;
  206. while (prev != &p->mnt_mounts) {
  207. p = list_entry(prev, struct vfsmount, mnt_child);
  208. prev = p->mnt_mounts.prev;
  209. }
  210. return p;
  211. }
  212. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  213. int flag)
  214. {
  215. struct super_block *sb = old->mnt_sb;
  216. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  217. if (mnt) {
  218. mnt->mnt_flags = old->mnt_flags;
  219. atomic_inc(&sb->s_active);
  220. mnt->mnt_sb = sb;
  221. mnt->mnt_root = dget(root);
  222. mnt->mnt_mountpoint = mnt->mnt_root;
  223. mnt->mnt_parent = mnt;
  224. if (flag & CL_SLAVE) {
  225. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  226. mnt->mnt_master = old;
  227. CLEAR_MNT_SHARED(mnt);
  228. } else {
  229. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  230. list_add(&mnt->mnt_share, &old->mnt_share);
  231. if (IS_MNT_SLAVE(old))
  232. list_add(&mnt->mnt_slave, &old->mnt_slave);
  233. mnt->mnt_master = old->mnt_master;
  234. }
  235. if (flag & CL_MAKE_SHARED)
  236. set_mnt_shared(mnt);
  237. /* stick the duplicate mount on the same expiry list
  238. * as the original if that was on one */
  239. if (flag & CL_EXPIRE) {
  240. spin_lock(&vfsmount_lock);
  241. if (!list_empty(&old->mnt_expire))
  242. list_add(&mnt->mnt_expire, &old->mnt_expire);
  243. spin_unlock(&vfsmount_lock);
  244. }
  245. }
  246. return mnt;
  247. }
  248. static inline void __mntput(struct vfsmount *mnt)
  249. {
  250. struct super_block *sb = mnt->mnt_sb;
  251. dput(mnt->mnt_root);
  252. free_vfsmnt(mnt);
  253. deactivate_super(sb);
  254. }
  255. void mntput_no_expire(struct vfsmount *mnt)
  256. {
  257. repeat:
  258. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  259. if (likely(!mnt->mnt_pinned)) {
  260. spin_unlock(&vfsmount_lock);
  261. __mntput(mnt);
  262. return;
  263. }
  264. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  265. mnt->mnt_pinned = 0;
  266. spin_unlock(&vfsmount_lock);
  267. acct_auto_close_mnt(mnt);
  268. security_sb_umount_close(mnt);
  269. goto repeat;
  270. }
  271. }
  272. EXPORT_SYMBOL(mntput_no_expire);
  273. void mnt_pin(struct vfsmount *mnt)
  274. {
  275. spin_lock(&vfsmount_lock);
  276. mnt->mnt_pinned++;
  277. spin_unlock(&vfsmount_lock);
  278. }
  279. EXPORT_SYMBOL(mnt_pin);
  280. void mnt_unpin(struct vfsmount *mnt)
  281. {
  282. spin_lock(&vfsmount_lock);
  283. if (mnt->mnt_pinned) {
  284. atomic_inc(&mnt->mnt_count);
  285. mnt->mnt_pinned--;
  286. }
  287. spin_unlock(&vfsmount_lock);
  288. }
  289. EXPORT_SYMBOL(mnt_unpin);
  290. /* iterator */
  291. static void *m_start(struct seq_file *m, loff_t *pos)
  292. {
  293. struct namespace *n = m->private;
  294. struct list_head *p;
  295. loff_t l = *pos;
  296. down_read(&namespace_sem);
  297. list_for_each(p, &n->list)
  298. if (!l--)
  299. return list_entry(p, struct vfsmount, mnt_list);
  300. return NULL;
  301. }
  302. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  303. {
  304. struct namespace *n = m->private;
  305. struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
  306. (*pos)++;
  307. return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
  308. }
  309. static void m_stop(struct seq_file *m, void *v)
  310. {
  311. up_read(&namespace_sem);
  312. }
  313. static inline void mangle(struct seq_file *m, const char *s)
  314. {
  315. seq_escape(m, s, " \t\n\\");
  316. }
  317. static int show_vfsmnt(struct seq_file *m, void *v)
  318. {
  319. struct vfsmount *mnt = v;
  320. int err = 0;
  321. static struct proc_fs_info {
  322. int flag;
  323. char *str;
  324. } fs_info[] = {
  325. { MS_SYNCHRONOUS, ",sync" },
  326. { MS_DIRSYNC, ",dirsync" },
  327. { MS_MANDLOCK, ",mand" },
  328. { 0, NULL }
  329. };
  330. static struct proc_fs_info mnt_info[] = {
  331. { MNT_NOSUID, ",nosuid" },
  332. { MNT_NODEV, ",nodev" },
  333. { MNT_NOEXEC, ",noexec" },
  334. { MNT_NOATIME, ",noatime" },
  335. { MNT_NODIRATIME, ",nodiratime" },
  336. { 0, NULL }
  337. };
  338. struct proc_fs_info *fs_infop;
  339. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  340. seq_putc(m, ' ');
  341. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  342. seq_putc(m, ' ');
  343. mangle(m, mnt->mnt_sb->s_type->name);
  344. seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
  345. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  346. if (mnt->mnt_sb->s_flags & fs_infop->flag)
  347. seq_puts(m, fs_infop->str);
  348. }
  349. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  350. if (mnt->mnt_flags & fs_infop->flag)
  351. seq_puts(m, fs_infop->str);
  352. }
  353. if (mnt->mnt_sb->s_op->show_options)
  354. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  355. seq_puts(m, " 0 0\n");
  356. return err;
  357. }
  358. struct seq_operations mounts_op = {
  359. .start = m_start,
  360. .next = m_next,
  361. .stop = m_stop,
  362. .show = show_vfsmnt
  363. };
  364. static int show_vfsstat(struct seq_file *m, void *v)
  365. {
  366. struct vfsmount *mnt = v;
  367. int err = 0;
  368. /* device */
  369. if (mnt->mnt_devname) {
  370. seq_puts(m, "device ");
  371. mangle(m, mnt->mnt_devname);
  372. } else
  373. seq_puts(m, "no device");
  374. /* mount point */
  375. seq_puts(m, " mounted on ");
  376. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  377. seq_putc(m, ' ');
  378. /* file system type */
  379. seq_puts(m, "with fstype ");
  380. mangle(m, mnt->mnt_sb->s_type->name);
  381. /* optional statistics */
  382. if (mnt->mnt_sb->s_op->show_stats) {
  383. seq_putc(m, ' ');
  384. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  385. }
  386. seq_putc(m, '\n');
  387. return err;
  388. }
  389. struct seq_operations mountstats_op = {
  390. .start = m_start,
  391. .next = m_next,
  392. .stop = m_stop,
  393. .show = show_vfsstat,
  394. };
  395. /**
  396. * may_umount_tree - check if a mount tree is busy
  397. * @mnt: root of mount tree
  398. *
  399. * This is called to check if a tree of mounts has any
  400. * open files, pwds, chroots or sub mounts that are
  401. * busy.
  402. */
  403. int may_umount_tree(struct vfsmount *mnt)
  404. {
  405. int actual_refs = 0;
  406. int minimum_refs = 0;
  407. struct vfsmount *p;
  408. spin_lock(&vfsmount_lock);
  409. for (p = mnt; p; p = next_mnt(p, mnt)) {
  410. actual_refs += atomic_read(&p->mnt_count);
  411. minimum_refs += 2;
  412. }
  413. spin_unlock(&vfsmount_lock);
  414. if (actual_refs > minimum_refs)
  415. return 0;
  416. return 1;
  417. }
  418. EXPORT_SYMBOL(may_umount_tree);
  419. /**
  420. * may_umount - check if a mount point is busy
  421. * @mnt: root of mount
  422. *
  423. * This is called to check if a mount point has any
  424. * open files, pwds, chroots or sub mounts. If the
  425. * mount has sub mounts this will return busy
  426. * regardless of whether the sub mounts are busy.
  427. *
  428. * Doesn't take quota and stuff into account. IOW, in some cases it will
  429. * give false negatives. The main reason why it's here is that we need
  430. * a non-destructive way to look for easily umountable filesystems.
  431. */
  432. int may_umount(struct vfsmount *mnt)
  433. {
  434. int ret = 1;
  435. spin_lock(&vfsmount_lock);
  436. if (propagate_mount_busy(mnt, 2))
  437. ret = 0;
  438. spin_unlock(&vfsmount_lock);
  439. return ret;
  440. }
  441. EXPORT_SYMBOL(may_umount);
  442. void release_mounts(struct list_head *head)
  443. {
  444. struct vfsmount *mnt;
  445. while (!list_empty(head)) {
  446. mnt = list_entry(head->next, struct vfsmount, mnt_hash);
  447. list_del_init(&mnt->mnt_hash);
  448. if (mnt->mnt_parent != mnt) {
  449. struct dentry *dentry;
  450. struct vfsmount *m;
  451. spin_lock(&vfsmount_lock);
  452. dentry = mnt->mnt_mountpoint;
  453. m = mnt->mnt_parent;
  454. mnt->mnt_mountpoint = mnt->mnt_root;
  455. mnt->mnt_parent = mnt;
  456. spin_unlock(&vfsmount_lock);
  457. dput(dentry);
  458. mntput(m);
  459. }
  460. mntput(mnt);
  461. }
  462. }
  463. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  464. {
  465. struct vfsmount *p;
  466. for (p = mnt; p; p = next_mnt(p, mnt)) {
  467. list_del(&p->mnt_hash);
  468. list_add(&p->mnt_hash, kill);
  469. }
  470. if (propagate)
  471. propagate_umount(kill);
  472. list_for_each_entry(p, kill, mnt_hash) {
  473. list_del_init(&p->mnt_expire);
  474. list_del_init(&p->mnt_list);
  475. __touch_namespace(p->mnt_namespace);
  476. p->mnt_namespace = NULL;
  477. list_del_init(&p->mnt_child);
  478. if (p->mnt_parent != p)
  479. p->mnt_mountpoint->d_mounted--;
  480. change_mnt_propagation(p, MS_PRIVATE);
  481. }
  482. }
  483. static int do_umount(struct vfsmount *mnt, int flags)
  484. {
  485. struct super_block *sb = mnt->mnt_sb;
  486. int retval;
  487. LIST_HEAD(umount_list);
  488. retval = security_sb_umount(mnt, flags);
  489. if (retval)
  490. return retval;
  491. /*
  492. * Allow userspace to request a mountpoint be expired rather than
  493. * unmounting unconditionally. Unmount only happens if:
  494. * (1) the mark is already set (the mark is cleared by mntput())
  495. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  496. */
  497. if (flags & MNT_EXPIRE) {
  498. if (mnt == current->fs->rootmnt ||
  499. flags & (MNT_FORCE | MNT_DETACH))
  500. return -EINVAL;
  501. if (atomic_read(&mnt->mnt_count) != 2)
  502. return -EBUSY;
  503. if (!xchg(&mnt->mnt_expiry_mark, 1))
  504. return -EAGAIN;
  505. }
  506. /*
  507. * If we may have to abort operations to get out of this
  508. * mount, and they will themselves hold resources we must
  509. * allow the fs to do things. In the Unix tradition of
  510. * 'Gee thats tricky lets do it in userspace' the umount_begin
  511. * might fail to complete on the first run through as other tasks
  512. * must return, and the like. Thats for the mount program to worry
  513. * about for the moment.
  514. */
  515. lock_kernel();
  516. if (sb->s_op->umount_begin)
  517. sb->s_op->umount_begin(mnt, flags);
  518. unlock_kernel();
  519. /*
  520. * No sense to grab the lock for this test, but test itself looks
  521. * somewhat bogus. Suggestions for better replacement?
  522. * Ho-hum... In principle, we might treat that as umount + switch
  523. * to rootfs. GC would eventually take care of the old vfsmount.
  524. * Actually it makes sense, especially if rootfs would contain a
  525. * /reboot - static binary that would close all descriptors and
  526. * call reboot(9). Then init(8) could umount root and exec /reboot.
  527. */
  528. if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
  529. /*
  530. * Special case for "unmounting" root ...
  531. * we just try to remount it readonly.
  532. */
  533. down_write(&sb->s_umount);
  534. if (!(sb->s_flags & MS_RDONLY)) {
  535. lock_kernel();
  536. DQUOT_OFF(sb);
  537. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  538. unlock_kernel();
  539. }
  540. up_write(&sb->s_umount);
  541. return retval;
  542. }
  543. down_write(&namespace_sem);
  544. spin_lock(&vfsmount_lock);
  545. event++;
  546. retval = -EBUSY;
  547. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  548. if (!list_empty(&mnt->mnt_list))
  549. umount_tree(mnt, 1, &umount_list);
  550. retval = 0;
  551. }
  552. spin_unlock(&vfsmount_lock);
  553. if (retval)
  554. security_sb_umount_busy(mnt);
  555. up_write(&namespace_sem);
  556. release_mounts(&umount_list);
  557. return retval;
  558. }
  559. /*
  560. * Now umount can handle mount points as well as block devices.
  561. * This is important for filesystems which use unnamed block devices.
  562. *
  563. * We now support a flag for forced unmount like the other 'big iron'
  564. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  565. */
  566. asmlinkage long sys_umount(char __user * name, int flags)
  567. {
  568. struct nameidata nd;
  569. int retval;
  570. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  571. if (retval)
  572. goto out;
  573. retval = -EINVAL;
  574. if (nd.dentry != nd.mnt->mnt_root)
  575. goto dput_and_out;
  576. if (!check_mnt(nd.mnt))
  577. goto dput_and_out;
  578. retval = -EPERM;
  579. if (!capable(CAP_SYS_ADMIN))
  580. goto dput_and_out;
  581. retval = do_umount(nd.mnt, flags);
  582. dput_and_out:
  583. path_release_on_umount(&nd);
  584. out:
  585. return retval;
  586. }
  587. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  588. /*
  589. * The 2.0 compatible umount. No flags.
  590. */
  591. asmlinkage long sys_oldumount(char __user * name)
  592. {
  593. return sys_umount(name, 0);
  594. }
  595. #endif
  596. static int mount_is_safe(struct nameidata *nd)
  597. {
  598. if (capable(CAP_SYS_ADMIN))
  599. return 0;
  600. return -EPERM;
  601. #ifdef notyet
  602. if (S_ISLNK(nd->dentry->d_inode->i_mode))
  603. return -EPERM;
  604. if (nd->dentry->d_inode->i_mode & S_ISVTX) {
  605. if (current->uid != nd->dentry->d_inode->i_uid)
  606. return -EPERM;
  607. }
  608. if (vfs_permission(nd, MAY_WRITE))
  609. return -EPERM;
  610. return 0;
  611. #endif
  612. }
  613. static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
  614. {
  615. while (1) {
  616. if (d == dentry)
  617. return 1;
  618. if (d == NULL || d == d->d_parent)
  619. return 0;
  620. d = d->d_parent;
  621. }
  622. }
  623. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  624. int flag)
  625. {
  626. struct vfsmount *res, *p, *q, *r, *s;
  627. struct nameidata nd;
  628. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  629. return NULL;
  630. res = q = clone_mnt(mnt, dentry, flag);
  631. if (!q)
  632. goto Enomem;
  633. q->mnt_mountpoint = mnt->mnt_mountpoint;
  634. p = mnt;
  635. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  636. if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
  637. continue;
  638. for (s = r; s; s = next_mnt(s, r)) {
  639. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  640. s = skip_mnt_tree(s);
  641. continue;
  642. }
  643. while (p != s->mnt_parent) {
  644. p = p->mnt_parent;
  645. q = q->mnt_parent;
  646. }
  647. p = s;
  648. nd.mnt = q;
  649. nd.dentry = p->mnt_mountpoint;
  650. q = clone_mnt(p, p->mnt_root, flag);
  651. if (!q)
  652. goto Enomem;
  653. spin_lock(&vfsmount_lock);
  654. list_add_tail(&q->mnt_list, &res->mnt_list);
  655. attach_mnt(q, &nd);
  656. spin_unlock(&vfsmount_lock);
  657. }
  658. }
  659. return res;
  660. Enomem:
  661. if (res) {
  662. LIST_HEAD(umount_list);
  663. spin_lock(&vfsmount_lock);
  664. umount_tree(res, 0, &umount_list);
  665. spin_unlock(&vfsmount_lock);
  666. release_mounts(&umount_list);
  667. }
  668. return NULL;
  669. }
  670. /*
  671. * @source_mnt : mount tree to be attached
  672. * @nd : place the mount tree @source_mnt is attached
  673. * @parent_nd : if non-null, detach the source_mnt from its parent and
  674. * store the parent mount and mountpoint dentry.
  675. * (done when source_mnt is moved)
  676. *
  677. * NOTE: in the table below explains the semantics when a source mount
  678. * of a given type is attached to a destination mount of a given type.
  679. * ---------------------------------------------------------------------------
  680. * | BIND MOUNT OPERATION |
  681. * |**************************************************************************
  682. * | source-->| shared | private | slave | unbindable |
  683. * | dest | | | | |
  684. * | | | | | | |
  685. * | v | | | | |
  686. * |**************************************************************************
  687. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  688. * | | | | | |
  689. * |non-shared| shared (+) | private | slave (*) | invalid |
  690. * ***************************************************************************
  691. * A bind operation clones the source mount and mounts the clone on the
  692. * destination mount.
  693. *
  694. * (++) the cloned mount is propagated to all the mounts in the propagation
  695. * tree of the destination mount and the cloned mount is added to
  696. * the peer group of the source mount.
  697. * (+) the cloned mount is created under the destination mount and is marked
  698. * as shared. The cloned mount is added to the peer group of the source
  699. * mount.
  700. * (+++) the mount is propagated to all the mounts in the propagation tree
  701. * of the destination mount and the cloned mount is made slave
  702. * of the same master as that of the source mount. The cloned mount
  703. * is marked as 'shared and slave'.
  704. * (*) the cloned mount is made a slave of the same master as that of the
  705. * source mount.
  706. *
  707. * ---------------------------------------------------------------------------
  708. * | MOVE MOUNT OPERATION |
  709. * |**************************************************************************
  710. * | source-->| shared | private | slave | unbindable |
  711. * | dest | | | | |
  712. * | | | | | | |
  713. * | v | | | | |
  714. * |**************************************************************************
  715. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  716. * | | | | | |
  717. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  718. * ***************************************************************************
  719. *
  720. * (+) the mount is moved to the destination. And is then propagated to
  721. * all the mounts in the propagation tree of the destination mount.
  722. * (+*) the mount is moved to the destination.
  723. * (+++) the mount is moved to the destination and is then propagated to
  724. * all the mounts belonging to the destination mount's propagation tree.
  725. * the mount is marked as 'shared and slave'.
  726. * (*) the mount continues to be a slave at the new location.
  727. *
  728. * if the source mount is a tree, the operations explained above is
  729. * applied to each mount in the tree.
  730. * Must be called without spinlocks held, since this function can sleep
  731. * in allocations.
  732. */
  733. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  734. struct nameidata *nd, struct nameidata *parent_nd)
  735. {
  736. LIST_HEAD(tree_list);
  737. struct vfsmount *dest_mnt = nd->mnt;
  738. struct dentry *dest_dentry = nd->dentry;
  739. struct vfsmount *child, *p;
  740. if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
  741. return -EINVAL;
  742. if (IS_MNT_SHARED(dest_mnt)) {
  743. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  744. set_mnt_shared(p);
  745. }
  746. spin_lock(&vfsmount_lock);
  747. if (parent_nd) {
  748. detach_mnt(source_mnt, parent_nd);
  749. attach_mnt(source_mnt, nd);
  750. touch_namespace(current->namespace);
  751. } else {
  752. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  753. commit_tree(source_mnt);
  754. }
  755. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  756. list_del_init(&child->mnt_hash);
  757. commit_tree(child);
  758. }
  759. spin_unlock(&vfsmount_lock);
  760. return 0;
  761. }
  762. static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
  763. {
  764. int err;
  765. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  766. return -EINVAL;
  767. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  768. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  769. return -ENOTDIR;
  770. err = -ENOENT;
  771. mutex_lock(&nd->dentry->d_inode->i_mutex);
  772. if (IS_DEADDIR(nd->dentry->d_inode))
  773. goto out_unlock;
  774. err = security_sb_check_sb(mnt, nd);
  775. if (err)
  776. goto out_unlock;
  777. err = -ENOENT;
  778. if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
  779. err = attach_recursive_mnt(mnt, nd, NULL);
  780. out_unlock:
  781. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  782. if (!err)
  783. security_sb_post_addmount(mnt, nd);
  784. return err;
  785. }
  786. /*
  787. * recursively change the type of the mountpoint.
  788. */
  789. static int do_change_type(struct nameidata *nd, int flag)
  790. {
  791. struct vfsmount *m, *mnt = nd->mnt;
  792. int recurse = flag & MS_REC;
  793. int type = flag & ~MS_REC;
  794. if (nd->dentry != nd->mnt->mnt_root)
  795. return -EINVAL;
  796. down_write(&namespace_sem);
  797. spin_lock(&vfsmount_lock);
  798. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  799. change_mnt_propagation(m, type);
  800. spin_unlock(&vfsmount_lock);
  801. up_write(&namespace_sem);
  802. return 0;
  803. }
  804. /*
  805. * do loopback mount.
  806. */
  807. static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
  808. {
  809. struct nameidata old_nd;
  810. struct vfsmount *mnt = NULL;
  811. int err = mount_is_safe(nd);
  812. if (err)
  813. return err;
  814. if (!old_name || !*old_name)
  815. return -EINVAL;
  816. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  817. if (err)
  818. return err;
  819. down_write(&namespace_sem);
  820. err = -EINVAL;
  821. if (IS_MNT_UNBINDABLE(old_nd.mnt))
  822. goto out;
  823. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  824. goto out;
  825. err = -ENOMEM;
  826. if (recurse)
  827. mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
  828. else
  829. mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
  830. if (!mnt)
  831. goto out;
  832. err = graft_tree(mnt, nd);
  833. if (err) {
  834. LIST_HEAD(umount_list);
  835. spin_lock(&vfsmount_lock);
  836. umount_tree(mnt, 0, &umount_list);
  837. spin_unlock(&vfsmount_lock);
  838. release_mounts(&umount_list);
  839. }
  840. out:
  841. up_write(&namespace_sem);
  842. path_release(&old_nd);
  843. return err;
  844. }
  845. /*
  846. * change filesystem flags. dir should be a physical root of filesystem.
  847. * If you've mounted a non-root directory somewhere and want to do remount
  848. * on it - tough luck.
  849. */
  850. static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  851. void *data)
  852. {
  853. int err;
  854. struct super_block *sb = nd->mnt->mnt_sb;
  855. if (!capable(CAP_SYS_ADMIN))
  856. return -EPERM;
  857. if (!check_mnt(nd->mnt))
  858. return -EINVAL;
  859. if (nd->dentry != nd->mnt->mnt_root)
  860. return -EINVAL;
  861. down_write(&sb->s_umount);
  862. err = do_remount_sb(sb, flags, data, 0);
  863. if (!err)
  864. nd->mnt->mnt_flags = mnt_flags;
  865. up_write(&sb->s_umount);
  866. if (!err)
  867. security_sb_post_remount(nd->mnt, flags, data);
  868. return err;
  869. }
  870. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  871. {
  872. struct vfsmount *p;
  873. for (p = mnt; p; p = next_mnt(p, mnt)) {
  874. if (IS_MNT_UNBINDABLE(p))
  875. return 1;
  876. }
  877. return 0;
  878. }
  879. static int do_move_mount(struct nameidata *nd, char *old_name)
  880. {
  881. struct nameidata old_nd, parent_nd;
  882. struct vfsmount *p;
  883. int err = 0;
  884. if (!capable(CAP_SYS_ADMIN))
  885. return -EPERM;
  886. if (!old_name || !*old_name)
  887. return -EINVAL;
  888. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  889. if (err)
  890. return err;
  891. down_write(&namespace_sem);
  892. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  893. ;
  894. err = -EINVAL;
  895. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  896. goto out;
  897. err = -ENOENT;
  898. mutex_lock(&nd->dentry->d_inode->i_mutex);
  899. if (IS_DEADDIR(nd->dentry->d_inode))
  900. goto out1;
  901. if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
  902. goto out1;
  903. err = -EINVAL;
  904. if (old_nd.dentry != old_nd.mnt->mnt_root)
  905. goto out1;
  906. if (old_nd.mnt == old_nd.mnt->mnt_parent)
  907. goto out1;
  908. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  909. S_ISDIR(old_nd.dentry->d_inode->i_mode))
  910. goto out1;
  911. /*
  912. * Don't move a mount residing in a shared parent.
  913. */
  914. if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
  915. goto out1;
  916. /*
  917. * Don't move a mount tree containing unbindable mounts to a destination
  918. * mount which is shared.
  919. */
  920. if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
  921. goto out1;
  922. err = -ELOOP;
  923. for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
  924. if (p == old_nd.mnt)
  925. goto out1;
  926. if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
  927. goto out1;
  928. spin_lock(&vfsmount_lock);
  929. /* if the mount is moved, it should no longer be expire
  930. * automatically */
  931. list_del_init(&old_nd.mnt->mnt_expire);
  932. spin_unlock(&vfsmount_lock);
  933. out1:
  934. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  935. out:
  936. up_write(&namespace_sem);
  937. if (!err)
  938. path_release(&parent_nd);
  939. path_release(&old_nd);
  940. return err;
  941. }
  942. /*
  943. * create a new mount for userspace and request it to be added into the
  944. * namespace's tree
  945. */
  946. static int do_new_mount(struct nameidata *nd, char *type, int flags,
  947. int mnt_flags, char *name, void *data)
  948. {
  949. struct vfsmount *mnt;
  950. if (!type || !memchr(type, 0, PAGE_SIZE))
  951. return -EINVAL;
  952. /* we need capabilities... */
  953. if (!capable(CAP_SYS_ADMIN))
  954. return -EPERM;
  955. mnt = do_kern_mount(type, flags, name, data);
  956. if (IS_ERR(mnt))
  957. return PTR_ERR(mnt);
  958. return do_add_mount(mnt, nd, mnt_flags, NULL);
  959. }
  960. /*
  961. * add a mount into a namespace's mount tree
  962. * - provide the option of adding the new mount to an expiration list
  963. */
  964. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  965. int mnt_flags, struct list_head *fslist)
  966. {
  967. int err;
  968. down_write(&namespace_sem);
  969. /* Something was mounted here while we slept */
  970. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  971. ;
  972. err = -EINVAL;
  973. if (!check_mnt(nd->mnt))
  974. goto unlock;
  975. /* Refuse the same filesystem on the same mount point */
  976. err = -EBUSY;
  977. if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
  978. nd->mnt->mnt_root == nd->dentry)
  979. goto unlock;
  980. err = -EINVAL;
  981. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  982. goto unlock;
  983. newmnt->mnt_flags = mnt_flags;
  984. if ((err = graft_tree(newmnt, nd)))
  985. goto unlock;
  986. if (fslist) {
  987. /* add to the specified expiration list */
  988. spin_lock(&vfsmount_lock);
  989. list_add_tail(&newmnt->mnt_expire, fslist);
  990. spin_unlock(&vfsmount_lock);
  991. }
  992. up_write(&namespace_sem);
  993. return 0;
  994. unlock:
  995. up_write(&namespace_sem);
  996. mntput(newmnt);
  997. return err;
  998. }
  999. EXPORT_SYMBOL_GPL(do_add_mount);
  1000. static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
  1001. struct list_head *umounts)
  1002. {
  1003. spin_lock(&vfsmount_lock);
  1004. /*
  1005. * Check if mount is still attached, if not, let whoever holds it deal
  1006. * with the sucker
  1007. */
  1008. if (mnt->mnt_parent == mnt) {
  1009. spin_unlock(&vfsmount_lock);
  1010. return;
  1011. }
  1012. /*
  1013. * Check that it is still dead: the count should now be 2 - as
  1014. * contributed by the vfsmount parent and the mntget above
  1015. */
  1016. if (!propagate_mount_busy(mnt, 2)) {
  1017. /* delete from the namespace */
  1018. touch_namespace(mnt->mnt_namespace);
  1019. list_del_init(&mnt->mnt_list);
  1020. mnt->mnt_namespace = NULL;
  1021. umount_tree(mnt, 1, umounts);
  1022. spin_unlock(&vfsmount_lock);
  1023. } else {
  1024. /*
  1025. * Someone brought it back to life whilst we didn't have any
  1026. * locks held so return it to the expiration list
  1027. */
  1028. list_add_tail(&mnt->mnt_expire, mounts);
  1029. spin_unlock(&vfsmount_lock);
  1030. }
  1031. }
  1032. /*
  1033. * go through the vfsmounts we've just consigned to the graveyard to
  1034. * - check that they're still dead
  1035. * - delete the vfsmount from the appropriate namespace under lock
  1036. * - dispose of the corpse
  1037. */
  1038. static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
  1039. {
  1040. struct namespace *namespace;
  1041. struct vfsmount *mnt;
  1042. while (!list_empty(graveyard)) {
  1043. LIST_HEAD(umounts);
  1044. mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire);
  1045. list_del_init(&mnt->mnt_expire);
  1046. /* don't do anything if the namespace is dead - all the
  1047. * vfsmounts from it are going away anyway */
  1048. namespace = mnt->mnt_namespace;
  1049. if (!namespace || !namespace->root)
  1050. continue;
  1051. get_namespace(namespace);
  1052. spin_unlock(&vfsmount_lock);
  1053. down_write(&namespace_sem);
  1054. expire_mount(mnt, mounts, &umounts);
  1055. up_write(&namespace_sem);
  1056. release_mounts(&umounts);
  1057. mntput(mnt);
  1058. put_namespace(namespace);
  1059. spin_lock(&vfsmount_lock);
  1060. }
  1061. }
  1062. /*
  1063. * process a list of expirable mountpoints with the intent of discarding any
  1064. * mountpoints that aren't in use and haven't been touched since last we came
  1065. * here
  1066. */
  1067. void mark_mounts_for_expiry(struct list_head *mounts)
  1068. {
  1069. struct vfsmount *mnt, *next;
  1070. LIST_HEAD(graveyard);
  1071. if (list_empty(mounts))
  1072. return;
  1073. spin_lock(&vfsmount_lock);
  1074. /* extract from the expiration list every vfsmount that matches the
  1075. * following criteria:
  1076. * - only referenced by its parent vfsmount
  1077. * - still marked for expiry (marked on the last call here; marks are
  1078. * cleared by mntput())
  1079. */
  1080. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1081. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1082. atomic_read(&mnt->mnt_count) != 1)
  1083. continue;
  1084. mntget(mnt);
  1085. list_move(&mnt->mnt_expire, &graveyard);
  1086. }
  1087. expire_mount_list(&graveyard, mounts);
  1088. spin_unlock(&vfsmount_lock);
  1089. }
  1090. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1091. /*
  1092. * Ripoff of 'select_parent()'
  1093. *
  1094. * search the list of submounts for a given mountpoint, and move any
  1095. * shrinkable submounts to the 'graveyard' list.
  1096. */
  1097. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1098. {
  1099. struct vfsmount *this_parent = parent;
  1100. struct list_head *next;
  1101. int found = 0;
  1102. repeat:
  1103. next = this_parent->mnt_mounts.next;
  1104. resume:
  1105. while (next != &this_parent->mnt_mounts) {
  1106. struct list_head *tmp = next;
  1107. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1108. next = tmp->next;
  1109. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1110. continue;
  1111. /*
  1112. * Descend a level if the d_mounts list is non-empty.
  1113. */
  1114. if (!list_empty(&mnt->mnt_mounts)) {
  1115. this_parent = mnt;
  1116. goto repeat;
  1117. }
  1118. if (!propagate_mount_busy(mnt, 1)) {
  1119. mntget(mnt);
  1120. list_move_tail(&mnt->mnt_expire, graveyard);
  1121. found++;
  1122. }
  1123. }
  1124. /*
  1125. * All done at this level ... ascend and resume the search
  1126. */
  1127. if (this_parent != parent) {
  1128. next = this_parent->mnt_child.next;
  1129. this_parent = this_parent->mnt_parent;
  1130. goto resume;
  1131. }
  1132. return found;
  1133. }
  1134. /*
  1135. * process a list of expirable mountpoints with the intent of discarding any
  1136. * submounts of a specific parent mountpoint
  1137. */
  1138. void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
  1139. {
  1140. LIST_HEAD(graveyard);
  1141. int found;
  1142. spin_lock(&vfsmount_lock);
  1143. /* extract submounts of 'mountpoint' from the expiration list */
  1144. while ((found = select_submounts(mountpoint, &graveyard)) != 0)
  1145. expire_mount_list(&graveyard, mounts);
  1146. spin_unlock(&vfsmount_lock);
  1147. }
  1148. EXPORT_SYMBOL_GPL(shrink_submounts);
  1149. /*
  1150. * Some copy_from_user() implementations do not return the exact number of
  1151. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1152. * Note that this function differs from copy_from_user() in that it will oops
  1153. * on bad values of `to', rather than returning a short copy.
  1154. */
  1155. static long exact_copy_from_user(void *to, const void __user * from,
  1156. unsigned long n)
  1157. {
  1158. char *t = to;
  1159. const char __user *f = from;
  1160. char c;
  1161. if (!access_ok(VERIFY_READ, from, n))
  1162. return n;
  1163. while (n) {
  1164. if (__get_user(c, f)) {
  1165. memset(t, 0, n);
  1166. break;
  1167. }
  1168. *t++ = c;
  1169. f++;
  1170. n--;
  1171. }
  1172. return n;
  1173. }
  1174. int copy_mount_options(const void __user * data, unsigned long *where)
  1175. {
  1176. int i;
  1177. unsigned long page;
  1178. unsigned long size;
  1179. *where = 0;
  1180. if (!data)
  1181. return 0;
  1182. if (!(page = __get_free_page(GFP_KERNEL)))
  1183. return -ENOMEM;
  1184. /* We only care that *some* data at the address the user
  1185. * gave us is valid. Just in case, we'll zero
  1186. * the remainder of the page.
  1187. */
  1188. /* copy_from_user cannot cross TASK_SIZE ! */
  1189. size = TASK_SIZE - (unsigned long)data;
  1190. if (size > PAGE_SIZE)
  1191. size = PAGE_SIZE;
  1192. i = size - exact_copy_from_user((void *)page, data, size);
  1193. if (!i) {
  1194. free_page(page);
  1195. return -EFAULT;
  1196. }
  1197. if (i != PAGE_SIZE)
  1198. memset((char *)page + i, 0, PAGE_SIZE - i);
  1199. *where = page;
  1200. return 0;
  1201. }
  1202. /*
  1203. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1204. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1205. *
  1206. * data is a (void *) that can point to any structure up to
  1207. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1208. * information (or be NULL).
  1209. *
  1210. * Pre-0.97 versions of mount() didn't have a flags word.
  1211. * When the flags word was introduced its top half was required
  1212. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1213. * Therefore, if this magic number is present, it carries no information
  1214. * and must be discarded.
  1215. */
  1216. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1217. unsigned long flags, void *data_page)
  1218. {
  1219. struct nameidata nd;
  1220. int retval = 0;
  1221. int mnt_flags = 0;
  1222. /* Discard magic */
  1223. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1224. flags &= ~MS_MGC_MSK;
  1225. /* Basic sanity checks */
  1226. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1227. return -EINVAL;
  1228. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1229. return -EINVAL;
  1230. if (data_page)
  1231. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1232. /* Separate the per-mountpoint flags */
  1233. if (flags & MS_NOSUID)
  1234. mnt_flags |= MNT_NOSUID;
  1235. if (flags & MS_NODEV)
  1236. mnt_flags |= MNT_NODEV;
  1237. if (flags & MS_NOEXEC)
  1238. mnt_flags |= MNT_NOEXEC;
  1239. if (flags & MS_NOATIME)
  1240. mnt_flags |= MNT_NOATIME;
  1241. if (flags & MS_NODIRATIME)
  1242. mnt_flags |= MNT_NODIRATIME;
  1243. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1244. MS_NOATIME | MS_NODIRATIME);
  1245. /* ... and get the mountpoint */
  1246. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1247. if (retval)
  1248. return retval;
  1249. retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
  1250. if (retval)
  1251. goto dput_out;
  1252. if (flags & MS_REMOUNT)
  1253. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1254. data_page);
  1255. else if (flags & MS_BIND)
  1256. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1257. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1258. retval = do_change_type(&nd, flags);
  1259. else if (flags & MS_MOVE)
  1260. retval = do_move_mount(&nd, dev_name);
  1261. else
  1262. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1263. dev_name, data_page);
  1264. dput_out:
  1265. path_release(&nd);
  1266. return retval;
  1267. }
  1268. /*
  1269. * Allocate a new namespace structure and populate it with contents
  1270. * copied from the namespace of the passed in task structure.
  1271. */
  1272. struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
  1273. {
  1274. struct namespace *namespace = tsk->namespace;
  1275. struct namespace *new_ns;
  1276. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1277. struct vfsmount *p, *q;
  1278. new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
  1279. if (!new_ns)
  1280. return NULL;
  1281. atomic_set(&new_ns->count, 1);
  1282. INIT_LIST_HEAD(&new_ns->list);
  1283. init_waitqueue_head(&new_ns->poll);
  1284. new_ns->event = 0;
  1285. down_write(&namespace_sem);
  1286. /* First pass: copy the tree topology */
  1287. new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
  1288. CL_COPY_ALL | CL_EXPIRE);
  1289. if (!new_ns->root) {
  1290. up_write(&namespace_sem);
  1291. kfree(new_ns);
  1292. return NULL;
  1293. }
  1294. spin_lock(&vfsmount_lock);
  1295. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1296. spin_unlock(&vfsmount_lock);
  1297. /*
  1298. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1299. * as belonging to new namespace. We have already acquired a private
  1300. * fs_struct, so tsk->fs->lock is not needed.
  1301. */
  1302. p = namespace->root;
  1303. q = new_ns->root;
  1304. while (p) {
  1305. q->mnt_namespace = new_ns;
  1306. if (fs) {
  1307. if (p == fs->rootmnt) {
  1308. rootmnt = p;
  1309. fs->rootmnt = mntget(q);
  1310. }
  1311. if (p == fs->pwdmnt) {
  1312. pwdmnt = p;
  1313. fs->pwdmnt = mntget(q);
  1314. }
  1315. if (p == fs->altrootmnt) {
  1316. altrootmnt = p;
  1317. fs->altrootmnt = mntget(q);
  1318. }
  1319. }
  1320. p = next_mnt(p, namespace->root);
  1321. q = next_mnt(q, new_ns->root);
  1322. }
  1323. up_write(&namespace_sem);
  1324. if (rootmnt)
  1325. mntput(rootmnt);
  1326. if (pwdmnt)
  1327. mntput(pwdmnt);
  1328. if (altrootmnt)
  1329. mntput(altrootmnt);
  1330. return new_ns;
  1331. }
  1332. int copy_namespace(int flags, struct task_struct *tsk)
  1333. {
  1334. struct namespace *namespace = tsk->namespace;
  1335. struct namespace *new_ns;
  1336. int err = 0;
  1337. if (!namespace)
  1338. return 0;
  1339. get_namespace(namespace);
  1340. if (!(flags & CLONE_NEWNS))
  1341. return 0;
  1342. if (!capable(CAP_SYS_ADMIN)) {
  1343. err = -EPERM;
  1344. goto out;
  1345. }
  1346. new_ns = dup_namespace(tsk, tsk->fs);
  1347. if (!new_ns) {
  1348. err = -ENOMEM;
  1349. goto out;
  1350. }
  1351. tsk->namespace = new_ns;
  1352. out:
  1353. put_namespace(namespace);
  1354. return err;
  1355. }
  1356. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1357. char __user * type, unsigned long flags,
  1358. void __user * data)
  1359. {
  1360. int retval;
  1361. unsigned long data_page;
  1362. unsigned long type_page;
  1363. unsigned long dev_page;
  1364. char *dir_page;
  1365. retval = copy_mount_options(type, &type_page);
  1366. if (retval < 0)
  1367. return retval;
  1368. dir_page = getname(dir_name);
  1369. retval = PTR_ERR(dir_page);
  1370. if (IS_ERR(dir_page))
  1371. goto out1;
  1372. retval = copy_mount_options(dev_name, &dev_page);
  1373. if (retval < 0)
  1374. goto out2;
  1375. retval = copy_mount_options(data, &data_page);
  1376. if (retval < 0)
  1377. goto out3;
  1378. lock_kernel();
  1379. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1380. flags, (void *)data_page);
  1381. unlock_kernel();
  1382. free_page(data_page);
  1383. out3:
  1384. free_page(dev_page);
  1385. out2:
  1386. putname(dir_page);
  1387. out1:
  1388. free_page(type_page);
  1389. return retval;
  1390. }
  1391. /*
  1392. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1393. * It can block. Requires the big lock held.
  1394. */
  1395. void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
  1396. struct dentry *dentry)
  1397. {
  1398. struct dentry *old_root;
  1399. struct vfsmount *old_rootmnt;
  1400. write_lock(&fs->lock);
  1401. old_root = fs->root;
  1402. old_rootmnt = fs->rootmnt;
  1403. fs->rootmnt = mntget(mnt);
  1404. fs->root = dget(dentry);
  1405. write_unlock(&fs->lock);
  1406. if (old_root) {
  1407. dput(old_root);
  1408. mntput(old_rootmnt);
  1409. }
  1410. }
  1411. /*
  1412. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1413. * It can block. Requires the big lock held.
  1414. */
  1415. void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
  1416. struct dentry *dentry)
  1417. {
  1418. struct dentry *old_pwd;
  1419. struct vfsmount *old_pwdmnt;
  1420. write_lock(&fs->lock);
  1421. old_pwd = fs->pwd;
  1422. old_pwdmnt = fs->pwdmnt;
  1423. fs->pwdmnt = mntget(mnt);
  1424. fs->pwd = dget(dentry);
  1425. write_unlock(&fs->lock);
  1426. if (old_pwd) {
  1427. dput(old_pwd);
  1428. mntput(old_pwdmnt);
  1429. }
  1430. }
  1431. static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
  1432. {
  1433. struct task_struct *g, *p;
  1434. struct fs_struct *fs;
  1435. read_lock(&tasklist_lock);
  1436. do_each_thread(g, p) {
  1437. task_lock(p);
  1438. fs = p->fs;
  1439. if (fs) {
  1440. atomic_inc(&fs->count);
  1441. task_unlock(p);
  1442. if (fs->root == old_nd->dentry
  1443. && fs->rootmnt == old_nd->mnt)
  1444. set_fs_root(fs, new_nd->mnt, new_nd->dentry);
  1445. if (fs->pwd == old_nd->dentry
  1446. && fs->pwdmnt == old_nd->mnt)
  1447. set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
  1448. put_fs_struct(fs);
  1449. } else
  1450. task_unlock(p);
  1451. } while_each_thread(g, p);
  1452. read_unlock(&tasklist_lock);
  1453. }
  1454. /*
  1455. * pivot_root Semantics:
  1456. * Moves the root file system of the current process to the directory put_old,
  1457. * makes new_root as the new root file system of the current process, and sets
  1458. * root/cwd of all processes which had them on the current root to new_root.
  1459. *
  1460. * Restrictions:
  1461. * The new_root and put_old must be directories, and must not be on the
  1462. * same file system as the current process root. The put_old must be
  1463. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1464. * pointed to by put_old must yield the same directory as new_root. No other
  1465. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1466. *
  1467. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1468. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1469. * in this situation.
  1470. *
  1471. * Notes:
  1472. * - we don't move root/cwd if they are not at the root (reason: if something
  1473. * cared enough to change them, it's probably wrong to force them elsewhere)
  1474. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1475. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1476. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1477. * first.
  1478. */
  1479. asmlinkage long sys_pivot_root(const char __user * new_root,
  1480. const char __user * put_old)
  1481. {
  1482. struct vfsmount *tmp;
  1483. struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
  1484. int error;
  1485. if (!capable(CAP_SYS_ADMIN))
  1486. return -EPERM;
  1487. lock_kernel();
  1488. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1489. &new_nd);
  1490. if (error)
  1491. goto out0;
  1492. error = -EINVAL;
  1493. if (!check_mnt(new_nd.mnt))
  1494. goto out1;
  1495. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1496. if (error)
  1497. goto out1;
  1498. error = security_sb_pivotroot(&old_nd, &new_nd);
  1499. if (error) {
  1500. path_release(&old_nd);
  1501. goto out1;
  1502. }
  1503. read_lock(&current->fs->lock);
  1504. user_nd.mnt = mntget(current->fs->rootmnt);
  1505. user_nd.dentry = dget(current->fs->root);
  1506. read_unlock(&current->fs->lock);
  1507. down_write(&namespace_sem);
  1508. mutex_lock(&old_nd.dentry->d_inode->i_mutex);
  1509. error = -EINVAL;
  1510. if (IS_MNT_SHARED(old_nd.mnt) ||
  1511. IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
  1512. IS_MNT_SHARED(user_nd.mnt->mnt_parent))
  1513. goto out2;
  1514. if (!check_mnt(user_nd.mnt))
  1515. goto out2;
  1516. error = -ENOENT;
  1517. if (IS_DEADDIR(new_nd.dentry->d_inode))
  1518. goto out2;
  1519. if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
  1520. goto out2;
  1521. if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
  1522. goto out2;
  1523. error = -EBUSY;
  1524. if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
  1525. goto out2; /* loop, on the same file system */
  1526. error = -EINVAL;
  1527. if (user_nd.mnt->mnt_root != user_nd.dentry)
  1528. goto out2; /* not a mountpoint */
  1529. if (user_nd.mnt->mnt_parent == user_nd.mnt)
  1530. goto out2; /* not attached */
  1531. if (new_nd.mnt->mnt_root != new_nd.dentry)
  1532. goto out2; /* not a mountpoint */
  1533. if (new_nd.mnt->mnt_parent == new_nd.mnt)
  1534. goto out2; /* not attached */
  1535. tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
  1536. spin_lock(&vfsmount_lock);
  1537. if (tmp != new_nd.mnt) {
  1538. for (;;) {
  1539. if (tmp->mnt_parent == tmp)
  1540. goto out3; /* already mounted on put_old */
  1541. if (tmp->mnt_parent == new_nd.mnt)
  1542. break;
  1543. tmp = tmp->mnt_parent;
  1544. }
  1545. if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
  1546. goto out3;
  1547. } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
  1548. goto out3;
  1549. detach_mnt(new_nd.mnt, &parent_nd);
  1550. detach_mnt(user_nd.mnt, &root_parent);
  1551. attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
  1552. attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
  1553. touch_namespace(current->namespace);
  1554. spin_unlock(&vfsmount_lock);
  1555. chroot_fs_refs(&user_nd, &new_nd);
  1556. security_sb_post_pivotroot(&user_nd, &new_nd);
  1557. error = 0;
  1558. path_release(&root_parent);
  1559. path_release(&parent_nd);
  1560. out2:
  1561. mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
  1562. up_write(&namespace_sem);
  1563. path_release(&user_nd);
  1564. path_release(&old_nd);
  1565. out1:
  1566. path_release(&new_nd);
  1567. out0:
  1568. unlock_kernel();
  1569. return error;
  1570. out3:
  1571. spin_unlock(&vfsmount_lock);
  1572. goto out2;
  1573. }
  1574. static void __init init_mount_tree(void)
  1575. {
  1576. struct vfsmount *mnt;
  1577. struct namespace *namespace;
  1578. struct task_struct *g, *p;
  1579. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  1580. if (IS_ERR(mnt))
  1581. panic("Can't create rootfs");
  1582. namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
  1583. if (!namespace)
  1584. panic("Can't allocate initial namespace");
  1585. atomic_set(&namespace->count, 1);
  1586. INIT_LIST_HEAD(&namespace->list);
  1587. init_waitqueue_head(&namespace->poll);
  1588. namespace->event = 0;
  1589. list_add(&mnt->mnt_list, &namespace->list);
  1590. namespace->root = mnt;
  1591. mnt->mnt_namespace = namespace;
  1592. init_task.namespace = namespace;
  1593. read_lock(&tasklist_lock);
  1594. do_each_thread(g, p) {
  1595. get_namespace(namespace);
  1596. p->namespace = namespace;
  1597. } while_each_thread(g, p);
  1598. read_unlock(&tasklist_lock);
  1599. set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
  1600. set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
  1601. }
  1602. void __init mnt_init(unsigned long mempages)
  1603. {
  1604. struct list_head *d;
  1605. unsigned int nr_hash;
  1606. int i;
  1607. init_rwsem(&namespace_sem);
  1608. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  1609. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
  1610. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  1611. if (!mount_hashtable)
  1612. panic("Failed to allocate mount hash table\n");
  1613. /*
  1614. * Find the power-of-two list-heads that can fit into the allocation..
  1615. * We don't guarantee that "sizeof(struct list_head)" is necessarily
  1616. * a power-of-two.
  1617. */
  1618. nr_hash = PAGE_SIZE / sizeof(struct list_head);
  1619. hash_bits = 0;
  1620. do {
  1621. hash_bits++;
  1622. } while ((nr_hash >> hash_bits) != 0);
  1623. hash_bits--;
  1624. /*
  1625. * Re-calculate the actual number of entries and the mask
  1626. * from the number of bits we can fit.
  1627. */
  1628. nr_hash = 1UL << hash_bits;
  1629. hash_mask = nr_hash - 1;
  1630. printk("Mount-cache hash table entries: %d\n", nr_hash);
  1631. /* And initialize the newly allocated array */
  1632. d = mount_hashtable;
  1633. i = nr_hash;
  1634. do {
  1635. INIT_LIST_HEAD(d);
  1636. d++;
  1637. i--;
  1638. } while (i);
  1639. sysfs_init();
  1640. subsystem_register(&fs_subsys);
  1641. init_rootfs();
  1642. init_mount_tree();
  1643. }
  1644. void __put_namespace(struct namespace *namespace)
  1645. {
  1646. struct vfsmount *root = namespace->root;
  1647. LIST_HEAD(umount_list);
  1648. namespace->root = NULL;
  1649. spin_unlock(&vfsmount_lock);
  1650. down_write(&namespace_sem);
  1651. spin_lock(&vfsmount_lock);
  1652. umount_tree(root, 0, &umount_list);
  1653. spin_unlock(&vfsmount_lock);
  1654. up_write(&namespace_sem);
  1655. release_mounts(&umount_list);
  1656. kfree(namespace);
  1657. }