i915_gem.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int handle, ret;
  99. args->size = roundup(args->size, PAGE_SIZE);
  100. /* Allocate the new object */
  101. obj = drm_gem_object_alloc(dev, args->size);
  102. if (obj == NULL)
  103. return -ENOMEM;
  104. ret = drm_gem_handle_create(file_priv, obj, &handle);
  105. mutex_lock(&dev->struct_mutex);
  106. drm_gem_object_handle_unreference(obj);
  107. mutex_unlock(&dev->struct_mutex);
  108. if (ret)
  109. return ret;
  110. args->handle = handle;
  111. return 0;
  112. }
  113. static inline int
  114. fast_shmem_read(struct page **pages,
  115. loff_t page_base, int page_offset,
  116. char __user *data,
  117. int length)
  118. {
  119. char __iomem *vaddr;
  120. int ret;
  121. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  122. if (vaddr == NULL)
  123. return -ENOMEM;
  124. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  125. kunmap_atomic(vaddr, KM_USER0);
  126. return ret;
  127. }
  128. static inline int
  129. slow_shmem_copy(struct page *dst_page,
  130. int dst_offset,
  131. struct page *src_page,
  132. int src_offset,
  133. int length)
  134. {
  135. char *dst_vaddr, *src_vaddr;
  136. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  137. if (dst_vaddr == NULL)
  138. return -ENOMEM;
  139. src_vaddr = kmap_atomic(src_page, KM_USER1);
  140. if (src_vaddr == NULL) {
  141. kunmap_atomic(dst_vaddr, KM_USER0);
  142. return -ENOMEM;
  143. }
  144. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  145. kunmap_atomic(src_vaddr, KM_USER1);
  146. kunmap_atomic(dst_vaddr, KM_USER0);
  147. return 0;
  148. }
  149. /**
  150. * This is the fast shmem pread path, which attempts to copy_from_user directly
  151. * from the backing pages of the object to the user's address space. On a
  152. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  153. */
  154. static int
  155. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  156. struct drm_i915_gem_pread *args,
  157. struct drm_file *file_priv)
  158. {
  159. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  160. ssize_t remain;
  161. loff_t offset, page_base;
  162. char __user *user_data;
  163. int page_offset, page_length;
  164. int ret;
  165. user_data = (char __user *) (uintptr_t) args->data_ptr;
  166. remain = args->size;
  167. mutex_lock(&dev->struct_mutex);
  168. ret = i915_gem_object_get_pages(obj);
  169. if (ret != 0)
  170. goto fail_unlock;
  171. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  172. args->size);
  173. if (ret != 0)
  174. goto fail_put_pages;
  175. obj_priv = obj->driver_private;
  176. offset = args->offset;
  177. while (remain > 0) {
  178. /* Operation in this page
  179. *
  180. * page_base = page offset within aperture
  181. * page_offset = offset within page
  182. * page_length = bytes to copy for this page
  183. */
  184. page_base = (offset & ~(PAGE_SIZE-1));
  185. page_offset = offset & (PAGE_SIZE-1);
  186. page_length = remain;
  187. if ((page_offset + remain) > PAGE_SIZE)
  188. page_length = PAGE_SIZE - page_offset;
  189. ret = fast_shmem_read(obj_priv->pages,
  190. page_base, page_offset,
  191. user_data, page_length);
  192. if (ret)
  193. goto fail_put_pages;
  194. remain -= page_length;
  195. user_data += page_length;
  196. offset += page_length;
  197. }
  198. fail_put_pages:
  199. i915_gem_object_put_pages(obj);
  200. fail_unlock:
  201. mutex_unlock(&dev->struct_mutex);
  202. return ret;
  203. }
  204. /**
  205. * This is the fallback shmem pread path, which allocates temporary storage
  206. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  207. * can copy out of the object's backing pages while holding the struct mutex
  208. * and not take page faults.
  209. */
  210. static int
  211. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  212. struct drm_i915_gem_pread *args,
  213. struct drm_file *file_priv)
  214. {
  215. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  216. struct mm_struct *mm = current->mm;
  217. struct page **user_pages;
  218. ssize_t remain;
  219. loff_t offset, pinned_pages, i;
  220. loff_t first_data_page, last_data_page, num_pages;
  221. int shmem_page_index, shmem_page_offset;
  222. int data_page_index, data_page_offset;
  223. int page_length;
  224. int ret;
  225. uint64_t data_ptr = args->data_ptr;
  226. remain = args->size;
  227. /* Pin the user pages containing the data. We can't fault while
  228. * holding the struct mutex, yet we want to hold it while
  229. * dereferencing the user data.
  230. */
  231. first_data_page = data_ptr / PAGE_SIZE;
  232. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  233. num_pages = last_data_page - first_data_page + 1;
  234. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  235. if (user_pages == NULL)
  236. return -ENOMEM;
  237. down_read(&mm->mmap_sem);
  238. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  239. num_pages, 0, 0, user_pages, NULL);
  240. up_read(&mm->mmap_sem);
  241. if (pinned_pages < num_pages) {
  242. ret = -EFAULT;
  243. goto fail_put_user_pages;
  244. }
  245. mutex_lock(&dev->struct_mutex);
  246. ret = i915_gem_object_get_pages(obj);
  247. if (ret != 0)
  248. goto fail_unlock;
  249. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  250. args->size);
  251. if (ret != 0)
  252. goto fail_put_pages;
  253. obj_priv = obj->driver_private;
  254. offset = args->offset;
  255. while (remain > 0) {
  256. /* Operation in this page
  257. *
  258. * shmem_page_index = page number within shmem file
  259. * shmem_page_offset = offset within page in shmem file
  260. * data_page_index = page number in get_user_pages return
  261. * data_page_offset = offset with data_page_index page.
  262. * page_length = bytes to copy for this page
  263. */
  264. shmem_page_index = offset / PAGE_SIZE;
  265. shmem_page_offset = offset & ~PAGE_MASK;
  266. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  267. data_page_offset = data_ptr & ~PAGE_MASK;
  268. page_length = remain;
  269. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  270. page_length = PAGE_SIZE - shmem_page_offset;
  271. if ((data_page_offset + page_length) > PAGE_SIZE)
  272. page_length = PAGE_SIZE - data_page_offset;
  273. ret = slow_shmem_copy(user_pages[data_page_index],
  274. data_page_offset,
  275. obj_priv->pages[shmem_page_index],
  276. shmem_page_offset,
  277. page_length);
  278. if (ret)
  279. goto fail_put_pages;
  280. remain -= page_length;
  281. data_ptr += page_length;
  282. offset += page_length;
  283. }
  284. fail_put_pages:
  285. i915_gem_object_put_pages(obj);
  286. fail_unlock:
  287. mutex_unlock(&dev->struct_mutex);
  288. fail_put_user_pages:
  289. for (i = 0; i < pinned_pages; i++) {
  290. SetPageDirty(user_pages[i]);
  291. page_cache_release(user_pages[i]);
  292. }
  293. kfree(user_pages);
  294. return ret;
  295. }
  296. /**
  297. * Reads data from the object referenced by handle.
  298. *
  299. * On error, the contents of *data are undefined.
  300. */
  301. int
  302. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  303. struct drm_file *file_priv)
  304. {
  305. struct drm_i915_gem_pread *args = data;
  306. struct drm_gem_object *obj;
  307. struct drm_i915_gem_object *obj_priv;
  308. int ret;
  309. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  310. if (obj == NULL)
  311. return -EBADF;
  312. obj_priv = obj->driver_private;
  313. /* Bounds check source.
  314. *
  315. * XXX: This could use review for overflow issues...
  316. */
  317. if (args->offset > obj->size || args->size > obj->size ||
  318. args->offset + args->size > obj->size) {
  319. drm_gem_object_unreference(obj);
  320. return -EINVAL;
  321. }
  322. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  323. if (ret != 0)
  324. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  325. drm_gem_object_unreference(obj);
  326. return ret;
  327. }
  328. /* This is the fast write path which cannot handle
  329. * page faults in the source data
  330. */
  331. static inline int
  332. fast_user_write(struct io_mapping *mapping,
  333. loff_t page_base, int page_offset,
  334. char __user *user_data,
  335. int length)
  336. {
  337. char *vaddr_atomic;
  338. unsigned long unwritten;
  339. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  340. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  341. user_data, length);
  342. io_mapping_unmap_atomic(vaddr_atomic);
  343. if (unwritten)
  344. return -EFAULT;
  345. return 0;
  346. }
  347. /* Here's the write path which can sleep for
  348. * page faults
  349. */
  350. static inline int
  351. slow_kernel_write(struct io_mapping *mapping,
  352. loff_t gtt_base, int gtt_offset,
  353. struct page *user_page, int user_offset,
  354. int length)
  355. {
  356. char *src_vaddr, *dst_vaddr;
  357. unsigned long unwritten;
  358. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  359. src_vaddr = kmap_atomic(user_page, KM_USER1);
  360. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  361. src_vaddr + user_offset,
  362. length);
  363. kunmap_atomic(src_vaddr, KM_USER1);
  364. io_mapping_unmap_atomic(dst_vaddr);
  365. if (unwritten)
  366. return -EFAULT;
  367. return 0;
  368. }
  369. static inline int
  370. fast_shmem_write(struct page **pages,
  371. loff_t page_base, int page_offset,
  372. char __user *data,
  373. int length)
  374. {
  375. char __iomem *vaddr;
  376. unsigned long unwritten;
  377. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  378. if (vaddr == NULL)
  379. return -ENOMEM;
  380. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  381. kunmap_atomic(vaddr, KM_USER0);
  382. if (unwritten)
  383. return -EFAULT;
  384. return 0;
  385. }
  386. /**
  387. * This is the fast pwrite path, where we copy the data directly from the
  388. * user into the GTT, uncached.
  389. */
  390. static int
  391. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  392. struct drm_i915_gem_pwrite *args,
  393. struct drm_file *file_priv)
  394. {
  395. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  396. drm_i915_private_t *dev_priv = dev->dev_private;
  397. ssize_t remain;
  398. loff_t offset, page_base;
  399. char __user *user_data;
  400. int page_offset, page_length;
  401. int ret;
  402. user_data = (char __user *) (uintptr_t) args->data_ptr;
  403. remain = args->size;
  404. if (!access_ok(VERIFY_READ, user_data, remain))
  405. return -EFAULT;
  406. mutex_lock(&dev->struct_mutex);
  407. ret = i915_gem_object_pin(obj, 0);
  408. if (ret) {
  409. mutex_unlock(&dev->struct_mutex);
  410. return ret;
  411. }
  412. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  413. if (ret)
  414. goto fail;
  415. obj_priv = obj->driver_private;
  416. offset = obj_priv->gtt_offset + args->offset;
  417. while (remain > 0) {
  418. /* Operation in this page
  419. *
  420. * page_base = page offset within aperture
  421. * page_offset = offset within page
  422. * page_length = bytes to copy for this page
  423. */
  424. page_base = (offset & ~(PAGE_SIZE-1));
  425. page_offset = offset & (PAGE_SIZE-1);
  426. page_length = remain;
  427. if ((page_offset + remain) > PAGE_SIZE)
  428. page_length = PAGE_SIZE - page_offset;
  429. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  430. page_offset, user_data, page_length);
  431. /* If we get a fault while copying data, then (presumably) our
  432. * source page isn't available. Return the error and we'll
  433. * retry in the slow path.
  434. */
  435. if (ret)
  436. goto fail;
  437. remain -= page_length;
  438. user_data += page_length;
  439. offset += page_length;
  440. }
  441. fail:
  442. i915_gem_object_unpin(obj);
  443. mutex_unlock(&dev->struct_mutex);
  444. return ret;
  445. }
  446. /**
  447. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  448. * the memory and maps it using kmap_atomic for copying.
  449. *
  450. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  451. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  452. */
  453. static int
  454. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  455. struct drm_i915_gem_pwrite *args,
  456. struct drm_file *file_priv)
  457. {
  458. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  459. drm_i915_private_t *dev_priv = dev->dev_private;
  460. ssize_t remain;
  461. loff_t gtt_page_base, offset;
  462. loff_t first_data_page, last_data_page, num_pages;
  463. loff_t pinned_pages, i;
  464. struct page **user_pages;
  465. struct mm_struct *mm = current->mm;
  466. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  467. int ret;
  468. uint64_t data_ptr = args->data_ptr;
  469. remain = args->size;
  470. /* Pin the user pages containing the data. We can't fault while
  471. * holding the struct mutex, and all of the pwrite implementations
  472. * want to hold it while dereferencing the user data.
  473. */
  474. first_data_page = data_ptr / PAGE_SIZE;
  475. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  476. num_pages = last_data_page - first_data_page + 1;
  477. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  478. if (user_pages == NULL)
  479. return -ENOMEM;
  480. down_read(&mm->mmap_sem);
  481. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  482. num_pages, 0, 0, user_pages, NULL);
  483. up_read(&mm->mmap_sem);
  484. if (pinned_pages < num_pages) {
  485. ret = -EFAULT;
  486. goto out_unpin_pages;
  487. }
  488. mutex_lock(&dev->struct_mutex);
  489. ret = i915_gem_object_pin(obj, 0);
  490. if (ret)
  491. goto out_unlock;
  492. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  493. if (ret)
  494. goto out_unpin_object;
  495. obj_priv = obj->driver_private;
  496. offset = obj_priv->gtt_offset + args->offset;
  497. while (remain > 0) {
  498. /* Operation in this page
  499. *
  500. * gtt_page_base = page offset within aperture
  501. * gtt_page_offset = offset within page in aperture
  502. * data_page_index = page number in get_user_pages return
  503. * data_page_offset = offset with data_page_index page.
  504. * page_length = bytes to copy for this page
  505. */
  506. gtt_page_base = offset & PAGE_MASK;
  507. gtt_page_offset = offset & ~PAGE_MASK;
  508. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  509. data_page_offset = data_ptr & ~PAGE_MASK;
  510. page_length = remain;
  511. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  512. page_length = PAGE_SIZE - gtt_page_offset;
  513. if ((data_page_offset + page_length) > PAGE_SIZE)
  514. page_length = PAGE_SIZE - data_page_offset;
  515. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  516. gtt_page_base, gtt_page_offset,
  517. user_pages[data_page_index],
  518. data_page_offset,
  519. page_length);
  520. /* If we get a fault while copying data, then (presumably) our
  521. * source page isn't available. Return the error and we'll
  522. * retry in the slow path.
  523. */
  524. if (ret)
  525. goto out_unpin_object;
  526. remain -= page_length;
  527. offset += page_length;
  528. data_ptr += page_length;
  529. }
  530. out_unpin_object:
  531. i915_gem_object_unpin(obj);
  532. out_unlock:
  533. mutex_unlock(&dev->struct_mutex);
  534. out_unpin_pages:
  535. for (i = 0; i < pinned_pages; i++)
  536. page_cache_release(user_pages[i]);
  537. kfree(user_pages);
  538. return ret;
  539. }
  540. /**
  541. * This is the fast shmem pwrite path, which attempts to directly
  542. * copy_from_user into the kmapped pages backing the object.
  543. */
  544. static int
  545. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  546. struct drm_i915_gem_pwrite *args,
  547. struct drm_file *file_priv)
  548. {
  549. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  550. ssize_t remain;
  551. loff_t offset, page_base;
  552. char __user *user_data;
  553. int page_offset, page_length;
  554. int ret;
  555. user_data = (char __user *) (uintptr_t) args->data_ptr;
  556. remain = args->size;
  557. mutex_lock(&dev->struct_mutex);
  558. ret = i915_gem_object_get_pages(obj);
  559. if (ret != 0)
  560. goto fail_unlock;
  561. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  562. if (ret != 0)
  563. goto fail_put_pages;
  564. obj_priv = obj->driver_private;
  565. offset = args->offset;
  566. obj_priv->dirty = 1;
  567. while (remain > 0) {
  568. /* Operation in this page
  569. *
  570. * page_base = page offset within aperture
  571. * page_offset = offset within page
  572. * page_length = bytes to copy for this page
  573. */
  574. page_base = (offset & ~(PAGE_SIZE-1));
  575. page_offset = offset & (PAGE_SIZE-1);
  576. page_length = remain;
  577. if ((page_offset + remain) > PAGE_SIZE)
  578. page_length = PAGE_SIZE - page_offset;
  579. ret = fast_shmem_write(obj_priv->pages,
  580. page_base, page_offset,
  581. user_data, page_length);
  582. if (ret)
  583. goto fail_put_pages;
  584. remain -= page_length;
  585. user_data += page_length;
  586. offset += page_length;
  587. }
  588. fail_put_pages:
  589. i915_gem_object_put_pages(obj);
  590. fail_unlock:
  591. mutex_unlock(&dev->struct_mutex);
  592. return ret;
  593. }
  594. /**
  595. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  596. * the memory and maps it using kmap_atomic for copying.
  597. *
  598. * This avoids taking mmap_sem for faulting on the user's address while the
  599. * struct_mutex is held.
  600. */
  601. static int
  602. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  603. struct drm_i915_gem_pwrite *args,
  604. struct drm_file *file_priv)
  605. {
  606. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  607. struct mm_struct *mm = current->mm;
  608. struct page **user_pages;
  609. ssize_t remain;
  610. loff_t offset, pinned_pages, i;
  611. loff_t first_data_page, last_data_page, num_pages;
  612. int shmem_page_index, shmem_page_offset;
  613. int data_page_index, data_page_offset;
  614. int page_length;
  615. int ret;
  616. uint64_t data_ptr = args->data_ptr;
  617. remain = args->size;
  618. /* Pin the user pages containing the data. We can't fault while
  619. * holding the struct mutex, and all of the pwrite implementations
  620. * want to hold it while dereferencing the user data.
  621. */
  622. first_data_page = data_ptr / PAGE_SIZE;
  623. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  624. num_pages = last_data_page - first_data_page + 1;
  625. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  626. if (user_pages == NULL)
  627. return -ENOMEM;
  628. down_read(&mm->mmap_sem);
  629. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  630. num_pages, 0, 0, user_pages, NULL);
  631. up_read(&mm->mmap_sem);
  632. if (pinned_pages < num_pages) {
  633. ret = -EFAULT;
  634. goto fail_put_user_pages;
  635. }
  636. mutex_lock(&dev->struct_mutex);
  637. ret = i915_gem_object_get_pages(obj);
  638. if (ret != 0)
  639. goto fail_unlock;
  640. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  641. if (ret != 0)
  642. goto fail_put_pages;
  643. obj_priv = obj->driver_private;
  644. offset = args->offset;
  645. obj_priv->dirty = 1;
  646. while (remain > 0) {
  647. /* Operation in this page
  648. *
  649. * shmem_page_index = page number within shmem file
  650. * shmem_page_offset = offset within page in shmem file
  651. * data_page_index = page number in get_user_pages return
  652. * data_page_offset = offset with data_page_index page.
  653. * page_length = bytes to copy for this page
  654. */
  655. shmem_page_index = offset / PAGE_SIZE;
  656. shmem_page_offset = offset & ~PAGE_MASK;
  657. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  658. data_page_offset = data_ptr & ~PAGE_MASK;
  659. page_length = remain;
  660. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  661. page_length = PAGE_SIZE - shmem_page_offset;
  662. if ((data_page_offset + page_length) > PAGE_SIZE)
  663. page_length = PAGE_SIZE - data_page_offset;
  664. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  665. shmem_page_offset,
  666. user_pages[data_page_index],
  667. data_page_offset,
  668. page_length);
  669. if (ret)
  670. goto fail_put_pages;
  671. remain -= page_length;
  672. data_ptr += page_length;
  673. offset += page_length;
  674. }
  675. fail_put_pages:
  676. i915_gem_object_put_pages(obj);
  677. fail_unlock:
  678. mutex_unlock(&dev->struct_mutex);
  679. fail_put_user_pages:
  680. for (i = 0; i < pinned_pages; i++)
  681. page_cache_release(user_pages[i]);
  682. kfree(user_pages);
  683. return ret;
  684. }
  685. /**
  686. * Writes data to the object referenced by handle.
  687. *
  688. * On error, the contents of the buffer that were to be modified are undefined.
  689. */
  690. int
  691. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  692. struct drm_file *file_priv)
  693. {
  694. struct drm_i915_gem_pwrite *args = data;
  695. struct drm_gem_object *obj;
  696. struct drm_i915_gem_object *obj_priv;
  697. int ret = 0;
  698. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  699. if (obj == NULL)
  700. return -EBADF;
  701. obj_priv = obj->driver_private;
  702. /* Bounds check destination.
  703. *
  704. * XXX: This could use review for overflow issues...
  705. */
  706. if (args->offset > obj->size || args->size > obj->size ||
  707. args->offset + args->size > obj->size) {
  708. drm_gem_object_unreference(obj);
  709. return -EINVAL;
  710. }
  711. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  712. * it would end up going through the fenced access, and we'll get
  713. * different detiling behavior between reading and writing.
  714. * pread/pwrite currently are reading and writing from the CPU
  715. * perspective, requiring manual detiling by the client.
  716. */
  717. if (obj_priv->phys_obj)
  718. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  719. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  720. dev->gtt_total != 0) {
  721. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  722. if (ret == -EFAULT) {
  723. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  724. file_priv);
  725. }
  726. } else {
  727. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  728. if (ret == -EFAULT) {
  729. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  730. file_priv);
  731. }
  732. }
  733. #if WATCH_PWRITE
  734. if (ret)
  735. DRM_INFO("pwrite failed %d\n", ret);
  736. #endif
  737. drm_gem_object_unreference(obj);
  738. return ret;
  739. }
  740. /**
  741. * Called when user space prepares to use an object with the CPU, either
  742. * through the mmap ioctl's mapping or a GTT mapping.
  743. */
  744. int
  745. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  746. struct drm_file *file_priv)
  747. {
  748. struct drm_i915_gem_set_domain *args = data;
  749. struct drm_gem_object *obj;
  750. uint32_t read_domains = args->read_domains;
  751. uint32_t write_domain = args->write_domain;
  752. int ret;
  753. if (!(dev->driver->driver_features & DRIVER_GEM))
  754. return -ENODEV;
  755. /* Only handle setting domains to types used by the CPU. */
  756. if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  757. return -EINVAL;
  758. if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  759. return -EINVAL;
  760. /* Having something in the write domain implies it's in the read
  761. * domain, and only that read domain. Enforce that in the request.
  762. */
  763. if (write_domain != 0 && read_domains != write_domain)
  764. return -EINVAL;
  765. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  766. if (obj == NULL)
  767. return -EBADF;
  768. mutex_lock(&dev->struct_mutex);
  769. #if WATCH_BUF
  770. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  771. obj, obj->size, read_domains, write_domain);
  772. #endif
  773. if (read_domains & I915_GEM_DOMAIN_GTT) {
  774. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  775. /* Silently promote "you're not bound, there was nothing to do"
  776. * to success, since the client was just asking us to
  777. * make sure everything was done.
  778. */
  779. if (ret == -EINVAL)
  780. ret = 0;
  781. } else {
  782. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  783. }
  784. drm_gem_object_unreference(obj);
  785. mutex_unlock(&dev->struct_mutex);
  786. return ret;
  787. }
  788. /**
  789. * Called when user space has done writes to this buffer
  790. */
  791. int
  792. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  793. struct drm_file *file_priv)
  794. {
  795. struct drm_i915_gem_sw_finish *args = data;
  796. struct drm_gem_object *obj;
  797. struct drm_i915_gem_object *obj_priv;
  798. int ret = 0;
  799. if (!(dev->driver->driver_features & DRIVER_GEM))
  800. return -ENODEV;
  801. mutex_lock(&dev->struct_mutex);
  802. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  803. if (obj == NULL) {
  804. mutex_unlock(&dev->struct_mutex);
  805. return -EBADF;
  806. }
  807. #if WATCH_BUF
  808. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  809. __func__, args->handle, obj, obj->size);
  810. #endif
  811. obj_priv = obj->driver_private;
  812. /* Pinned buffers may be scanout, so flush the cache */
  813. if (obj_priv->pin_count)
  814. i915_gem_object_flush_cpu_write_domain(obj);
  815. drm_gem_object_unreference(obj);
  816. mutex_unlock(&dev->struct_mutex);
  817. return ret;
  818. }
  819. /**
  820. * Maps the contents of an object, returning the address it is mapped
  821. * into.
  822. *
  823. * While the mapping holds a reference on the contents of the object, it doesn't
  824. * imply a ref on the object itself.
  825. */
  826. int
  827. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  828. struct drm_file *file_priv)
  829. {
  830. struct drm_i915_gem_mmap *args = data;
  831. struct drm_gem_object *obj;
  832. loff_t offset;
  833. unsigned long addr;
  834. if (!(dev->driver->driver_features & DRIVER_GEM))
  835. return -ENODEV;
  836. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  837. if (obj == NULL)
  838. return -EBADF;
  839. offset = args->offset;
  840. down_write(&current->mm->mmap_sem);
  841. addr = do_mmap(obj->filp, 0, args->size,
  842. PROT_READ | PROT_WRITE, MAP_SHARED,
  843. args->offset);
  844. up_write(&current->mm->mmap_sem);
  845. mutex_lock(&dev->struct_mutex);
  846. drm_gem_object_unreference(obj);
  847. mutex_unlock(&dev->struct_mutex);
  848. if (IS_ERR((void *)addr))
  849. return addr;
  850. args->addr_ptr = (uint64_t) addr;
  851. return 0;
  852. }
  853. /**
  854. * i915_gem_fault - fault a page into the GTT
  855. * vma: VMA in question
  856. * vmf: fault info
  857. *
  858. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  859. * from userspace. The fault handler takes care of binding the object to
  860. * the GTT (if needed), allocating and programming a fence register (again,
  861. * only if needed based on whether the old reg is still valid or the object
  862. * is tiled) and inserting a new PTE into the faulting process.
  863. *
  864. * Note that the faulting process may involve evicting existing objects
  865. * from the GTT and/or fence registers to make room. So performance may
  866. * suffer if the GTT working set is large or there are few fence registers
  867. * left.
  868. */
  869. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  870. {
  871. struct drm_gem_object *obj = vma->vm_private_data;
  872. struct drm_device *dev = obj->dev;
  873. struct drm_i915_private *dev_priv = dev->dev_private;
  874. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  875. pgoff_t page_offset;
  876. unsigned long pfn;
  877. int ret = 0;
  878. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  879. /* We don't use vmf->pgoff since that has the fake offset */
  880. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  881. PAGE_SHIFT;
  882. /* Now bind it into the GTT if needed */
  883. mutex_lock(&dev->struct_mutex);
  884. if (!obj_priv->gtt_space) {
  885. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  886. if (ret) {
  887. mutex_unlock(&dev->struct_mutex);
  888. return VM_FAULT_SIGBUS;
  889. }
  890. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  891. }
  892. /* Need a new fence register? */
  893. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  894. obj_priv->tiling_mode != I915_TILING_NONE) {
  895. ret = i915_gem_object_get_fence_reg(obj, write);
  896. if (ret) {
  897. mutex_unlock(&dev->struct_mutex);
  898. return VM_FAULT_SIGBUS;
  899. }
  900. }
  901. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  902. page_offset;
  903. /* Finally, remap it using the new GTT offset */
  904. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  905. mutex_unlock(&dev->struct_mutex);
  906. switch (ret) {
  907. case -ENOMEM:
  908. case -EAGAIN:
  909. return VM_FAULT_OOM;
  910. case -EFAULT:
  911. case -EINVAL:
  912. return VM_FAULT_SIGBUS;
  913. default:
  914. return VM_FAULT_NOPAGE;
  915. }
  916. }
  917. /**
  918. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  919. * @obj: obj in question
  920. *
  921. * GEM memory mapping works by handing back to userspace a fake mmap offset
  922. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  923. * up the object based on the offset and sets up the various memory mapping
  924. * structures.
  925. *
  926. * This routine allocates and attaches a fake offset for @obj.
  927. */
  928. static int
  929. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  930. {
  931. struct drm_device *dev = obj->dev;
  932. struct drm_gem_mm *mm = dev->mm_private;
  933. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  934. struct drm_map_list *list;
  935. struct drm_local_map *map;
  936. int ret = 0;
  937. /* Set the object up for mmap'ing */
  938. list = &obj->map_list;
  939. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  940. DRM_MEM_DRIVER);
  941. if (!list->map)
  942. return -ENOMEM;
  943. map = list->map;
  944. map->type = _DRM_GEM;
  945. map->size = obj->size;
  946. map->handle = obj;
  947. /* Get a DRM GEM mmap offset allocated... */
  948. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  949. obj->size / PAGE_SIZE, 0, 0);
  950. if (!list->file_offset_node) {
  951. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  952. ret = -ENOMEM;
  953. goto out_free_list;
  954. }
  955. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  956. obj->size / PAGE_SIZE, 0);
  957. if (!list->file_offset_node) {
  958. ret = -ENOMEM;
  959. goto out_free_list;
  960. }
  961. list->hash.key = list->file_offset_node->start;
  962. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  963. DRM_ERROR("failed to add to map hash\n");
  964. goto out_free_mm;
  965. }
  966. /* By now we should be all set, any drm_mmap request on the offset
  967. * below will get to our mmap & fault handler */
  968. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  969. return 0;
  970. out_free_mm:
  971. drm_mm_put_block(list->file_offset_node);
  972. out_free_list:
  973. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  974. return ret;
  975. }
  976. static void
  977. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  978. {
  979. struct drm_device *dev = obj->dev;
  980. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  981. struct drm_gem_mm *mm = dev->mm_private;
  982. struct drm_map_list *list;
  983. list = &obj->map_list;
  984. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  985. if (list->file_offset_node) {
  986. drm_mm_put_block(list->file_offset_node);
  987. list->file_offset_node = NULL;
  988. }
  989. if (list->map) {
  990. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  991. list->map = NULL;
  992. }
  993. obj_priv->mmap_offset = 0;
  994. }
  995. /**
  996. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  997. * @obj: object to check
  998. *
  999. * Return the required GTT alignment for an object, taking into account
  1000. * potential fence register mapping if needed.
  1001. */
  1002. static uint32_t
  1003. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1004. {
  1005. struct drm_device *dev = obj->dev;
  1006. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1007. int start, i;
  1008. /*
  1009. * Minimum alignment is 4k (GTT page size), but might be greater
  1010. * if a fence register is needed for the object.
  1011. */
  1012. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1013. return 4096;
  1014. /*
  1015. * Previous chips need to be aligned to the size of the smallest
  1016. * fence register that can contain the object.
  1017. */
  1018. if (IS_I9XX(dev))
  1019. start = 1024*1024;
  1020. else
  1021. start = 512*1024;
  1022. for (i = start; i < obj->size; i <<= 1)
  1023. ;
  1024. return i;
  1025. }
  1026. /**
  1027. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1028. * @dev: DRM device
  1029. * @data: GTT mapping ioctl data
  1030. * @file_priv: GEM object info
  1031. *
  1032. * Simply returns the fake offset to userspace so it can mmap it.
  1033. * The mmap call will end up in drm_gem_mmap(), which will set things
  1034. * up so we can get faults in the handler above.
  1035. *
  1036. * The fault handler will take care of binding the object into the GTT
  1037. * (since it may have been evicted to make room for something), allocating
  1038. * a fence register, and mapping the appropriate aperture address into
  1039. * userspace.
  1040. */
  1041. int
  1042. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1043. struct drm_file *file_priv)
  1044. {
  1045. struct drm_i915_gem_mmap_gtt *args = data;
  1046. struct drm_i915_private *dev_priv = dev->dev_private;
  1047. struct drm_gem_object *obj;
  1048. struct drm_i915_gem_object *obj_priv;
  1049. int ret;
  1050. if (!(dev->driver->driver_features & DRIVER_GEM))
  1051. return -ENODEV;
  1052. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1053. if (obj == NULL)
  1054. return -EBADF;
  1055. mutex_lock(&dev->struct_mutex);
  1056. obj_priv = obj->driver_private;
  1057. if (!obj_priv->mmap_offset) {
  1058. ret = i915_gem_create_mmap_offset(obj);
  1059. if (ret) {
  1060. drm_gem_object_unreference(obj);
  1061. mutex_unlock(&dev->struct_mutex);
  1062. return ret;
  1063. }
  1064. }
  1065. args->offset = obj_priv->mmap_offset;
  1066. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1067. /* Make sure the alignment is correct for fence regs etc */
  1068. if (obj_priv->agp_mem &&
  1069. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1070. drm_gem_object_unreference(obj);
  1071. mutex_unlock(&dev->struct_mutex);
  1072. return -EINVAL;
  1073. }
  1074. /*
  1075. * Pull it into the GTT so that we have a page list (makes the
  1076. * initial fault faster and any subsequent flushing possible).
  1077. */
  1078. if (!obj_priv->agp_mem) {
  1079. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1080. if (ret) {
  1081. drm_gem_object_unreference(obj);
  1082. mutex_unlock(&dev->struct_mutex);
  1083. return ret;
  1084. }
  1085. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  1086. }
  1087. drm_gem_object_unreference(obj);
  1088. mutex_unlock(&dev->struct_mutex);
  1089. return 0;
  1090. }
  1091. void
  1092. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1093. {
  1094. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1095. int page_count = obj->size / PAGE_SIZE;
  1096. int i;
  1097. BUG_ON(obj_priv->pages_refcount == 0);
  1098. if (--obj_priv->pages_refcount != 0)
  1099. return;
  1100. for (i = 0; i < page_count; i++)
  1101. if (obj_priv->pages[i] != NULL) {
  1102. if (obj_priv->dirty)
  1103. set_page_dirty(obj_priv->pages[i]);
  1104. mark_page_accessed(obj_priv->pages[i]);
  1105. page_cache_release(obj_priv->pages[i]);
  1106. }
  1107. obj_priv->dirty = 0;
  1108. drm_free(obj_priv->pages,
  1109. page_count * sizeof(struct page *),
  1110. DRM_MEM_DRIVER);
  1111. obj_priv->pages = NULL;
  1112. }
  1113. static void
  1114. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1115. {
  1116. struct drm_device *dev = obj->dev;
  1117. drm_i915_private_t *dev_priv = dev->dev_private;
  1118. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1119. /* Add a reference if we're newly entering the active list. */
  1120. if (!obj_priv->active) {
  1121. drm_gem_object_reference(obj);
  1122. obj_priv->active = 1;
  1123. }
  1124. /* Move from whatever list we were on to the tail of execution. */
  1125. spin_lock(&dev_priv->mm.active_list_lock);
  1126. list_move_tail(&obj_priv->list,
  1127. &dev_priv->mm.active_list);
  1128. spin_unlock(&dev_priv->mm.active_list_lock);
  1129. obj_priv->last_rendering_seqno = seqno;
  1130. }
  1131. static void
  1132. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1133. {
  1134. struct drm_device *dev = obj->dev;
  1135. drm_i915_private_t *dev_priv = dev->dev_private;
  1136. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1137. BUG_ON(!obj_priv->active);
  1138. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1139. obj_priv->last_rendering_seqno = 0;
  1140. }
  1141. static void
  1142. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1143. {
  1144. struct drm_device *dev = obj->dev;
  1145. drm_i915_private_t *dev_priv = dev->dev_private;
  1146. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1147. i915_verify_inactive(dev, __FILE__, __LINE__);
  1148. if (obj_priv->pin_count != 0)
  1149. list_del_init(&obj_priv->list);
  1150. else
  1151. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1152. obj_priv->last_rendering_seqno = 0;
  1153. if (obj_priv->active) {
  1154. obj_priv->active = 0;
  1155. drm_gem_object_unreference(obj);
  1156. }
  1157. i915_verify_inactive(dev, __FILE__, __LINE__);
  1158. }
  1159. /**
  1160. * Creates a new sequence number, emitting a write of it to the status page
  1161. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1162. *
  1163. * Must be called with struct_lock held.
  1164. *
  1165. * Returned sequence numbers are nonzero on success.
  1166. */
  1167. static uint32_t
  1168. i915_add_request(struct drm_device *dev, uint32_t flush_domains)
  1169. {
  1170. drm_i915_private_t *dev_priv = dev->dev_private;
  1171. struct drm_i915_gem_request *request;
  1172. uint32_t seqno;
  1173. int was_empty;
  1174. RING_LOCALS;
  1175. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1176. if (request == NULL)
  1177. return 0;
  1178. /* Grab the seqno we're going to make this request be, and bump the
  1179. * next (skipping 0 so it can be the reserved no-seqno value).
  1180. */
  1181. seqno = dev_priv->mm.next_gem_seqno;
  1182. dev_priv->mm.next_gem_seqno++;
  1183. if (dev_priv->mm.next_gem_seqno == 0)
  1184. dev_priv->mm.next_gem_seqno++;
  1185. BEGIN_LP_RING(4);
  1186. OUT_RING(MI_STORE_DWORD_INDEX);
  1187. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1188. OUT_RING(seqno);
  1189. OUT_RING(MI_USER_INTERRUPT);
  1190. ADVANCE_LP_RING();
  1191. DRM_DEBUG("%d\n", seqno);
  1192. request->seqno = seqno;
  1193. request->emitted_jiffies = jiffies;
  1194. was_empty = list_empty(&dev_priv->mm.request_list);
  1195. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1196. /* Associate any objects on the flushing list matching the write
  1197. * domain we're flushing with our flush.
  1198. */
  1199. if (flush_domains != 0) {
  1200. struct drm_i915_gem_object *obj_priv, *next;
  1201. list_for_each_entry_safe(obj_priv, next,
  1202. &dev_priv->mm.flushing_list, list) {
  1203. struct drm_gem_object *obj = obj_priv->obj;
  1204. if ((obj->write_domain & flush_domains) ==
  1205. obj->write_domain) {
  1206. obj->write_domain = 0;
  1207. i915_gem_object_move_to_active(obj, seqno);
  1208. }
  1209. }
  1210. }
  1211. if (was_empty && !dev_priv->mm.suspended)
  1212. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1213. return seqno;
  1214. }
  1215. /**
  1216. * Command execution barrier
  1217. *
  1218. * Ensures that all commands in the ring are finished
  1219. * before signalling the CPU
  1220. */
  1221. static uint32_t
  1222. i915_retire_commands(struct drm_device *dev)
  1223. {
  1224. drm_i915_private_t *dev_priv = dev->dev_private;
  1225. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1226. uint32_t flush_domains = 0;
  1227. RING_LOCALS;
  1228. /* The sampler always gets flushed on i965 (sigh) */
  1229. if (IS_I965G(dev))
  1230. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1231. BEGIN_LP_RING(2);
  1232. OUT_RING(cmd);
  1233. OUT_RING(0); /* noop */
  1234. ADVANCE_LP_RING();
  1235. return flush_domains;
  1236. }
  1237. /**
  1238. * Moves buffers associated only with the given active seqno from the active
  1239. * to inactive list, potentially freeing them.
  1240. */
  1241. static void
  1242. i915_gem_retire_request(struct drm_device *dev,
  1243. struct drm_i915_gem_request *request)
  1244. {
  1245. drm_i915_private_t *dev_priv = dev->dev_private;
  1246. /* Move any buffers on the active list that are no longer referenced
  1247. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1248. */
  1249. spin_lock(&dev_priv->mm.active_list_lock);
  1250. while (!list_empty(&dev_priv->mm.active_list)) {
  1251. struct drm_gem_object *obj;
  1252. struct drm_i915_gem_object *obj_priv;
  1253. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1254. struct drm_i915_gem_object,
  1255. list);
  1256. obj = obj_priv->obj;
  1257. /* If the seqno being retired doesn't match the oldest in the
  1258. * list, then the oldest in the list must still be newer than
  1259. * this seqno.
  1260. */
  1261. if (obj_priv->last_rendering_seqno != request->seqno)
  1262. goto out;
  1263. #if WATCH_LRU
  1264. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1265. __func__, request->seqno, obj);
  1266. #endif
  1267. if (obj->write_domain != 0)
  1268. i915_gem_object_move_to_flushing(obj);
  1269. else
  1270. i915_gem_object_move_to_inactive(obj);
  1271. }
  1272. out:
  1273. spin_unlock(&dev_priv->mm.active_list_lock);
  1274. }
  1275. /**
  1276. * Returns true if seq1 is later than seq2.
  1277. */
  1278. static int
  1279. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1280. {
  1281. return (int32_t)(seq1 - seq2) >= 0;
  1282. }
  1283. uint32_t
  1284. i915_get_gem_seqno(struct drm_device *dev)
  1285. {
  1286. drm_i915_private_t *dev_priv = dev->dev_private;
  1287. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1288. }
  1289. /**
  1290. * This function clears the request list as sequence numbers are passed.
  1291. */
  1292. void
  1293. i915_gem_retire_requests(struct drm_device *dev)
  1294. {
  1295. drm_i915_private_t *dev_priv = dev->dev_private;
  1296. uint32_t seqno;
  1297. if (!dev_priv->hw_status_page)
  1298. return;
  1299. seqno = i915_get_gem_seqno(dev);
  1300. while (!list_empty(&dev_priv->mm.request_list)) {
  1301. struct drm_i915_gem_request *request;
  1302. uint32_t retiring_seqno;
  1303. request = list_first_entry(&dev_priv->mm.request_list,
  1304. struct drm_i915_gem_request,
  1305. list);
  1306. retiring_seqno = request->seqno;
  1307. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1308. dev_priv->mm.wedged) {
  1309. i915_gem_retire_request(dev, request);
  1310. list_del(&request->list);
  1311. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1312. } else
  1313. break;
  1314. }
  1315. }
  1316. void
  1317. i915_gem_retire_work_handler(struct work_struct *work)
  1318. {
  1319. drm_i915_private_t *dev_priv;
  1320. struct drm_device *dev;
  1321. dev_priv = container_of(work, drm_i915_private_t,
  1322. mm.retire_work.work);
  1323. dev = dev_priv->dev;
  1324. mutex_lock(&dev->struct_mutex);
  1325. i915_gem_retire_requests(dev);
  1326. if (!dev_priv->mm.suspended &&
  1327. !list_empty(&dev_priv->mm.request_list))
  1328. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1329. mutex_unlock(&dev->struct_mutex);
  1330. }
  1331. /**
  1332. * Waits for a sequence number to be signaled, and cleans up the
  1333. * request and object lists appropriately for that event.
  1334. */
  1335. static int
  1336. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1337. {
  1338. drm_i915_private_t *dev_priv = dev->dev_private;
  1339. int ret = 0;
  1340. BUG_ON(seqno == 0);
  1341. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1342. dev_priv->mm.waiting_gem_seqno = seqno;
  1343. i915_user_irq_get(dev);
  1344. ret = wait_event_interruptible(dev_priv->irq_queue,
  1345. i915_seqno_passed(i915_get_gem_seqno(dev),
  1346. seqno) ||
  1347. dev_priv->mm.wedged);
  1348. i915_user_irq_put(dev);
  1349. dev_priv->mm.waiting_gem_seqno = 0;
  1350. }
  1351. if (dev_priv->mm.wedged)
  1352. ret = -EIO;
  1353. if (ret && ret != -ERESTARTSYS)
  1354. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1355. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1356. /* Directly dispatch request retiring. While we have the work queue
  1357. * to handle this, the waiter on a request often wants an associated
  1358. * buffer to have made it to the inactive list, and we would need
  1359. * a separate wait queue to handle that.
  1360. */
  1361. if (ret == 0)
  1362. i915_gem_retire_requests(dev);
  1363. return ret;
  1364. }
  1365. static void
  1366. i915_gem_flush(struct drm_device *dev,
  1367. uint32_t invalidate_domains,
  1368. uint32_t flush_domains)
  1369. {
  1370. drm_i915_private_t *dev_priv = dev->dev_private;
  1371. uint32_t cmd;
  1372. RING_LOCALS;
  1373. #if WATCH_EXEC
  1374. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1375. invalidate_domains, flush_domains);
  1376. #endif
  1377. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1378. drm_agp_chipset_flush(dev);
  1379. if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
  1380. I915_GEM_DOMAIN_GTT)) {
  1381. /*
  1382. * read/write caches:
  1383. *
  1384. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1385. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1386. * also flushed at 2d versus 3d pipeline switches.
  1387. *
  1388. * read-only caches:
  1389. *
  1390. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1391. * MI_READ_FLUSH is set, and is always flushed on 965.
  1392. *
  1393. * I915_GEM_DOMAIN_COMMAND may not exist?
  1394. *
  1395. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1396. * invalidated when MI_EXE_FLUSH is set.
  1397. *
  1398. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1399. * invalidated with every MI_FLUSH.
  1400. *
  1401. * TLBs:
  1402. *
  1403. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1404. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1405. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1406. * are flushed at any MI_FLUSH.
  1407. */
  1408. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1409. if ((invalidate_domains|flush_domains) &
  1410. I915_GEM_DOMAIN_RENDER)
  1411. cmd &= ~MI_NO_WRITE_FLUSH;
  1412. if (!IS_I965G(dev)) {
  1413. /*
  1414. * On the 965, the sampler cache always gets flushed
  1415. * and this bit is reserved.
  1416. */
  1417. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1418. cmd |= MI_READ_FLUSH;
  1419. }
  1420. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1421. cmd |= MI_EXE_FLUSH;
  1422. #if WATCH_EXEC
  1423. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1424. #endif
  1425. BEGIN_LP_RING(2);
  1426. OUT_RING(cmd);
  1427. OUT_RING(0); /* noop */
  1428. ADVANCE_LP_RING();
  1429. }
  1430. }
  1431. /**
  1432. * Ensures that all rendering to the object has completed and the object is
  1433. * safe to unbind from the GTT or access from the CPU.
  1434. */
  1435. static int
  1436. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1437. {
  1438. struct drm_device *dev = obj->dev;
  1439. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1440. int ret;
  1441. /* This function only exists to support waiting for existing rendering,
  1442. * not for emitting required flushes.
  1443. */
  1444. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1445. /* If there is rendering queued on the buffer being evicted, wait for
  1446. * it.
  1447. */
  1448. if (obj_priv->active) {
  1449. #if WATCH_BUF
  1450. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1451. __func__, obj, obj_priv->last_rendering_seqno);
  1452. #endif
  1453. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1454. if (ret != 0)
  1455. return ret;
  1456. }
  1457. return 0;
  1458. }
  1459. /**
  1460. * Unbinds an object from the GTT aperture.
  1461. */
  1462. int
  1463. i915_gem_object_unbind(struct drm_gem_object *obj)
  1464. {
  1465. struct drm_device *dev = obj->dev;
  1466. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1467. loff_t offset;
  1468. int ret = 0;
  1469. #if WATCH_BUF
  1470. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1471. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1472. #endif
  1473. if (obj_priv->gtt_space == NULL)
  1474. return 0;
  1475. if (obj_priv->pin_count != 0) {
  1476. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1477. return -EINVAL;
  1478. }
  1479. /* Move the object to the CPU domain to ensure that
  1480. * any possible CPU writes while it's not in the GTT
  1481. * are flushed when we go to remap it. This will
  1482. * also ensure that all pending GPU writes are finished
  1483. * before we unbind.
  1484. */
  1485. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1486. if (ret) {
  1487. if (ret != -ERESTARTSYS)
  1488. DRM_ERROR("set_domain failed: %d\n", ret);
  1489. return ret;
  1490. }
  1491. if (obj_priv->agp_mem != NULL) {
  1492. drm_unbind_agp(obj_priv->agp_mem);
  1493. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1494. obj_priv->agp_mem = NULL;
  1495. }
  1496. BUG_ON(obj_priv->active);
  1497. /* blow away mappings if mapped through GTT */
  1498. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1499. if (dev->dev_mapping)
  1500. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1501. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1502. i915_gem_clear_fence_reg(obj);
  1503. i915_gem_object_put_pages(obj);
  1504. if (obj_priv->gtt_space) {
  1505. atomic_dec(&dev->gtt_count);
  1506. atomic_sub(obj->size, &dev->gtt_memory);
  1507. drm_mm_put_block(obj_priv->gtt_space);
  1508. obj_priv->gtt_space = NULL;
  1509. }
  1510. /* Remove ourselves from the LRU list if present. */
  1511. if (!list_empty(&obj_priv->list))
  1512. list_del_init(&obj_priv->list);
  1513. return 0;
  1514. }
  1515. static int
  1516. i915_gem_evict_something(struct drm_device *dev)
  1517. {
  1518. drm_i915_private_t *dev_priv = dev->dev_private;
  1519. struct drm_gem_object *obj;
  1520. struct drm_i915_gem_object *obj_priv;
  1521. int ret = 0;
  1522. for (;;) {
  1523. /* If there's an inactive buffer available now, grab it
  1524. * and be done.
  1525. */
  1526. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1527. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1528. struct drm_i915_gem_object,
  1529. list);
  1530. obj = obj_priv->obj;
  1531. BUG_ON(obj_priv->pin_count != 0);
  1532. #if WATCH_LRU
  1533. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1534. #endif
  1535. BUG_ON(obj_priv->active);
  1536. /* Wait on the rendering and unbind the buffer. */
  1537. ret = i915_gem_object_unbind(obj);
  1538. break;
  1539. }
  1540. /* If we didn't get anything, but the ring is still processing
  1541. * things, wait for one of those things to finish and hopefully
  1542. * leave us a buffer to evict.
  1543. */
  1544. if (!list_empty(&dev_priv->mm.request_list)) {
  1545. struct drm_i915_gem_request *request;
  1546. request = list_first_entry(&dev_priv->mm.request_list,
  1547. struct drm_i915_gem_request,
  1548. list);
  1549. ret = i915_wait_request(dev, request->seqno);
  1550. if (ret)
  1551. break;
  1552. /* if waiting caused an object to become inactive,
  1553. * then loop around and wait for it. Otherwise, we
  1554. * assume that waiting freed and unbound something,
  1555. * so there should now be some space in the GTT
  1556. */
  1557. if (!list_empty(&dev_priv->mm.inactive_list))
  1558. continue;
  1559. break;
  1560. }
  1561. /* If we didn't have anything on the request list but there
  1562. * are buffers awaiting a flush, emit one and try again.
  1563. * When we wait on it, those buffers waiting for that flush
  1564. * will get moved to inactive.
  1565. */
  1566. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1567. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1568. struct drm_i915_gem_object,
  1569. list);
  1570. obj = obj_priv->obj;
  1571. i915_gem_flush(dev,
  1572. obj->write_domain,
  1573. obj->write_domain);
  1574. i915_add_request(dev, obj->write_domain);
  1575. obj = NULL;
  1576. continue;
  1577. }
  1578. DRM_ERROR("inactive empty %d request empty %d "
  1579. "flushing empty %d\n",
  1580. list_empty(&dev_priv->mm.inactive_list),
  1581. list_empty(&dev_priv->mm.request_list),
  1582. list_empty(&dev_priv->mm.flushing_list));
  1583. /* If we didn't do any of the above, there's nothing to be done
  1584. * and we just can't fit it in.
  1585. */
  1586. return -ENOMEM;
  1587. }
  1588. return ret;
  1589. }
  1590. static int
  1591. i915_gem_evict_everything(struct drm_device *dev)
  1592. {
  1593. int ret;
  1594. for (;;) {
  1595. ret = i915_gem_evict_something(dev);
  1596. if (ret != 0)
  1597. break;
  1598. }
  1599. if (ret == -ENOMEM)
  1600. return 0;
  1601. return ret;
  1602. }
  1603. int
  1604. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1605. {
  1606. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1607. int page_count, i;
  1608. struct address_space *mapping;
  1609. struct inode *inode;
  1610. struct page *page;
  1611. int ret;
  1612. if (obj_priv->pages_refcount++ != 0)
  1613. return 0;
  1614. /* Get the list of pages out of our struct file. They'll be pinned
  1615. * at this point until we release them.
  1616. */
  1617. page_count = obj->size / PAGE_SIZE;
  1618. BUG_ON(obj_priv->pages != NULL);
  1619. obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
  1620. DRM_MEM_DRIVER);
  1621. if (obj_priv->pages == NULL) {
  1622. DRM_ERROR("Faled to allocate page list\n");
  1623. obj_priv->pages_refcount--;
  1624. return -ENOMEM;
  1625. }
  1626. inode = obj->filp->f_path.dentry->d_inode;
  1627. mapping = inode->i_mapping;
  1628. for (i = 0; i < page_count; i++) {
  1629. page = read_mapping_page(mapping, i, NULL);
  1630. if (IS_ERR(page)) {
  1631. ret = PTR_ERR(page);
  1632. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1633. i915_gem_object_put_pages(obj);
  1634. return ret;
  1635. }
  1636. obj_priv->pages[i] = page;
  1637. }
  1638. return 0;
  1639. }
  1640. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1641. {
  1642. struct drm_gem_object *obj = reg->obj;
  1643. struct drm_device *dev = obj->dev;
  1644. drm_i915_private_t *dev_priv = dev->dev_private;
  1645. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1646. int regnum = obj_priv->fence_reg;
  1647. uint64_t val;
  1648. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1649. 0xfffff000) << 32;
  1650. val |= obj_priv->gtt_offset & 0xfffff000;
  1651. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1652. if (obj_priv->tiling_mode == I915_TILING_Y)
  1653. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1654. val |= I965_FENCE_REG_VALID;
  1655. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1656. }
  1657. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1658. {
  1659. struct drm_gem_object *obj = reg->obj;
  1660. struct drm_device *dev = obj->dev;
  1661. drm_i915_private_t *dev_priv = dev->dev_private;
  1662. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1663. int regnum = obj_priv->fence_reg;
  1664. int tile_width;
  1665. uint32_t fence_reg, val;
  1666. uint32_t pitch_val;
  1667. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1668. (obj_priv->gtt_offset & (obj->size - 1))) {
  1669. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1670. __func__, obj_priv->gtt_offset, obj->size);
  1671. return;
  1672. }
  1673. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1674. HAS_128_BYTE_Y_TILING(dev))
  1675. tile_width = 128;
  1676. else
  1677. tile_width = 512;
  1678. /* Note: pitch better be a power of two tile widths */
  1679. pitch_val = obj_priv->stride / tile_width;
  1680. pitch_val = ffs(pitch_val) - 1;
  1681. val = obj_priv->gtt_offset;
  1682. if (obj_priv->tiling_mode == I915_TILING_Y)
  1683. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1684. val |= I915_FENCE_SIZE_BITS(obj->size);
  1685. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1686. val |= I830_FENCE_REG_VALID;
  1687. if (regnum < 8)
  1688. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1689. else
  1690. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1691. I915_WRITE(fence_reg, val);
  1692. }
  1693. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1694. {
  1695. struct drm_gem_object *obj = reg->obj;
  1696. struct drm_device *dev = obj->dev;
  1697. drm_i915_private_t *dev_priv = dev->dev_private;
  1698. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1699. int regnum = obj_priv->fence_reg;
  1700. uint32_t val;
  1701. uint32_t pitch_val;
  1702. uint32_t fence_size_bits;
  1703. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1704. (obj_priv->gtt_offset & (obj->size - 1))) {
  1705. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1706. __func__, obj_priv->gtt_offset);
  1707. return;
  1708. }
  1709. pitch_val = (obj_priv->stride / 128) - 1;
  1710. WARN_ON(pitch_val & ~0x0000000f);
  1711. val = obj_priv->gtt_offset;
  1712. if (obj_priv->tiling_mode == I915_TILING_Y)
  1713. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1714. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1715. WARN_ON(fence_size_bits & ~0x00000f00);
  1716. val |= fence_size_bits;
  1717. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1718. val |= I830_FENCE_REG_VALID;
  1719. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1720. }
  1721. /**
  1722. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1723. * @obj: object to map through a fence reg
  1724. * @write: object is about to be written
  1725. *
  1726. * When mapping objects through the GTT, userspace wants to be able to write
  1727. * to them without having to worry about swizzling if the object is tiled.
  1728. *
  1729. * This function walks the fence regs looking for a free one for @obj,
  1730. * stealing one if it can't find any.
  1731. *
  1732. * It then sets up the reg based on the object's properties: address, pitch
  1733. * and tiling format.
  1734. */
  1735. static int
  1736. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1737. {
  1738. struct drm_device *dev = obj->dev;
  1739. struct drm_i915_private *dev_priv = dev->dev_private;
  1740. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1741. struct drm_i915_fence_reg *reg = NULL;
  1742. struct drm_i915_gem_object *old_obj_priv = NULL;
  1743. int i, ret, avail;
  1744. switch (obj_priv->tiling_mode) {
  1745. case I915_TILING_NONE:
  1746. WARN(1, "allocating a fence for non-tiled object?\n");
  1747. break;
  1748. case I915_TILING_X:
  1749. if (!obj_priv->stride)
  1750. return -EINVAL;
  1751. WARN((obj_priv->stride & (512 - 1)),
  1752. "object 0x%08x is X tiled but has non-512B pitch\n",
  1753. obj_priv->gtt_offset);
  1754. break;
  1755. case I915_TILING_Y:
  1756. if (!obj_priv->stride)
  1757. return -EINVAL;
  1758. WARN((obj_priv->stride & (128 - 1)),
  1759. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1760. obj_priv->gtt_offset);
  1761. break;
  1762. }
  1763. /* First try to find a free reg */
  1764. try_again:
  1765. avail = 0;
  1766. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1767. reg = &dev_priv->fence_regs[i];
  1768. if (!reg->obj)
  1769. break;
  1770. old_obj_priv = reg->obj->driver_private;
  1771. if (!old_obj_priv->pin_count)
  1772. avail++;
  1773. }
  1774. /* None available, try to steal one or wait for a user to finish */
  1775. if (i == dev_priv->num_fence_regs) {
  1776. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1777. loff_t offset;
  1778. if (avail == 0)
  1779. return -ENOMEM;
  1780. for (i = dev_priv->fence_reg_start;
  1781. i < dev_priv->num_fence_regs; i++) {
  1782. uint32_t this_seqno;
  1783. reg = &dev_priv->fence_regs[i];
  1784. old_obj_priv = reg->obj->driver_private;
  1785. if (old_obj_priv->pin_count)
  1786. continue;
  1787. /* i915 uses fences for GPU access to tiled buffers */
  1788. if (IS_I965G(dev) || !old_obj_priv->active)
  1789. break;
  1790. /* find the seqno of the first available fence */
  1791. this_seqno = old_obj_priv->last_rendering_seqno;
  1792. if (this_seqno != 0 &&
  1793. reg->obj->write_domain == 0 &&
  1794. i915_seqno_passed(seqno, this_seqno))
  1795. seqno = this_seqno;
  1796. }
  1797. /*
  1798. * Now things get ugly... we have to wait for one of the
  1799. * objects to finish before trying again.
  1800. */
  1801. if (i == dev_priv->num_fence_regs) {
  1802. if (seqno == dev_priv->mm.next_gem_seqno) {
  1803. i915_gem_flush(dev,
  1804. I915_GEM_GPU_DOMAINS,
  1805. I915_GEM_GPU_DOMAINS);
  1806. seqno = i915_add_request(dev,
  1807. I915_GEM_GPU_DOMAINS);
  1808. if (seqno == 0)
  1809. return -ENOMEM;
  1810. }
  1811. ret = i915_wait_request(dev, seqno);
  1812. if (ret)
  1813. return ret;
  1814. goto try_again;
  1815. }
  1816. BUG_ON(old_obj_priv->active ||
  1817. (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
  1818. /*
  1819. * Zap this virtual mapping so we can set up a fence again
  1820. * for this object next time we need it.
  1821. */
  1822. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1823. if (dev->dev_mapping)
  1824. unmap_mapping_range(dev->dev_mapping, offset,
  1825. reg->obj->size, 1);
  1826. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1827. }
  1828. obj_priv->fence_reg = i;
  1829. reg->obj = obj;
  1830. if (IS_I965G(dev))
  1831. i965_write_fence_reg(reg);
  1832. else if (IS_I9XX(dev))
  1833. i915_write_fence_reg(reg);
  1834. else
  1835. i830_write_fence_reg(reg);
  1836. return 0;
  1837. }
  1838. /**
  1839. * i915_gem_clear_fence_reg - clear out fence register info
  1840. * @obj: object to clear
  1841. *
  1842. * Zeroes out the fence register itself and clears out the associated
  1843. * data structures in dev_priv and obj_priv.
  1844. */
  1845. static void
  1846. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1847. {
  1848. struct drm_device *dev = obj->dev;
  1849. drm_i915_private_t *dev_priv = dev->dev_private;
  1850. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1851. if (IS_I965G(dev))
  1852. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1853. else {
  1854. uint32_t fence_reg;
  1855. if (obj_priv->fence_reg < 8)
  1856. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1857. else
  1858. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1859. 8) * 4;
  1860. I915_WRITE(fence_reg, 0);
  1861. }
  1862. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1863. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1864. }
  1865. /**
  1866. * Finds free space in the GTT aperture and binds the object there.
  1867. */
  1868. static int
  1869. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1870. {
  1871. struct drm_device *dev = obj->dev;
  1872. drm_i915_private_t *dev_priv = dev->dev_private;
  1873. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1874. struct drm_mm_node *free_space;
  1875. int page_count, ret;
  1876. if (dev_priv->mm.suspended)
  1877. return -EBUSY;
  1878. if (alignment == 0)
  1879. alignment = i915_gem_get_gtt_alignment(obj);
  1880. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  1881. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  1882. return -EINVAL;
  1883. }
  1884. search_free:
  1885. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  1886. obj->size, alignment, 0);
  1887. if (free_space != NULL) {
  1888. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  1889. alignment);
  1890. if (obj_priv->gtt_space != NULL) {
  1891. obj_priv->gtt_space->private = obj;
  1892. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  1893. }
  1894. }
  1895. if (obj_priv->gtt_space == NULL) {
  1896. bool lists_empty;
  1897. /* If the gtt is empty and we're still having trouble
  1898. * fitting our object in, we're out of memory.
  1899. */
  1900. #if WATCH_LRU
  1901. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  1902. #endif
  1903. spin_lock(&dev_priv->mm.active_list_lock);
  1904. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1905. list_empty(&dev_priv->mm.flushing_list) &&
  1906. list_empty(&dev_priv->mm.active_list));
  1907. spin_unlock(&dev_priv->mm.active_list_lock);
  1908. if (lists_empty) {
  1909. DRM_ERROR("GTT full, but LRU list empty\n");
  1910. return -ENOMEM;
  1911. }
  1912. ret = i915_gem_evict_something(dev);
  1913. if (ret != 0) {
  1914. if (ret != -ERESTARTSYS)
  1915. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  1916. return ret;
  1917. }
  1918. goto search_free;
  1919. }
  1920. #if WATCH_BUF
  1921. DRM_INFO("Binding object of size %d at 0x%08x\n",
  1922. obj->size, obj_priv->gtt_offset);
  1923. #endif
  1924. ret = i915_gem_object_get_pages(obj);
  1925. if (ret) {
  1926. drm_mm_put_block(obj_priv->gtt_space);
  1927. obj_priv->gtt_space = NULL;
  1928. return ret;
  1929. }
  1930. page_count = obj->size / PAGE_SIZE;
  1931. /* Create an AGP memory structure pointing at our pages, and bind it
  1932. * into the GTT.
  1933. */
  1934. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  1935. obj_priv->pages,
  1936. page_count,
  1937. obj_priv->gtt_offset,
  1938. obj_priv->agp_type);
  1939. if (obj_priv->agp_mem == NULL) {
  1940. i915_gem_object_put_pages(obj);
  1941. drm_mm_put_block(obj_priv->gtt_space);
  1942. obj_priv->gtt_space = NULL;
  1943. return -ENOMEM;
  1944. }
  1945. atomic_inc(&dev->gtt_count);
  1946. atomic_add(obj->size, &dev->gtt_memory);
  1947. /* Assert that the object is not currently in any GPU domain. As it
  1948. * wasn't in the GTT, there shouldn't be any way it could have been in
  1949. * a GPU cache
  1950. */
  1951. BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1952. BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1953. return 0;
  1954. }
  1955. void
  1956. i915_gem_clflush_object(struct drm_gem_object *obj)
  1957. {
  1958. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1959. /* If we don't have a page list set up, then we're not pinned
  1960. * to GPU, and we can ignore the cache flush because it'll happen
  1961. * again at bind time.
  1962. */
  1963. if (obj_priv->pages == NULL)
  1964. return;
  1965. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  1966. }
  1967. /** Flushes any GPU write domain for the object if it's dirty. */
  1968. static void
  1969. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  1970. {
  1971. struct drm_device *dev = obj->dev;
  1972. uint32_t seqno;
  1973. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  1974. return;
  1975. /* Queue the GPU write cache flushing we need. */
  1976. i915_gem_flush(dev, 0, obj->write_domain);
  1977. seqno = i915_add_request(dev, obj->write_domain);
  1978. obj->write_domain = 0;
  1979. i915_gem_object_move_to_active(obj, seqno);
  1980. }
  1981. /** Flushes the GTT write domain for the object if it's dirty. */
  1982. static void
  1983. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  1984. {
  1985. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  1986. return;
  1987. /* No actual flushing is required for the GTT write domain. Writes
  1988. * to it immediately go to main memory as far as we know, so there's
  1989. * no chipset flush. It also doesn't land in render cache.
  1990. */
  1991. obj->write_domain = 0;
  1992. }
  1993. /** Flushes the CPU write domain for the object if it's dirty. */
  1994. static void
  1995. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  1996. {
  1997. struct drm_device *dev = obj->dev;
  1998. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  1999. return;
  2000. i915_gem_clflush_object(obj);
  2001. drm_agp_chipset_flush(dev);
  2002. obj->write_domain = 0;
  2003. }
  2004. /**
  2005. * Moves a single object to the GTT read, and possibly write domain.
  2006. *
  2007. * This function returns when the move is complete, including waiting on
  2008. * flushes to occur.
  2009. */
  2010. int
  2011. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2012. {
  2013. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2014. int ret;
  2015. /* Not valid to be called on unbound objects. */
  2016. if (obj_priv->gtt_space == NULL)
  2017. return -EINVAL;
  2018. i915_gem_object_flush_gpu_write_domain(obj);
  2019. /* Wait on any GPU rendering and flushing to occur. */
  2020. ret = i915_gem_object_wait_rendering(obj);
  2021. if (ret != 0)
  2022. return ret;
  2023. /* If we're writing through the GTT domain, then CPU and GPU caches
  2024. * will need to be invalidated at next use.
  2025. */
  2026. if (write)
  2027. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2028. i915_gem_object_flush_cpu_write_domain(obj);
  2029. /* It should now be out of any other write domains, and we can update
  2030. * the domain values for our changes.
  2031. */
  2032. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2033. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2034. if (write) {
  2035. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2036. obj_priv->dirty = 1;
  2037. }
  2038. return 0;
  2039. }
  2040. /**
  2041. * Moves a single object to the CPU read, and possibly write domain.
  2042. *
  2043. * This function returns when the move is complete, including waiting on
  2044. * flushes to occur.
  2045. */
  2046. static int
  2047. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2048. {
  2049. int ret;
  2050. i915_gem_object_flush_gpu_write_domain(obj);
  2051. /* Wait on any GPU rendering and flushing to occur. */
  2052. ret = i915_gem_object_wait_rendering(obj);
  2053. if (ret != 0)
  2054. return ret;
  2055. i915_gem_object_flush_gtt_write_domain(obj);
  2056. /* If we have a partially-valid cache of the object in the CPU,
  2057. * finish invalidating it and free the per-page flags.
  2058. */
  2059. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2060. /* Flush the CPU cache if it's still invalid. */
  2061. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2062. i915_gem_clflush_object(obj);
  2063. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2064. }
  2065. /* It should now be out of any other write domains, and we can update
  2066. * the domain values for our changes.
  2067. */
  2068. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2069. /* If we're writing through the CPU, then the GPU read domains will
  2070. * need to be invalidated at next use.
  2071. */
  2072. if (write) {
  2073. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2074. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2075. }
  2076. return 0;
  2077. }
  2078. /*
  2079. * Set the next domain for the specified object. This
  2080. * may not actually perform the necessary flushing/invaliding though,
  2081. * as that may want to be batched with other set_domain operations
  2082. *
  2083. * This is (we hope) the only really tricky part of gem. The goal
  2084. * is fairly simple -- track which caches hold bits of the object
  2085. * and make sure they remain coherent. A few concrete examples may
  2086. * help to explain how it works. For shorthand, we use the notation
  2087. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2088. * a pair of read and write domain masks.
  2089. *
  2090. * Case 1: the batch buffer
  2091. *
  2092. * 1. Allocated
  2093. * 2. Written by CPU
  2094. * 3. Mapped to GTT
  2095. * 4. Read by GPU
  2096. * 5. Unmapped from GTT
  2097. * 6. Freed
  2098. *
  2099. * Let's take these a step at a time
  2100. *
  2101. * 1. Allocated
  2102. * Pages allocated from the kernel may still have
  2103. * cache contents, so we set them to (CPU, CPU) always.
  2104. * 2. Written by CPU (using pwrite)
  2105. * The pwrite function calls set_domain (CPU, CPU) and
  2106. * this function does nothing (as nothing changes)
  2107. * 3. Mapped by GTT
  2108. * This function asserts that the object is not
  2109. * currently in any GPU-based read or write domains
  2110. * 4. Read by GPU
  2111. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2112. * As write_domain is zero, this function adds in the
  2113. * current read domains (CPU+COMMAND, 0).
  2114. * flush_domains is set to CPU.
  2115. * invalidate_domains is set to COMMAND
  2116. * clflush is run to get data out of the CPU caches
  2117. * then i915_dev_set_domain calls i915_gem_flush to
  2118. * emit an MI_FLUSH and drm_agp_chipset_flush
  2119. * 5. Unmapped from GTT
  2120. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2121. * flush_domains and invalidate_domains end up both zero
  2122. * so no flushing/invalidating happens
  2123. * 6. Freed
  2124. * yay, done
  2125. *
  2126. * Case 2: The shared render buffer
  2127. *
  2128. * 1. Allocated
  2129. * 2. Mapped to GTT
  2130. * 3. Read/written by GPU
  2131. * 4. set_domain to (CPU,CPU)
  2132. * 5. Read/written by CPU
  2133. * 6. Read/written by GPU
  2134. *
  2135. * 1. Allocated
  2136. * Same as last example, (CPU, CPU)
  2137. * 2. Mapped to GTT
  2138. * Nothing changes (assertions find that it is not in the GPU)
  2139. * 3. Read/written by GPU
  2140. * execbuffer calls set_domain (RENDER, RENDER)
  2141. * flush_domains gets CPU
  2142. * invalidate_domains gets GPU
  2143. * clflush (obj)
  2144. * MI_FLUSH and drm_agp_chipset_flush
  2145. * 4. set_domain (CPU, CPU)
  2146. * flush_domains gets GPU
  2147. * invalidate_domains gets CPU
  2148. * wait_rendering (obj) to make sure all drawing is complete.
  2149. * This will include an MI_FLUSH to get the data from GPU
  2150. * to memory
  2151. * clflush (obj) to invalidate the CPU cache
  2152. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2153. * 5. Read/written by CPU
  2154. * cache lines are loaded and dirtied
  2155. * 6. Read written by GPU
  2156. * Same as last GPU access
  2157. *
  2158. * Case 3: The constant buffer
  2159. *
  2160. * 1. Allocated
  2161. * 2. Written by CPU
  2162. * 3. Read by GPU
  2163. * 4. Updated (written) by CPU again
  2164. * 5. Read by GPU
  2165. *
  2166. * 1. Allocated
  2167. * (CPU, CPU)
  2168. * 2. Written by CPU
  2169. * (CPU, CPU)
  2170. * 3. Read by GPU
  2171. * (CPU+RENDER, 0)
  2172. * flush_domains = CPU
  2173. * invalidate_domains = RENDER
  2174. * clflush (obj)
  2175. * MI_FLUSH
  2176. * drm_agp_chipset_flush
  2177. * 4. Updated (written) by CPU again
  2178. * (CPU, CPU)
  2179. * flush_domains = 0 (no previous write domain)
  2180. * invalidate_domains = 0 (no new read domains)
  2181. * 5. Read by GPU
  2182. * (CPU+RENDER, 0)
  2183. * flush_domains = CPU
  2184. * invalidate_domains = RENDER
  2185. * clflush (obj)
  2186. * MI_FLUSH
  2187. * drm_agp_chipset_flush
  2188. */
  2189. static void
  2190. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2191. {
  2192. struct drm_device *dev = obj->dev;
  2193. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2194. uint32_t invalidate_domains = 0;
  2195. uint32_t flush_domains = 0;
  2196. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2197. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2198. #if WATCH_BUF
  2199. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2200. __func__, obj,
  2201. obj->read_domains, obj->pending_read_domains,
  2202. obj->write_domain, obj->pending_write_domain);
  2203. #endif
  2204. /*
  2205. * If the object isn't moving to a new write domain,
  2206. * let the object stay in multiple read domains
  2207. */
  2208. if (obj->pending_write_domain == 0)
  2209. obj->pending_read_domains |= obj->read_domains;
  2210. else
  2211. obj_priv->dirty = 1;
  2212. /*
  2213. * Flush the current write domain if
  2214. * the new read domains don't match. Invalidate
  2215. * any read domains which differ from the old
  2216. * write domain
  2217. */
  2218. if (obj->write_domain &&
  2219. obj->write_domain != obj->pending_read_domains) {
  2220. flush_domains |= obj->write_domain;
  2221. invalidate_domains |=
  2222. obj->pending_read_domains & ~obj->write_domain;
  2223. }
  2224. /*
  2225. * Invalidate any read caches which may have
  2226. * stale data. That is, any new read domains.
  2227. */
  2228. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2229. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2230. #if WATCH_BUF
  2231. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2232. __func__, flush_domains, invalidate_domains);
  2233. #endif
  2234. i915_gem_clflush_object(obj);
  2235. }
  2236. /* The actual obj->write_domain will be updated with
  2237. * pending_write_domain after we emit the accumulated flush for all
  2238. * of our domain changes in execbuffers (which clears objects'
  2239. * write_domains). So if we have a current write domain that we
  2240. * aren't changing, set pending_write_domain to that.
  2241. */
  2242. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2243. obj->pending_write_domain = obj->write_domain;
  2244. obj->read_domains = obj->pending_read_domains;
  2245. dev->invalidate_domains |= invalidate_domains;
  2246. dev->flush_domains |= flush_domains;
  2247. #if WATCH_BUF
  2248. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2249. __func__,
  2250. obj->read_domains, obj->write_domain,
  2251. dev->invalidate_domains, dev->flush_domains);
  2252. #endif
  2253. }
  2254. /**
  2255. * Moves the object from a partially CPU read to a full one.
  2256. *
  2257. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2258. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2259. */
  2260. static void
  2261. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2262. {
  2263. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2264. if (!obj_priv->page_cpu_valid)
  2265. return;
  2266. /* If we're partially in the CPU read domain, finish moving it in.
  2267. */
  2268. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2269. int i;
  2270. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2271. if (obj_priv->page_cpu_valid[i])
  2272. continue;
  2273. drm_clflush_pages(obj_priv->pages + i, 1);
  2274. }
  2275. }
  2276. /* Free the page_cpu_valid mappings which are now stale, whether
  2277. * or not we've got I915_GEM_DOMAIN_CPU.
  2278. */
  2279. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2280. DRM_MEM_DRIVER);
  2281. obj_priv->page_cpu_valid = NULL;
  2282. }
  2283. /**
  2284. * Set the CPU read domain on a range of the object.
  2285. *
  2286. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2287. * not entirely valid. The page_cpu_valid member of the object flags which
  2288. * pages have been flushed, and will be respected by
  2289. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2290. * of the whole object.
  2291. *
  2292. * This function returns when the move is complete, including waiting on
  2293. * flushes to occur.
  2294. */
  2295. static int
  2296. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2297. uint64_t offset, uint64_t size)
  2298. {
  2299. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2300. int i, ret;
  2301. if (offset == 0 && size == obj->size)
  2302. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2303. i915_gem_object_flush_gpu_write_domain(obj);
  2304. /* Wait on any GPU rendering and flushing to occur. */
  2305. ret = i915_gem_object_wait_rendering(obj);
  2306. if (ret != 0)
  2307. return ret;
  2308. i915_gem_object_flush_gtt_write_domain(obj);
  2309. /* If we're already fully in the CPU read domain, we're done. */
  2310. if (obj_priv->page_cpu_valid == NULL &&
  2311. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2312. return 0;
  2313. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2314. * newly adding I915_GEM_DOMAIN_CPU
  2315. */
  2316. if (obj_priv->page_cpu_valid == NULL) {
  2317. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2318. DRM_MEM_DRIVER);
  2319. if (obj_priv->page_cpu_valid == NULL)
  2320. return -ENOMEM;
  2321. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2322. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2323. /* Flush the cache on any pages that are still invalid from the CPU's
  2324. * perspective.
  2325. */
  2326. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2327. i++) {
  2328. if (obj_priv->page_cpu_valid[i])
  2329. continue;
  2330. drm_clflush_pages(obj_priv->pages + i, 1);
  2331. obj_priv->page_cpu_valid[i] = 1;
  2332. }
  2333. /* It should now be out of any other write domains, and we can update
  2334. * the domain values for our changes.
  2335. */
  2336. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2337. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2338. return 0;
  2339. }
  2340. /**
  2341. * Pin an object to the GTT and evaluate the relocations landing in it.
  2342. */
  2343. static int
  2344. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2345. struct drm_file *file_priv,
  2346. struct drm_i915_gem_exec_object *entry,
  2347. struct drm_i915_gem_relocation_entry *relocs)
  2348. {
  2349. struct drm_device *dev = obj->dev;
  2350. drm_i915_private_t *dev_priv = dev->dev_private;
  2351. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2352. int i, ret;
  2353. void __iomem *reloc_page;
  2354. /* Choose the GTT offset for our buffer and put it there. */
  2355. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2356. if (ret)
  2357. return ret;
  2358. entry->offset = obj_priv->gtt_offset;
  2359. /* Apply the relocations, using the GTT aperture to avoid cache
  2360. * flushing requirements.
  2361. */
  2362. for (i = 0; i < entry->relocation_count; i++) {
  2363. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2364. struct drm_gem_object *target_obj;
  2365. struct drm_i915_gem_object *target_obj_priv;
  2366. uint32_t reloc_val, reloc_offset;
  2367. uint32_t __iomem *reloc_entry;
  2368. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2369. reloc->target_handle);
  2370. if (target_obj == NULL) {
  2371. i915_gem_object_unpin(obj);
  2372. return -EBADF;
  2373. }
  2374. target_obj_priv = target_obj->driver_private;
  2375. /* The target buffer should have appeared before us in the
  2376. * exec_object list, so it should have a GTT space bound by now.
  2377. */
  2378. if (target_obj_priv->gtt_space == NULL) {
  2379. DRM_ERROR("No GTT space found for object %d\n",
  2380. reloc->target_handle);
  2381. drm_gem_object_unreference(target_obj);
  2382. i915_gem_object_unpin(obj);
  2383. return -EINVAL;
  2384. }
  2385. if (reloc->offset > obj->size - 4) {
  2386. DRM_ERROR("Relocation beyond object bounds: "
  2387. "obj %p target %d offset %d size %d.\n",
  2388. obj, reloc->target_handle,
  2389. (int) reloc->offset, (int) obj->size);
  2390. drm_gem_object_unreference(target_obj);
  2391. i915_gem_object_unpin(obj);
  2392. return -EINVAL;
  2393. }
  2394. if (reloc->offset & 3) {
  2395. DRM_ERROR("Relocation not 4-byte aligned: "
  2396. "obj %p target %d offset %d.\n",
  2397. obj, reloc->target_handle,
  2398. (int) reloc->offset);
  2399. drm_gem_object_unreference(target_obj);
  2400. i915_gem_object_unpin(obj);
  2401. return -EINVAL;
  2402. }
  2403. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2404. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2405. DRM_ERROR("reloc with read/write CPU domains: "
  2406. "obj %p target %d offset %d "
  2407. "read %08x write %08x",
  2408. obj, reloc->target_handle,
  2409. (int) reloc->offset,
  2410. reloc->read_domains,
  2411. reloc->write_domain);
  2412. drm_gem_object_unreference(target_obj);
  2413. i915_gem_object_unpin(obj);
  2414. return -EINVAL;
  2415. }
  2416. if (reloc->write_domain && target_obj->pending_write_domain &&
  2417. reloc->write_domain != target_obj->pending_write_domain) {
  2418. DRM_ERROR("Write domain conflict: "
  2419. "obj %p target %d offset %d "
  2420. "new %08x old %08x\n",
  2421. obj, reloc->target_handle,
  2422. (int) reloc->offset,
  2423. reloc->write_domain,
  2424. target_obj->pending_write_domain);
  2425. drm_gem_object_unreference(target_obj);
  2426. i915_gem_object_unpin(obj);
  2427. return -EINVAL;
  2428. }
  2429. #if WATCH_RELOC
  2430. DRM_INFO("%s: obj %p offset %08x target %d "
  2431. "read %08x write %08x gtt %08x "
  2432. "presumed %08x delta %08x\n",
  2433. __func__,
  2434. obj,
  2435. (int) reloc->offset,
  2436. (int) reloc->target_handle,
  2437. (int) reloc->read_domains,
  2438. (int) reloc->write_domain,
  2439. (int) target_obj_priv->gtt_offset,
  2440. (int) reloc->presumed_offset,
  2441. reloc->delta);
  2442. #endif
  2443. target_obj->pending_read_domains |= reloc->read_domains;
  2444. target_obj->pending_write_domain |= reloc->write_domain;
  2445. /* If the relocation already has the right value in it, no
  2446. * more work needs to be done.
  2447. */
  2448. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2449. drm_gem_object_unreference(target_obj);
  2450. continue;
  2451. }
  2452. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2453. if (ret != 0) {
  2454. drm_gem_object_unreference(target_obj);
  2455. i915_gem_object_unpin(obj);
  2456. return -EINVAL;
  2457. }
  2458. /* Map the page containing the relocation we're going to
  2459. * perform.
  2460. */
  2461. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2462. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2463. (reloc_offset &
  2464. ~(PAGE_SIZE - 1)));
  2465. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2466. (reloc_offset & (PAGE_SIZE - 1)));
  2467. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2468. #if WATCH_BUF
  2469. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2470. obj, (unsigned int) reloc->offset,
  2471. readl(reloc_entry), reloc_val);
  2472. #endif
  2473. writel(reloc_val, reloc_entry);
  2474. io_mapping_unmap_atomic(reloc_page);
  2475. /* The updated presumed offset for this entry will be
  2476. * copied back out to the user.
  2477. */
  2478. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2479. drm_gem_object_unreference(target_obj);
  2480. }
  2481. #if WATCH_BUF
  2482. if (0)
  2483. i915_gem_dump_object(obj, 128, __func__, ~0);
  2484. #endif
  2485. return 0;
  2486. }
  2487. /** Dispatch a batchbuffer to the ring
  2488. */
  2489. static int
  2490. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2491. struct drm_i915_gem_execbuffer *exec,
  2492. struct drm_clip_rect *cliprects,
  2493. uint64_t exec_offset)
  2494. {
  2495. drm_i915_private_t *dev_priv = dev->dev_private;
  2496. int nbox = exec->num_cliprects;
  2497. int i = 0, count;
  2498. uint32_t exec_start, exec_len;
  2499. RING_LOCALS;
  2500. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2501. exec_len = (uint32_t) exec->batch_len;
  2502. if ((exec_start | exec_len) & 0x7) {
  2503. DRM_ERROR("alignment\n");
  2504. return -EINVAL;
  2505. }
  2506. if (!exec_start)
  2507. return -EINVAL;
  2508. count = nbox ? nbox : 1;
  2509. for (i = 0; i < count; i++) {
  2510. if (i < nbox) {
  2511. int ret = i915_emit_box(dev, cliprects, i,
  2512. exec->DR1, exec->DR4);
  2513. if (ret)
  2514. return ret;
  2515. }
  2516. if (IS_I830(dev) || IS_845G(dev)) {
  2517. BEGIN_LP_RING(4);
  2518. OUT_RING(MI_BATCH_BUFFER);
  2519. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2520. OUT_RING(exec_start + exec_len - 4);
  2521. OUT_RING(0);
  2522. ADVANCE_LP_RING();
  2523. } else {
  2524. BEGIN_LP_RING(2);
  2525. if (IS_I965G(dev)) {
  2526. OUT_RING(MI_BATCH_BUFFER_START |
  2527. (2 << 6) |
  2528. MI_BATCH_NON_SECURE_I965);
  2529. OUT_RING(exec_start);
  2530. } else {
  2531. OUT_RING(MI_BATCH_BUFFER_START |
  2532. (2 << 6));
  2533. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2534. }
  2535. ADVANCE_LP_RING();
  2536. }
  2537. }
  2538. /* XXX breadcrumb */
  2539. return 0;
  2540. }
  2541. /* Throttle our rendering by waiting until the ring has completed our requests
  2542. * emitted over 20 msec ago.
  2543. *
  2544. * This should get us reasonable parallelism between CPU and GPU but also
  2545. * relatively low latency when blocking on a particular request to finish.
  2546. */
  2547. static int
  2548. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2549. {
  2550. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2551. int ret = 0;
  2552. uint32_t seqno;
  2553. mutex_lock(&dev->struct_mutex);
  2554. seqno = i915_file_priv->mm.last_gem_throttle_seqno;
  2555. i915_file_priv->mm.last_gem_throttle_seqno =
  2556. i915_file_priv->mm.last_gem_seqno;
  2557. if (seqno)
  2558. ret = i915_wait_request(dev, seqno);
  2559. mutex_unlock(&dev->struct_mutex);
  2560. return ret;
  2561. }
  2562. static int
  2563. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2564. uint32_t buffer_count,
  2565. struct drm_i915_gem_relocation_entry **relocs)
  2566. {
  2567. uint32_t reloc_count = 0, reloc_index = 0, i;
  2568. int ret;
  2569. *relocs = NULL;
  2570. for (i = 0; i < buffer_count; i++) {
  2571. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2572. return -EINVAL;
  2573. reloc_count += exec_list[i].relocation_count;
  2574. }
  2575. *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
  2576. if (*relocs == NULL)
  2577. return -ENOMEM;
  2578. for (i = 0; i < buffer_count; i++) {
  2579. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2580. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2581. ret = copy_from_user(&(*relocs)[reloc_index],
  2582. user_relocs,
  2583. exec_list[i].relocation_count *
  2584. sizeof(**relocs));
  2585. if (ret != 0) {
  2586. drm_free(*relocs, reloc_count * sizeof(**relocs),
  2587. DRM_MEM_DRIVER);
  2588. *relocs = NULL;
  2589. return ret;
  2590. }
  2591. reloc_index += exec_list[i].relocation_count;
  2592. }
  2593. return ret;
  2594. }
  2595. static int
  2596. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2597. uint32_t buffer_count,
  2598. struct drm_i915_gem_relocation_entry *relocs)
  2599. {
  2600. uint32_t reloc_count = 0, i;
  2601. int ret;
  2602. for (i = 0; i < buffer_count; i++) {
  2603. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2604. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2605. if (ret == 0) {
  2606. ret = copy_to_user(user_relocs,
  2607. &relocs[reloc_count],
  2608. exec_list[i].relocation_count *
  2609. sizeof(*relocs));
  2610. }
  2611. reloc_count += exec_list[i].relocation_count;
  2612. }
  2613. drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
  2614. return ret;
  2615. }
  2616. int
  2617. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2618. struct drm_file *file_priv)
  2619. {
  2620. drm_i915_private_t *dev_priv = dev->dev_private;
  2621. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2622. struct drm_i915_gem_execbuffer *args = data;
  2623. struct drm_i915_gem_exec_object *exec_list = NULL;
  2624. struct drm_gem_object **object_list = NULL;
  2625. struct drm_gem_object *batch_obj;
  2626. struct drm_i915_gem_object *obj_priv;
  2627. struct drm_clip_rect *cliprects = NULL;
  2628. struct drm_i915_gem_relocation_entry *relocs;
  2629. int ret, ret2, i, pinned = 0;
  2630. uint64_t exec_offset;
  2631. uint32_t seqno, flush_domains, reloc_index;
  2632. int pin_tries;
  2633. #if WATCH_EXEC
  2634. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2635. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2636. #endif
  2637. if (args->buffer_count < 1) {
  2638. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2639. return -EINVAL;
  2640. }
  2641. /* Copy in the exec list from userland */
  2642. exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
  2643. DRM_MEM_DRIVER);
  2644. object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
  2645. DRM_MEM_DRIVER);
  2646. if (exec_list == NULL || object_list == NULL) {
  2647. DRM_ERROR("Failed to allocate exec or object list "
  2648. "for %d buffers\n",
  2649. args->buffer_count);
  2650. ret = -ENOMEM;
  2651. goto pre_mutex_err;
  2652. }
  2653. ret = copy_from_user(exec_list,
  2654. (struct drm_i915_relocation_entry __user *)
  2655. (uintptr_t) args->buffers_ptr,
  2656. sizeof(*exec_list) * args->buffer_count);
  2657. if (ret != 0) {
  2658. DRM_ERROR("copy %d exec entries failed %d\n",
  2659. args->buffer_count, ret);
  2660. goto pre_mutex_err;
  2661. }
  2662. if (args->num_cliprects != 0) {
  2663. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2664. DRM_MEM_DRIVER);
  2665. if (cliprects == NULL)
  2666. goto pre_mutex_err;
  2667. ret = copy_from_user(cliprects,
  2668. (struct drm_clip_rect __user *)
  2669. (uintptr_t) args->cliprects_ptr,
  2670. sizeof(*cliprects) * args->num_cliprects);
  2671. if (ret != 0) {
  2672. DRM_ERROR("copy %d cliprects failed: %d\n",
  2673. args->num_cliprects, ret);
  2674. goto pre_mutex_err;
  2675. }
  2676. }
  2677. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2678. &relocs);
  2679. if (ret != 0)
  2680. goto pre_mutex_err;
  2681. mutex_lock(&dev->struct_mutex);
  2682. i915_verify_inactive(dev, __FILE__, __LINE__);
  2683. if (dev_priv->mm.wedged) {
  2684. DRM_ERROR("Execbuf while wedged\n");
  2685. mutex_unlock(&dev->struct_mutex);
  2686. ret = -EIO;
  2687. goto pre_mutex_err;
  2688. }
  2689. if (dev_priv->mm.suspended) {
  2690. DRM_ERROR("Execbuf while VT-switched.\n");
  2691. mutex_unlock(&dev->struct_mutex);
  2692. ret = -EBUSY;
  2693. goto pre_mutex_err;
  2694. }
  2695. /* Look up object handles */
  2696. for (i = 0; i < args->buffer_count; i++) {
  2697. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2698. exec_list[i].handle);
  2699. if (object_list[i] == NULL) {
  2700. DRM_ERROR("Invalid object handle %d at index %d\n",
  2701. exec_list[i].handle, i);
  2702. ret = -EBADF;
  2703. goto err;
  2704. }
  2705. obj_priv = object_list[i]->driver_private;
  2706. if (obj_priv->in_execbuffer) {
  2707. DRM_ERROR("Object %p appears more than once in object list\n",
  2708. object_list[i]);
  2709. ret = -EBADF;
  2710. goto err;
  2711. }
  2712. obj_priv->in_execbuffer = true;
  2713. }
  2714. /* Pin and relocate */
  2715. for (pin_tries = 0; ; pin_tries++) {
  2716. ret = 0;
  2717. reloc_index = 0;
  2718. for (i = 0; i < args->buffer_count; i++) {
  2719. object_list[i]->pending_read_domains = 0;
  2720. object_list[i]->pending_write_domain = 0;
  2721. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2722. file_priv,
  2723. &exec_list[i],
  2724. &relocs[reloc_index]);
  2725. if (ret)
  2726. break;
  2727. pinned = i + 1;
  2728. reloc_index += exec_list[i].relocation_count;
  2729. }
  2730. /* success */
  2731. if (ret == 0)
  2732. break;
  2733. /* error other than GTT full, or we've already tried again */
  2734. if (ret != -ENOMEM || pin_tries >= 1) {
  2735. if (ret != -ERESTARTSYS)
  2736. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2737. goto err;
  2738. }
  2739. /* unpin all of our buffers */
  2740. for (i = 0; i < pinned; i++)
  2741. i915_gem_object_unpin(object_list[i]);
  2742. pinned = 0;
  2743. /* evict everyone we can from the aperture */
  2744. ret = i915_gem_evict_everything(dev);
  2745. if (ret)
  2746. goto err;
  2747. }
  2748. /* Set the pending read domains for the batch buffer to COMMAND */
  2749. batch_obj = object_list[args->buffer_count-1];
  2750. batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
  2751. batch_obj->pending_write_domain = 0;
  2752. i915_verify_inactive(dev, __FILE__, __LINE__);
  2753. /* Zero the global flush/invalidate flags. These
  2754. * will be modified as new domains are computed
  2755. * for each object
  2756. */
  2757. dev->invalidate_domains = 0;
  2758. dev->flush_domains = 0;
  2759. for (i = 0; i < args->buffer_count; i++) {
  2760. struct drm_gem_object *obj = object_list[i];
  2761. /* Compute new gpu domains and update invalidate/flush */
  2762. i915_gem_object_set_to_gpu_domain(obj);
  2763. }
  2764. i915_verify_inactive(dev, __FILE__, __LINE__);
  2765. if (dev->invalidate_domains | dev->flush_domains) {
  2766. #if WATCH_EXEC
  2767. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2768. __func__,
  2769. dev->invalidate_domains,
  2770. dev->flush_domains);
  2771. #endif
  2772. i915_gem_flush(dev,
  2773. dev->invalidate_domains,
  2774. dev->flush_domains);
  2775. if (dev->flush_domains)
  2776. (void)i915_add_request(dev, dev->flush_domains);
  2777. }
  2778. for (i = 0; i < args->buffer_count; i++) {
  2779. struct drm_gem_object *obj = object_list[i];
  2780. obj->write_domain = obj->pending_write_domain;
  2781. }
  2782. i915_verify_inactive(dev, __FILE__, __LINE__);
  2783. #if WATCH_COHERENCY
  2784. for (i = 0; i < args->buffer_count; i++) {
  2785. i915_gem_object_check_coherency(object_list[i],
  2786. exec_list[i].handle);
  2787. }
  2788. #endif
  2789. exec_offset = exec_list[args->buffer_count - 1].offset;
  2790. #if WATCH_EXEC
  2791. i915_gem_dump_object(batch_obj,
  2792. args->batch_len,
  2793. __func__,
  2794. ~0);
  2795. #endif
  2796. /* Exec the batchbuffer */
  2797. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2798. if (ret) {
  2799. DRM_ERROR("dispatch failed %d\n", ret);
  2800. goto err;
  2801. }
  2802. /*
  2803. * Ensure that the commands in the batch buffer are
  2804. * finished before the interrupt fires
  2805. */
  2806. flush_domains = i915_retire_commands(dev);
  2807. i915_verify_inactive(dev, __FILE__, __LINE__);
  2808. /*
  2809. * Get a seqno representing the execution of the current buffer,
  2810. * which we can wait on. We would like to mitigate these interrupts,
  2811. * likely by only creating seqnos occasionally (so that we have
  2812. * *some* interrupts representing completion of buffers that we can
  2813. * wait on when trying to clear up gtt space).
  2814. */
  2815. seqno = i915_add_request(dev, flush_domains);
  2816. BUG_ON(seqno == 0);
  2817. i915_file_priv->mm.last_gem_seqno = seqno;
  2818. for (i = 0; i < args->buffer_count; i++) {
  2819. struct drm_gem_object *obj = object_list[i];
  2820. i915_gem_object_move_to_active(obj, seqno);
  2821. #if WATCH_LRU
  2822. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2823. #endif
  2824. }
  2825. #if WATCH_LRU
  2826. i915_dump_lru(dev, __func__);
  2827. #endif
  2828. i915_verify_inactive(dev, __FILE__, __LINE__);
  2829. err:
  2830. for (i = 0; i < pinned; i++)
  2831. i915_gem_object_unpin(object_list[i]);
  2832. for (i = 0; i < args->buffer_count; i++) {
  2833. if (object_list[i]) {
  2834. obj_priv = object_list[i]->driver_private;
  2835. obj_priv->in_execbuffer = false;
  2836. }
  2837. drm_gem_object_unreference(object_list[i]);
  2838. }
  2839. mutex_unlock(&dev->struct_mutex);
  2840. if (!ret) {
  2841. /* Copy the new buffer offsets back to the user's exec list. */
  2842. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  2843. (uintptr_t) args->buffers_ptr,
  2844. exec_list,
  2845. sizeof(*exec_list) * args->buffer_count);
  2846. if (ret)
  2847. DRM_ERROR("failed to copy %d exec entries "
  2848. "back to user (%d)\n",
  2849. args->buffer_count, ret);
  2850. }
  2851. /* Copy the updated relocations out regardless of current error
  2852. * state. Failure to update the relocs would mean that the next
  2853. * time userland calls execbuf, it would do so with presumed offset
  2854. * state that didn't match the actual object state.
  2855. */
  2856. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  2857. relocs);
  2858. if (ret2 != 0) {
  2859. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  2860. if (ret == 0)
  2861. ret = ret2;
  2862. }
  2863. pre_mutex_err:
  2864. drm_free(object_list, sizeof(*object_list) * args->buffer_count,
  2865. DRM_MEM_DRIVER);
  2866. drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
  2867. DRM_MEM_DRIVER);
  2868. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  2869. DRM_MEM_DRIVER);
  2870. return ret;
  2871. }
  2872. int
  2873. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  2874. {
  2875. struct drm_device *dev = obj->dev;
  2876. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2877. int ret;
  2878. i915_verify_inactive(dev, __FILE__, __LINE__);
  2879. if (obj_priv->gtt_space == NULL) {
  2880. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  2881. if (ret != 0) {
  2882. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2883. DRM_ERROR("Failure to bind: %d\n", ret);
  2884. return ret;
  2885. }
  2886. }
  2887. /*
  2888. * Pre-965 chips need a fence register set up in order to
  2889. * properly handle tiled surfaces.
  2890. */
  2891. if (!IS_I965G(dev) &&
  2892. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  2893. obj_priv->tiling_mode != I915_TILING_NONE) {
  2894. ret = i915_gem_object_get_fence_reg(obj, true);
  2895. if (ret != 0) {
  2896. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2897. DRM_ERROR("Failure to install fence: %d\n",
  2898. ret);
  2899. return ret;
  2900. }
  2901. }
  2902. obj_priv->pin_count++;
  2903. /* If the object is not active and not pending a flush,
  2904. * remove it from the inactive list
  2905. */
  2906. if (obj_priv->pin_count == 1) {
  2907. atomic_inc(&dev->pin_count);
  2908. atomic_add(obj->size, &dev->pin_memory);
  2909. if (!obj_priv->active &&
  2910. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2911. I915_GEM_DOMAIN_GTT)) == 0 &&
  2912. !list_empty(&obj_priv->list))
  2913. list_del_init(&obj_priv->list);
  2914. }
  2915. i915_verify_inactive(dev, __FILE__, __LINE__);
  2916. return 0;
  2917. }
  2918. void
  2919. i915_gem_object_unpin(struct drm_gem_object *obj)
  2920. {
  2921. struct drm_device *dev = obj->dev;
  2922. drm_i915_private_t *dev_priv = dev->dev_private;
  2923. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2924. i915_verify_inactive(dev, __FILE__, __LINE__);
  2925. obj_priv->pin_count--;
  2926. BUG_ON(obj_priv->pin_count < 0);
  2927. BUG_ON(obj_priv->gtt_space == NULL);
  2928. /* If the object is no longer pinned, and is
  2929. * neither active nor being flushed, then stick it on
  2930. * the inactive list
  2931. */
  2932. if (obj_priv->pin_count == 0) {
  2933. if (!obj_priv->active &&
  2934. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2935. I915_GEM_DOMAIN_GTT)) == 0)
  2936. list_move_tail(&obj_priv->list,
  2937. &dev_priv->mm.inactive_list);
  2938. atomic_dec(&dev->pin_count);
  2939. atomic_sub(obj->size, &dev->pin_memory);
  2940. }
  2941. i915_verify_inactive(dev, __FILE__, __LINE__);
  2942. }
  2943. int
  2944. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2945. struct drm_file *file_priv)
  2946. {
  2947. struct drm_i915_gem_pin *args = data;
  2948. struct drm_gem_object *obj;
  2949. struct drm_i915_gem_object *obj_priv;
  2950. int ret;
  2951. mutex_lock(&dev->struct_mutex);
  2952. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2953. if (obj == NULL) {
  2954. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  2955. args->handle);
  2956. mutex_unlock(&dev->struct_mutex);
  2957. return -EBADF;
  2958. }
  2959. obj_priv = obj->driver_private;
  2960. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  2961. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2962. args->handle);
  2963. drm_gem_object_unreference(obj);
  2964. mutex_unlock(&dev->struct_mutex);
  2965. return -EINVAL;
  2966. }
  2967. obj_priv->user_pin_count++;
  2968. obj_priv->pin_filp = file_priv;
  2969. if (obj_priv->user_pin_count == 1) {
  2970. ret = i915_gem_object_pin(obj, args->alignment);
  2971. if (ret != 0) {
  2972. drm_gem_object_unreference(obj);
  2973. mutex_unlock(&dev->struct_mutex);
  2974. return ret;
  2975. }
  2976. }
  2977. /* XXX - flush the CPU caches for pinned objects
  2978. * as the X server doesn't manage domains yet
  2979. */
  2980. i915_gem_object_flush_cpu_write_domain(obj);
  2981. args->offset = obj_priv->gtt_offset;
  2982. drm_gem_object_unreference(obj);
  2983. mutex_unlock(&dev->struct_mutex);
  2984. return 0;
  2985. }
  2986. int
  2987. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2988. struct drm_file *file_priv)
  2989. {
  2990. struct drm_i915_gem_pin *args = data;
  2991. struct drm_gem_object *obj;
  2992. struct drm_i915_gem_object *obj_priv;
  2993. mutex_lock(&dev->struct_mutex);
  2994. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2995. if (obj == NULL) {
  2996. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  2997. args->handle);
  2998. mutex_unlock(&dev->struct_mutex);
  2999. return -EBADF;
  3000. }
  3001. obj_priv = obj->driver_private;
  3002. if (obj_priv->pin_filp != file_priv) {
  3003. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3004. args->handle);
  3005. drm_gem_object_unreference(obj);
  3006. mutex_unlock(&dev->struct_mutex);
  3007. return -EINVAL;
  3008. }
  3009. obj_priv->user_pin_count--;
  3010. if (obj_priv->user_pin_count == 0) {
  3011. obj_priv->pin_filp = NULL;
  3012. i915_gem_object_unpin(obj);
  3013. }
  3014. drm_gem_object_unreference(obj);
  3015. mutex_unlock(&dev->struct_mutex);
  3016. return 0;
  3017. }
  3018. int
  3019. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3020. struct drm_file *file_priv)
  3021. {
  3022. struct drm_i915_gem_busy *args = data;
  3023. struct drm_gem_object *obj;
  3024. struct drm_i915_gem_object *obj_priv;
  3025. mutex_lock(&dev->struct_mutex);
  3026. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3027. if (obj == NULL) {
  3028. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3029. args->handle);
  3030. mutex_unlock(&dev->struct_mutex);
  3031. return -EBADF;
  3032. }
  3033. /* Update the active list for the hardware's current position.
  3034. * Otherwise this only updates on a delayed timer or when irqs are
  3035. * actually unmasked, and our working set ends up being larger than
  3036. * required.
  3037. */
  3038. i915_gem_retire_requests(dev);
  3039. obj_priv = obj->driver_private;
  3040. /* Don't count being on the flushing list against the object being
  3041. * done. Otherwise, a buffer left on the flushing list but not getting
  3042. * flushed (because nobody's flushing that domain) won't ever return
  3043. * unbusy and get reused by libdrm's bo cache. The other expected
  3044. * consumer of this interface, OpenGL's occlusion queries, also specs
  3045. * that the objects get unbusy "eventually" without any interference.
  3046. */
  3047. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3048. drm_gem_object_unreference(obj);
  3049. mutex_unlock(&dev->struct_mutex);
  3050. return 0;
  3051. }
  3052. int
  3053. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3054. struct drm_file *file_priv)
  3055. {
  3056. return i915_gem_ring_throttle(dev, file_priv);
  3057. }
  3058. int i915_gem_init_object(struct drm_gem_object *obj)
  3059. {
  3060. struct drm_i915_gem_object *obj_priv;
  3061. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3062. if (obj_priv == NULL)
  3063. return -ENOMEM;
  3064. /*
  3065. * We've just allocated pages from the kernel,
  3066. * so they've just been written by the CPU with
  3067. * zeros. They'll need to be clflushed before we
  3068. * use them with the GPU.
  3069. */
  3070. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3071. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3072. obj_priv->agp_type = AGP_USER_MEMORY;
  3073. obj->driver_private = obj_priv;
  3074. obj_priv->obj = obj;
  3075. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3076. INIT_LIST_HEAD(&obj_priv->list);
  3077. return 0;
  3078. }
  3079. void i915_gem_free_object(struct drm_gem_object *obj)
  3080. {
  3081. struct drm_device *dev = obj->dev;
  3082. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3083. while (obj_priv->pin_count > 0)
  3084. i915_gem_object_unpin(obj);
  3085. if (obj_priv->phys_obj)
  3086. i915_gem_detach_phys_object(dev, obj);
  3087. i915_gem_object_unbind(obj);
  3088. i915_gem_free_mmap_offset(obj);
  3089. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3090. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3091. }
  3092. /** Unbinds all objects that are on the given buffer list. */
  3093. static int
  3094. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3095. {
  3096. struct drm_gem_object *obj;
  3097. struct drm_i915_gem_object *obj_priv;
  3098. int ret;
  3099. while (!list_empty(head)) {
  3100. obj_priv = list_first_entry(head,
  3101. struct drm_i915_gem_object,
  3102. list);
  3103. obj = obj_priv->obj;
  3104. if (obj_priv->pin_count != 0) {
  3105. DRM_ERROR("Pinned object in unbind list\n");
  3106. mutex_unlock(&dev->struct_mutex);
  3107. return -EINVAL;
  3108. }
  3109. ret = i915_gem_object_unbind(obj);
  3110. if (ret != 0) {
  3111. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3112. ret);
  3113. mutex_unlock(&dev->struct_mutex);
  3114. return ret;
  3115. }
  3116. }
  3117. return 0;
  3118. }
  3119. int
  3120. i915_gem_idle(struct drm_device *dev)
  3121. {
  3122. drm_i915_private_t *dev_priv = dev->dev_private;
  3123. uint32_t seqno, cur_seqno, last_seqno;
  3124. int stuck, ret;
  3125. mutex_lock(&dev->struct_mutex);
  3126. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3127. mutex_unlock(&dev->struct_mutex);
  3128. return 0;
  3129. }
  3130. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3131. * We need to replace this with a semaphore, or something.
  3132. */
  3133. dev_priv->mm.suspended = 1;
  3134. /* Cancel the retire work handler, wait for it to finish if running
  3135. */
  3136. mutex_unlock(&dev->struct_mutex);
  3137. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3138. mutex_lock(&dev->struct_mutex);
  3139. i915_kernel_lost_context(dev);
  3140. /* Flush the GPU along with all non-CPU write domains
  3141. */
  3142. i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
  3143. ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  3144. seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
  3145. if (seqno == 0) {
  3146. mutex_unlock(&dev->struct_mutex);
  3147. return -ENOMEM;
  3148. }
  3149. dev_priv->mm.waiting_gem_seqno = seqno;
  3150. last_seqno = 0;
  3151. stuck = 0;
  3152. for (;;) {
  3153. cur_seqno = i915_get_gem_seqno(dev);
  3154. if (i915_seqno_passed(cur_seqno, seqno))
  3155. break;
  3156. if (last_seqno == cur_seqno) {
  3157. if (stuck++ > 100) {
  3158. DRM_ERROR("hardware wedged\n");
  3159. dev_priv->mm.wedged = 1;
  3160. DRM_WAKEUP(&dev_priv->irq_queue);
  3161. break;
  3162. }
  3163. }
  3164. msleep(10);
  3165. last_seqno = cur_seqno;
  3166. }
  3167. dev_priv->mm.waiting_gem_seqno = 0;
  3168. i915_gem_retire_requests(dev);
  3169. spin_lock(&dev_priv->mm.active_list_lock);
  3170. if (!dev_priv->mm.wedged) {
  3171. /* Active and flushing should now be empty as we've
  3172. * waited for a sequence higher than any pending execbuffer
  3173. */
  3174. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3175. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3176. /* Request should now be empty as we've also waited
  3177. * for the last request in the list
  3178. */
  3179. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3180. }
  3181. /* Empty the active and flushing lists to inactive. If there's
  3182. * anything left at this point, it means that we're wedged and
  3183. * nothing good's going to happen by leaving them there. So strip
  3184. * the GPU domains and just stuff them onto inactive.
  3185. */
  3186. while (!list_empty(&dev_priv->mm.active_list)) {
  3187. struct drm_i915_gem_object *obj_priv;
  3188. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3189. struct drm_i915_gem_object,
  3190. list);
  3191. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3192. i915_gem_object_move_to_inactive(obj_priv->obj);
  3193. }
  3194. spin_unlock(&dev_priv->mm.active_list_lock);
  3195. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3196. struct drm_i915_gem_object *obj_priv;
  3197. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3198. struct drm_i915_gem_object,
  3199. list);
  3200. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3201. i915_gem_object_move_to_inactive(obj_priv->obj);
  3202. }
  3203. /* Move all inactive buffers out of the GTT. */
  3204. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3205. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3206. if (ret) {
  3207. mutex_unlock(&dev->struct_mutex);
  3208. return ret;
  3209. }
  3210. i915_gem_cleanup_ringbuffer(dev);
  3211. mutex_unlock(&dev->struct_mutex);
  3212. return 0;
  3213. }
  3214. static int
  3215. i915_gem_init_hws(struct drm_device *dev)
  3216. {
  3217. drm_i915_private_t *dev_priv = dev->dev_private;
  3218. struct drm_gem_object *obj;
  3219. struct drm_i915_gem_object *obj_priv;
  3220. int ret;
  3221. /* If we need a physical address for the status page, it's already
  3222. * initialized at driver load time.
  3223. */
  3224. if (!I915_NEED_GFX_HWS(dev))
  3225. return 0;
  3226. obj = drm_gem_object_alloc(dev, 4096);
  3227. if (obj == NULL) {
  3228. DRM_ERROR("Failed to allocate status page\n");
  3229. return -ENOMEM;
  3230. }
  3231. obj_priv = obj->driver_private;
  3232. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3233. ret = i915_gem_object_pin(obj, 4096);
  3234. if (ret != 0) {
  3235. drm_gem_object_unreference(obj);
  3236. return ret;
  3237. }
  3238. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3239. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3240. if (dev_priv->hw_status_page == NULL) {
  3241. DRM_ERROR("Failed to map status page.\n");
  3242. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3243. i915_gem_object_unpin(obj);
  3244. drm_gem_object_unreference(obj);
  3245. return -EINVAL;
  3246. }
  3247. dev_priv->hws_obj = obj;
  3248. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3249. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3250. I915_READ(HWS_PGA); /* posting read */
  3251. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3252. return 0;
  3253. }
  3254. static void
  3255. i915_gem_cleanup_hws(struct drm_device *dev)
  3256. {
  3257. drm_i915_private_t *dev_priv = dev->dev_private;
  3258. struct drm_gem_object *obj;
  3259. struct drm_i915_gem_object *obj_priv;
  3260. if (dev_priv->hws_obj == NULL)
  3261. return;
  3262. obj = dev_priv->hws_obj;
  3263. obj_priv = obj->driver_private;
  3264. kunmap(obj_priv->pages[0]);
  3265. i915_gem_object_unpin(obj);
  3266. drm_gem_object_unreference(obj);
  3267. dev_priv->hws_obj = NULL;
  3268. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3269. dev_priv->hw_status_page = NULL;
  3270. /* Write high address into HWS_PGA when disabling. */
  3271. I915_WRITE(HWS_PGA, 0x1ffff000);
  3272. }
  3273. int
  3274. i915_gem_init_ringbuffer(struct drm_device *dev)
  3275. {
  3276. drm_i915_private_t *dev_priv = dev->dev_private;
  3277. struct drm_gem_object *obj;
  3278. struct drm_i915_gem_object *obj_priv;
  3279. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3280. int ret;
  3281. u32 head;
  3282. ret = i915_gem_init_hws(dev);
  3283. if (ret != 0)
  3284. return ret;
  3285. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3286. if (obj == NULL) {
  3287. DRM_ERROR("Failed to allocate ringbuffer\n");
  3288. i915_gem_cleanup_hws(dev);
  3289. return -ENOMEM;
  3290. }
  3291. obj_priv = obj->driver_private;
  3292. ret = i915_gem_object_pin(obj, 4096);
  3293. if (ret != 0) {
  3294. drm_gem_object_unreference(obj);
  3295. i915_gem_cleanup_hws(dev);
  3296. return ret;
  3297. }
  3298. /* Set up the kernel mapping for the ring. */
  3299. ring->Size = obj->size;
  3300. ring->tail_mask = obj->size - 1;
  3301. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3302. ring->map.size = obj->size;
  3303. ring->map.type = 0;
  3304. ring->map.flags = 0;
  3305. ring->map.mtrr = 0;
  3306. drm_core_ioremap_wc(&ring->map, dev);
  3307. if (ring->map.handle == NULL) {
  3308. DRM_ERROR("Failed to map ringbuffer.\n");
  3309. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3310. i915_gem_object_unpin(obj);
  3311. drm_gem_object_unreference(obj);
  3312. i915_gem_cleanup_hws(dev);
  3313. return -EINVAL;
  3314. }
  3315. ring->ring_obj = obj;
  3316. ring->virtual_start = ring->map.handle;
  3317. /* Stop the ring if it's running. */
  3318. I915_WRITE(PRB0_CTL, 0);
  3319. I915_WRITE(PRB0_TAIL, 0);
  3320. I915_WRITE(PRB0_HEAD, 0);
  3321. /* Initialize the ring. */
  3322. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3323. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3324. /* G45 ring initialization fails to reset head to zero */
  3325. if (head != 0) {
  3326. DRM_ERROR("Ring head not reset to zero "
  3327. "ctl %08x head %08x tail %08x start %08x\n",
  3328. I915_READ(PRB0_CTL),
  3329. I915_READ(PRB0_HEAD),
  3330. I915_READ(PRB0_TAIL),
  3331. I915_READ(PRB0_START));
  3332. I915_WRITE(PRB0_HEAD, 0);
  3333. DRM_ERROR("Ring head forced to zero "
  3334. "ctl %08x head %08x tail %08x start %08x\n",
  3335. I915_READ(PRB0_CTL),
  3336. I915_READ(PRB0_HEAD),
  3337. I915_READ(PRB0_TAIL),
  3338. I915_READ(PRB0_START));
  3339. }
  3340. I915_WRITE(PRB0_CTL,
  3341. ((obj->size - 4096) & RING_NR_PAGES) |
  3342. RING_NO_REPORT |
  3343. RING_VALID);
  3344. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3345. /* If the head is still not zero, the ring is dead */
  3346. if (head != 0) {
  3347. DRM_ERROR("Ring initialization failed "
  3348. "ctl %08x head %08x tail %08x start %08x\n",
  3349. I915_READ(PRB0_CTL),
  3350. I915_READ(PRB0_HEAD),
  3351. I915_READ(PRB0_TAIL),
  3352. I915_READ(PRB0_START));
  3353. return -EIO;
  3354. }
  3355. /* Update our cache of the ring state */
  3356. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3357. i915_kernel_lost_context(dev);
  3358. else {
  3359. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3360. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3361. ring->space = ring->head - (ring->tail + 8);
  3362. if (ring->space < 0)
  3363. ring->space += ring->Size;
  3364. }
  3365. return 0;
  3366. }
  3367. void
  3368. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3369. {
  3370. drm_i915_private_t *dev_priv = dev->dev_private;
  3371. if (dev_priv->ring.ring_obj == NULL)
  3372. return;
  3373. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3374. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3375. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3376. dev_priv->ring.ring_obj = NULL;
  3377. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3378. i915_gem_cleanup_hws(dev);
  3379. }
  3380. int
  3381. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3382. struct drm_file *file_priv)
  3383. {
  3384. drm_i915_private_t *dev_priv = dev->dev_private;
  3385. int ret;
  3386. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3387. return 0;
  3388. if (dev_priv->mm.wedged) {
  3389. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3390. dev_priv->mm.wedged = 0;
  3391. }
  3392. mutex_lock(&dev->struct_mutex);
  3393. dev_priv->mm.suspended = 0;
  3394. ret = i915_gem_init_ringbuffer(dev);
  3395. if (ret != 0)
  3396. return ret;
  3397. spin_lock(&dev_priv->mm.active_list_lock);
  3398. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3399. spin_unlock(&dev_priv->mm.active_list_lock);
  3400. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3401. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3402. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3403. mutex_unlock(&dev->struct_mutex);
  3404. drm_irq_install(dev);
  3405. return 0;
  3406. }
  3407. int
  3408. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3409. struct drm_file *file_priv)
  3410. {
  3411. int ret;
  3412. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3413. return 0;
  3414. ret = i915_gem_idle(dev);
  3415. drm_irq_uninstall(dev);
  3416. return ret;
  3417. }
  3418. void
  3419. i915_gem_lastclose(struct drm_device *dev)
  3420. {
  3421. int ret;
  3422. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3423. return;
  3424. ret = i915_gem_idle(dev);
  3425. if (ret)
  3426. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3427. }
  3428. void
  3429. i915_gem_load(struct drm_device *dev)
  3430. {
  3431. drm_i915_private_t *dev_priv = dev->dev_private;
  3432. spin_lock_init(&dev_priv->mm.active_list_lock);
  3433. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3434. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3435. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3436. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3437. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3438. i915_gem_retire_work_handler);
  3439. dev_priv->mm.next_gem_seqno = 1;
  3440. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3441. dev_priv->fence_reg_start = 3;
  3442. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3443. dev_priv->num_fence_regs = 16;
  3444. else
  3445. dev_priv->num_fence_regs = 8;
  3446. i915_gem_detect_bit_6_swizzle(dev);
  3447. }
  3448. /*
  3449. * Create a physically contiguous memory object for this object
  3450. * e.g. for cursor + overlay regs
  3451. */
  3452. int i915_gem_init_phys_object(struct drm_device *dev,
  3453. int id, int size)
  3454. {
  3455. drm_i915_private_t *dev_priv = dev->dev_private;
  3456. struct drm_i915_gem_phys_object *phys_obj;
  3457. int ret;
  3458. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3459. return 0;
  3460. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3461. if (!phys_obj)
  3462. return -ENOMEM;
  3463. phys_obj->id = id;
  3464. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3465. if (!phys_obj->handle) {
  3466. ret = -ENOMEM;
  3467. goto kfree_obj;
  3468. }
  3469. #ifdef CONFIG_X86
  3470. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3471. #endif
  3472. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3473. return 0;
  3474. kfree_obj:
  3475. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3476. return ret;
  3477. }
  3478. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3479. {
  3480. drm_i915_private_t *dev_priv = dev->dev_private;
  3481. struct drm_i915_gem_phys_object *phys_obj;
  3482. if (!dev_priv->mm.phys_objs[id - 1])
  3483. return;
  3484. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3485. if (phys_obj->cur_obj) {
  3486. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3487. }
  3488. #ifdef CONFIG_X86
  3489. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3490. #endif
  3491. drm_pci_free(dev, phys_obj->handle);
  3492. kfree(phys_obj);
  3493. dev_priv->mm.phys_objs[id - 1] = NULL;
  3494. }
  3495. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3496. {
  3497. int i;
  3498. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3499. i915_gem_free_phys_object(dev, i);
  3500. }
  3501. void i915_gem_detach_phys_object(struct drm_device *dev,
  3502. struct drm_gem_object *obj)
  3503. {
  3504. struct drm_i915_gem_object *obj_priv;
  3505. int i;
  3506. int ret;
  3507. int page_count;
  3508. obj_priv = obj->driver_private;
  3509. if (!obj_priv->phys_obj)
  3510. return;
  3511. ret = i915_gem_object_get_pages(obj);
  3512. if (ret)
  3513. goto out;
  3514. page_count = obj->size / PAGE_SIZE;
  3515. for (i = 0; i < page_count; i++) {
  3516. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3517. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3518. memcpy(dst, src, PAGE_SIZE);
  3519. kunmap_atomic(dst, KM_USER0);
  3520. }
  3521. drm_clflush_pages(obj_priv->pages, page_count);
  3522. drm_agp_chipset_flush(dev);
  3523. out:
  3524. obj_priv->phys_obj->cur_obj = NULL;
  3525. obj_priv->phys_obj = NULL;
  3526. }
  3527. int
  3528. i915_gem_attach_phys_object(struct drm_device *dev,
  3529. struct drm_gem_object *obj, int id)
  3530. {
  3531. drm_i915_private_t *dev_priv = dev->dev_private;
  3532. struct drm_i915_gem_object *obj_priv;
  3533. int ret = 0;
  3534. int page_count;
  3535. int i;
  3536. if (id > I915_MAX_PHYS_OBJECT)
  3537. return -EINVAL;
  3538. obj_priv = obj->driver_private;
  3539. if (obj_priv->phys_obj) {
  3540. if (obj_priv->phys_obj->id == id)
  3541. return 0;
  3542. i915_gem_detach_phys_object(dev, obj);
  3543. }
  3544. /* create a new object */
  3545. if (!dev_priv->mm.phys_objs[id - 1]) {
  3546. ret = i915_gem_init_phys_object(dev, id,
  3547. obj->size);
  3548. if (ret) {
  3549. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3550. goto out;
  3551. }
  3552. }
  3553. /* bind to the object */
  3554. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3555. obj_priv->phys_obj->cur_obj = obj;
  3556. ret = i915_gem_object_get_pages(obj);
  3557. if (ret) {
  3558. DRM_ERROR("failed to get page list\n");
  3559. goto out;
  3560. }
  3561. page_count = obj->size / PAGE_SIZE;
  3562. for (i = 0; i < page_count; i++) {
  3563. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3564. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3565. memcpy(dst, src, PAGE_SIZE);
  3566. kunmap_atomic(src, KM_USER0);
  3567. }
  3568. return 0;
  3569. out:
  3570. return ret;
  3571. }
  3572. static int
  3573. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3574. struct drm_i915_gem_pwrite *args,
  3575. struct drm_file *file_priv)
  3576. {
  3577. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3578. void *obj_addr;
  3579. int ret;
  3580. char __user *user_data;
  3581. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3582. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3583. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3584. ret = copy_from_user(obj_addr, user_data, args->size);
  3585. if (ret)
  3586. return -EFAULT;
  3587. drm_agp_chipset_flush(dev);
  3588. return 0;
  3589. }