eeprom.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include <linux/slab.h>
  23. #include "ath5k.h"
  24. #include "reg.h"
  25. #include "debug.h"
  26. #include "base.h"
  27. /******************\
  28. * Helper functions *
  29. \******************/
  30. /*
  31. * Translate binary channel representation in EEPROM to frequency
  32. */
  33. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  34. unsigned int mode)
  35. {
  36. u16 val;
  37. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  38. return bin;
  39. if (mode == AR5K_EEPROM_MODE_11A) {
  40. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  41. val = (5 * bin) + 4800;
  42. else
  43. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  44. (bin * 10) + 5100;
  45. } else {
  46. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  47. val = bin + 2300;
  48. else
  49. val = bin + 2400;
  50. }
  51. return val;
  52. }
  53. /*********\
  54. * Parsers *
  55. \*********/
  56. /*
  57. * Initialize eeprom & capabilities structs
  58. */
  59. static int
  60. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  61. {
  62. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  63. u16 val;
  64. u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  65. /*
  66. * Read values from EEPROM and store them in the capability structure
  67. */
  68. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  69. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  70. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  71. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  72. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  73. /* Return if we have an old EEPROM */
  74. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  75. return 0;
  76. /*
  77. * Validate the checksum of the EEPROM date. There are some
  78. * devices with invalid EEPROMs.
  79. */
  80. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  81. if (val) {
  82. eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  83. AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
  84. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
  85. eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
  86. /*
  87. * Fail safe check to prevent stupid loops due
  88. * to busted EEPROMs. XXX: This value is likely too
  89. * big still, waiting on a better value.
  90. */
  91. if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
  92. ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
  93. "%d (0x%04x) max expected: %d (0x%04x)\n",
  94. eep_max, eep_max,
  95. 3 * AR5K_EEPROM_INFO_MAX,
  96. 3 * AR5K_EEPROM_INFO_MAX);
  97. return -EIO;
  98. }
  99. }
  100. for (cksum = 0, offset = 0; offset < eep_max; offset++) {
  101. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  102. cksum ^= val;
  103. }
  104. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  105. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
  106. "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
  107. cksum, eep_max,
  108. eep_max == AR5K_EEPROM_INFO_MAX ?
  109. "default size" : "custom size");
  110. return -EIO;
  111. }
  112. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  113. ee_ant_gain);
  114. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  115. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  116. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  117. /* XXX: Don't know which versions include these two */
  118. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  119. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  120. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  121. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  122. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  123. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  124. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  125. }
  126. }
  127. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  128. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  129. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  130. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  131. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  132. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  133. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  134. }
  135. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  136. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  137. ee->ee_is_hb63 = true;
  138. else
  139. ee->ee_is_hb63 = false;
  140. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  141. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  142. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  143. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  144. * and enable serdes programming if needed.
  145. *
  146. * XXX: Serdes values seem to be fixed so
  147. * no need to read them here, we write them
  148. * during ath5k_hw_init */
  149. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  150. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  151. true : false;
  152. return 0;
  153. }
  154. /*
  155. * Read antenna infos from eeprom
  156. */
  157. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  158. unsigned int mode)
  159. {
  160. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  161. u32 o = *offset;
  162. u16 val;
  163. int i = 0;
  164. AR5K_EEPROM_READ(o++, val);
  165. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  166. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  167. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  168. AR5K_EEPROM_READ(o++, val);
  169. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  170. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  171. ee->ee_ant_control[mode][i++] = val & 0x3f;
  172. AR5K_EEPROM_READ(o++, val);
  173. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  174. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  175. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  176. AR5K_EEPROM_READ(o++, val);
  177. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  178. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  179. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  180. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  181. AR5K_EEPROM_READ(o++, val);
  182. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  183. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  184. ee->ee_ant_control[mode][i++] = val & 0x3f;
  185. /* Get antenna switch tables */
  186. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  187. (ee->ee_ant_control[mode][0] << 4);
  188. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  189. ee->ee_ant_control[mode][1] |
  190. (ee->ee_ant_control[mode][2] << 6) |
  191. (ee->ee_ant_control[mode][3] << 12) |
  192. (ee->ee_ant_control[mode][4] << 18) |
  193. (ee->ee_ant_control[mode][5] << 24);
  194. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  195. ee->ee_ant_control[mode][6] |
  196. (ee->ee_ant_control[mode][7] << 6) |
  197. (ee->ee_ant_control[mode][8] << 12) |
  198. (ee->ee_ant_control[mode][9] << 18) |
  199. (ee->ee_ant_control[mode][10] << 24);
  200. /* return new offset */
  201. *offset = o;
  202. return 0;
  203. }
  204. /*
  205. * Read supported modes and some mode-specific calibration data
  206. * from eeprom
  207. */
  208. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  209. unsigned int mode)
  210. {
  211. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  212. u32 o = *offset;
  213. u16 val;
  214. ee->ee_n_piers[mode] = 0;
  215. AR5K_EEPROM_READ(o++, val);
  216. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  217. switch(mode) {
  218. case AR5K_EEPROM_MODE_11A:
  219. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  220. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  221. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  222. AR5K_EEPROM_READ(o++, val);
  223. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  224. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  225. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  226. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  227. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  228. ee->ee_db[mode][0] = val & 0x7;
  229. break;
  230. case AR5K_EEPROM_MODE_11G:
  231. case AR5K_EEPROM_MODE_11B:
  232. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  233. ee->ee_db[mode][1] = val & 0x7;
  234. break;
  235. }
  236. AR5K_EEPROM_READ(o++, val);
  237. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  238. ee->ee_thr_62[mode] = val & 0xff;
  239. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  240. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  241. AR5K_EEPROM_READ(o++, val);
  242. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  243. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  244. AR5K_EEPROM_READ(o++, val);
  245. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  246. if ((val & 0xff) & 0x80)
  247. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  248. else
  249. ee->ee_noise_floor_thr[mode] = val & 0xff;
  250. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  251. ee->ee_noise_floor_thr[mode] =
  252. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  253. AR5K_EEPROM_READ(o++, val);
  254. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  255. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  256. ee->ee_xpd[mode] = val & 0x1;
  257. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  258. mode != AR5K_EEPROM_MODE_11B)
  259. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  260. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  261. AR5K_EEPROM_READ(o++, val);
  262. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  263. if (mode == AR5K_EEPROM_MODE_11A)
  264. ee->ee_xr_power[mode] = val & 0x3f;
  265. else {
  266. /* b_DB_11[bg] and b_OB_11[bg] */
  267. ee->ee_ob[mode][0] = val & 0x7;
  268. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  269. }
  270. }
  271. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  272. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  273. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  274. } else {
  275. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  276. AR5K_EEPROM_READ(o++, val);
  277. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  278. if (mode == AR5K_EEPROM_MODE_11G) {
  279. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  280. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  281. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  282. }
  283. }
  284. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  285. mode == AR5K_EEPROM_MODE_11A) {
  286. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  287. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  288. }
  289. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  290. goto done;
  291. /* Note: >= v5 have bg freq piers on another location
  292. * so these freq piers are ignored for >= v5 (should be 0xff
  293. * anyway) */
  294. switch(mode) {
  295. case AR5K_EEPROM_MODE_11A:
  296. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  297. break;
  298. AR5K_EEPROM_READ(o++, val);
  299. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  300. break;
  301. case AR5K_EEPROM_MODE_11B:
  302. AR5K_EEPROM_READ(o++, val);
  303. ee->ee_pwr_cal_b[0].freq =
  304. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  305. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  306. ee->ee_n_piers[mode]++;
  307. ee->ee_pwr_cal_b[1].freq =
  308. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  309. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  310. ee->ee_n_piers[mode]++;
  311. AR5K_EEPROM_READ(o++, val);
  312. ee->ee_pwr_cal_b[2].freq =
  313. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  314. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  315. ee->ee_n_piers[mode]++;
  316. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  317. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  318. break;
  319. case AR5K_EEPROM_MODE_11G:
  320. AR5K_EEPROM_READ(o++, val);
  321. ee->ee_pwr_cal_g[0].freq =
  322. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  323. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  324. ee->ee_n_piers[mode]++;
  325. ee->ee_pwr_cal_g[1].freq =
  326. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  327. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  328. ee->ee_n_piers[mode]++;
  329. AR5K_EEPROM_READ(o++, val);
  330. ee->ee_turbo_max_power[mode] = val & 0x7f;
  331. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  332. AR5K_EEPROM_READ(o++, val);
  333. ee->ee_pwr_cal_g[2].freq =
  334. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  335. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  336. ee->ee_n_piers[mode]++;
  337. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  338. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  339. AR5K_EEPROM_READ(o++, val);
  340. ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
  341. ee->ee_q_cal[mode] = val & 0x1f;
  342. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  343. AR5K_EEPROM_READ(o++, val);
  344. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  345. }
  346. break;
  347. }
  348. /*
  349. * Read turbo mode information on newer EEPROM versions
  350. */
  351. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  352. goto done;
  353. switch (mode){
  354. case AR5K_EEPROM_MODE_11A:
  355. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  356. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  357. AR5K_EEPROM_READ(o++, val);
  358. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  359. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  360. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  361. AR5K_EEPROM_READ(o++, val);
  362. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  363. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  364. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  365. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  366. break;
  367. case AR5K_EEPROM_MODE_11G:
  368. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  369. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  370. AR5K_EEPROM_READ(o++, val);
  371. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  372. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  373. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  374. AR5K_EEPROM_READ(o++, val);
  375. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  376. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  377. break;
  378. }
  379. done:
  380. /* return new offset */
  381. *offset = o;
  382. return 0;
  383. }
  384. /* Read mode-specific data (except power calibration data) */
  385. static int
  386. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  387. {
  388. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  389. u32 mode_offset[3];
  390. unsigned int mode;
  391. u32 offset;
  392. int ret;
  393. /*
  394. * Get values for all modes
  395. */
  396. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  397. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  398. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  399. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  400. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  401. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  402. offset = mode_offset[mode];
  403. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  404. if (ret)
  405. return ret;
  406. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  407. if (ret)
  408. return ret;
  409. }
  410. /* override for older eeprom versions for better performance */
  411. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  412. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  413. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  414. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  415. }
  416. return 0;
  417. }
  418. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  419. * frequency mask) */
  420. static inline int
  421. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  422. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  423. {
  424. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  425. int o = *offset;
  426. int i = 0;
  427. u8 freq1, freq2;
  428. u16 val;
  429. ee->ee_n_piers[mode] = 0;
  430. while(i < max) {
  431. AR5K_EEPROM_READ(o++, val);
  432. freq1 = val & 0xff;
  433. if (!freq1)
  434. break;
  435. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  436. freq1, mode);
  437. ee->ee_n_piers[mode]++;
  438. freq2 = (val >> 8) & 0xff;
  439. if (!freq2)
  440. break;
  441. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  442. freq2, mode);
  443. ee->ee_n_piers[mode]++;
  444. }
  445. /* return new offset */
  446. *offset = o;
  447. return 0;
  448. }
  449. /* Read frequency piers for 802.11a */
  450. static int
  451. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  452. {
  453. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  454. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  455. int i;
  456. u16 val;
  457. u8 mask;
  458. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  459. ath5k_eeprom_read_freq_list(ah, &offset,
  460. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  461. AR5K_EEPROM_MODE_11A);
  462. } else {
  463. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  464. AR5K_EEPROM_READ(offset++, val);
  465. pcal[0].freq = (val >> 9) & mask;
  466. pcal[1].freq = (val >> 2) & mask;
  467. pcal[2].freq = (val << 5) & mask;
  468. AR5K_EEPROM_READ(offset++, val);
  469. pcal[2].freq |= (val >> 11) & 0x1f;
  470. pcal[3].freq = (val >> 4) & mask;
  471. pcal[4].freq = (val << 3) & mask;
  472. AR5K_EEPROM_READ(offset++, val);
  473. pcal[4].freq |= (val >> 13) & 0x7;
  474. pcal[5].freq = (val >> 6) & mask;
  475. pcal[6].freq = (val << 1) & mask;
  476. AR5K_EEPROM_READ(offset++, val);
  477. pcal[6].freq |= (val >> 15) & 0x1;
  478. pcal[7].freq = (val >> 8) & mask;
  479. pcal[8].freq = (val >> 1) & mask;
  480. pcal[9].freq = (val << 6) & mask;
  481. AR5K_EEPROM_READ(offset++, val);
  482. pcal[9].freq |= (val >> 10) & 0x3f;
  483. /* Fixed number of piers */
  484. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  485. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  486. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  487. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  488. }
  489. }
  490. return 0;
  491. }
  492. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  493. static inline int
  494. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  495. {
  496. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  497. struct ath5k_chan_pcal_info *pcal;
  498. switch(mode) {
  499. case AR5K_EEPROM_MODE_11B:
  500. pcal = ee->ee_pwr_cal_b;
  501. break;
  502. case AR5K_EEPROM_MODE_11G:
  503. pcal = ee->ee_pwr_cal_g;
  504. break;
  505. default:
  506. return -EINVAL;
  507. }
  508. ath5k_eeprom_read_freq_list(ah, &offset,
  509. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  510. mode);
  511. return 0;
  512. }
  513. /*
  514. * Read power calibration for RF5111 chips
  515. *
  516. * For RF5111 we have an XPD -eXternal Power Detector- curve
  517. * for each calibrated channel. Each curve has 0,5dB Power steps
  518. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  519. * exponential function. To recreate the curve we read 11 points
  520. * here and interpolate later.
  521. */
  522. /* Used to match PCDAC steps with power values on RF5111 chips
  523. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  524. * steps that match with the power values we read from eeprom. On
  525. * older eeprom versions (< 3.2) these steps are equaly spaced at
  526. * 10% of the pcdac curve -until the curve reaches its maximum-
  527. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  528. * these 11 steps are spaced in a different way. This function returns
  529. * the pcdac steps based on eeprom version and curve min/max so that we
  530. * can have pcdac/pwr points.
  531. */
  532. static inline void
  533. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  534. {
  535. static const u16 intercepts3[] =
  536. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  537. static const u16 intercepts3_2[] =
  538. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  539. const u16 *ip;
  540. int i;
  541. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  542. ip = intercepts3_2;
  543. else
  544. ip = intercepts3;
  545. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  546. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  547. }
  548. static int
  549. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  550. {
  551. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  552. struct ath5k_chan_pcal_info *chinfo;
  553. u8 pier, pdg;
  554. switch (mode) {
  555. case AR5K_EEPROM_MODE_11A:
  556. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  557. return 0;
  558. chinfo = ee->ee_pwr_cal_a;
  559. break;
  560. case AR5K_EEPROM_MODE_11B:
  561. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  562. return 0;
  563. chinfo = ee->ee_pwr_cal_b;
  564. break;
  565. case AR5K_EEPROM_MODE_11G:
  566. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  567. return 0;
  568. chinfo = ee->ee_pwr_cal_g;
  569. break;
  570. default:
  571. return -EINVAL;
  572. }
  573. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  574. if (!chinfo[pier].pd_curves)
  575. continue;
  576. for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
  577. struct ath5k_pdgain_info *pd =
  578. &chinfo[pier].pd_curves[pdg];
  579. kfree(pd->pd_step);
  580. kfree(pd->pd_pwr);
  581. }
  582. kfree(chinfo[pier].pd_curves);
  583. }
  584. return 0;
  585. }
  586. /* Convert RF5111 specific data to generic raw data
  587. * used by interpolation code */
  588. static int
  589. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  590. struct ath5k_chan_pcal_info *chinfo)
  591. {
  592. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  593. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  594. struct ath5k_pdgain_info *pd;
  595. u8 pier, point, idx;
  596. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  597. /* Fill raw data for each calibration pier */
  598. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  599. pcinfo = &chinfo[pier].rf5111_info;
  600. /* Allocate pd_curves for this cal pier */
  601. chinfo[pier].pd_curves =
  602. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  603. sizeof(struct ath5k_pdgain_info),
  604. GFP_KERNEL);
  605. if (!chinfo[pier].pd_curves)
  606. goto err_out;
  607. /* Only one curve for RF5111
  608. * find out which one and place
  609. * in pd_curves.
  610. * Note: ee_x_gain is reversed here */
  611. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  612. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  613. pdgain_idx[0] = idx;
  614. break;
  615. }
  616. }
  617. ee->ee_pd_gains[mode] = 1;
  618. pd = &chinfo[pier].pd_curves[idx];
  619. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  620. /* Allocate pd points for this curve */
  621. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  622. sizeof(u8), GFP_KERNEL);
  623. if (!pd->pd_step)
  624. goto err_out;
  625. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  626. sizeof(s16), GFP_KERNEL);
  627. if (!pd->pd_pwr)
  628. goto err_out;
  629. /* Fill raw dataset
  630. * (convert power to 0.25dB units
  631. * for RF5112 combatibility) */
  632. for (point = 0; point < pd->pd_points; point++) {
  633. /* Absolute values */
  634. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  635. /* Already sorted */
  636. pd->pd_step[point] = pcinfo->pcdac[point];
  637. }
  638. /* Set min/max pwr */
  639. chinfo[pier].min_pwr = pd->pd_pwr[0];
  640. chinfo[pier].max_pwr = pd->pd_pwr[10];
  641. }
  642. return 0;
  643. err_out:
  644. ath5k_eeprom_free_pcal_info(ah, mode);
  645. return -ENOMEM;
  646. }
  647. /* Parse EEPROM data */
  648. static int
  649. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  650. {
  651. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  652. struct ath5k_chan_pcal_info *pcal;
  653. int offset, ret;
  654. int i;
  655. u16 val;
  656. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  657. switch(mode) {
  658. case AR5K_EEPROM_MODE_11A:
  659. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  660. return 0;
  661. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  662. offset + AR5K_EEPROM_GROUP1_OFFSET);
  663. if (ret < 0)
  664. return ret;
  665. offset += AR5K_EEPROM_GROUP2_OFFSET;
  666. pcal = ee->ee_pwr_cal_a;
  667. break;
  668. case AR5K_EEPROM_MODE_11B:
  669. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  670. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  671. return 0;
  672. pcal = ee->ee_pwr_cal_b;
  673. offset += AR5K_EEPROM_GROUP3_OFFSET;
  674. /* fixed piers */
  675. pcal[0].freq = 2412;
  676. pcal[1].freq = 2447;
  677. pcal[2].freq = 2484;
  678. ee->ee_n_piers[mode] = 3;
  679. break;
  680. case AR5K_EEPROM_MODE_11G:
  681. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  682. return 0;
  683. pcal = ee->ee_pwr_cal_g;
  684. offset += AR5K_EEPROM_GROUP4_OFFSET;
  685. /* fixed piers */
  686. pcal[0].freq = 2312;
  687. pcal[1].freq = 2412;
  688. pcal[2].freq = 2484;
  689. ee->ee_n_piers[mode] = 3;
  690. break;
  691. default:
  692. return -EINVAL;
  693. }
  694. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  695. struct ath5k_chan_pcal_info_rf5111 *cdata =
  696. &pcal[i].rf5111_info;
  697. AR5K_EEPROM_READ(offset++, val);
  698. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  699. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  700. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  701. AR5K_EEPROM_READ(offset++, val);
  702. cdata->pwr[0] |= ((val >> 14) & 0x3);
  703. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  704. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  705. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  706. AR5K_EEPROM_READ(offset++, val);
  707. cdata->pwr[3] |= ((val >> 12) & 0xf);
  708. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  709. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  710. AR5K_EEPROM_READ(offset++, val);
  711. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  712. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  713. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  714. AR5K_EEPROM_READ(offset++, val);
  715. cdata->pwr[8] |= ((val >> 14) & 0x3);
  716. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  717. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  718. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  719. cdata->pcdac_max, cdata->pcdac);
  720. }
  721. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  722. }
  723. /*
  724. * Read power calibration for RF5112 chips
  725. *
  726. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  727. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  728. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  729. * power steps on x axis and PCDAC steps on y axis and looks like a
  730. * linear function. To recreate the curve and pass the power values
  731. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  732. * and 3 points for xpd 3 (higher gain -> lower power) here and
  733. * interpolate later.
  734. *
  735. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  736. */
  737. /* Convert RF5112 specific data to generic raw data
  738. * used by interpolation code */
  739. static int
  740. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  741. struct ath5k_chan_pcal_info *chinfo)
  742. {
  743. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  744. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  745. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  746. unsigned int pier, pdg, point;
  747. /* Fill raw data for each calibration pier */
  748. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  749. pcinfo = &chinfo[pier].rf5112_info;
  750. /* Allocate pd_curves for this cal pier */
  751. chinfo[pier].pd_curves =
  752. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  753. sizeof(struct ath5k_pdgain_info),
  754. GFP_KERNEL);
  755. if (!chinfo[pier].pd_curves)
  756. goto err_out;
  757. /* Fill pd_curves */
  758. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  759. u8 idx = pdgain_idx[pdg];
  760. struct ath5k_pdgain_info *pd =
  761. &chinfo[pier].pd_curves[idx];
  762. /* Lowest gain curve (max power) */
  763. if (pdg == 0) {
  764. /* One more point for better accuracy */
  765. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  766. /* Allocate pd points for this curve */
  767. pd->pd_step = kcalloc(pd->pd_points,
  768. sizeof(u8), GFP_KERNEL);
  769. if (!pd->pd_step)
  770. goto err_out;
  771. pd->pd_pwr = kcalloc(pd->pd_points,
  772. sizeof(s16), GFP_KERNEL);
  773. if (!pd->pd_pwr)
  774. goto err_out;
  775. /* Fill raw dataset
  776. * (all power levels are in 0.25dB units) */
  777. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  778. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  779. for (point = 1; point < pd->pd_points;
  780. point++) {
  781. /* Absolute values */
  782. pd->pd_pwr[point] =
  783. pcinfo->pwr_x0[point];
  784. /* Deltas */
  785. pd->pd_step[point] =
  786. pd->pd_step[point - 1] +
  787. pcinfo->pcdac_x0[point];
  788. }
  789. /* Set min power for this frequency */
  790. chinfo[pier].min_pwr = pd->pd_pwr[0];
  791. /* Highest gain curve (min power) */
  792. } else if (pdg == 1) {
  793. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  794. /* Allocate pd points for this curve */
  795. pd->pd_step = kcalloc(pd->pd_points,
  796. sizeof(u8), GFP_KERNEL);
  797. if (!pd->pd_step)
  798. goto err_out;
  799. pd->pd_pwr = kcalloc(pd->pd_points,
  800. sizeof(s16), GFP_KERNEL);
  801. if (!pd->pd_pwr)
  802. goto err_out;
  803. /* Fill raw dataset
  804. * (all power levels are in 0.25dB units) */
  805. for (point = 0; point < pd->pd_points;
  806. point++) {
  807. /* Absolute values */
  808. pd->pd_pwr[point] =
  809. pcinfo->pwr_x3[point];
  810. /* Fixed points */
  811. pd->pd_step[point] =
  812. pcinfo->pcdac_x3[point];
  813. }
  814. /* Since we have a higher gain curve
  815. * override min power */
  816. chinfo[pier].min_pwr = pd->pd_pwr[0];
  817. }
  818. }
  819. }
  820. return 0;
  821. err_out:
  822. ath5k_eeprom_free_pcal_info(ah, mode);
  823. return -ENOMEM;
  824. }
  825. /* Parse EEPROM data */
  826. static int
  827. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  828. {
  829. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  830. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  831. struct ath5k_chan_pcal_info *gen_chan_info;
  832. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  833. u32 offset;
  834. u8 i, c;
  835. u16 val;
  836. u8 pd_gains = 0;
  837. /* Count how many curves we have and
  838. * identify them (which one of the 4
  839. * available curves we have on each count).
  840. * Curves are stored from lower (x0) to
  841. * higher (x3) gain */
  842. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  843. /* ee_x_gain[mode] is x gain mask */
  844. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  845. pdgain_idx[pd_gains++] = i;
  846. }
  847. ee->ee_pd_gains[mode] = pd_gains;
  848. if (pd_gains == 0 || pd_gains > 2)
  849. return -EINVAL;
  850. switch (mode) {
  851. case AR5K_EEPROM_MODE_11A:
  852. /*
  853. * Read 5GHz EEPROM channels
  854. */
  855. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  856. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  857. offset += AR5K_EEPROM_GROUP2_OFFSET;
  858. gen_chan_info = ee->ee_pwr_cal_a;
  859. break;
  860. case AR5K_EEPROM_MODE_11B:
  861. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  862. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  863. offset += AR5K_EEPROM_GROUP3_OFFSET;
  864. /* NB: frequency piers parsed during mode init */
  865. gen_chan_info = ee->ee_pwr_cal_b;
  866. break;
  867. case AR5K_EEPROM_MODE_11G:
  868. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  869. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  870. offset += AR5K_EEPROM_GROUP4_OFFSET;
  871. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  872. offset += AR5K_EEPROM_GROUP2_OFFSET;
  873. /* NB: frequency piers parsed during mode init */
  874. gen_chan_info = ee->ee_pwr_cal_g;
  875. break;
  876. default:
  877. return -EINVAL;
  878. }
  879. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  880. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  881. /* Power values in quarter dB
  882. * for the lower xpd gain curve
  883. * (0 dBm -> higher output power) */
  884. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  885. AR5K_EEPROM_READ(offset++, val);
  886. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  887. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  888. }
  889. /* PCDAC steps
  890. * corresponding to the above power
  891. * measurements */
  892. AR5K_EEPROM_READ(offset++, val);
  893. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  894. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  895. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  896. /* Power values in quarter dB
  897. * for the higher xpd gain curve
  898. * (18 dBm -> lower output power) */
  899. AR5K_EEPROM_READ(offset++, val);
  900. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  901. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  902. AR5K_EEPROM_READ(offset++, val);
  903. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  904. /* PCDAC steps
  905. * corresponding to the above power
  906. * measurements (fixed) */
  907. chan_pcal_info->pcdac_x3[0] = 20;
  908. chan_pcal_info->pcdac_x3[1] = 35;
  909. chan_pcal_info->pcdac_x3[2] = 63;
  910. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  911. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  912. /* Last xpd0 power level is also channel maximum */
  913. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  914. } else {
  915. chan_pcal_info->pcdac_x0[0] = 1;
  916. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  917. }
  918. }
  919. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  920. }
  921. /*
  922. * Read power calibration for RF2413 chips
  923. *
  924. * For RF2413 we have a Power to PDDAC table (Power Detector)
  925. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  926. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  927. * axis and looks like an exponential function like the RF5111 curve.
  928. *
  929. * To recreate the curves we read here the points and interpolate
  930. * later. Note that in most cases only 2 (higher and lower) curves are
  931. * used (like RF5112) but vendors have the opportunity to include all
  932. * 4 curves on eeprom. The final curve (higher power) has an extra
  933. * point for better accuracy like RF5112.
  934. */
  935. /* For RF2413 power calibration data doesn't start on a fixed location and
  936. * if a mode is not supported, its section is missing -not zeroed-.
  937. * So we need to calculate the starting offset for each section by using
  938. * these two functions */
  939. /* Return the size of each section based on the mode and the number of pd
  940. * gains available (maximum 4). */
  941. static inline unsigned int
  942. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  943. {
  944. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  945. unsigned int sz;
  946. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  947. sz *= ee->ee_n_piers[mode];
  948. return sz;
  949. }
  950. /* Return the starting offset for a section based on the modes supported
  951. * and each section's size. */
  952. static unsigned int
  953. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  954. {
  955. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  956. switch(mode) {
  957. case AR5K_EEPROM_MODE_11G:
  958. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  959. offset += ath5k_pdgains_size_2413(ee,
  960. AR5K_EEPROM_MODE_11B) +
  961. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  962. /* fall through */
  963. case AR5K_EEPROM_MODE_11B:
  964. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  965. offset += ath5k_pdgains_size_2413(ee,
  966. AR5K_EEPROM_MODE_11A) +
  967. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  968. /* fall through */
  969. case AR5K_EEPROM_MODE_11A:
  970. break;
  971. default:
  972. break;
  973. }
  974. return offset;
  975. }
  976. /* Convert RF2413 specific data to generic raw data
  977. * used by interpolation code */
  978. static int
  979. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  980. struct ath5k_chan_pcal_info *chinfo)
  981. {
  982. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  983. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  984. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  985. unsigned int pier, pdg, point;
  986. /* Fill raw data for each calibration pier */
  987. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  988. pcinfo = &chinfo[pier].rf2413_info;
  989. /* Allocate pd_curves for this cal pier */
  990. chinfo[pier].pd_curves =
  991. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  992. sizeof(struct ath5k_pdgain_info),
  993. GFP_KERNEL);
  994. if (!chinfo[pier].pd_curves)
  995. goto err_out;
  996. /* Fill pd_curves */
  997. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  998. u8 idx = pdgain_idx[pdg];
  999. struct ath5k_pdgain_info *pd =
  1000. &chinfo[pier].pd_curves[idx];
  1001. /* One more point for the highest power
  1002. * curve (lowest gain) */
  1003. if (pdg == ee->ee_pd_gains[mode] - 1)
  1004. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  1005. else
  1006. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  1007. /* Allocate pd points for this curve */
  1008. pd->pd_step = kcalloc(pd->pd_points,
  1009. sizeof(u8), GFP_KERNEL);
  1010. if (!pd->pd_step)
  1011. goto err_out;
  1012. pd->pd_pwr = kcalloc(pd->pd_points,
  1013. sizeof(s16), GFP_KERNEL);
  1014. if (!pd->pd_pwr)
  1015. goto err_out;
  1016. /* Fill raw dataset
  1017. * convert all pwr levels to
  1018. * quarter dB for RF5112 combatibility */
  1019. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  1020. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  1021. for (point = 1; point < pd->pd_points; point++) {
  1022. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  1023. 2 * pcinfo->pwr[pdg][point - 1];
  1024. pd->pd_step[point] = pd->pd_step[point - 1] +
  1025. pcinfo->pddac[pdg][point - 1];
  1026. }
  1027. /* Highest gain curve -> min power */
  1028. if (pdg == 0)
  1029. chinfo[pier].min_pwr = pd->pd_pwr[0];
  1030. /* Lowest gain curve -> max power */
  1031. if (pdg == ee->ee_pd_gains[mode] - 1)
  1032. chinfo[pier].max_pwr =
  1033. pd->pd_pwr[pd->pd_points - 1];
  1034. }
  1035. }
  1036. return 0;
  1037. err_out:
  1038. ath5k_eeprom_free_pcal_info(ah, mode);
  1039. return -ENOMEM;
  1040. }
  1041. /* Parse EEPROM data */
  1042. static int
  1043. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1044. {
  1045. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1046. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1047. struct ath5k_chan_pcal_info *chinfo;
  1048. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1049. u32 offset;
  1050. int idx, i;
  1051. u16 val;
  1052. u8 pd_gains = 0;
  1053. /* Count how many curves we have and
  1054. * identify them (which one of the 4
  1055. * available curves we have on each count).
  1056. * Curves are stored from higher to
  1057. * lower gain so we go backwards */
  1058. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1059. /* ee_x_gain[mode] is x gain mask */
  1060. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1061. pdgain_idx[pd_gains++] = idx;
  1062. }
  1063. ee->ee_pd_gains[mode] = pd_gains;
  1064. if (pd_gains == 0)
  1065. return -EINVAL;
  1066. offset = ath5k_cal_data_offset_2413(ee, mode);
  1067. switch (mode) {
  1068. case AR5K_EEPROM_MODE_11A:
  1069. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1070. return 0;
  1071. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1072. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1073. chinfo = ee->ee_pwr_cal_a;
  1074. break;
  1075. case AR5K_EEPROM_MODE_11B:
  1076. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1077. return 0;
  1078. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1079. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1080. chinfo = ee->ee_pwr_cal_b;
  1081. break;
  1082. case AR5K_EEPROM_MODE_11G:
  1083. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1084. return 0;
  1085. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1086. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1087. chinfo = ee->ee_pwr_cal_g;
  1088. break;
  1089. default:
  1090. return -EINVAL;
  1091. }
  1092. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1093. pcinfo = &chinfo[i].rf2413_info;
  1094. /*
  1095. * Read pwr_i, pddac_i and the first
  1096. * 2 pd points (pwr, pddac)
  1097. */
  1098. AR5K_EEPROM_READ(offset++, val);
  1099. pcinfo->pwr_i[0] = val & 0x1f;
  1100. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1101. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1102. AR5K_EEPROM_READ(offset++, val);
  1103. pcinfo->pddac[0][0] = val & 0x3f;
  1104. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1105. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1106. AR5K_EEPROM_READ(offset++, val);
  1107. pcinfo->pwr[0][2] = val & 0xf;
  1108. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1109. pcinfo->pwr[0][3] = 0;
  1110. pcinfo->pddac[0][3] = 0;
  1111. if (pd_gains > 1) {
  1112. /*
  1113. * Pd gain 0 is not the last pd gain
  1114. * so it only has 2 pd points.
  1115. * Continue with pd gain 1.
  1116. */
  1117. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1118. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1119. AR5K_EEPROM_READ(offset++, val);
  1120. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1121. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1122. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1123. AR5K_EEPROM_READ(offset++, val);
  1124. pcinfo->pwr[1][1] = val & 0xf;
  1125. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1126. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1127. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1128. AR5K_EEPROM_READ(offset++, val);
  1129. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1130. pcinfo->pwr[1][3] = 0;
  1131. pcinfo->pddac[1][3] = 0;
  1132. } else if (pd_gains == 1) {
  1133. /*
  1134. * Pd gain 0 is the last one so
  1135. * read the extra point.
  1136. */
  1137. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1138. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1139. AR5K_EEPROM_READ(offset++, val);
  1140. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1141. }
  1142. /*
  1143. * Proceed with the other pd_gains
  1144. * as above.
  1145. */
  1146. if (pd_gains > 2) {
  1147. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1148. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1149. AR5K_EEPROM_READ(offset++, val);
  1150. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1151. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1152. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1153. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1154. AR5K_EEPROM_READ(offset++, val);
  1155. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1156. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1157. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1158. pcinfo->pwr[2][3] = 0;
  1159. pcinfo->pddac[2][3] = 0;
  1160. } else if (pd_gains == 2) {
  1161. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1162. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1163. }
  1164. if (pd_gains > 3) {
  1165. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1166. AR5K_EEPROM_READ(offset++, val);
  1167. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1168. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1169. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1170. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1171. AR5K_EEPROM_READ(offset++, val);
  1172. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1173. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1174. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1175. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1176. AR5K_EEPROM_READ(offset++, val);
  1177. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1178. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1179. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1180. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1181. AR5K_EEPROM_READ(offset++, val);
  1182. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1183. } else if (pd_gains == 3) {
  1184. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1185. AR5K_EEPROM_READ(offset++, val);
  1186. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1187. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1188. }
  1189. }
  1190. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1191. }
  1192. /*
  1193. * Read per rate target power (this is the maximum tx power
  1194. * supported by the card). This info is used when setting
  1195. * tx power, no matter the channel.
  1196. *
  1197. * This also works for v5 EEPROMs.
  1198. */
  1199. static int
  1200. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1201. {
  1202. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1203. struct ath5k_rate_pcal_info *rate_pcal_info;
  1204. u8 *rate_target_pwr_num;
  1205. u32 offset;
  1206. u16 val;
  1207. int i;
  1208. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1209. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1210. switch (mode) {
  1211. case AR5K_EEPROM_MODE_11A:
  1212. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1213. rate_pcal_info = ee->ee_rate_tpwr_a;
  1214. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1215. break;
  1216. case AR5K_EEPROM_MODE_11B:
  1217. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1218. rate_pcal_info = ee->ee_rate_tpwr_b;
  1219. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1220. break;
  1221. case AR5K_EEPROM_MODE_11G:
  1222. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1223. rate_pcal_info = ee->ee_rate_tpwr_g;
  1224. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1225. break;
  1226. default:
  1227. return -EINVAL;
  1228. }
  1229. /* Different freq mask for older eeproms (<= v3.2) */
  1230. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1231. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1232. AR5K_EEPROM_READ(offset++, val);
  1233. rate_pcal_info[i].freq =
  1234. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1235. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1236. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1237. AR5K_EEPROM_READ(offset++, val);
  1238. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1239. val == 0) {
  1240. (*rate_target_pwr_num) = i;
  1241. break;
  1242. }
  1243. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1244. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1245. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1246. }
  1247. } else {
  1248. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1249. AR5K_EEPROM_READ(offset++, val);
  1250. rate_pcal_info[i].freq =
  1251. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1252. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1253. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1254. AR5K_EEPROM_READ(offset++, val);
  1255. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1256. val == 0) {
  1257. (*rate_target_pwr_num) = i;
  1258. break;
  1259. }
  1260. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1261. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1262. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1263. }
  1264. }
  1265. return 0;
  1266. }
  1267. /*
  1268. * Read per channel calibration info from EEPROM
  1269. *
  1270. * This info is used to calibrate the baseband power table. Imagine
  1271. * that for each channel there is a power curve that's hw specific
  1272. * (depends on amplifier etc) and we try to "correct" this curve using
  1273. * offsets we pass on to phy chip (baseband -> before amplifier) so that
  1274. * it can use accurate power values when setting tx power (takes amplifier's
  1275. * performance on each channel into account).
  1276. *
  1277. * EEPROM provides us with the offsets for some pre-calibrated channels
  1278. * and we have to interpolate to create the full table for these channels and
  1279. * also the table for any channel.
  1280. */
  1281. static int
  1282. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1283. {
  1284. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1285. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1286. int mode;
  1287. int err;
  1288. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1289. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1290. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1291. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1292. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1293. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1294. else
  1295. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1296. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1297. mode++) {
  1298. err = read_pcal(ah, mode);
  1299. if (err)
  1300. return err;
  1301. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1302. if (err < 0)
  1303. return err;
  1304. }
  1305. return 0;
  1306. }
  1307. /* Read conformance test limits used for regulatory control */
  1308. static int
  1309. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1310. {
  1311. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1312. struct ath5k_edge_power *rep;
  1313. unsigned int fmask, pmask;
  1314. unsigned int ctl_mode;
  1315. int i, j;
  1316. u32 offset;
  1317. u16 val;
  1318. pmask = AR5K_EEPROM_POWER_M;
  1319. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1320. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1321. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1322. for (i = 0; i < ee->ee_ctls; i += 2) {
  1323. AR5K_EEPROM_READ(offset++, val);
  1324. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1325. ee->ee_ctl[i + 1] = val & 0xff;
  1326. }
  1327. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1328. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1329. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1330. AR5K_EEPROM_GROUP5_OFFSET;
  1331. else
  1332. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1333. rep = ee->ee_ctl_pwr;
  1334. for(i = 0; i < ee->ee_ctls; i++) {
  1335. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1336. case AR5K_CTL_11A:
  1337. case AR5K_CTL_TURBO:
  1338. ctl_mode = AR5K_EEPROM_MODE_11A;
  1339. break;
  1340. default:
  1341. ctl_mode = AR5K_EEPROM_MODE_11G;
  1342. break;
  1343. }
  1344. if (ee->ee_ctl[i] == 0) {
  1345. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1346. offset += 8;
  1347. else
  1348. offset += 7;
  1349. rep += AR5K_EEPROM_N_EDGES;
  1350. continue;
  1351. }
  1352. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1353. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1354. AR5K_EEPROM_READ(offset++, val);
  1355. rep[j].freq = (val >> 8) & fmask;
  1356. rep[j + 1].freq = val & fmask;
  1357. }
  1358. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1359. AR5K_EEPROM_READ(offset++, val);
  1360. rep[j].edge = (val >> 8) & pmask;
  1361. rep[j].flag = (val >> 14) & 1;
  1362. rep[j + 1].edge = val & pmask;
  1363. rep[j + 1].flag = (val >> 6) & 1;
  1364. }
  1365. } else {
  1366. AR5K_EEPROM_READ(offset++, val);
  1367. rep[0].freq = (val >> 9) & fmask;
  1368. rep[1].freq = (val >> 2) & fmask;
  1369. rep[2].freq = (val << 5) & fmask;
  1370. AR5K_EEPROM_READ(offset++, val);
  1371. rep[2].freq |= (val >> 11) & 0x1f;
  1372. rep[3].freq = (val >> 4) & fmask;
  1373. rep[4].freq = (val << 3) & fmask;
  1374. AR5K_EEPROM_READ(offset++, val);
  1375. rep[4].freq |= (val >> 13) & 0x7;
  1376. rep[5].freq = (val >> 6) & fmask;
  1377. rep[6].freq = (val << 1) & fmask;
  1378. AR5K_EEPROM_READ(offset++, val);
  1379. rep[6].freq |= (val >> 15) & 0x1;
  1380. rep[7].freq = (val >> 8) & fmask;
  1381. rep[0].edge = (val >> 2) & pmask;
  1382. rep[1].edge = (val << 4) & pmask;
  1383. AR5K_EEPROM_READ(offset++, val);
  1384. rep[1].edge |= (val >> 12) & 0xf;
  1385. rep[2].edge = (val >> 6) & pmask;
  1386. rep[3].edge = val & pmask;
  1387. AR5K_EEPROM_READ(offset++, val);
  1388. rep[4].edge = (val >> 10) & pmask;
  1389. rep[5].edge = (val >> 4) & pmask;
  1390. rep[6].edge = (val << 2) & pmask;
  1391. AR5K_EEPROM_READ(offset++, val);
  1392. rep[6].edge |= (val >> 14) & 0x3;
  1393. rep[7].edge = (val >> 8) & pmask;
  1394. }
  1395. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1396. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1397. rep[j].freq, ctl_mode);
  1398. }
  1399. rep += AR5K_EEPROM_N_EDGES;
  1400. }
  1401. return 0;
  1402. }
  1403. static int
  1404. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1405. {
  1406. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1407. u32 offset;
  1408. u16 val;
  1409. int ret = 0, i;
  1410. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1411. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1412. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1413. /* No spur info for 5GHz */
  1414. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1415. /* 2 channels for 2GHz (2464/2420) */
  1416. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1417. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1418. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1419. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1420. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1421. AR5K_EEPROM_READ(offset, val);
  1422. ee->ee_spur_chans[i][0] = val;
  1423. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1424. val);
  1425. ee->ee_spur_chans[i][1] = val;
  1426. offset++;
  1427. }
  1428. }
  1429. return ret;
  1430. }
  1431. /***********************\
  1432. * Init/Detach functions *
  1433. \***********************/
  1434. /*
  1435. * Initialize eeprom data structure
  1436. */
  1437. int
  1438. ath5k_eeprom_init(struct ath5k_hw *ah)
  1439. {
  1440. int err;
  1441. err = ath5k_eeprom_init_header(ah);
  1442. if (err < 0)
  1443. return err;
  1444. err = ath5k_eeprom_init_modes(ah);
  1445. if (err < 0)
  1446. return err;
  1447. err = ath5k_eeprom_read_pcal_info(ah);
  1448. if (err < 0)
  1449. return err;
  1450. err = ath5k_eeprom_read_ctl_info(ah);
  1451. if (err < 0)
  1452. return err;
  1453. err = ath5k_eeprom_read_spur_chans(ah);
  1454. if (err < 0)
  1455. return err;
  1456. return 0;
  1457. }
  1458. void
  1459. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1460. {
  1461. u8 mode;
  1462. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1463. ath5k_eeprom_free_pcal_info(ah, mode);
  1464. }
  1465. int
  1466. ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
  1467. {
  1468. switch (channel->hw_value & CHANNEL_MODES) {
  1469. case CHANNEL_A:
  1470. case CHANNEL_XR:
  1471. return AR5K_EEPROM_MODE_11A;
  1472. case CHANNEL_G:
  1473. return AR5K_EEPROM_MODE_11G;
  1474. case CHANNEL_B:
  1475. return AR5K_EEPROM_MODE_11B;
  1476. default:
  1477. return -1;
  1478. }
  1479. }