namespace.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/ramfs.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_fs.h>
  24. #include "pnode.h"
  25. #include "internal.h"
  26. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  27. #define HASH_SIZE (1UL << HASH_SHIFT)
  28. static int event;
  29. static DEFINE_IDA(mnt_id_ida);
  30. static DEFINE_IDA(mnt_group_ida);
  31. static DEFINE_SPINLOCK(mnt_id_lock);
  32. static int mnt_id_start = 0;
  33. static int mnt_group_start = 1;
  34. static struct list_head *mount_hashtable __read_mostly;
  35. static struct kmem_cache *mnt_cache __read_mostly;
  36. static struct rw_semaphore namespace_sem;
  37. /* /sys/fs */
  38. struct kobject *fs_kobj;
  39. EXPORT_SYMBOL_GPL(fs_kobj);
  40. /*
  41. * vfsmount lock may be taken for read to prevent changes to the
  42. * vfsmount hash, ie. during mountpoint lookups or walking back
  43. * up the tree.
  44. *
  45. * It should be taken for write in all cases where the vfsmount
  46. * tree or hash is modified or when a vfsmount structure is modified.
  47. */
  48. DEFINE_BRLOCK(vfsmount_lock);
  49. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  50. {
  51. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  52. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  53. tmp = tmp + (tmp >> HASH_SHIFT);
  54. return tmp & (HASH_SIZE - 1);
  55. }
  56. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  57. /*
  58. * allocation is serialized by namespace_sem, but we need the spinlock to
  59. * serialize with freeing.
  60. */
  61. static int mnt_alloc_id(struct mount *mnt)
  62. {
  63. int res;
  64. retry:
  65. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  66. spin_lock(&mnt_id_lock);
  67. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  68. if (!res)
  69. mnt_id_start = mnt->mnt_id + 1;
  70. spin_unlock(&mnt_id_lock);
  71. if (res == -EAGAIN)
  72. goto retry;
  73. return res;
  74. }
  75. static void mnt_free_id(struct mount *mnt)
  76. {
  77. int id = mnt->mnt_id;
  78. spin_lock(&mnt_id_lock);
  79. ida_remove(&mnt_id_ida, id);
  80. if (mnt_id_start > id)
  81. mnt_id_start = id;
  82. spin_unlock(&mnt_id_lock);
  83. }
  84. /*
  85. * Allocate a new peer group ID
  86. *
  87. * mnt_group_ida is protected by namespace_sem
  88. */
  89. static int mnt_alloc_group_id(struct mount *mnt)
  90. {
  91. int res;
  92. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  93. return -ENOMEM;
  94. res = ida_get_new_above(&mnt_group_ida,
  95. mnt_group_start,
  96. &mnt->mnt_group_id);
  97. if (!res)
  98. mnt_group_start = mnt->mnt_group_id + 1;
  99. return res;
  100. }
  101. /*
  102. * Release a peer group ID
  103. */
  104. void mnt_release_group_id(struct mount *mnt)
  105. {
  106. int id = mnt->mnt_group_id;
  107. ida_remove(&mnt_group_ida, id);
  108. if (mnt_group_start > id)
  109. mnt_group_start = id;
  110. mnt->mnt_group_id = 0;
  111. }
  112. /*
  113. * vfsmount lock must be held for read
  114. */
  115. static inline void mnt_add_count(struct mount *mnt, int n)
  116. {
  117. #ifdef CONFIG_SMP
  118. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  119. #else
  120. preempt_disable();
  121. mnt->mnt_count += n;
  122. preempt_enable();
  123. #endif
  124. }
  125. /*
  126. * vfsmount lock must be held for write
  127. */
  128. unsigned int mnt_get_count(struct mount *mnt)
  129. {
  130. #ifdef CONFIG_SMP
  131. unsigned int count = 0;
  132. int cpu;
  133. for_each_possible_cpu(cpu) {
  134. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  135. }
  136. return count;
  137. #else
  138. return mnt->mnt_count;
  139. #endif
  140. }
  141. static struct mount *alloc_vfsmnt(const char *name)
  142. {
  143. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  144. if (mnt) {
  145. int err;
  146. err = mnt_alloc_id(mnt);
  147. if (err)
  148. goto out_free_cache;
  149. if (name) {
  150. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  151. if (!mnt->mnt_devname)
  152. goto out_free_id;
  153. }
  154. #ifdef CONFIG_SMP
  155. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  156. if (!mnt->mnt_pcp)
  157. goto out_free_devname;
  158. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  159. #else
  160. mnt->mnt_count = 1;
  161. mnt->mnt_writers = 0;
  162. #endif
  163. INIT_LIST_HEAD(&mnt->mnt_hash);
  164. INIT_LIST_HEAD(&mnt->mnt_child);
  165. INIT_LIST_HEAD(&mnt->mnt_mounts);
  166. INIT_LIST_HEAD(&mnt->mnt_list);
  167. INIT_LIST_HEAD(&mnt->mnt_expire);
  168. INIT_LIST_HEAD(&mnt->mnt_share);
  169. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  170. INIT_LIST_HEAD(&mnt->mnt_slave);
  171. #ifdef CONFIG_FSNOTIFY
  172. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  173. #endif
  174. }
  175. return mnt;
  176. #ifdef CONFIG_SMP
  177. out_free_devname:
  178. kfree(mnt->mnt_devname);
  179. #endif
  180. out_free_id:
  181. mnt_free_id(mnt);
  182. out_free_cache:
  183. kmem_cache_free(mnt_cache, mnt);
  184. return NULL;
  185. }
  186. /*
  187. * Most r/o checks on a fs are for operations that take
  188. * discrete amounts of time, like a write() or unlink().
  189. * We must keep track of when those operations start
  190. * (for permission checks) and when they end, so that
  191. * we can determine when writes are able to occur to
  192. * a filesystem.
  193. */
  194. /*
  195. * __mnt_is_readonly: check whether a mount is read-only
  196. * @mnt: the mount to check for its write status
  197. *
  198. * This shouldn't be used directly ouside of the VFS.
  199. * It does not guarantee that the filesystem will stay
  200. * r/w, just that it is right *now*. This can not and
  201. * should not be used in place of IS_RDONLY(inode).
  202. * mnt_want/drop_write() will _keep_ the filesystem
  203. * r/w.
  204. */
  205. int __mnt_is_readonly(struct vfsmount *mnt)
  206. {
  207. if (mnt->mnt_flags & MNT_READONLY)
  208. return 1;
  209. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  210. return 1;
  211. return 0;
  212. }
  213. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  214. static inline void mnt_inc_writers(struct mount *mnt)
  215. {
  216. #ifdef CONFIG_SMP
  217. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  218. #else
  219. mnt->mnt_writers++;
  220. #endif
  221. }
  222. static inline void mnt_dec_writers(struct mount *mnt)
  223. {
  224. #ifdef CONFIG_SMP
  225. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  226. #else
  227. mnt->mnt_writers--;
  228. #endif
  229. }
  230. static unsigned int mnt_get_writers(struct mount *mnt)
  231. {
  232. #ifdef CONFIG_SMP
  233. unsigned int count = 0;
  234. int cpu;
  235. for_each_possible_cpu(cpu) {
  236. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  237. }
  238. return count;
  239. #else
  240. return mnt->mnt_writers;
  241. #endif
  242. }
  243. static int mnt_is_readonly(struct vfsmount *mnt)
  244. {
  245. if (mnt->mnt_sb->s_readonly_remount)
  246. return 1;
  247. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  248. smp_rmb();
  249. return __mnt_is_readonly(mnt);
  250. }
  251. /*
  252. * Most r/o & frozen checks on a fs are for operations that take discrete
  253. * amounts of time, like a write() or unlink(). We must keep track of when
  254. * those operations start (for permission checks) and when they end, so that we
  255. * can determine when writes are able to occur to a filesystem.
  256. */
  257. /**
  258. * __mnt_want_write - get write access to a mount without freeze protection
  259. * @m: the mount on which to take a write
  260. *
  261. * This tells the low-level filesystem that a write is about to be performed to
  262. * it, and makes sure that writes are allowed (mnt it read-write) before
  263. * returning success. This operation does not protect against filesystem being
  264. * frozen. When the write operation is finished, __mnt_drop_write() must be
  265. * called. This is effectively a refcount.
  266. */
  267. int __mnt_want_write(struct vfsmount *m)
  268. {
  269. struct mount *mnt = real_mount(m);
  270. int ret = 0;
  271. preempt_disable();
  272. mnt_inc_writers(mnt);
  273. /*
  274. * The store to mnt_inc_writers must be visible before we pass
  275. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  276. * incremented count after it has set MNT_WRITE_HOLD.
  277. */
  278. smp_mb();
  279. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  280. cpu_relax();
  281. /*
  282. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  283. * be set to match its requirements. So we must not load that until
  284. * MNT_WRITE_HOLD is cleared.
  285. */
  286. smp_rmb();
  287. if (mnt_is_readonly(m)) {
  288. mnt_dec_writers(mnt);
  289. ret = -EROFS;
  290. }
  291. preempt_enable();
  292. return ret;
  293. }
  294. /**
  295. * mnt_want_write - get write access to a mount
  296. * @m: the mount on which to take a write
  297. *
  298. * This tells the low-level filesystem that a write is about to be performed to
  299. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  300. * is not frozen) before returning success. When the write operation is
  301. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  302. */
  303. int mnt_want_write(struct vfsmount *m)
  304. {
  305. int ret;
  306. sb_start_write(m->mnt_sb);
  307. ret = __mnt_want_write(m);
  308. if (ret)
  309. sb_end_write(m->mnt_sb);
  310. return ret;
  311. }
  312. EXPORT_SYMBOL_GPL(mnt_want_write);
  313. /**
  314. * mnt_clone_write - get write access to a mount
  315. * @mnt: the mount on which to take a write
  316. *
  317. * This is effectively like mnt_want_write, except
  318. * it must only be used to take an extra write reference
  319. * on a mountpoint that we already know has a write reference
  320. * on it. This allows some optimisation.
  321. *
  322. * After finished, mnt_drop_write must be called as usual to
  323. * drop the reference.
  324. */
  325. int mnt_clone_write(struct vfsmount *mnt)
  326. {
  327. /* superblock may be r/o */
  328. if (__mnt_is_readonly(mnt))
  329. return -EROFS;
  330. preempt_disable();
  331. mnt_inc_writers(real_mount(mnt));
  332. preempt_enable();
  333. return 0;
  334. }
  335. EXPORT_SYMBOL_GPL(mnt_clone_write);
  336. /**
  337. * __mnt_want_write_file - get write access to a file's mount
  338. * @file: the file who's mount on which to take a write
  339. *
  340. * This is like __mnt_want_write, but it takes a file and can
  341. * do some optimisations if the file is open for write already
  342. */
  343. int __mnt_want_write_file(struct file *file)
  344. {
  345. struct inode *inode = file->f_dentry->d_inode;
  346. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  347. return __mnt_want_write(file->f_path.mnt);
  348. else
  349. return mnt_clone_write(file->f_path.mnt);
  350. }
  351. /**
  352. * mnt_want_write_file - get write access to a file's mount
  353. * @file: the file who's mount on which to take a write
  354. *
  355. * This is like mnt_want_write, but it takes a file and can
  356. * do some optimisations if the file is open for write already
  357. */
  358. int mnt_want_write_file(struct file *file)
  359. {
  360. int ret;
  361. sb_start_write(file->f_path.mnt->mnt_sb);
  362. ret = __mnt_want_write_file(file);
  363. if (ret)
  364. sb_end_write(file->f_path.mnt->mnt_sb);
  365. return ret;
  366. }
  367. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  368. /**
  369. * __mnt_drop_write - give up write access to a mount
  370. * @mnt: the mount on which to give up write access
  371. *
  372. * Tells the low-level filesystem that we are done
  373. * performing writes to it. Must be matched with
  374. * __mnt_want_write() call above.
  375. */
  376. void __mnt_drop_write(struct vfsmount *mnt)
  377. {
  378. preempt_disable();
  379. mnt_dec_writers(real_mount(mnt));
  380. preempt_enable();
  381. }
  382. /**
  383. * mnt_drop_write - give up write access to a mount
  384. * @mnt: the mount on which to give up write access
  385. *
  386. * Tells the low-level filesystem that we are done performing writes to it and
  387. * also allows filesystem to be frozen again. Must be matched with
  388. * mnt_want_write() call above.
  389. */
  390. void mnt_drop_write(struct vfsmount *mnt)
  391. {
  392. __mnt_drop_write(mnt);
  393. sb_end_write(mnt->mnt_sb);
  394. }
  395. EXPORT_SYMBOL_GPL(mnt_drop_write);
  396. void __mnt_drop_write_file(struct file *file)
  397. {
  398. __mnt_drop_write(file->f_path.mnt);
  399. }
  400. void mnt_drop_write_file(struct file *file)
  401. {
  402. mnt_drop_write(file->f_path.mnt);
  403. }
  404. EXPORT_SYMBOL(mnt_drop_write_file);
  405. static int mnt_make_readonly(struct mount *mnt)
  406. {
  407. int ret = 0;
  408. br_write_lock(&vfsmount_lock);
  409. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  410. /*
  411. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  412. * should be visible before we do.
  413. */
  414. smp_mb();
  415. /*
  416. * With writers on hold, if this value is zero, then there are
  417. * definitely no active writers (although held writers may subsequently
  418. * increment the count, they'll have to wait, and decrement it after
  419. * seeing MNT_READONLY).
  420. *
  421. * It is OK to have counter incremented on one CPU and decremented on
  422. * another: the sum will add up correctly. The danger would be when we
  423. * sum up each counter, if we read a counter before it is incremented,
  424. * but then read another CPU's count which it has been subsequently
  425. * decremented from -- we would see more decrements than we should.
  426. * MNT_WRITE_HOLD protects against this scenario, because
  427. * mnt_want_write first increments count, then smp_mb, then spins on
  428. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  429. * we're counting up here.
  430. */
  431. if (mnt_get_writers(mnt) > 0)
  432. ret = -EBUSY;
  433. else
  434. mnt->mnt.mnt_flags |= MNT_READONLY;
  435. /*
  436. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  437. * that become unheld will see MNT_READONLY.
  438. */
  439. smp_wmb();
  440. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  441. br_write_unlock(&vfsmount_lock);
  442. return ret;
  443. }
  444. static void __mnt_unmake_readonly(struct mount *mnt)
  445. {
  446. br_write_lock(&vfsmount_lock);
  447. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  448. br_write_unlock(&vfsmount_lock);
  449. }
  450. int sb_prepare_remount_readonly(struct super_block *sb)
  451. {
  452. struct mount *mnt;
  453. int err = 0;
  454. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  455. if (atomic_long_read(&sb->s_remove_count))
  456. return -EBUSY;
  457. br_write_lock(&vfsmount_lock);
  458. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  459. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  460. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  461. smp_mb();
  462. if (mnt_get_writers(mnt) > 0) {
  463. err = -EBUSY;
  464. break;
  465. }
  466. }
  467. }
  468. if (!err && atomic_long_read(&sb->s_remove_count))
  469. err = -EBUSY;
  470. if (!err) {
  471. sb->s_readonly_remount = 1;
  472. smp_wmb();
  473. }
  474. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  475. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  476. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  477. }
  478. br_write_unlock(&vfsmount_lock);
  479. return err;
  480. }
  481. static void free_vfsmnt(struct mount *mnt)
  482. {
  483. kfree(mnt->mnt_devname);
  484. mnt_free_id(mnt);
  485. #ifdef CONFIG_SMP
  486. free_percpu(mnt->mnt_pcp);
  487. #endif
  488. kmem_cache_free(mnt_cache, mnt);
  489. }
  490. /*
  491. * find the first or last mount at @dentry on vfsmount @mnt depending on
  492. * @dir. If @dir is set return the first mount else return the last mount.
  493. * vfsmount_lock must be held for read or write.
  494. */
  495. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  496. int dir)
  497. {
  498. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  499. struct list_head *tmp = head;
  500. struct mount *p, *found = NULL;
  501. for (;;) {
  502. tmp = dir ? tmp->next : tmp->prev;
  503. p = NULL;
  504. if (tmp == head)
  505. break;
  506. p = list_entry(tmp, struct mount, mnt_hash);
  507. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  508. found = p;
  509. break;
  510. }
  511. }
  512. return found;
  513. }
  514. /*
  515. * lookup_mnt - Return the first child mount mounted at path
  516. *
  517. * "First" means first mounted chronologically. If you create the
  518. * following mounts:
  519. *
  520. * mount /dev/sda1 /mnt
  521. * mount /dev/sda2 /mnt
  522. * mount /dev/sda3 /mnt
  523. *
  524. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  525. * return successively the root dentry and vfsmount of /dev/sda1, then
  526. * /dev/sda2, then /dev/sda3, then NULL.
  527. *
  528. * lookup_mnt takes a reference to the found vfsmount.
  529. */
  530. struct vfsmount *lookup_mnt(struct path *path)
  531. {
  532. struct mount *child_mnt;
  533. br_read_lock(&vfsmount_lock);
  534. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  535. if (child_mnt) {
  536. mnt_add_count(child_mnt, 1);
  537. br_read_unlock(&vfsmount_lock);
  538. return &child_mnt->mnt;
  539. } else {
  540. br_read_unlock(&vfsmount_lock);
  541. return NULL;
  542. }
  543. }
  544. static inline int check_mnt(struct mount *mnt)
  545. {
  546. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  547. }
  548. /*
  549. * vfsmount lock must be held for write
  550. */
  551. static void touch_mnt_namespace(struct mnt_namespace *ns)
  552. {
  553. if (ns) {
  554. ns->event = ++event;
  555. wake_up_interruptible(&ns->poll);
  556. }
  557. }
  558. /*
  559. * vfsmount lock must be held for write
  560. */
  561. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  562. {
  563. if (ns && ns->event != event) {
  564. ns->event = event;
  565. wake_up_interruptible(&ns->poll);
  566. }
  567. }
  568. /*
  569. * Clear dentry's mounted state if it has no remaining mounts.
  570. * vfsmount_lock must be held for write.
  571. */
  572. static void dentry_reset_mounted(struct dentry *dentry)
  573. {
  574. unsigned u;
  575. for (u = 0; u < HASH_SIZE; u++) {
  576. struct mount *p;
  577. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  578. if (p->mnt_mountpoint == dentry)
  579. return;
  580. }
  581. }
  582. spin_lock(&dentry->d_lock);
  583. dentry->d_flags &= ~DCACHE_MOUNTED;
  584. spin_unlock(&dentry->d_lock);
  585. }
  586. /*
  587. * vfsmount lock must be held for write
  588. */
  589. static void detach_mnt(struct mount *mnt, struct path *old_path)
  590. {
  591. old_path->dentry = mnt->mnt_mountpoint;
  592. old_path->mnt = &mnt->mnt_parent->mnt;
  593. mnt->mnt_parent = mnt;
  594. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  595. list_del_init(&mnt->mnt_child);
  596. list_del_init(&mnt->mnt_hash);
  597. dentry_reset_mounted(old_path->dentry);
  598. }
  599. /*
  600. * vfsmount lock must be held for write
  601. */
  602. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  603. struct mount *child_mnt)
  604. {
  605. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  606. child_mnt->mnt_mountpoint = dget(dentry);
  607. child_mnt->mnt_parent = mnt;
  608. spin_lock(&dentry->d_lock);
  609. dentry->d_flags |= DCACHE_MOUNTED;
  610. spin_unlock(&dentry->d_lock);
  611. }
  612. /*
  613. * vfsmount lock must be held for write
  614. */
  615. static void attach_mnt(struct mount *mnt, struct path *path)
  616. {
  617. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  618. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  619. hash(path->mnt, path->dentry));
  620. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  621. }
  622. /*
  623. * vfsmount lock must be held for write
  624. */
  625. static void commit_tree(struct mount *mnt)
  626. {
  627. struct mount *parent = mnt->mnt_parent;
  628. struct mount *m;
  629. LIST_HEAD(head);
  630. struct mnt_namespace *n = parent->mnt_ns;
  631. BUG_ON(parent == mnt);
  632. list_add_tail(&head, &mnt->mnt_list);
  633. list_for_each_entry(m, &head, mnt_list)
  634. m->mnt_ns = n;
  635. list_splice(&head, n->list.prev);
  636. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  637. hash(&parent->mnt, mnt->mnt_mountpoint));
  638. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  639. touch_mnt_namespace(n);
  640. }
  641. static struct mount *next_mnt(struct mount *p, struct mount *root)
  642. {
  643. struct list_head *next = p->mnt_mounts.next;
  644. if (next == &p->mnt_mounts) {
  645. while (1) {
  646. if (p == root)
  647. return NULL;
  648. next = p->mnt_child.next;
  649. if (next != &p->mnt_parent->mnt_mounts)
  650. break;
  651. p = p->mnt_parent;
  652. }
  653. }
  654. return list_entry(next, struct mount, mnt_child);
  655. }
  656. static struct mount *skip_mnt_tree(struct mount *p)
  657. {
  658. struct list_head *prev = p->mnt_mounts.prev;
  659. while (prev != &p->mnt_mounts) {
  660. p = list_entry(prev, struct mount, mnt_child);
  661. prev = p->mnt_mounts.prev;
  662. }
  663. return p;
  664. }
  665. struct vfsmount *
  666. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  667. {
  668. struct mount *mnt;
  669. struct dentry *root;
  670. if (!type)
  671. return ERR_PTR(-ENODEV);
  672. mnt = alloc_vfsmnt(name);
  673. if (!mnt)
  674. return ERR_PTR(-ENOMEM);
  675. if (flags & MS_KERNMOUNT)
  676. mnt->mnt.mnt_flags = MNT_INTERNAL;
  677. root = mount_fs(type, flags, name, data);
  678. if (IS_ERR(root)) {
  679. free_vfsmnt(mnt);
  680. return ERR_CAST(root);
  681. }
  682. mnt->mnt.mnt_root = root;
  683. mnt->mnt.mnt_sb = root->d_sb;
  684. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  685. mnt->mnt_parent = mnt;
  686. br_write_lock(&vfsmount_lock);
  687. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  688. br_write_unlock(&vfsmount_lock);
  689. return &mnt->mnt;
  690. }
  691. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  692. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  693. int flag)
  694. {
  695. struct super_block *sb = old->mnt.mnt_sb;
  696. struct mount *mnt;
  697. int err;
  698. mnt = alloc_vfsmnt(old->mnt_devname);
  699. if (!mnt)
  700. return ERR_PTR(-ENOMEM);
  701. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  702. mnt->mnt_group_id = 0; /* not a peer of original */
  703. else
  704. mnt->mnt_group_id = old->mnt_group_id;
  705. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  706. err = mnt_alloc_group_id(mnt);
  707. if (err)
  708. goto out_free;
  709. }
  710. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  711. atomic_inc(&sb->s_active);
  712. mnt->mnt.mnt_sb = sb;
  713. mnt->mnt.mnt_root = dget(root);
  714. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  715. mnt->mnt_parent = mnt;
  716. br_write_lock(&vfsmount_lock);
  717. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  718. br_write_unlock(&vfsmount_lock);
  719. if ((flag & CL_SLAVE) ||
  720. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  721. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  722. mnt->mnt_master = old;
  723. CLEAR_MNT_SHARED(mnt);
  724. } else if (!(flag & CL_PRIVATE)) {
  725. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  726. list_add(&mnt->mnt_share, &old->mnt_share);
  727. if (IS_MNT_SLAVE(old))
  728. list_add(&mnt->mnt_slave, &old->mnt_slave);
  729. mnt->mnt_master = old->mnt_master;
  730. }
  731. if (flag & CL_MAKE_SHARED)
  732. set_mnt_shared(mnt);
  733. /* stick the duplicate mount on the same expiry list
  734. * as the original if that was on one */
  735. if (flag & CL_EXPIRE) {
  736. if (!list_empty(&old->mnt_expire))
  737. list_add(&mnt->mnt_expire, &old->mnt_expire);
  738. }
  739. return mnt;
  740. out_free:
  741. free_vfsmnt(mnt);
  742. return ERR_PTR(err);
  743. }
  744. static inline void mntfree(struct mount *mnt)
  745. {
  746. struct vfsmount *m = &mnt->mnt;
  747. struct super_block *sb = m->mnt_sb;
  748. /*
  749. * This probably indicates that somebody messed
  750. * up a mnt_want/drop_write() pair. If this
  751. * happens, the filesystem was probably unable
  752. * to make r/w->r/o transitions.
  753. */
  754. /*
  755. * The locking used to deal with mnt_count decrement provides barriers,
  756. * so mnt_get_writers() below is safe.
  757. */
  758. WARN_ON(mnt_get_writers(mnt));
  759. fsnotify_vfsmount_delete(m);
  760. dput(m->mnt_root);
  761. free_vfsmnt(mnt);
  762. deactivate_super(sb);
  763. }
  764. static void mntput_no_expire(struct mount *mnt)
  765. {
  766. put_again:
  767. #ifdef CONFIG_SMP
  768. br_read_lock(&vfsmount_lock);
  769. if (likely(mnt->mnt_ns)) {
  770. /* shouldn't be the last one */
  771. mnt_add_count(mnt, -1);
  772. br_read_unlock(&vfsmount_lock);
  773. return;
  774. }
  775. br_read_unlock(&vfsmount_lock);
  776. br_write_lock(&vfsmount_lock);
  777. mnt_add_count(mnt, -1);
  778. if (mnt_get_count(mnt)) {
  779. br_write_unlock(&vfsmount_lock);
  780. return;
  781. }
  782. #else
  783. mnt_add_count(mnt, -1);
  784. if (likely(mnt_get_count(mnt)))
  785. return;
  786. br_write_lock(&vfsmount_lock);
  787. #endif
  788. if (unlikely(mnt->mnt_pinned)) {
  789. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  790. mnt->mnt_pinned = 0;
  791. br_write_unlock(&vfsmount_lock);
  792. acct_auto_close_mnt(&mnt->mnt);
  793. goto put_again;
  794. }
  795. list_del(&mnt->mnt_instance);
  796. br_write_unlock(&vfsmount_lock);
  797. mntfree(mnt);
  798. }
  799. void mntput(struct vfsmount *mnt)
  800. {
  801. if (mnt) {
  802. struct mount *m = real_mount(mnt);
  803. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  804. if (unlikely(m->mnt_expiry_mark))
  805. m->mnt_expiry_mark = 0;
  806. mntput_no_expire(m);
  807. }
  808. }
  809. EXPORT_SYMBOL(mntput);
  810. struct vfsmount *mntget(struct vfsmount *mnt)
  811. {
  812. if (mnt)
  813. mnt_add_count(real_mount(mnt), 1);
  814. return mnt;
  815. }
  816. EXPORT_SYMBOL(mntget);
  817. void mnt_pin(struct vfsmount *mnt)
  818. {
  819. br_write_lock(&vfsmount_lock);
  820. real_mount(mnt)->mnt_pinned++;
  821. br_write_unlock(&vfsmount_lock);
  822. }
  823. EXPORT_SYMBOL(mnt_pin);
  824. void mnt_unpin(struct vfsmount *m)
  825. {
  826. struct mount *mnt = real_mount(m);
  827. br_write_lock(&vfsmount_lock);
  828. if (mnt->mnt_pinned) {
  829. mnt_add_count(mnt, 1);
  830. mnt->mnt_pinned--;
  831. }
  832. br_write_unlock(&vfsmount_lock);
  833. }
  834. EXPORT_SYMBOL(mnt_unpin);
  835. static inline void mangle(struct seq_file *m, const char *s)
  836. {
  837. seq_escape(m, s, " \t\n\\");
  838. }
  839. /*
  840. * Simple .show_options callback for filesystems which don't want to
  841. * implement more complex mount option showing.
  842. *
  843. * See also save_mount_options().
  844. */
  845. int generic_show_options(struct seq_file *m, struct dentry *root)
  846. {
  847. const char *options;
  848. rcu_read_lock();
  849. options = rcu_dereference(root->d_sb->s_options);
  850. if (options != NULL && options[0]) {
  851. seq_putc(m, ',');
  852. mangle(m, options);
  853. }
  854. rcu_read_unlock();
  855. return 0;
  856. }
  857. EXPORT_SYMBOL(generic_show_options);
  858. /*
  859. * If filesystem uses generic_show_options(), this function should be
  860. * called from the fill_super() callback.
  861. *
  862. * The .remount_fs callback usually needs to be handled in a special
  863. * way, to make sure, that previous options are not overwritten if the
  864. * remount fails.
  865. *
  866. * Also note, that if the filesystem's .remount_fs function doesn't
  867. * reset all options to their default value, but changes only newly
  868. * given options, then the displayed options will not reflect reality
  869. * any more.
  870. */
  871. void save_mount_options(struct super_block *sb, char *options)
  872. {
  873. BUG_ON(sb->s_options);
  874. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  875. }
  876. EXPORT_SYMBOL(save_mount_options);
  877. void replace_mount_options(struct super_block *sb, char *options)
  878. {
  879. char *old = sb->s_options;
  880. rcu_assign_pointer(sb->s_options, options);
  881. if (old) {
  882. synchronize_rcu();
  883. kfree(old);
  884. }
  885. }
  886. EXPORT_SYMBOL(replace_mount_options);
  887. #ifdef CONFIG_PROC_FS
  888. /* iterator; we want it to have access to namespace_sem, thus here... */
  889. static void *m_start(struct seq_file *m, loff_t *pos)
  890. {
  891. struct proc_mounts *p = proc_mounts(m);
  892. down_read(&namespace_sem);
  893. return seq_list_start(&p->ns->list, *pos);
  894. }
  895. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  896. {
  897. struct proc_mounts *p = proc_mounts(m);
  898. return seq_list_next(v, &p->ns->list, pos);
  899. }
  900. static void m_stop(struct seq_file *m, void *v)
  901. {
  902. up_read(&namespace_sem);
  903. }
  904. static int m_show(struct seq_file *m, void *v)
  905. {
  906. struct proc_mounts *p = proc_mounts(m);
  907. struct mount *r = list_entry(v, struct mount, mnt_list);
  908. return p->show(m, &r->mnt);
  909. }
  910. const struct seq_operations mounts_op = {
  911. .start = m_start,
  912. .next = m_next,
  913. .stop = m_stop,
  914. .show = m_show,
  915. };
  916. #endif /* CONFIG_PROC_FS */
  917. /**
  918. * may_umount_tree - check if a mount tree is busy
  919. * @mnt: root of mount tree
  920. *
  921. * This is called to check if a tree of mounts has any
  922. * open files, pwds, chroots or sub mounts that are
  923. * busy.
  924. */
  925. int may_umount_tree(struct vfsmount *m)
  926. {
  927. struct mount *mnt = real_mount(m);
  928. int actual_refs = 0;
  929. int minimum_refs = 0;
  930. struct mount *p;
  931. BUG_ON(!m);
  932. /* write lock needed for mnt_get_count */
  933. br_write_lock(&vfsmount_lock);
  934. for (p = mnt; p; p = next_mnt(p, mnt)) {
  935. actual_refs += mnt_get_count(p);
  936. minimum_refs += 2;
  937. }
  938. br_write_unlock(&vfsmount_lock);
  939. if (actual_refs > minimum_refs)
  940. return 0;
  941. return 1;
  942. }
  943. EXPORT_SYMBOL(may_umount_tree);
  944. /**
  945. * may_umount - check if a mount point is busy
  946. * @mnt: root of mount
  947. *
  948. * This is called to check if a mount point has any
  949. * open files, pwds, chroots or sub mounts. If the
  950. * mount has sub mounts this will return busy
  951. * regardless of whether the sub mounts are busy.
  952. *
  953. * Doesn't take quota and stuff into account. IOW, in some cases it will
  954. * give false negatives. The main reason why it's here is that we need
  955. * a non-destructive way to look for easily umountable filesystems.
  956. */
  957. int may_umount(struct vfsmount *mnt)
  958. {
  959. int ret = 1;
  960. down_read(&namespace_sem);
  961. br_write_lock(&vfsmount_lock);
  962. if (propagate_mount_busy(real_mount(mnt), 2))
  963. ret = 0;
  964. br_write_unlock(&vfsmount_lock);
  965. up_read(&namespace_sem);
  966. return ret;
  967. }
  968. EXPORT_SYMBOL(may_umount);
  969. void release_mounts(struct list_head *head)
  970. {
  971. struct mount *mnt;
  972. while (!list_empty(head)) {
  973. mnt = list_first_entry(head, struct mount, mnt_hash);
  974. list_del_init(&mnt->mnt_hash);
  975. if (mnt_has_parent(mnt)) {
  976. struct dentry *dentry;
  977. struct mount *m;
  978. br_write_lock(&vfsmount_lock);
  979. dentry = mnt->mnt_mountpoint;
  980. m = mnt->mnt_parent;
  981. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  982. mnt->mnt_parent = mnt;
  983. m->mnt_ghosts--;
  984. br_write_unlock(&vfsmount_lock);
  985. dput(dentry);
  986. mntput(&m->mnt);
  987. }
  988. mntput(&mnt->mnt);
  989. }
  990. }
  991. /*
  992. * vfsmount lock must be held for write
  993. * namespace_sem must be held for write
  994. */
  995. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  996. {
  997. LIST_HEAD(tmp_list);
  998. struct mount *p;
  999. for (p = mnt; p; p = next_mnt(p, mnt))
  1000. list_move(&p->mnt_hash, &tmp_list);
  1001. if (propagate)
  1002. propagate_umount(&tmp_list);
  1003. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1004. list_del_init(&p->mnt_expire);
  1005. list_del_init(&p->mnt_list);
  1006. __touch_mnt_namespace(p->mnt_ns);
  1007. p->mnt_ns = NULL;
  1008. list_del_init(&p->mnt_child);
  1009. if (mnt_has_parent(p)) {
  1010. p->mnt_parent->mnt_ghosts++;
  1011. dentry_reset_mounted(p->mnt_mountpoint);
  1012. }
  1013. change_mnt_propagation(p, MS_PRIVATE);
  1014. }
  1015. list_splice(&tmp_list, kill);
  1016. }
  1017. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  1018. static int do_umount(struct mount *mnt, int flags)
  1019. {
  1020. struct super_block *sb = mnt->mnt.mnt_sb;
  1021. int retval;
  1022. LIST_HEAD(umount_list);
  1023. retval = security_sb_umount(&mnt->mnt, flags);
  1024. if (retval)
  1025. return retval;
  1026. /*
  1027. * Allow userspace to request a mountpoint be expired rather than
  1028. * unmounting unconditionally. Unmount only happens if:
  1029. * (1) the mark is already set (the mark is cleared by mntput())
  1030. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1031. */
  1032. if (flags & MNT_EXPIRE) {
  1033. if (&mnt->mnt == current->fs->root.mnt ||
  1034. flags & (MNT_FORCE | MNT_DETACH))
  1035. return -EINVAL;
  1036. /*
  1037. * probably don't strictly need the lock here if we examined
  1038. * all race cases, but it's a slowpath.
  1039. */
  1040. br_write_lock(&vfsmount_lock);
  1041. if (mnt_get_count(mnt) != 2) {
  1042. br_write_unlock(&vfsmount_lock);
  1043. return -EBUSY;
  1044. }
  1045. br_write_unlock(&vfsmount_lock);
  1046. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1047. return -EAGAIN;
  1048. }
  1049. /*
  1050. * If we may have to abort operations to get out of this
  1051. * mount, and they will themselves hold resources we must
  1052. * allow the fs to do things. In the Unix tradition of
  1053. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1054. * might fail to complete on the first run through as other tasks
  1055. * must return, and the like. Thats for the mount program to worry
  1056. * about for the moment.
  1057. */
  1058. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1059. sb->s_op->umount_begin(sb);
  1060. }
  1061. /*
  1062. * No sense to grab the lock for this test, but test itself looks
  1063. * somewhat bogus. Suggestions for better replacement?
  1064. * Ho-hum... In principle, we might treat that as umount + switch
  1065. * to rootfs. GC would eventually take care of the old vfsmount.
  1066. * Actually it makes sense, especially if rootfs would contain a
  1067. * /reboot - static binary that would close all descriptors and
  1068. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1069. */
  1070. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1071. /*
  1072. * Special case for "unmounting" root ...
  1073. * we just try to remount it readonly.
  1074. */
  1075. down_write(&sb->s_umount);
  1076. if (!(sb->s_flags & MS_RDONLY))
  1077. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1078. up_write(&sb->s_umount);
  1079. return retval;
  1080. }
  1081. down_write(&namespace_sem);
  1082. br_write_lock(&vfsmount_lock);
  1083. event++;
  1084. if (!(flags & MNT_DETACH))
  1085. shrink_submounts(mnt, &umount_list);
  1086. retval = -EBUSY;
  1087. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1088. if (!list_empty(&mnt->mnt_list))
  1089. umount_tree(mnt, 1, &umount_list);
  1090. retval = 0;
  1091. }
  1092. br_write_unlock(&vfsmount_lock);
  1093. up_write(&namespace_sem);
  1094. release_mounts(&umount_list);
  1095. return retval;
  1096. }
  1097. /*
  1098. * Is the caller allowed to modify his namespace?
  1099. */
  1100. static inline bool may_mount(void)
  1101. {
  1102. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1103. }
  1104. /*
  1105. * Now umount can handle mount points as well as block devices.
  1106. * This is important for filesystems which use unnamed block devices.
  1107. *
  1108. * We now support a flag for forced unmount like the other 'big iron'
  1109. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1110. */
  1111. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1112. {
  1113. struct path path;
  1114. struct mount *mnt;
  1115. int retval;
  1116. int lookup_flags = 0;
  1117. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1118. return -EINVAL;
  1119. if (!may_mount())
  1120. return -EPERM;
  1121. if (!(flags & UMOUNT_NOFOLLOW))
  1122. lookup_flags |= LOOKUP_FOLLOW;
  1123. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1124. if (retval)
  1125. goto out;
  1126. mnt = real_mount(path.mnt);
  1127. retval = -EINVAL;
  1128. if (path.dentry != path.mnt->mnt_root)
  1129. goto dput_and_out;
  1130. if (!check_mnt(mnt))
  1131. goto dput_and_out;
  1132. retval = do_umount(mnt, flags);
  1133. dput_and_out:
  1134. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1135. dput(path.dentry);
  1136. mntput_no_expire(mnt);
  1137. out:
  1138. return retval;
  1139. }
  1140. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1141. /*
  1142. * The 2.0 compatible umount. No flags.
  1143. */
  1144. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1145. {
  1146. return sys_umount(name, 0);
  1147. }
  1148. #endif
  1149. static int mount_is_safe(struct path *path)
  1150. {
  1151. if (may_mount())
  1152. return 0;
  1153. return -EPERM;
  1154. #ifdef notyet
  1155. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1156. return -EPERM;
  1157. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1158. if (current_uid() != path->dentry->d_inode->i_uid)
  1159. return -EPERM;
  1160. }
  1161. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1162. return -EPERM;
  1163. return 0;
  1164. #endif
  1165. }
  1166. static bool mnt_ns_loop(struct path *path)
  1167. {
  1168. /* Could bind mounting the mount namespace inode cause a
  1169. * mount namespace loop?
  1170. */
  1171. struct inode *inode = path->dentry->d_inode;
  1172. struct proc_inode *ei;
  1173. struct mnt_namespace *mnt_ns;
  1174. if (!proc_ns_inode(inode))
  1175. return false;
  1176. ei = PROC_I(inode);
  1177. if (ei->ns_ops != &mntns_operations)
  1178. return false;
  1179. mnt_ns = ei->ns;
  1180. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1181. }
  1182. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1183. int flag)
  1184. {
  1185. struct mount *res, *p, *q, *r;
  1186. struct path path;
  1187. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1188. return ERR_PTR(-EINVAL);
  1189. res = q = clone_mnt(mnt, dentry, flag);
  1190. if (IS_ERR(q))
  1191. return q;
  1192. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1193. p = mnt;
  1194. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1195. struct mount *s;
  1196. if (!is_subdir(r->mnt_mountpoint, dentry))
  1197. continue;
  1198. for (s = r; s; s = next_mnt(s, r)) {
  1199. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1200. s = skip_mnt_tree(s);
  1201. continue;
  1202. }
  1203. while (p != s->mnt_parent) {
  1204. p = p->mnt_parent;
  1205. q = q->mnt_parent;
  1206. }
  1207. p = s;
  1208. path.mnt = &q->mnt;
  1209. path.dentry = p->mnt_mountpoint;
  1210. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1211. if (IS_ERR(q))
  1212. goto out;
  1213. br_write_lock(&vfsmount_lock);
  1214. list_add_tail(&q->mnt_list, &res->mnt_list);
  1215. attach_mnt(q, &path);
  1216. br_write_unlock(&vfsmount_lock);
  1217. }
  1218. }
  1219. return res;
  1220. out:
  1221. if (res) {
  1222. LIST_HEAD(umount_list);
  1223. br_write_lock(&vfsmount_lock);
  1224. umount_tree(res, 0, &umount_list);
  1225. br_write_unlock(&vfsmount_lock);
  1226. release_mounts(&umount_list);
  1227. }
  1228. return q;
  1229. }
  1230. /* Caller should check returned pointer for errors */
  1231. struct vfsmount *collect_mounts(struct path *path)
  1232. {
  1233. struct mount *tree;
  1234. down_write(&namespace_sem);
  1235. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1236. CL_COPY_ALL | CL_PRIVATE);
  1237. up_write(&namespace_sem);
  1238. if (IS_ERR(tree))
  1239. return NULL;
  1240. return &tree->mnt;
  1241. }
  1242. void drop_collected_mounts(struct vfsmount *mnt)
  1243. {
  1244. LIST_HEAD(umount_list);
  1245. down_write(&namespace_sem);
  1246. br_write_lock(&vfsmount_lock);
  1247. umount_tree(real_mount(mnt), 0, &umount_list);
  1248. br_write_unlock(&vfsmount_lock);
  1249. up_write(&namespace_sem);
  1250. release_mounts(&umount_list);
  1251. }
  1252. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1253. struct vfsmount *root)
  1254. {
  1255. struct mount *mnt;
  1256. int res = f(root, arg);
  1257. if (res)
  1258. return res;
  1259. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1260. res = f(&mnt->mnt, arg);
  1261. if (res)
  1262. return res;
  1263. }
  1264. return 0;
  1265. }
  1266. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1267. {
  1268. struct mount *p;
  1269. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1270. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1271. mnt_release_group_id(p);
  1272. }
  1273. }
  1274. static int invent_group_ids(struct mount *mnt, bool recurse)
  1275. {
  1276. struct mount *p;
  1277. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1278. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1279. int err = mnt_alloc_group_id(p);
  1280. if (err) {
  1281. cleanup_group_ids(mnt, p);
  1282. return err;
  1283. }
  1284. }
  1285. }
  1286. return 0;
  1287. }
  1288. /*
  1289. * @source_mnt : mount tree to be attached
  1290. * @nd : place the mount tree @source_mnt is attached
  1291. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1292. * store the parent mount and mountpoint dentry.
  1293. * (done when source_mnt is moved)
  1294. *
  1295. * NOTE: in the table below explains the semantics when a source mount
  1296. * of a given type is attached to a destination mount of a given type.
  1297. * ---------------------------------------------------------------------------
  1298. * | BIND MOUNT OPERATION |
  1299. * |**************************************************************************
  1300. * | source-->| shared | private | slave | unbindable |
  1301. * | dest | | | | |
  1302. * | | | | | | |
  1303. * | v | | | | |
  1304. * |**************************************************************************
  1305. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1306. * | | | | | |
  1307. * |non-shared| shared (+) | private | slave (*) | invalid |
  1308. * ***************************************************************************
  1309. * A bind operation clones the source mount and mounts the clone on the
  1310. * destination mount.
  1311. *
  1312. * (++) the cloned mount is propagated to all the mounts in the propagation
  1313. * tree of the destination mount and the cloned mount is added to
  1314. * the peer group of the source mount.
  1315. * (+) the cloned mount is created under the destination mount and is marked
  1316. * as shared. The cloned mount is added to the peer group of the source
  1317. * mount.
  1318. * (+++) the mount is propagated to all the mounts in the propagation tree
  1319. * of the destination mount and the cloned mount is made slave
  1320. * of the same master as that of the source mount. The cloned mount
  1321. * is marked as 'shared and slave'.
  1322. * (*) the cloned mount is made a slave of the same master as that of the
  1323. * source mount.
  1324. *
  1325. * ---------------------------------------------------------------------------
  1326. * | MOVE MOUNT OPERATION |
  1327. * |**************************************************************************
  1328. * | source-->| shared | private | slave | unbindable |
  1329. * | dest | | | | |
  1330. * | | | | | | |
  1331. * | v | | | | |
  1332. * |**************************************************************************
  1333. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1334. * | | | | | |
  1335. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1336. * ***************************************************************************
  1337. *
  1338. * (+) the mount is moved to the destination. And is then propagated to
  1339. * all the mounts in the propagation tree of the destination mount.
  1340. * (+*) the mount is moved to the destination.
  1341. * (+++) the mount is moved to the destination and is then propagated to
  1342. * all the mounts belonging to the destination mount's propagation tree.
  1343. * the mount is marked as 'shared and slave'.
  1344. * (*) the mount continues to be a slave at the new location.
  1345. *
  1346. * if the source mount is a tree, the operations explained above is
  1347. * applied to each mount in the tree.
  1348. * Must be called without spinlocks held, since this function can sleep
  1349. * in allocations.
  1350. */
  1351. static int attach_recursive_mnt(struct mount *source_mnt,
  1352. struct path *path, struct path *parent_path)
  1353. {
  1354. LIST_HEAD(tree_list);
  1355. struct mount *dest_mnt = real_mount(path->mnt);
  1356. struct dentry *dest_dentry = path->dentry;
  1357. struct mount *child, *p;
  1358. int err;
  1359. if (IS_MNT_SHARED(dest_mnt)) {
  1360. err = invent_group_ids(source_mnt, true);
  1361. if (err)
  1362. goto out;
  1363. }
  1364. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1365. if (err)
  1366. goto out_cleanup_ids;
  1367. br_write_lock(&vfsmount_lock);
  1368. if (IS_MNT_SHARED(dest_mnt)) {
  1369. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1370. set_mnt_shared(p);
  1371. }
  1372. if (parent_path) {
  1373. detach_mnt(source_mnt, parent_path);
  1374. attach_mnt(source_mnt, path);
  1375. touch_mnt_namespace(source_mnt->mnt_ns);
  1376. } else {
  1377. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1378. commit_tree(source_mnt);
  1379. }
  1380. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1381. list_del_init(&child->mnt_hash);
  1382. commit_tree(child);
  1383. }
  1384. br_write_unlock(&vfsmount_lock);
  1385. return 0;
  1386. out_cleanup_ids:
  1387. if (IS_MNT_SHARED(dest_mnt))
  1388. cleanup_group_ids(source_mnt, NULL);
  1389. out:
  1390. return err;
  1391. }
  1392. static int lock_mount(struct path *path)
  1393. {
  1394. struct vfsmount *mnt;
  1395. retry:
  1396. mutex_lock(&path->dentry->d_inode->i_mutex);
  1397. if (unlikely(cant_mount(path->dentry))) {
  1398. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1399. return -ENOENT;
  1400. }
  1401. down_write(&namespace_sem);
  1402. mnt = lookup_mnt(path);
  1403. if (likely(!mnt))
  1404. return 0;
  1405. up_write(&namespace_sem);
  1406. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1407. path_put(path);
  1408. path->mnt = mnt;
  1409. path->dentry = dget(mnt->mnt_root);
  1410. goto retry;
  1411. }
  1412. static void unlock_mount(struct path *path)
  1413. {
  1414. up_write(&namespace_sem);
  1415. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1416. }
  1417. static int graft_tree(struct mount *mnt, struct path *path)
  1418. {
  1419. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1420. return -EINVAL;
  1421. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1422. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1423. return -ENOTDIR;
  1424. if (d_unlinked(path->dentry))
  1425. return -ENOENT;
  1426. return attach_recursive_mnt(mnt, path, NULL);
  1427. }
  1428. /*
  1429. * Sanity check the flags to change_mnt_propagation.
  1430. */
  1431. static int flags_to_propagation_type(int flags)
  1432. {
  1433. int type = flags & ~(MS_REC | MS_SILENT);
  1434. /* Fail if any non-propagation flags are set */
  1435. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1436. return 0;
  1437. /* Only one propagation flag should be set */
  1438. if (!is_power_of_2(type))
  1439. return 0;
  1440. return type;
  1441. }
  1442. /*
  1443. * recursively change the type of the mountpoint.
  1444. */
  1445. static int do_change_type(struct path *path, int flag)
  1446. {
  1447. struct mount *m;
  1448. struct mount *mnt = real_mount(path->mnt);
  1449. int recurse = flag & MS_REC;
  1450. int type;
  1451. int err = 0;
  1452. if (!may_mount())
  1453. return -EPERM;
  1454. if (path->dentry != path->mnt->mnt_root)
  1455. return -EINVAL;
  1456. type = flags_to_propagation_type(flag);
  1457. if (!type)
  1458. return -EINVAL;
  1459. down_write(&namespace_sem);
  1460. if (type == MS_SHARED) {
  1461. err = invent_group_ids(mnt, recurse);
  1462. if (err)
  1463. goto out_unlock;
  1464. }
  1465. br_write_lock(&vfsmount_lock);
  1466. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1467. change_mnt_propagation(m, type);
  1468. br_write_unlock(&vfsmount_lock);
  1469. out_unlock:
  1470. up_write(&namespace_sem);
  1471. return err;
  1472. }
  1473. /*
  1474. * do loopback mount.
  1475. */
  1476. static int do_loopback(struct path *path, const char *old_name,
  1477. int recurse)
  1478. {
  1479. LIST_HEAD(umount_list);
  1480. struct path old_path;
  1481. struct mount *mnt = NULL, *old;
  1482. int err = mount_is_safe(path);
  1483. if (err)
  1484. return err;
  1485. if (!old_name || !*old_name)
  1486. return -EINVAL;
  1487. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1488. if (err)
  1489. return err;
  1490. err = -EINVAL;
  1491. if (mnt_ns_loop(&old_path))
  1492. goto out;
  1493. err = lock_mount(path);
  1494. if (err)
  1495. goto out;
  1496. old = real_mount(old_path.mnt);
  1497. err = -EINVAL;
  1498. if (IS_MNT_UNBINDABLE(old))
  1499. goto out2;
  1500. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1501. goto out2;
  1502. if (recurse)
  1503. mnt = copy_tree(old, old_path.dentry, 0);
  1504. else
  1505. mnt = clone_mnt(old, old_path.dentry, 0);
  1506. if (IS_ERR(mnt)) {
  1507. err = PTR_ERR(mnt);
  1508. goto out;
  1509. }
  1510. err = graft_tree(mnt, path);
  1511. if (err) {
  1512. br_write_lock(&vfsmount_lock);
  1513. umount_tree(mnt, 0, &umount_list);
  1514. br_write_unlock(&vfsmount_lock);
  1515. }
  1516. out2:
  1517. unlock_mount(path);
  1518. release_mounts(&umount_list);
  1519. out:
  1520. path_put(&old_path);
  1521. return err;
  1522. }
  1523. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1524. {
  1525. int error = 0;
  1526. int readonly_request = 0;
  1527. if (ms_flags & MS_RDONLY)
  1528. readonly_request = 1;
  1529. if (readonly_request == __mnt_is_readonly(mnt))
  1530. return 0;
  1531. if (readonly_request)
  1532. error = mnt_make_readonly(real_mount(mnt));
  1533. else
  1534. __mnt_unmake_readonly(real_mount(mnt));
  1535. return error;
  1536. }
  1537. /*
  1538. * change filesystem flags. dir should be a physical root of filesystem.
  1539. * If you've mounted a non-root directory somewhere and want to do remount
  1540. * on it - tough luck.
  1541. */
  1542. static int do_remount(struct path *path, int flags, int mnt_flags,
  1543. void *data)
  1544. {
  1545. int err;
  1546. struct super_block *sb = path->mnt->mnt_sb;
  1547. struct mount *mnt = real_mount(path->mnt);
  1548. if (!capable(CAP_SYS_ADMIN))
  1549. return -EPERM;
  1550. if (!check_mnt(mnt))
  1551. return -EINVAL;
  1552. if (path->dentry != path->mnt->mnt_root)
  1553. return -EINVAL;
  1554. err = security_sb_remount(sb, data);
  1555. if (err)
  1556. return err;
  1557. down_write(&sb->s_umount);
  1558. if (flags & MS_BIND)
  1559. err = change_mount_flags(path->mnt, flags);
  1560. else
  1561. err = do_remount_sb(sb, flags, data, 0);
  1562. if (!err) {
  1563. br_write_lock(&vfsmount_lock);
  1564. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1565. mnt->mnt.mnt_flags = mnt_flags;
  1566. br_write_unlock(&vfsmount_lock);
  1567. }
  1568. up_write(&sb->s_umount);
  1569. if (!err) {
  1570. br_write_lock(&vfsmount_lock);
  1571. touch_mnt_namespace(mnt->mnt_ns);
  1572. br_write_unlock(&vfsmount_lock);
  1573. }
  1574. return err;
  1575. }
  1576. static inline int tree_contains_unbindable(struct mount *mnt)
  1577. {
  1578. struct mount *p;
  1579. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1580. if (IS_MNT_UNBINDABLE(p))
  1581. return 1;
  1582. }
  1583. return 0;
  1584. }
  1585. static int do_move_mount(struct path *path, const char *old_name)
  1586. {
  1587. struct path old_path, parent_path;
  1588. struct mount *p;
  1589. struct mount *old;
  1590. int err = 0;
  1591. if (!may_mount())
  1592. return -EPERM;
  1593. if (!old_name || !*old_name)
  1594. return -EINVAL;
  1595. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1596. if (err)
  1597. return err;
  1598. err = lock_mount(path);
  1599. if (err < 0)
  1600. goto out;
  1601. old = real_mount(old_path.mnt);
  1602. p = real_mount(path->mnt);
  1603. err = -EINVAL;
  1604. if (!check_mnt(p) || !check_mnt(old))
  1605. goto out1;
  1606. if (d_unlinked(path->dentry))
  1607. goto out1;
  1608. err = -EINVAL;
  1609. if (old_path.dentry != old_path.mnt->mnt_root)
  1610. goto out1;
  1611. if (!mnt_has_parent(old))
  1612. goto out1;
  1613. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1614. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1615. goto out1;
  1616. /*
  1617. * Don't move a mount residing in a shared parent.
  1618. */
  1619. if (IS_MNT_SHARED(old->mnt_parent))
  1620. goto out1;
  1621. /*
  1622. * Don't move a mount tree containing unbindable mounts to a destination
  1623. * mount which is shared.
  1624. */
  1625. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1626. goto out1;
  1627. err = -ELOOP;
  1628. for (; mnt_has_parent(p); p = p->mnt_parent)
  1629. if (p == old)
  1630. goto out1;
  1631. err = attach_recursive_mnt(old, path, &parent_path);
  1632. if (err)
  1633. goto out1;
  1634. /* if the mount is moved, it should no longer be expire
  1635. * automatically */
  1636. list_del_init(&old->mnt_expire);
  1637. out1:
  1638. unlock_mount(path);
  1639. out:
  1640. if (!err)
  1641. path_put(&parent_path);
  1642. path_put(&old_path);
  1643. return err;
  1644. }
  1645. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1646. {
  1647. int err;
  1648. const char *subtype = strchr(fstype, '.');
  1649. if (subtype) {
  1650. subtype++;
  1651. err = -EINVAL;
  1652. if (!subtype[0])
  1653. goto err;
  1654. } else
  1655. subtype = "";
  1656. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1657. err = -ENOMEM;
  1658. if (!mnt->mnt_sb->s_subtype)
  1659. goto err;
  1660. return mnt;
  1661. err:
  1662. mntput(mnt);
  1663. return ERR_PTR(err);
  1664. }
  1665. /*
  1666. * add a mount into a namespace's mount tree
  1667. */
  1668. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1669. {
  1670. int err;
  1671. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1672. err = lock_mount(path);
  1673. if (err)
  1674. return err;
  1675. err = -EINVAL;
  1676. if (unlikely(!check_mnt(real_mount(path->mnt)))) {
  1677. /* that's acceptable only for automounts done in private ns */
  1678. if (!(mnt_flags & MNT_SHRINKABLE))
  1679. goto unlock;
  1680. /* ... and for those we'd better have mountpoint still alive */
  1681. if (!real_mount(path->mnt)->mnt_ns)
  1682. goto unlock;
  1683. }
  1684. /* Refuse the same filesystem on the same mount point */
  1685. err = -EBUSY;
  1686. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1687. path->mnt->mnt_root == path->dentry)
  1688. goto unlock;
  1689. err = -EINVAL;
  1690. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1691. goto unlock;
  1692. newmnt->mnt.mnt_flags = mnt_flags;
  1693. err = graft_tree(newmnt, path);
  1694. unlock:
  1695. unlock_mount(path);
  1696. return err;
  1697. }
  1698. /*
  1699. * create a new mount for userspace and request it to be added into the
  1700. * namespace's tree
  1701. */
  1702. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1703. int mnt_flags, const char *name, void *data)
  1704. {
  1705. struct file_system_type *type;
  1706. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1707. struct vfsmount *mnt;
  1708. int err;
  1709. if (!fstype)
  1710. return -EINVAL;
  1711. if (!may_mount())
  1712. return -EPERM;
  1713. type = get_fs_type(fstype);
  1714. if (!type)
  1715. return -ENODEV;
  1716. if (user_ns != &init_user_ns) {
  1717. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1718. put_filesystem(type);
  1719. return -EPERM;
  1720. }
  1721. /* Only in special cases allow devices from mounts
  1722. * created outside the initial user namespace.
  1723. */
  1724. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1725. flags |= MS_NODEV;
  1726. mnt_flags |= MNT_NODEV;
  1727. }
  1728. }
  1729. mnt = vfs_kern_mount(type, flags, name, data);
  1730. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1731. !mnt->mnt_sb->s_subtype)
  1732. mnt = fs_set_subtype(mnt, fstype);
  1733. put_filesystem(type);
  1734. if (IS_ERR(mnt))
  1735. return PTR_ERR(mnt);
  1736. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1737. if (err)
  1738. mntput(mnt);
  1739. return err;
  1740. }
  1741. int finish_automount(struct vfsmount *m, struct path *path)
  1742. {
  1743. struct mount *mnt = real_mount(m);
  1744. int err;
  1745. /* The new mount record should have at least 2 refs to prevent it being
  1746. * expired before we get a chance to add it
  1747. */
  1748. BUG_ON(mnt_get_count(mnt) < 2);
  1749. if (m->mnt_sb == path->mnt->mnt_sb &&
  1750. m->mnt_root == path->dentry) {
  1751. err = -ELOOP;
  1752. goto fail;
  1753. }
  1754. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1755. if (!err)
  1756. return 0;
  1757. fail:
  1758. /* remove m from any expiration list it may be on */
  1759. if (!list_empty(&mnt->mnt_expire)) {
  1760. down_write(&namespace_sem);
  1761. br_write_lock(&vfsmount_lock);
  1762. list_del_init(&mnt->mnt_expire);
  1763. br_write_unlock(&vfsmount_lock);
  1764. up_write(&namespace_sem);
  1765. }
  1766. mntput(m);
  1767. mntput(m);
  1768. return err;
  1769. }
  1770. /**
  1771. * mnt_set_expiry - Put a mount on an expiration list
  1772. * @mnt: The mount to list.
  1773. * @expiry_list: The list to add the mount to.
  1774. */
  1775. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1776. {
  1777. down_write(&namespace_sem);
  1778. br_write_lock(&vfsmount_lock);
  1779. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1780. br_write_unlock(&vfsmount_lock);
  1781. up_write(&namespace_sem);
  1782. }
  1783. EXPORT_SYMBOL(mnt_set_expiry);
  1784. /*
  1785. * process a list of expirable mountpoints with the intent of discarding any
  1786. * mountpoints that aren't in use and haven't been touched since last we came
  1787. * here
  1788. */
  1789. void mark_mounts_for_expiry(struct list_head *mounts)
  1790. {
  1791. struct mount *mnt, *next;
  1792. LIST_HEAD(graveyard);
  1793. LIST_HEAD(umounts);
  1794. if (list_empty(mounts))
  1795. return;
  1796. down_write(&namespace_sem);
  1797. br_write_lock(&vfsmount_lock);
  1798. /* extract from the expiration list every vfsmount that matches the
  1799. * following criteria:
  1800. * - only referenced by its parent vfsmount
  1801. * - still marked for expiry (marked on the last call here; marks are
  1802. * cleared by mntput())
  1803. */
  1804. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1805. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1806. propagate_mount_busy(mnt, 1))
  1807. continue;
  1808. list_move(&mnt->mnt_expire, &graveyard);
  1809. }
  1810. while (!list_empty(&graveyard)) {
  1811. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1812. touch_mnt_namespace(mnt->mnt_ns);
  1813. umount_tree(mnt, 1, &umounts);
  1814. }
  1815. br_write_unlock(&vfsmount_lock);
  1816. up_write(&namespace_sem);
  1817. release_mounts(&umounts);
  1818. }
  1819. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1820. /*
  1821. * Ripoff of 'select_parent()'
  1822. *
  1823. * search the list of submounts for a given mountpoint, and move any
  1824. * shrinkable submounts to the 'graveyard' list.
  1825. */
  1826. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1827. {
  1828. struct mount *this_parent = parent;
  1829. struct list_head *next;
  1830. int found = 0;
  1831. repeat:
  1832. next = this_parent->mnt_mounts.next;
  1833. resume:
  1834. while (next != &this_parent->mnt_mounts) {
  1835. struct list_head *tmp = next;
  1836. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1837. next = tmp->next;
  1838. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1839. continue;
  1840. /*
  1841. * Descend a level if the d_mounts list is non-empty.
  1842. */
  1843. if (!list_empty(&mnt->mnt_mounts)) {
  1844. this_parent = mnt;
  1845. goto repeat;
  1846. }
  1847. if (!propagate_mount_busy(mnt, 1)) {
  1848. list_move_tail(&mnt->mnt_expire, graveyard);
  1849. found++;
  1850. }
  1851. }
  1852. /*
  1853. * All done at this level ... ascend and resume the search
  1854. */
  1855. if (this_parent != parent) {
  1856. next = this_parent->mnt_child.next;
  1857. this_parent = this_parent->mnt_parent;
  1858. goto resume;
  1859. }
  1860. return found;
  1861. }
  1862. /*
  1863. * process a list of expirable mountpoints with the intent of discarding any
  1864. * submounts of a specific parent mountpoint
  1865. *
  1866. * vfsmount_lock must be held for write
  1867. */
  1868. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1869. {
  1870. LIST_HEAD(graveyard);
  1871. struct mount *m;
  1872. /* extract submounts of 'mountpoint' from the expiration list */
  1873. while (select_submounts(mnt, &graveyard)) {
  1874. while (!list_empty(&graveyard)) {
  1875. m = list_first_entry(&graveyard, struct mount,
  1876. mnt_expire);
  1877. touch_mnt_namespace(m->mnt_ns);
  1878. umount_tree(m, 1, umounts);
  1879. }
  1880. }
  1881. }
  1882. /*
  1883. * Some copy_from_user() implementations do not return the exact number of
  1884. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1885. * Note that this function differs from copy_from_user() in that it will oops
  1886. * on bad values of `to', rather than returning a short copy.
  1887. */
  1888. static long exact_copy_from_user(void *to, const void __user * from,
  1889. unsigned long n)
  1890. {
  1891. char *t = to;
  1892. const char __user *f = from;
  1893. char c;
  1894. if (!access_ok(VERIFY_READ, from, n))
  1895. return n;
  1896. while (n) {
  1897. if (__get_user(c, f)) {
  1898. memset(t, 0, n);
  1899. break;
  1900. }
  1901. *t++ = c;
  1902. f++;
  1903. n--;
  1904. }
  1905. return n;
  1906. }
  1907. int copy_mount_options(const void __user * data, unsigned long *where)
  1908. {
  1909. int i;
  1910. unsigned long page;
  1911. unsigned long size;
  1912. *where = 0;
  1913. if (!data)
  1914. return 0;
  1915. if (!(page = __get_free_page(GFP_KERNEL)))
  1916. return -ENOMEM;
  1917. /* We only care that *some* data at the address the user
  1918. * gave us is valid. Just in case, we'll zero
  1919. * the remainder of the page.
  1920. */
  1921. /* copy_from_user cannot cross TASK_SIZE ! */
  1922. size = TASK_SIZE - (unsigned long)data;
  1923. if (size > PAGE_SIZE)
  1924. size = PAGE_SIZE;
  1925. i = size - exact_copy_from_user((void *)page, data, size);
  1926. if (!i) {
  1927. free_page(page);
  1928. return -EFAULT;
  1929. }
  1930. if (i != PAGE_SIZE)
  1931. memset((char *)page + i, 0, PAGE_SIZE - i);
  1932. *where = page;
  1933. return 0;
  1934. }
  1935. int copy_mount_string(const void __user *data, char **where)
  1936. {
  1937. char *tmp;
  1938. if (!data) {
  1939. *where = NULL;
  1940. return 0;
  1941. }
  1942. tmp = strndup_user(data, PAGE_SIZE);
  1943. if (IS_ERR(tmp))
  1944. return PTR_ERR(tmp);
  1945. *where = tmp;
  1946. return 0;
  1947. }
  1948. /*
  1949. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1950. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1951. *
  1952. * data is a (void *) that can point to any structure up to
  1953. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1954. * information (or be NULL).
  1955. *
  1956. * Pre-0.97 versions of mount() didn't have a flags word.
  1957. * When the flags word was introduced its top half was required
  1958. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1959. * Therefore, if this magic number is present, it carries no information
  1960. * and must be discarded.
  1961. */
  1962. long do_mount(const char *dev_name, const char *dir_name,
  1963. const char *type_page, unsigned long flags, void *data_page)
  1964. {
  1965. struct path path;
  1966. int retval = 0;
  1967. int mnt_flags = 0;
  1968. /* Discard magic */
  1969. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1970. flags &= ~MS_MGC_MSK;
  1971. /* Basic sanity checks */
  1972. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1973. return -EINVAL;
  1974. if (data_page)
  1975. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1976. /* ... and get the mountpoint */
  1977. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1978. if (retval)
  1979. return retval;
  1980. retval = security_sb_mount(dev_name, &path,
  1981. type_page, flags, data_page);
  1982. if (retval)
  1983. goto dput_out;
  1984. /* Default to relatime unless overriden */
  1985. if (!(flags & MS_NOATIME))
  1986. mnt_flags |= MNT_RELATIME;
  1987. /* Separate the per-mountpoint flags */
  1988. if (flags & MS_NOSUID)
  1989. mnt_flags |= MNT_NOSUID;
  1990. if (flags & MS_NODEV)
  1991. mnt_flags |= MNT_NODEV;
  1992. if (flags & MS_NOEXEC)
  1993. mnt_flags |= MNT_NOEXEC;
  1994. if (flags & MS_NOATIME)
  1995. mnt_flags |= MNT_NOATIME;
  1996. if (flags & MS_NODIRATIME)
  1997. mnt_flags |= MNT_NODIRATIME;
  1998. if (flags & MS_STRICTATIME)
  1999. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2000. if (flags & MS_RDONLY)
  2001. mnt_flags |= MNT_READONLY;
  2002. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2003. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2004. MS_STRICTATIME);
  2005. if (flags & MS_REMOUNT)
  2006. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2007. data_page);
  2008. else if (flags & MS_BIND)
  2009. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2010. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2011. retval = do_change_type(&path, flags);
  2012. else if (flags & MS_MOVE)
  2013. retval = do_move_mount(&path, dev_name);
  2014. else
  2015. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2016. dev_name, data_page);
  2017. dput_out:
  2018. path_put(&path);
  2019. return retval;
  2020. }
  2021. static void free_mnt_ns(struct mnt_namespace *ns)
  2022. {
  2023. proc_free_inum(ns->proc_inum);
  2024. put_user_ns(ns->user_ns);
  2025. kfree(ns);
  2026. }
  2027. /*
  2028. * Assign a sequence number so we can detect when we attempt to bind
  2029. * mount a reference to an older mount namespace into the current
  2030. * mount namespace, preventing reference counting loops. A 64bit
  2031. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2032. * is effectively never, so we can ignore the possibility.
  2033. */
  2034. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2035. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2036. {
  2037. struct mnt_namespace *new_ns;
  2038. int ret;
  2039. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2040. if (!new_ns)
  2041. return ERR_PTR(-ENOMEM);
  2042. ret = proc_alloc_inum(&new_ns->proc_inum);
  2043. if (ret) {
  2044. kfree(new_ns);
  2045. return ERR_PTR(ret);
  2046. }
  2047. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2048. atomic_set(&new_ns->count, 1);
  2049. new_ns->root = NULL;
  2050. INIT_LIST_HEAD(&new_ns->list);
  2051. init_waitqueue_head(&new_ns->poll);
  2052. new_ns->event = 0;
  2053. new_ns->user_ns = get_user_ns(user_ns);
  2054. return new_ns;
  2055. }
  2056. /*
  2057. * Allocate a new namespace structure and populate it with contents
  2058. * copied from the namespace of the passed in task structure.
  2059. */
  2060. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2061. struct user_namespace *user_ns, struct fs_struct *fs)
  2062. {
  2063. struct mnt_namespace *new_ns;
  2064. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2065. struct mount *p, *q;
  2066. struct mount *old = mnt_ns->root;
  2067. struct mount *new;
  2068. int copy_flags;
  2069. new_ns = alloc_mnt_ns(user_ns);
  2070. if (IS_ERR(new_ns))
  2071. return new_ns;
  2072. down_write(&namespace_sem);
  2073. /* First pass: copy the tree topology */
  2074. copy_flags = CL_COPY_ALL | CL_EXPIRE;
  2075. if (user_ns != mnt_ns->user_ns)
  2076. copy_flags |= CL_SHARED_TO_SLAVE;
  2077. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2078. if (IS_ERR(new)) {
  2079. up_write(&namespace_sem);
  2080. free_mnt_ns(new_ns);
  2081. return ERR_CAST(new);
  2082. }
  2083. new_ns->root = new;
  2084. br_write_lock(&vfsmount_lock);
  2085. list_add_tail(&new_ns->list, &new->mnt_list);
  2086. br_write_unlock(&vfsmount_lock);
  2087. /*
  2088. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2089. * as belonging to new namespace. We have already acquired a private
  2090. * fs_struct, so tsk->fs->lock is not needed.
  2091. */
  2092. p = old;
  2093. q = new;
  2094. while (p) {
  2095. q->mnt_ns = new_ns;
  2096. if (fs) {
  2097. if (&p->mnt == fs->root.mnt) {
  2098. fs->root.mnt = mntget(&q->mnt);
  2099. rootmnt = &p->mnt;
  2100. }
  2101. if (&p->mnt == fs->pwd.mnt) {
  2102. fs->pwd.mnt = mntget(&q->mnt);
  2103. pwdmnt = &p->mnt;
  2104. }
  2105. }
  2106. p = next_mnt(p, old);
  2107. q = next_mnt(q, new);
  2108. }
  2109. up_write(&namespace_sem);
  2110. if (rootmnt)
  2111. mntput(rootmnt);
  2112. if (pwdmnt)
  2113. mntput(pwdmnt);
  2114. return new_ns;
  2115. }
  2116. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2117. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2118. {
  2119. struct mnt_namespace *new_ns;
  2120. BUG_ON(!ns);
  2121. get_mnt_ns(ns);
  2122. if (!(flags & CLONE_NEWNS))
  2123. return ns;
  2124. new_ns = dup_mnt_ns(ns, user_ns, new_fs);
  2125. put_mnt_ns(ns);
  2126. return new_ns;
  2127. }
  2128. /**
  2129. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2130. * @mnt: pointer to the new root filesystem mountpoint
  2131. */
  2132. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2133. {
  2134. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2135. if (!IS_ERR(new_ns)) {
  2136. struct mount *mnt = real_mount(m);
  2137. mnt->mnt_ns = new_ns;
  2138. new_ns->root = mnt;
  2139. list_add(&new_ns->list, &mnt->mnt_list);
  2140. } else {
  2141. mntput(m);
  2142. }
  2143. return new_ns;
  2144. }
  2145. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2146. {
  2147. struct mnt_namespace *ns;
  2148. struct super_block *s;
  2149. struct path path;
  2150. int err;
  2151. ns = create_mnt_ns(mnt);
  2152. if (IS_ERR(ns))
  2153. return ERR_CAST(ns);
  2154. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2155. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2156. put_mnt_ns(ns);
  2157. if (err)
  2158. return ERR_PTR(err);
  2159. /* trade a vfsmount reference for active sb one */
  2160. s = path.mnt->mnt_sb;
  2161. atomic_inc(&s->s_active);
  2162. mntput(path.mnt);
  2163. /* lock the sucker */
  2164. down_write(&s->s_umount);
  2165. /* ... and return the root of (sub)tree on it */
  2166. return path.dentry;
  2167. }
  2168. EXPORT_SYMBOL(mount_subtree);
  2169. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2170. char __user *, type, unsigned long, flags, void __user *, data)
  2171. {
  2172. int ret;
  2173. char *kernel_type;
  2174. struct filename *kernel_dir;
  2175. char *kernel_dev;
  2176. unsigned long data_page;
  2177. ret = copy_mount_string(type, &kernel_type);
  2178. if (ret < 0)
  2179. goto out_type;
  2180. kernel_dir = getname(dir_name);
  2181. if (IS_ERR(kernel_dir)) {
  2182. ret = PTR_ERR(kernel_dir);
  2183. goto out_dir;
  2184. }
  2185. ret = copy_mount_string(dev_name, &kernel_dev);
  2186. if (ret < 0)
  2187. goto out_dev;
  2188. ret = copy_mount_options(data, &data_page);
  2189. if (ret < 0)
  2190. goto out_data;
  2191. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2192. (void *) data_page);
  2193. free_page(data_page);
  2194. out_data:
  2195. kfree(kernel_dev);
  2196. out_dev:
  2197. putname(kernel_dir);
  2198. out_dir:
  2199. kfree(kernel_type);
  2200. out_type:
  2201. return ret;
  2202. }
  2203. /*
  2204. * Return true if path is reachable from root
  2205. *
  2206. * namespace_sem or vfsmount_lock is held
  2207. */
  2208. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2209. const struct path *root)
  2210. {
  2211. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2212. dentry = mnt->mnt_mountpoint;
  2213. mnt = mnt->mnt_parent;
  2214. }
  2215. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2216. }
  2217. int path_is_under(struct path *path1, struct path *path2)
  2218. {
  2219. int res;
  2220. br_read_lock(&vfsmount_lock);
  2221. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2222. br_read_unlock(&vfsmount_lock);
  2223. return res;
  2224. }
  2225. EXPORT_SYMBOL(path_is_under);
  2226. /*
  2227. * pivot_root Semantics:
  2228. * Moves the root file system of the current process to the directory put_old,
  2229. * makes new_root as the new root file system of the current process, and sets
  2230. * root/cwd of all processes which had them on the current root to new_root.
  2231. *
  2232. * Restrictions:
  2233. * The new_root and put_old must be directories, and must not be on the
  2234. * same file system as the current process root. The put_old must be
  2235. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2236. * pointed to by put_old must yield the same directory as new_root. No other
  2237. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2238. *
  2239. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2240. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2241. * in this situation.
  2242. *
  2243. * Notes:
  2244. * - we don't move root/cwd if they are not at the root (reason: if something
  2245. * cared enough to change them, it's probably wrong to force them elsewhere)
  2246. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2247. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2248. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2249. * first.
  2250. */
  2251. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2252. const char __user *, put_old)
  2253. {
  2254. struct path new, old, parent_path, root_parent, root;
  2255. struct mount *new_mnt, *root_mnt;
  2256. int error;
  2257. if (!may_mount())
  2258. return -EPERM;
  2259. error = user_path_dir(new_root, &new);
  2260. if (error)
  2261. goto out0;
  2262. error = user_path_dir(put_old, &old);
  2263. if (error)
  2264. goto out1;
  2265. error = security_sb_pivotroot(&old, &new);
  2266. if (error)
  2267. goto out2;
  2268. get_fs_root(current->fs, &root);
  2269. error = lock_mount(&old);
  2270. if (error)
  2271. goto out3;
  2272. error = -EINVAL;
  2273. new_mnt = real_mount(new.mnt);
  2274. root_mnt = real_mount(root.mnt);
  2275. if (IS_MNT_SHARED(real_mount(old.mnt)) ||
  2276. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2277. IS_MNT_SHARED(root_mnt->mnt_parent))
  2278. goto out4;
  2279. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2280. goto out4;
  2281. error = -ENOENT;
  2282. if (d_unlinked(new.dentry))
  2283. goto out4;
  2284. if (d_unlinked(old.dentry))
  2285. goto out4;
  2286. error = -EBUSY;
  2287. if (new.mnt == root.mnt ||
  2288. old.mnt == root.mnt)
  2289. goto out4; /* loop, on the same file system */
  2290. error = -EINVAL;
  2291. if (root.mnt->mnt_root != root.dentry)
  2292. goto out4; /* not a mountpoint */
  2293. if (!mnt_has_parent(root_mnt))
  2294. goto out4; /* not attached */
  2295. if (new.mnt->mnt_root != new.dentry)
  2296. goto out4; /* not a mountpoint */
  2297. if (!mnt_has_parent(new_mnt))
  2298. goto out4; /* not attached */
  2299. /* make sure we can reach put_old from new_root */
  2300. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2301. goto out4;
  2302. br_write_lock(&vfsmount_lock);
  2303. detach_mnt(new_mnt, &parent_path);
  2304. detach_mnt(root_mnt, &root_parent);
  2305. /* mount old root on put_old */
  2306. attach_mnt(root_mnt, &old);
  2307. /* mount new_root on / */
  2308. attach_mnt(new_mnt, &root_parent);
  2309. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2310. br_write_unlock(&vfsmount_lock);
  2311. chroot_fs_refs(&root, &new);
  2312. error = 0;
  2313. out4:
  2314. unlock_mount(&old);
  2315. if (!error) {
  2316. path_put(&root_parent);
  2317. path_put(&parent_path);
  2318. }
  2319. out3:
  2320. path_put(&root);
  2321. out2:
  2322. path_put(&old);
  2323. out1:
  2324. path_put(&new);
  2325. out0:
  2326. return error;
  2327. }
  2328. static void __init init_mount_tree(void)
  2329. {
  2330. struct vfsmount *mnt;
  2331. struct mnt_namespace *ns;
  2332. struct path root;
  2333. struct file_system_type *type;
  2334. type = get_fs_type("rootfs");
  2335. if (!type)
  2336. panic("Can't find rootfs type");
  2337. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2338. put_filesystem(type);
  2339. if (IS_ERR(mnt))
  2340. panic("Can't create rootfs");
  2341. ns = create_mnt_ns(mnt);
  2342. if (IS_ERR(ns))
  2343. panic("Can't allocate initial namespace");
  2344. init_task.nsproxy->mnt_ns = ns;
  2345. get_mnt_ns(ns);
  2346. root.mnt = mnt;
  2347. root.dentry = mnt->mnt_root;
  2348. set_fs_pwd(current->fs, &root);
  2349. set_fs_root(current->fs, &root);
  2350. }
  2351. void __init mnt_init(void)
  2352. {
  2353. unsigned u;
  2354. int err;
  2355. init_rwsem(&namespace_sem);
  2356. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2357. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2358. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2359. if (!mount_hashtable)
  2360. panic("Failed to allocate mount hash table\n");
  2361. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2362. for (u = 0; u < HASH_SIZE; u++)
  2363. INIT_LIST_HEAD(&mount_hashtable[u]);
  2364. br_lock_init(&vfsmount_lock);
  2365. err = sysfs_init();
  2366. if (err)
  2367. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2368. __func__, err);
  2369. fs_kobj = kobject_create_and_add("fs", NULL);
  2370. if (!fs_kobj)
  2371. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2372. init_rootfs();
  2373. init_mount_tree();
  2374. }
  2375. void put_mnt_ns(struct mnt_namespace *ns)
  2376. {
  2377. LIST_HEAD(umount_list);
  2378. if (!atomic_dec_and_test(&ns->count))
  2379. return;
  2380. down_write(&namespace_sem);
  2381. br_write_lock(&vfsmount_lock);
  2382. umount_tree(ns->root, 0, &umount_list);
  2383. br_write_unlock(&vfsmount_lock);
  2384. up_write(&namespace_sem);
  2385. release_mounts(&umount_list);
  2386. free_mnt_ns(ns);
  2387. }
  2388. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2389. {
  2390. struct vfsmount *mnt;
  2391. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2392. if (!IS_ERR(mnt)) {
  2393. /*
  2394. * it is a longterm mount, don't release mnt until
  2395. * we unmount before file sys is unregistered
  2396. */
  2397. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2398. }
  2399. return mnt;
  2400. }
  2401. EXPORT_SYMBOL_GPL(kern_mount_data);
  2402. void kern_unmount(struct vfsmount *mnt)
  2403. {
  2404. /* release long term mount so mount point can be released */
  2405. if (!IS_ERR_OR_NULL(mnt)) {
  2406. br_write_lock(&vfsmount_lock);
  2407. real_mount(mnt)->mnt_ns = NULL;
  2408. br_write_unlock(&vfsmount_lock);
  2409. mntput(mnt);
  2410. }
  2411. }
  2412. EXPORT_SYMBOL(kern_unmount);
  2413. bool our_mnt(struct vfsmount *mnt)
  2414. {
  2415. return check_mnt(real_mount(mnt));
  2416. }
  2417. static void *mntns_get(struct task_struct *task)
  2418. {
  2419. struct mnt_namespace *ns = NULL;
  2420. struct nsproxy *nsproxy;
  2421. rcu_read_lock();
  2422. nsproxy = task_nsproxy(task);
  2423. if (nsproxy) {
  2424. ns = nsproxy->mnt_ns;
  2425. get_mnt_ns(ns);
  2426. }
  2427. rcu_read_unlock();
  2428. return ns;
  2429. }
  2430. static void mntns_put(void *ns)
  2431. {
  2432. put_mnt_ns(ns);
  2433. }
  2434. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2435. {
  2436. struct fs_struct *fs = current->fs;
  2437. struct mnt_namespace *mnt_ns = ns;
  2438. struct path root;
  2439. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2440. !nsown_capable(CAP_SYS_CHROOT) ||
  2441. !nsown_capable(CAP_SYS_ADMIN))
  2442. return -EPERM;
  2443. if (fs->users != 1)
  2444. return -EINVAL;
  2445. get_mnt_ns(mnt_ns);
  2446. put_mnt_ns(nsproxy->mnt_ns);
  2447. nsproxy->mnt_ns = mnt_ns;
  2448. /* Find the root */
  2449. root.mnt = &mnt_ns->root->mnt;
  2450. root.dentry = mnt_ns->root->mnt.mnt_root;
  2451. path_get(&root);
  2452. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2453. ;
  2454. /* Update the pwd and root */
  2455. set_fs_pwd(fs, &root);
  2456. set_fs_root(fs, &root);
  2457. path_put(&root);
  2458. return 0;
  2459. }
  2460. static unsigned int mntns_inum(void *ns)
  2461. {
  2462. struct mnt_namespace *mnt_ns = ns;
  2463. return mnt_ns->proc_inum;
  2464. }
  2465. const struct proc_ns_operations mntns_operations = {
  2466. .name = "mnt",
  2467. .type = CLONE_NEWNS,
  2468. .get = mntns_get,
  2469. .put = mntns_put,
  2470. .install = mntns_install,
  2471. .inum = mntns_inum,
  2472. };