memcontrol.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #include <linux/res_counter.h>
  20. #include <linux/memcontrol.h>
  21. #include <linux/cgroup.h>
  22. #include <linux/mm.h>
  23. #include <linux/smp.h>
  24. #include <linux/page-flags.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/bit_spinlock.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/slab.h>
  29. #include <linux/swap.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/fs.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/vmalloc.h>
  34. #include <asm/uaccess.h>
  35. struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  36. static struct kmem_cache *page_cgroup_cache __read_mostly;
  37. #define MEM_CGROUP_RECLAIM_RETRIES 5
  38. /*
  39. * Statistics for memory cgroup.
  40. */
  41. enum mem_cgroup_stat_index {
  42. /*
  43. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  44. */
  45. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  46. MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
  47. MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
  48. MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
  49. MEM_CGROUP_STAT_NSTATS,
  50. };
  51. struct mem_cgroup_stat_cpu {
  52. s64 count[MEM_CGROUP_STAT_NSTATS];
  53. } ____cacheline_aligned_in_smp;
  54. struct mem_cgroup_stat {
  55. struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
  56. };
  57. /*
  58. * For accounting under irq disable, no need for increment preempt count.
  59. */
  60. static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
  61. enum mem_cgroup_stat_index idx, int val)
  62. {
  63. int cpu = smp_processor_id();
  64. stat->cpustat[cpu].count[idx] += val;
  65. }
  66. static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
  67. enum mem_cgroup_stat_index idx)
  68. {
  69. int cpu;
  70. s64 ret = 0;
  71. for_each_possible_cpu(cpu)
  72. ret += stat->cpustat[cpu].count[idx];
  73. return ret;
  74. }
  75. /*
  76. * per-zone information in memory controller.
  77. */
  78. enum mem_cgroup_zstat_index {
  79. MEM_CGROUP_ZSTAT_ACTIVE,
  80. MEM_CGROUP_ZSTAT_INACTIVE,
  81. NR_MEM_CGROUP_ZSTAT,
  82. };
  83. struct mem_cgroup_per_zone {
  84. /*
  85. * spin_lock to protect the per cgroup LRU
  86. */
  87. spinlock_t lru_lock;
  88. struct list_head active_list;
  89. struct list_head inactive_list;
  90. unsigned long count[NR_MEM_CGROUP_ZSTAT];
  91. };
  92. /* Macro for accessing counter */
  93. #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
  94. struct mem_cgroup_per_node {
  95. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  96. };
  97. struct mem_cgroup_lru_info {
  98. struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
  99. };
  100. /*
  101. * The memory controller data structure. The memory controller controls both
  102. * page cache and RSS per cgroup. We would eventually like to provide
  103. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  104. * to help the administrator determine what knobs to tune.
  105. *
  106. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  107. * we hit the water mark. May be even add a low water mark, such that
  108. * no reclaim occurs from a cgroup at it's low water mark, this is
  109. * a feature that will be implemented much later in the future.
  110. */
  111. struct mem_cgroup {
  112. struct cgroup_subsys_state css;
  113. /*
  114. * the counter to account for memory usage
  115. */
  116. struct res_counter res;
  117. /*
  118. * Per cgroup active and inactive list, similar to the
  119. * per zone LRU lists.
  120. */
  121. struct mem_cgroup_lru_info info;
  122. int prev_priority; /* for recording reclaim priority */
  123. /*
  124. * statistics.
  125. */
  126. struct mem_cgroup_stat stat;
  127. };
  128. static struct mem_cgroup init_mem_cgroup;
  129. /*
  130. * We use the lower bit of the page->page_cgroup pointer as a bit spin
  131. * lock. We need to ensure that page->page_cgroup is at least two
  132. * byte aligned (based on comments from Nick Piggin). But since
  133. * bit_spin_lock doesn't actually set that lock bit in a non-debug
  134. * uniprocessor kernel, we should avoid setting it here too.
  135. */
  136. #define PAGE_CGROUP_LOCK_BIT 0x0
  137. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
  138. #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
  139. #else
  140. #define PAGE_CGROUP_LOCK 0x0
  141. #endif
  142. /*
  143. * A page_cgroup page is associated with every page descriptor. The
  144. * page_cgroup helps us identify information about the cgroup
  145. */
  146. struct page_cgroup {
  147. struct list_head lru; /* per cgroup LRU list */
  148. struct page *page;
  149. struct mem_cgroup *mem_cgroup;
  150. int flags;
  151. };
  152. #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
  153. #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
  154. static int page_cgroup_nid(struct page_cgroup *pc)
  155. {
  156. return page_to_nid(pc->page);
  157. }
  158. static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
  159. {
  160. return page_zonenum(pc->page);
  161. }
  162. enum charge_type {
  163. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  164. MEM_CGROUP_CHARGE_TYPE_MAPPED,
  165. MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
  166. };
  167. /*
  168. * Always modified under lru lock. Then, not necessary to preempt_disable()
  169. */
  170. static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
  171. bool charge)
  172. {
  173. int val = (charge)? 1 : -1;
  174. struct mem_cgroup_stat *stat = &mem->stat;
  175. VM_BUG_ON(!irqs_disabled());
  176. if (flags & PAGE_CGROUP_FLAG_CACHE)
  177. __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
  178. else
  179. __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
  180. if (charge)
  181. __mem_cgroup_stat_add_safe(stat,
  182. MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
  183. else
  184. __mem_cgroup_stat_add_safe(stat,
  185. MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
  186. }
  187. static struct mem_cgroup_per_zone *
  188. mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
  189. {
  190. return &mem->info.nodeinfo[nid]->zoneinfo[zid];
  191. }
  192. static struct mem_cgroup_per_zone *
  193. page_cgroup_zoneinfo(struct page_cgroup *pc)
  194. {
  195. struct mem_cgroup *mem = pc->mem_cgroup;
  196. int nid = page_cgroup_nid(pc);
  197. int zid = page_cgroup_zid(pc);
  198. return mem_cgroup_zoneinfo(mem, nid, zid);
  199. }
  200. static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
  201. enum mem_cgroup_zstat_index idx)
  202. {
  203. int nid, zid;
  204. struct mem_cgroup_per_zone *mz;
  205. u64 total = 0;
  206. for_each_online_node(nid)
  207. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  208. mz = mem_cgroup_zoneinfo(mem, nid, zid);
  209. total += MEM_CGROUP_ZSTAT(mz, idx);
  210. }
  211. return total;
  212. }
  213. static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
  214. {
  215. return container_of(cgroup_subsys_state(cont,
  216. mem_cgroup_subsys_id), struct mem_cgroup,
  217. css);
  218. }
  219. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  220. {
  221. return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
  222. struct mem_cgroup, css);
  223. }
  224. static inline int page_cgroup_locked(struct page *page)
  225. {
  226. return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  227. }
  228. static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
  229. {
  230. VM_BUG_ON(!page_cgroup_locked(page));
  231. page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
  232. }
  233. struct page_cgroup *page_get_page_cgroup(struct page *page)
  234. {
  235. return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
  236. }
  237. static void lock_page_cgroup(struct page *page)
  238. {
  239. bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  240. }
  241. static int try_lock_page_cgroup(struct page *page)
  242. {
  243. return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  244. }
  245. static void unlock_page_cgroup(struct page *page)
  246. {
  247. bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  248. }
  249. static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
  250. struct page_cgroup *pc)
  251. {
  252. int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  253. if (from)
  254. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
  255. else
  256. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
  257. mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
  258. list_del(&pc->lru);
  259. }
  260. static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
  261. struct page_cgroup *pc)
  262. {
  263. int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  264. if (!to) {
  265. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
  266. list_add(&pc->lru, &mz->inactive_list);
  267. } else {
  268. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
  269. list_add(&pc->lru, &mz->active_list);
  270. }
  271. mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
  272. }
  273. static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
  274. {
  275. int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  276. struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
  277. if (from)
  278. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
  279. else
  280. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
  281. if (active) {
  282. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
  283. pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
  284. list_move(&pc->lru, &mz->active_list);
  285. } else {
  286. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
  287. pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
  288. list_move(&pc->lru, &mz->inactive_list);
  289. }
  290. }
  291. int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
  292. {
  293. int ret;
  294. task_lock(task);
  295. ret = task->mm && mm_match_cgroup(task->mm, mem);
  296. task_unlock(task);
  297. return ret;
  298. }
  299. /*
  300. * This routine assumes that the appropriate zone's lru lock is already held
  301. */
  302. void mem_cgroup_move_lists(struct page *page, bool active)
  303. {
  304. struct page_cgroup *pc;
  305. struct mem_cgroup_per_zone *mz;
  306. unsigned long flags;
  307. /*
  308. * We cannot lock_page_cgroup while holding zone's lru_lock,
  309. * because other holders of lock_page_cgroup can be interrupted
  310. * with an attempt to rotate_reclaimable_page. But we cannot
  311. * safely get to page_cgroup without it, so just try_lock it:
  312. * mem_cgroup_isolate_pages allows for page left on wrong list.
  313. */
  314. if (!try_lock_page_cgroup(page))
  315. return;
  316. pc = page_get_page_cgroup(page);
  317. if (pc) {
  318. mz = page_cgroup_zoneinfo(pc);
  319. spin_lock_irqsave(&mz->lru_lock, flags);
  320. __mem_cgroup_move_lists(pc, active);
  321. spin_unlock_irqrestore(&mz->lru_lock, flags);
  322. }
  323. unlock_page_cgroup(page);
  324. }
  325. /*
  326. * Calculate mapped_ratio under memory controller. This will be used in
  327. * vmscan.c for deteremining we have to reclaim mapped pages.
  328. */
  329. int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
  330. {
  331. long total, rss;
  332. /*
  333. * usage is recorded in bytes. But, here, we assume the number of
  334. * physical pages can be represented by "long" on any arch.
  335. */
  336. total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
  337. rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
  338. return (int)((rss * 100L) / total);
  339. }
  340. /*
  341. * This function is called from vmscan.c. In page reclaiming loop. balance
  342. * between active and inactive list is calculated. For memory controller
  343. * page reclaiming, we should use using mem_cgroup's imbalance rather than
  344. * zone's global lru imbalance.
  345. */
  346. long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
  347. {
  348. unsigned long active, inactive;
  349. /* active and inactive are the number of pages. 'long' is ok.*/
  350. active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
  351. inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
  352. return (long) (active / (inactive + 1));
  353. }
  354. /*
  355. * prev_priority control...this will be used in memory reclaim path.
  356. */
  357. int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
  358. {
  359. return mem->prev_priority;
  360. }
  361. void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
  362. {
  363. if (priority < mem->prev_priority)
  364. mem->prev_priority = priority;
  365. }
  366. void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
  367. {
  368. mem->prev_priority = priority;
  369. }
  370. /*
  371. * Calculate # of pages to be scanned in this priority/zone.
  372. * See also vmscan.c
  373. *
  374. * priority starts from "DEF_PRIORITY" and decremented in each loop.
  375. * (see include/linux/mmzone.h)
  376. */
  377. long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
  378. struct zone *zone, int priority)
  379. {
  380. long nr_active;
  381. int nid = zone->zone_pgdat->node_id;
  382. int zid = zone_idx(zone);
  383. struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
  384. nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
  385. return (nr_active >> priority);
  386. }
  387. long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
  388. struct zone *zone, int priority)
  389. {
  390. long nr_inactive;
  391. int nid = zone->zone_pgdat->node_id;
  392. int zid = zone_idx(zone);
  393. struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
  394. nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
  395. return (nr_inactive >> priority);
  396. }
  397. unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
  398. struct list_head *dst,
  399. unsigned long *scanned, int order,
  400. int mode, struct zone *z,
  401. struct mem_cgroup *mem_cont,
  402. int active)
  403. {
  404. unsigned long nr_taken = 0;
  405. struct page *page;
  406. unsigned long scan;
  407. LIST_HEAD(pc_list);
  408. struct list_head *src;
  409. struct page_cgroup *pc, *tmp;
  410. int nid = z->zone_pgdat->node_id;
  411. int zid = zone_idx(z);
  412. struct mem_cgroup_per_zone *mz;
  413. BUG_ON(!mem_cont);
  414. mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
  415. if (active)
  416. src = &mz->active_list;
  417. else
  418. src = &mz->inactive_list;
  419. spin_lock(&mz->lru_lock);
  420. scan = 0;
  421. list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
  422. if (scan >= nr_to_scan)
  423. break;
  424. page = pc->page;
  425. if (unlikely(!PageLRU(page)))
  426. continue;
  427. if (PageActive(page) && !active) {
  428. __mem_cgroup_move_lists(pc, true);
  429. continue;
  430. }
  431. if (!PageActive(page) && active) {
  432. __mem_cgroup_move_lists(pc, false);
  433. continue;
  434. }
  435. scan++;
  436. list_move(&pc->lru, &pc_list);
  437. if (__isolate_lru_page(page, mode) == 0) {
  438. list_move(&page->lru, dst);
  439. nr_taken++;
  440. }
  441. }
  442. list_splice(&pc_list, src);
  443. spin_unlock(&mz->lru_lock);
  444. *scanned = scan;
  445. return nr_taken;
  446. }
  447. /*
  448. * Charge the memory controller for page usage.
  449. * Return
  450. * 0 if the charge was successful
  451. * < 0 if the cgroup is over its limit
  452. */
  453. static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
  454. gfp_t gfp_mask, enum charge_type ctype,
  455. struct mem_cgroup *memcg)
  456. {
  457. struct mem_cgroup *mem;
  458. struct page_cgroup *pc;
  459. unsigned long flags;
  460. unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  461. struct mem_cgroup_per_zone *mz;
  462. if (mem_cgroup_subsys.disabled)
  463. return 0;
  464. /*
  465. * Should page_cgroup's go to their own slab?
  466. * One could optimize the performance of the charging routine
  467. * by saving a bit in the page_flags and using it as a lock
  468. * to see if the cgroup page already has a page_cgroup associated
  469. * with it
  470. */
  471. retry:
  472. lock_page_cgroup(page);
  473. pc = page_get_page_cgroup(page);
  474. /*
  475. * The page_cgroup exists and
  476. * the page has already been accounted.
  477. */
  478. if (pc) {
  479. VM_BUG_ON(pc->page != page);
  480. VM_BUG_ON(!pc->mem_cgroup);
  481. unlock_page_cgroup(page);
  482. goto done;
  483. }
  484. unlock_page_cgroup(page);
  485. pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
  486. if (pc == NULL)
  487. goto err;
  488. /*
  489. * We always charge the cgroup the mm_struct belongs to.
  490. * The mm_struct's mem_cgroup changes on task migration if the
  491. * thread group leader migrates. It's possible that mm is not
  492. * set, if so charge the init_mm (happens for pagecache usage).
  493. */
  494. if (likely(!memcg)) {
  495. rcu_read_lock();
  496. mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
  497. /*
  498. * For every charge from the cgroup, increment reference count
  499. */
  500. css_get(&mem->css);
  501. rcu_read_unlock();
  502. } else {
  503. mem = memcg;
  504. css_get(&memcg->css);
  505. }
  506. while (res_counter_charge(&mem->res, PAGE_SIZE)) {
  507. if (!(gfp_mask & __GFP_WAIT))
  508. goto out;
  509. if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
  510. continue;
  511. /*
  512. * try_to_free_mem_cgroup_pages() might not give us a full
  513. * picture of reclaim. Some pages are reclaimed and might be
  514. * moved to swap cache or just unmapped from the cgroup.
  515. * Check the limit again to see if the reclaim reduced the
  516. * current usage of the cgroup before giving up
  517. */
  518. if (res_counter_check_under_limit(&mem->res))
  519. continue;
  520. if (!nr_retries--) {
  521. mem_cgroup_out_of_memory(mem, gfp_mask);
  522. goto out;
  523. }
  524. }
  525. pc->mem_cgroup = mem;
  526. pc->page = page;
  527. /*
  528. * If a page is accounted as a page cache, insert to inactive list.
  529. * If anon, insert to active list.
  530. */
  531. if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
  532. pc->flags = PAGE_CGROUP_FLAG_CACHE;
  533. else
  534. pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
  535. lock_page_cgroup(page);
  536. if (page_get_page_cgroup(page)) {
  537. unlock_page_cgroup(page);
  538. /*
  539. * Another charge has been added to this page already.
  540. * We take lock_page_cgroup(page) again and read
  541. * page->cgroup, increment refcnt.... just retry is OK.
  542. */
  543. res_counter_uncharge(&mem->res, PAGE_SIZE);
  544. css_put(&mem->css);
  545. kmem_cache_free(page_cgroup_cache, pc);
  546. goto retry;
  547. }
  548. page_assign_page_cgroup(page, pc);
  549. mz = page_cgroup_zoneinfo(pc);
  550. spin_lock_irqsave(&mz->lru_lock, flags);
  551. __mem_cgroup_add_list(mz, pc);
  552. spin_unlock_irqrestore(&mz->lru_lock, flags);
  553. unlock_page_cgroup(page);
  554. done:
  555. return 0;
  556. out:
  557. css_put(&mem->css);
  558. kmem_cache_free(page_cgroup_cache, pc);
  559. err:
  560. return -ENOMEM;
  561. }
  562. int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
  563. {
  564. /*
  565. * If already mapped, we don't have to account.
  566. * If page cache, page->mapping has address_space.
  567. * But page->mapping may have out-of-use anon_vma pointer,
  568. * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
  569. * is NULL.
  570. */
  571. if (page_mapped(page) || (page->mapping && !PageAnon(page)))
  572. return 0;
  573. if (unlikely(!mm))
  574. mm = &init_mm;
  575. return mem_cgroup_charge_common(page, mm, gfp_mask,
  576. MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
  577. }
  578. int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
  579. gfp_t gfp_mask)
  580. {
  581. if (unlikely(!mm))
  582. mm = &init_mm;
  583. return mem_cgroup_charge_common(page, mm, gfp_mask,
  584. MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
  585. }
  586. /*
  587. * uncharge if !page_mapped(page)
  588. */
  589. static void
  590. __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
  591. {
  592. struct page_cgroup *pc;
  593. struct mem_cgroup *mem;
  594. struct mem_cgroup_per_zone *mz;
  595. unsigned long flags;
  596. if (mem_cgroup_subsys.disabled)
  597. return;
  598. /*
  599. * Check if our page_cgroup is valid
  600. */
  601. lock_page_cgroup(page);
  602. pc = page_get_page_cgroup(page);
  603. if (!pc)
  604. goto unlock;
  605. VM_BUG_ON(pc->page != page);
  606. if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
  607. && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
  608. || page_mapped(page)))
  609. goto unlock;
  610. mz = page_cgroup_zoneinfo(pc);
  611. spin_lock_irqsave(&mz->lru_lock, flags);
  612. __mem_cgroup_remove_list(mz, pc);
  613. spin_unlock_irqrestore(&mz->lru_lock, flags);
  614. page_assign_page_cgroup(page, NULL);
  615. unlock_page_cgroup(page);
  616. mem = pc->mem_cgroup;
  617. res_counter_uncharge(&mem->res, PAGE_SIZE);
  618. css_put(&mem->css);
  619. kmem_cache_free(page_cgroup_cache, pc);
  620. return;
  621. unlock:
  622. unlock_page_cgroup(page);
  623. }
  624. void mem_cgroup_uncharge_page(struct page *page)
  625. {
  626. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
  627. }
  628. void mem_cgroup_uncharge_cache_page(struct page *page)
  629. {
  630. VM_BUG_ON(page_mapped(page));
  631. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
  632. }
  633. /*
  634. * Before starting migration, account against new page.
  635. */
  636. int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
  637. {
  638. struct page_cgroup *pc;
  639. struct mem_cgroup *mem = NULL;
  640. enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
  641. int ret = 0;
  642. if (mem_cgroup_subsys.disabled)
  643. return 0;
  644. lock_page_cgroup(page);
  645. pc = page_get_page_cgroup(page);
  646. if (pc) {
  647. mem = pc->mem_cgroup;
  648. css_get(&mem->css);
  649. if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
  650. ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
  651. }
  652. unlock_page_cgroup(page);
  653. if (mem) {
  654. ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
  655. ctype, mem);
  656. css_put(&mem->css);
  657. }
  658. return ret;
  659. }
  660. /* remove redundant charge if migration failed*/
  661. void mem_cgroup_end_migration(struct page *newpage)
  662. {
  663. /*
  664. * At success, page->mapping is not NULL.
  665. * special rollback care is necessary when
  666. * 1. at migration failure. (newpage->mapping is cleared in this case)
  667. * 2. the newpage was moved but not remapped again because the task
  668. * exits and the newpage is obsolete. In this case, the new page
  669. * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
  670. * always for avoiding mess. The page_cgroup will be removed if
  671. * unnecessary. File cache pages is still on radix-tree. Don't
  672. * care it.
  673. */
  674. if (!newpage->mapping)
  675. __mem_cgroup_uncharge_common(newpage,
  676. MEM_CGROUP_CHARGE_TYPE_FORCE);
  677. else if (PageAnon(newpage))
  678. mem_cgroup_uncharge_page(newpage);
  679. }
  680. /*
  681. * This routine traverse page_cgroup in given list and drop them all.
  682. * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
  683. */
  684. #define FORCE_UNCHARGE_BATCH (128)
  685. static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
  686. struct mem_cgroup_per_zone *mz,
  687. int active)
  688. {
  689. struct page_cgroup *pc;
  690. struct page *page;
  691. int count = FORCE_UNCHARGE_BATCH;
  692. unsigned long flags;
  693. struct list_head *list;
  694. if (active)
  695. list = &mz->active_list;
  696. else
  697. list = &mz->inactive_list;
  698. spin_lock_irqsave(&mz->lru_lock, flags);
  699. while (!list_empty(list)) {
  700. pc = list_entry(list->prev, struct page_cgroup, lru);
  701. page = pc->page;
  702. get_page(page);
  703. spin_unlock_irqrestore(&mz->lru_lock, flags);
  704. /*
  705. * Check if this page is on LRU. !LRU page can be found
  706. * if it's under page migration.
  707. */
  708. if (PageLRU(page)) {
  709. __mem_cgroup_uncharge_common(page,
  710. MEM_CGROUP_CHARGE_TYPE_FORCE);
  711. put_page(page);
  712. if (--count <= 0) {
  713. count = FORCE_UNCHARGE_BATCH;
  714. cond_resched();
  715. }
  716. } else
  717. cond_resched();
  718. spin_lock_irqsave(&mz->lru_lock, flags);
  719. }
  720. spin_unlock_irqrestore(&mz->lru_lock, flags);
  721. }
  722. /*
  723. * make mem_cgroup's charge to be 0 if there is no task.
  724. * This enables deleting this mem_cgroup.
  725. */
  726. static int mem_cgroup_force_empty(struct mem_cgroup *mem)
  727. {
  728. int ret = -EBUSY;
  729. int node, zid;
  730. if (mem_cgroup_subsys.disabled)
  731. return 0;
  732. css_get(&mem->css);
  733. /*
  734. * page reclaim code (kswapd etc..) will move pages between
  735. * active_list <-> inactive_list while we don't take a lock.
  736. * So, we have to do loop here until all lists are empty.
  737. */
  738. while (mem->res.usage > 0) {
  739. if (atomic_read(&mem->css.cgroup->count) > 0)
  740. goto out;
  741. for_each_node_state(node, N_POSSIBLE)
  742. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  743. struct mem_cgroup_per_zone *mz;
  744. mz = mem_cgroup_zoneinfo(mem, node, zid);
  745. /* drop all page_cgroup in active_list */
  746. mem_cgroup_force_empty_list(mem, mz, 1);
  747. /* drop all page_cgroup in inactive_list */
  748. mem_cgroup_force_empty_list(mem, mz, 0);
  749. }
  750. }
  751. ret = 0;
  752. out:
  753. css_put(&mem->css);
  754. return ret;
  755. }
  756. static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
  757. {
  758. return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
  759. cft->private);
  760. }
  761. static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
  762. const char *buffer)
  763. {
  764. return res_counter_write(&mem_cgroup_from_cont(cont)->res,
  765. cft->private, buffer,
  766. res_counter_memparse_write_strategy);
  767. }
  768. static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
  769. {
  770. struct mem_cgroup *mem;
  771. mem = mem_cgroup_from_cont(cont);
  772. switch (event) {
  773. case RES_MAX_USAGE:
  774. res_counter_reset_max(&mem->res);
  775. break;
  776. case RES_FAILCNT:
  777. res_counter_reset_failcnt(&mem->res);
  778. break;
  779. }
  780. return 0;
  781. }
  782. static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
  783. {
  784. return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
  785. }
  786. static const struct mem_cgroup_stat_desc {
  787. const char *msg;
  788. u64 unit;
  789. } mem_cgroup_stat_desc[] = {
  790. [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
  791. [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
  792. [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
  793. [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
  794. };
  795. static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
  796. struct cgroup_map_cb *cb)
  797. {
  798. struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
  799. struct mem_cgroup_stat *stat = &mem_cont->stat;
  800. int i;
  801. for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
  802. s64 val;
  803. val = mem_cgroup_read_stat(stat, i);
  804. val *= mem_cgroup_stat_desc[i].unit;
  805. cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
  806. }
  807. /* showing # of active pages */
  808. {
  809. unsigned long active, inactive;
  810. inactive = mem_cgroup_get_all_zonestat(mem_cont,
  811. MEM_CGROUP_ZSTAT_INACTIVE);
  812. active = mem_cgroup_get_all_zonestat(mem_cont,
  813. MEM_CGROUP_ZSTAT_ACTIVE);
  814. cb->fill(cb, "active", (active) * PAGE_SIZE);
  815. cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
  816. }
  817. return 0;
  818. }
  819. static struct cftype mem_cgroup_files[] = {
  820. {
  821. .name = "usage_in_bytes",
  822. .private = RES_USAGE,
  823. .read_u64 = mem_cgroup_read,
  824. },
  825. {
  826. .name = "max_usage_in_bytes",
  827. .private = RES_MAX_USAGE,
  828. .trigger = mem_cgroup_reset,
  829. .read_u64 = mem_cgroup_read,
  830. },
  831. {
  832. .name = "limit_in_bytes",
  833. .private = RES_LIMIT,
  834. .write_string = mem_cgroup_write,
  835. .read_u64 = mem_cgroup_read,
  836. },
  837. {
  838. .name = "failcnt",
  839. .private = RES_FAILCNT,
  840. .trigger = mem_cgroup_reset,
  841. .read_u64 = mem_cgroup_read,
  842. },
  843. {
  844. .name = "force_empty",
  845. .trigger = mem_force_empty_write,
  846. },
  847. {
  848. .name = "stat",
  849. .read_map = mem_control_stat_show,
  850. },
  851. };
  852. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
  853. {
  854. struct mem_cgroup_per_node *pn;
  855. struct mem_cgroup_per_zone *mz;
  856. int zone, tmp = node;
  857. /*
  858. * This routine is called against possible nodes.
  859. * But it's BUG to call kmalloc() against offline node.
  860. *
  861. * TODO: this routine can waste much memory for nodes which will
  862. * never be onlined. It's better to use memory hotplug callback
  863. * function.
  864. */
  865. if (!node_state(node, N_NORMAL_MEMORY))
  866. tmp = -1;
  867. pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  868. if (!pn)
  869. return 1;
  870. mem->info.nodeinfo[node] = pn;
  871. memset(pn, 0, sizeof(*pn));
  872. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  873. mz = &pn->zoneinfo[zone];
  874. INIT_LIST_HEAD(&mz->active_list);
  875. INIT_LIST_HEAD(&mz->inactive_list);
  876. spin_lock_init(&mz->lru_lock);
  877. }
  878. return 0;
  879. }
  880. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
  881. {
  882. kfree(mem->info.nodeinfo[node]);
  883. }
  884. static struct mem_cgroup *mem_cgroup_alloc(void)
  885. {
  886. struct mem_cgroup *mem;
  887. if (sizeof(*mem) < PAGE_SIZE)
  888. mem = kmalloc(sizeof(*mem), GFP_KERNEL);
  889. else
  890. mem = vmalloc(sizeof(*mem));
  891. if (mem)
  892. memset(mem, 0, sizeof(*mem));
  893. return mem;
  894. }
  895. static void mem_cgroup_free(struct mem_cgroup *mem)
  896. {
  897. if (sizeof(*mem) < PAGE_SIZE)
  898. kfree(mem);
  899. else
  900. vfree(mem);
  901. }
  902. static struct cgroup_subsys_state *
  903. mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
  904. {
  905. struct mem_cgroup *mem;
  906. int node;
  907. if (unlikely((cont->parent) == NULL)) {
  908. mem = &init_mem_cgroup;
  909. page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
  910. } else {
  911. mem = mem_cgroup_alloc();
  912. if (!mem)
  913. return ERR_PTR(-ENOMEM);
  914. }
  915. res_counter_init(&mem->res);
  916. for_each_node_state(node, N_POSSIBLE)
  917. if (alloc_mem_cgroup_per_zone_info(mem, node))
  918. goto free_out;
  919. return &mem->css;
  920. free_out:
  921. for_each_node_state(node, N_POSSIBLE)
  922. free_mem_cgroup_per_zone_info(mem, node);
  923. if (cont->parent != NULL)
  924. mem_cgroup_free(mem);
  925. return ERR_PTR(-ENOMEM);
  926. }
  927. static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
  928. struct cgroup *cont)
  929. {
  930. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  931. mem_cgroup_force_empty(mem);
  932. }
  933. static void mem_cgroup_destroy(struct cgroup_subsys *ss,
  934. struct cgroup *cont)
  935. {
  936. int node;
  937. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  938. for_each_node_state(node, N_POSSIBLE)
  939. free_mem_cgroup_per_zone_info(mem, node);
  940. mem_cgroup_free(mem_cgroup_from_cont(cont));
  941. }
  942. static int mem_cgroup_populate(struct cgroup_subsys *ss,
  943. struct cgroup *cont)
  944. {
  945. if (mem_cgroup_subsys.disabled)
  946. return 0;
  947. return cgroup_add_files(cont, ss, mem_cgroup_files,
  948. ARRAY_SIZE(mem_cgroup_files));
  949. }
  950. static void mem_cgroup_move_task(struct cgroup_subsys *ss,
  951. struct cgroup *cont,
  952. struct cgroup *old_cont,
  953. struct task_struct *p)
  954. {
  955. struct mm_struct *mm;
  956. struct mem_cgroup *mem, *old_mem;
  957. if (mem_cgroup_subsys.disabled)
  958. return;
  959. mm = get_task_mm(p);
  960. if (mm == NULL)
  961. return;
  962. mem = mem_cgroup_from_cont(cont);
  963. old_mem = mem_cgroup_from_cont(old_cont);
  964. if (mem == old_mem)
  965. goto out;
  966. /*
  967. * Only thread group leaders are allowed to migrate, the mm_struct is
  968. * in effect owned by the leader
  969. */
  970. if (!thread_group_leader(p))
  971. goto out;
  972. out:
  973. mmput(mm);
  974. }
  975. struct cgroup_subsys mem_cgroup_subsys = {
  976. .name = "memory",
  977. .subsys_id = mem_cgroup_subsys_id,
  978. .create = mem_cgroup_create,
  979. .pre_destroy = mem_cgroup_pre_destroy,
  980. .destroy = mem_cgroup_destroy,
  981. .populate = mem_cgroup_populate,
  982. .attach = mem_cgroup_move_task,
  983. .early_init = 0,
  984. };