sched.c 224 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. /*
  75. * Scheduler clock - returns current time in nanosec units.
  76. * This is default implementation.
  77. * Architectures and sub-architectures can override this.
  78. */
  79. unsigned long long __attribute__((weak)) sched_clock(void)
  80. {
  81. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  82. }
  83. /*
  84. * Convert user-nice values [ -20 ... 0 ... 19 ]
  85. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  86. * and back.
  87. */
  88. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  89. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  90. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  91. /*
  92. * 'User priority' is the nice value converted to something we
  93. * can work with better when scaling various scheduler parameters,
  94. * it's a [ 0 ... 39 ] range.
  95. */
  96. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  97. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  98. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  99. /*
  100. * Helpers for converting nanosecond timing to jiffy resolution
  101. */
  102. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  103. #define NICE_0_LOAD SCHED_LOAD_SCALE
  104. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  105. /*
  106. * These are the 'tuning knobs' of the scheduler:
  107. *
  108. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  109. * Timeslices get refilled after they expire.
  110. */
  111. #define DEF_TIMESLICE (100 * HZ / 1000)
  112. /*
  113. * single value that denotes runtime == period, ie unlimited time.
  114. */
  115. #define RUNTIME_INF ((u64)~0ULL)
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. break;
  199. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  200. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  201. hrtimer_start(&rt_b->rt_period_timer,
  202. rt_b->rt_period_timer.expires,
  203. HRTIMER_MODE_ABS);
  204. }
  205. spin_unlock(&rt_b->rt_runtime_lock);
  206. }
  207. #ifdef CONFIG_RT_GROUP_SCHED
  208. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  209. {
  210. hrtimer_cancel(&rt_b->rt_period_timer);
  211. }
  212. #endif
  213. #ifdef CONFIG_GROUP_SCHED
  214. #include <linux/cgroup.h>
  215. struct cfs_rq;
  216. static LIST_HEAD(task_groups);
  217. /* task group related information */
  218. struct task_group {
  219. #ifdef CONFIG_CGROUP_SCHED
  220. struct cgroup_subsys_state css;
  221. #endif
  222. #ifdef CONFIG_FAIR_GROUP_SCHED
  223. /* schedulable entities of this group on each cpu */
  224. struct sched_entity **se;
  225. /* runqueue "owned" by this group on each cpu */
  226. struct cfs_rq **cfs_rq;
  227. unsigned long shares;
  228. #endif
  229. #ifdef CONFIG_RT_GROUP_SCHED
  230. struct sched_rt_entity **rt_se;
  231. struct rt_rq **rt_rq;
  232. struct rt_bandwidth rt_bandwidth;
  233. #endif
  234. struct rcu_head rcu;
  235. struct list_head list;
  236. struct task_group *parent;
  237. struct list_head siblings;
  238. struct list_head children;
  239. };
  240. #ifdef CONFIG_USER_SCHED
  241. /*
  242. * Root task group.
  243. * Every UID task group (including init_task_group aka UID-0) will
  244. * be a child to this group.
  245. */
  246. struct task_group root_task_group;
  247. #ifdef CONFIG_FAIR_GROUP_SCHED
  248. /* Default task group's sched entity on each cpu */
  249. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  250. /* Default task group's cfs_rq on each cpu */
  251. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  252. #endif
  253. #ifdef CONFIG_RT_GROUP_SCHED
  254. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  255. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  256. #endif
  257. #else
  258. #define root_task_group init_task_group
  259. #endif
  260. /* task_group_lock serializes add/remove of task groups and also changes to
  261. * a task group's cpu shares.
  262. */
  263. static DEFINE_SPINLOCK(task_group_lock);
  264. /* doms_cur_mutex serializes access to doms_cur[] array */
  265. static DEFINE_MUTEX(doms_cur_mutex);
  266. #ifdef CONFIG_FAIR_GROUP_SCHED
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif
  272. #define MIN_SHARES 2
  273. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  274. #endif
  275. /* Default task group.
  276. * Every task in system belong to this group at bootup.
  277. */
  278. struct task_group init_task_group;
  279. /* return group to which a task belongs */
  280. static inline struct task_group *task_group(struct task_struct *p)
  281. {
  282. struct task_group *tg;
  283. #ifdef CONFIG_USER_SCHED
  284. tg = p->user->tg;
  285. #elif defined(CONFIG_CGROUP_SCHED)
  286. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  287. struct task_group, css);
  288. #else
  289. tg = &init_task_group;
  290. #endif
  291. return tg;
  292. }
  293. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  294. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  295. {
  296. #ifdef CONFIG_FAIR_GROUP_SCHED
  297. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  298. p->se.parent = task_group(p)->se[cpu];
  299. #endif
  300. #ifdef CONFIG_RT_GROUP_SCHED
  301. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  302. p->rt.parent = task_group(p)->rt_se[cpu];
  303. #endif
  304. }
  305. static inline void lock_doms_cur(void)
  306. {
  307. mutex_lock(&doms_cur_mutex);
  308. }
  309. static inline void unlock_doms_cur(void)
  310. {
  311. mutex_unlock(&doms_cur_mutex);
  312. }
  313. #else
  314. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  315. static inline void lock_doms_cur(void) { }
  316. static inline void unlock_doms_cur(void) { }
  317. #endif /* CONFIG_GROUP_SCHED */
  318. /* CFS-related fields in a runqueue */
  319. struct cfs_rq {
  320. struct load_weight load;
  321. unsigned long nr_running;
  322. u64 exec_clock;
  323. u64 min_vruntime;
  324. struct rb_root tasks_timeline;
  325. struct rb_node *rb_leftmost;
  326. struct list_head tasks;
  327. struct list_head *balance_iterator;
  328. /*
  329. * 'curr' points to currently running entity on this cfs_rq.
  330. * It is set to NULL otherwise (i.e when none are currently running).
  331. */
  332. struct sched_entity *curr, *next;
  333. unsigned long nr_spread_over;
  334. #ifdef CONFIG_FAIR_GROUP_SCHED
  335. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  336. /*
  337. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  338. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  339. * (like users, containers etc.)
  340. *
  341. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  342. * list is used during load balance.
  343. */
  344. struct list_head leaf_cfs_rq_list;
  345. struct task_group *tg; /* group that "owns" this runqueue */
  346. #ifdef CONFIG_SMP
  347. unsigned long task_weight;
  348. unsigned long shares;
  349. /*
  350. * We need space to build a sched_domain wide view of the full task
  351. * group tree, in order to avoid depending on dynamic memory allocation
  352. * during the load balancing we place this in the per cpu task group
  353. * hierarchy. This limits the load balancing to one instance per cpu,
  354. * but more should not be needed anyway.
  355. */
  356. struct aggregate_struct {
  357. /*
  358. * load = weight(cpus) * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long load;
  364. /*
  365. * part of the group weight distributed to this span.
  366. */
  367. unsigned long shares;
  368. /*
  369. * The sum of all runqueue weights within this span.
  370. */
  371. unsigned long rq_weight;
  372. /*
  373. * Weight contributed by tasks; this is the part we can
  374. * influence by moving tasks around.
  375. */
  376. unsigned long task_weight;
  377. } aggregate;
  378. #endif
  379. #endif
  380. };
  381. /* Real-Time classes' related field in a runqueue: */
  382. struct rt_rq {
  383. struct rt_prio_array active;
  384. unsigned long rt_nr_running;
  385. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  386. int highest_prio; /* highest queued rt task prio */
  387. #endif
  388. #ifdef CONFIG_SMP
  389. unsigned long rt_nr_migratory;
  390. int overloaded;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_t span;
  417. cpumask_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_t rto_mask;
  423. atomic_t rto_count;
  424. };
  425. /*
  426. * By default the system creates a single root-domain with all cpus as
  427. * members (mimicking the global state we have today).
  428. */
  429. static struct root_domain def_root_domain;
  430. #endif
  431. /*
  432. * This is the main, per-CPU runqueue data structure.
  433. *
  434. * Locking rule: those places that want to lock multiple runqueues
  435. * (such as the load balancing or the thread migration code), lock
  436. * acquire operations must be ordered by ascending &runqueue.
  437. */
  438. struct rq {
  439. /* runqueue lock: */
  440. spinlock_t lock;
  441. /*
  442. * nr_running and cpu_load should be in the same cacheline because
  443. * remote CPUs use both these fields when doing load calculation.
  444. */
  445. unsigned long nr_running;
  446. #define CPU_LOAD_IDX_MAX 5
  447. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  448. unsigned char idle_at_tick;
  449. #ifdef CONFIG_NO_HZ
  450. unsigned long last_tick_seen;
  451. unsigned char in_nohz_recently;
  452. #endif
  453. /* capture load from *all* tasks on this cpu: */
  454. struct load_weight load;
  455. unsigned long nr_load_updates;
  456. u64 nr_switches;
  457. struct cfs_rq cfs;
  458. struct rt_rq rt;
  459. #ifdef CONFIG_FAIR_GROUP_SCHED
  460. /* list of leaf cfs_rq on this cpu: */
  461. struct list_head leaf_cfs_rq_list;
  462. #endif
  463. #ifdef CONFIG_RT_GROUP_SCHED
  464. struct list_head leaf_rt_rq_list;
  465. #endif
  466. /*
  467. * This is part of a global counter where only the total sum
  468. * over all CPUs matters. A task can increase this counter on
  469. * one CPU and if it got migrated afterwards it may decrease
  470. * it on another CPU. Always updated under the runqueue lock:
  471. */
  472. unsigned long nr_uninterruptible;
  473. struct task_struct *curr, *idle;
  474. unsigned long next_balance;
  475. struct mm_struct *prev_mm;
  476. u64 clock, prev_clock_raw;
  477. s64 clock_max_delta;
  478. unsigned int clock_warps, clock_overflows, clock_underflows;
  479. u64 idle_clock;
  480. unsigned int clock_deep_idle_events;
  481. u64 tick_timestamp;
  482. atomic_t nr_iowait;
  483. #ifdef CONFIG_SMP
  484. struct root_domain *rd;
  485. struct sched_domain *sd;
  486. /* For active balancing */
  487. int active_balance;
  488. int push_cpu;
  489. /* cpu of this runqueue: */
  490. int cpu;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. #endif
  494. #ifdef CONFIG_SCHED_HRTICK
  495. unsigned long hrtick_flags;
  496. ktime_t hrtick_expire;
  497. struct hrtimer hrtick_timer;
  498. #endif
  499. #ifdef CONFIG_SCHEDSTATS
  500. /* latency stats */
  501. struct sched_info rq_sched_info;
  502. /* sys_sched_yield() stats */
  503. unsigned int yld_exp_empty;
  504. unsigned int yld_act_empty;
  505. unsigned int yld_both_empty;
  506. unsigned int yld_count;
  507. /* schedule() stats */
  508. unsigned int sched_switch;
  509. unsigned int sched_count;
  510. unsigned int sched_goidle;
  511. /* try_to_wake_up() stats */
  512. unsigned int ttwu_count;
  513. unsigned int ttwu_local;
  514. /* BKL stats */
  515. unsigned int bkl_count;
  516. #endif
  517. struct lock_class_key rq_lock_key;
  518. };
  519. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  520. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  521. {
  522. rq->curr->sched_class->check_preempt_curr(rq, p);
  523. }
  524. static inline int cpu_of(struct rq *rq)
  525. {
  526. #ifdef CONFIG_SMP
  527. return rq->cpu;
  528. #else
  529. return 0;
  530. #endif
  531. }
  532. #ifdef CONFIG_NO_HZ
  533. static inline bool nohz_on(int cpu)
  534. {
  535. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  536. }
  537. static inline u64 max_skipped_ticks(struct rq *rq)
  538. {
  539. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  540. }
  541. static inline void update_last_tick_seen(struct rq *rq)
  542. {
  543. rq->last_tick_seen = jiffies;
  544. }
  545. #else
  546. static inline u64 max_skipped_ticks(struct rq *rq)
  547. {
  548. return 1;
  549. }
  550. static inline void update_last_tick_seen(struct rq *rq)
  551. {
  552. }
  553. #endif
  554. /*
  555. * Update the per-runqueue clock, as finegrained as the platform can give
  556. * us, but without assuming monotonicity, etc.:
  557. */
  558. static void __update_rq_clock(struct rq *rq)
  559. {
  560. u64 prev_raw = rq->prev_clock_raw;
  561. u64 now = sched_clock();
  562. s64 delta = now - prev_raw;
  563. u64 clock = rq->clock;
  564. #ifdef CONFIG_SCHED_DEBUG
  565. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  566. #endif
  567. /*
  568. * Protect against sched_clock() occasionally going backwards:
  569. */
  570. if (unlikely(delta < 0)) {
  571. clock++;
  572. rq->clock_warps++;
  573. } else {
  574. /*
  575. * Catch too large forward jumps too:
  576. */
  577. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  578. u64 max_time = rq->tick_timestamp + max_jump;
  579. if (unlikely(clock + delta > max_time)) {
  580. if (clock < max_time)
  581. clock = max_time;
  582. else
  583. clock++;
  584. rq->clock_overflows++;
  585. } else {
  586. if (unlikely(delta > rq->clock_max_delta))
  587. rq->clock_max_delta = delta;
  588. clock += delta;
  589. }
  590. }
  591. rq->prev_clock_raw = now;
  592. rq->clock = clock;
  593. }
  594. static void update_rq_clock(struct rq *rq)
  595. {
  596. if (likely(smp_processor_id() == cpu_of(rq)))
  597. __update_rq_clock(rq);
  598. }
  599. /*
  600. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  601. * See detach_destroy_domains: synchronize_sched for details.
  602. *
  603. * The domain tree of any CPU may only be accessed from within
  604. * preempt-disabled sections.
  605. */
  606. #define for_each_domain(cpu, __sd) \
  607. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  608. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  609. #define this_rq() (&__get_cpu_var(runqueues))
  610. #define task_rq(p) cpu_rq(task_cpu(p))
  611. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  612. /*
  613. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  614. */
  615. #ifdef CONFIG_SCHED_DEBUG
  616. # define const_debug __read_mostly
  617. #else
  618. # define const_debug static const
  619. #endif
  620. /*
  621. * Debugging: various feature bits
  622. */
  623. #define SCHED_FEAT(name, enabled) \
  624. __SCHED_FEAT_##name ,
  625. enum {
  626. #include "sched_features.h"
  627. };
  628. #undef SCHED_FEAT
  629. #define SCHED_FEAT(name, enabled) \
  630. (1UL << __SCHED_FEAT_##name) * enabled |
  631. const_debug unsigned int sysctl_sched_features =
  632. #include "sched_features.h"
  633. 0;
  634. #undef SCHED_FEAT
  635. #ifdef CONFIG_SCHED_DEBUG
  636. #define SCHED_FEAT(name, enabled) \
  637. #name ,
  638. static __read_mostly char *sched_feat_names[] = {
  639. #include "sched_features.h"
  640. NULL
  641. };
  642. #undef SCHED_FEAT
  643. static int sched_feat_open(struct inode *inode, struct file *filp)
  644. {
  645. filp->private_data = inode->i_private;
  646. return 0;
  647. }
  648. static ssize_t
  649. sched_feat_read(struct file *filp, char __user *ubuf,
  650. size_t cnt, loff_t *ppos)
  651. {
  652. char *buf;
  653. int r = 0;
  654. int len = 0;
  655. int i;
  656. for (i = 0; sched_feat_names[i]; i++) {
  657. len += strlen(sched_feat_names[i]);
  658. len += 4;
  659. }
  660. buf = kmalloc(len + 2, GFP_KERNEL);
  661. if (!buf)
  662. return -ENOMEM;
  663. for (i = 0; sched_feat_names[i]; i++) {
  664. if (sysctl_sched_features & (1UL << i))
  665. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  666. else
  667. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  668. }
  669. r += sprintf(buf + r, "\n");
  670. WARN_ON(r >= len + 2);
  671. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  672. kfree(buf);
  673. return r;
  674. }
  675. static ssize_t
  676. sched_feat_write(struct file *filp, const char __user *ubuf,
  677. size_t cnt, loff_t *ppos)
  678. {
  679. char buf[64];
  680. char *cmp = buf;
  681. int neg = 0;
  682. int i;
  683. if (cnt > 63)
  684. cnt = 63;
  685. if (copy_from_user(&buf, ubuf, cnt))
  686. return -EFAULT;
  687. buf[cnt] = 0;
  688. if (strncmp(buf, "NO_", 3) == 0) {
  689. neg = 1;
  690. cmp += 3;
  691. }
  692. for (i = 0; sched_feat_names[i]; i++) {
  693. int len = strlen(sched_feat_names[i]);
  694. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  695. if (neg)
  696. sysctl_sched_features &= ~(1UL << i);
  697. else
  698. sysctl_sched_features |= (1UL << i);
  699. break;
  700. }
  701. }
  702. if (!sched_feat_names[i])
  703. return -EINVAL;
  704. filp->f_pos += cnt;
  705. return cnt;
  706. }
  707. static struct file_operations sched_feat_fops = {
  708. .open = sched_feat_open,
  709. .read = sched_feat_read,
  710. .write = sched_feat_write,
  711. };
  712. static __init int sched_init_debug(void)
  713. {
  714. debugfs_create_file("sched_features", 0644, NULL, NULL,
  715. &sched_feat_fops);
  716. return 0;
  717. }
  718. late_initcall(sched_init_debug);
  719. #endif
  720. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  721. /*
  722. * Number of tasks to iterate in a single balance run.
  723. * Limited because this is done with IRQs disabled.
  724. */
  725. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  726. /*
  727. * period over which we measure -rt task cpu usage in us.
  728. * default: 1s
  729. */
  730. unsigned int sysctl_sched_rt_period = 1000000;
  731. static __read_mostly int scheduler_running;
  732. /*
  733. * part of the period that we allow rt tasks to run in us.
  734. * default: 0.95s
  735. */
  736. int sysctl_sched_rt_runtime = 950000;
  737. static inline u64 global_rt_period(void)
  738. {
  739. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  740. }
  741. static inline u64 global_rt_runtime(void)
  742. {
  743. if (sysctl_sched_rt_period < 0)
  744. return RUNTIME_INF;
  745. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  746. }
  747. unsigned long long time_sync_thresh = 100000;
  748. static DEFINE_PER_CPU(unsigned long long, time_offset);
  749. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  750. /*
  751. * Global lock which we take every now and then to synchronize
  752. * the CPUs time. This method is not warp-safe, but it's good
  753. * enough to synchronize slowly diverging time sources and thus
  754. * it's good enough for tracing:
  755. */
  756. static DEFINE_SPINLOCK(time_sync_lock);
  757. static unsigned long long prev_global_time;
  758. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  759. {
  760. unsigned long flags;
  761. spin_lock_irqsave(&time_sync_lock, flags);
  762. if (time < prev_global_time) {
  763. per_cpu(time_offset, cpu) += prev_global_time - time;
  764. time = prev_global_time;
  765. } else {
  766. prev_global_time = time;
  767. }
  768. spin_unlock_irqrestore(&time_sync_lock, flags);
  769. return time;
  770. }
  771. static unsigned long long __cpu_clock(int cpu)
  772. {
  773. unsigned long long now;
  774. unsigned long flags;
  775. struct rq *rq;
  776. /*
  777. * Only call sched_clock() if the scheduler has already been
  778. * initialized (some code might call cpu_clock() very early):
  779. */
  780. if (unlikely(!scheduler_running))
  781. return 0;
  782. local_irq_save(flags);
  783. rq = cpu_rq(cpu);
  784. update_rq_clock(rq);
  785. now = rq->clock;
  786. local_irq_restore(flags);
  787. return now;
  788. }
  789. /*
  790. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  791. * clock constructed from sched_clock():
  792. */
  793. unsigned long long cpu_clock(int cpu)
  794. {
  795. unsigned long long prev_cpu_time, time, delta_time;
  796. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  797. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  798. delta_time = time-prev_cpu_time;
  799. if (unlikely(delta_time > time_sync_thresh))
  800. time = __sync_cpu_clock(time, cpu);
  801. return time;
  802. }
  803. EXPORT_SYMBOL_GPL(cpu_clock);
  804. #ifndef prepare_arch_switch
  805. # define prepare_arch_switch(next) do { } while (0)
  806. #endif
  807. #ifndef finish_arch_switch
  808. # define finish_arch_switch(prev) do { } while (0)
  809. #endif
  810. static inline int task_current(struct rq *rq, struct task_struct *p)
  811. {
  812. return rq->curr == p;
  813. }
  814. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  815. static inline int task_running(struct rq *rq, struct task_struct *p)
  816. {
  817. return task_current(rq, p);
  818. }
  819. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  820. {
  821. }
  822. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  823. {
  824. #ifdef CONFIG_DEBUG_SPINLOCK
  825. /* this is a valid case when another task releases the spinlock */
  826. rq->lock.owner = current;
  827. #endif
  828. /*
  829. * If we are tracking spinlock dependencies then we have to
  830. * fix up the runqueue lock - which gets 'carried over' from
  831. * prev into current:
  832. */
  833. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  834. spin_unlock_irq(&rq->lock);
  835. }
  836. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  837. static inline int task_running(struct rq *rq, struct task_struct *p)
  838. {
  839. #ifdef CONFIG_SMP
  840. return p->oncpu;
  841. #else
  842. return task_current(rq, p);
  843. #endif
  844. }
  845. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  846. {
  847. #ifdef CONFIG_SMP
  848. /*
  849. * We can optimise this out completely for !SMP, because the
  850. * SMP rebalancing from interrupt is the only thing that cares
  851. * here.
  852. */
  853. next->oncpu = 1;
  854. #endif
  855. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  856. spin_unlock_irq(&rq->lock);
  857. #else
  858. spin_unlock(&rq->lock);
  859. #endif
  860. }
  861. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  862. {
  863. #ifdef CONFIG_SMP
  864. /*
  865. * After ->oncpu is cleared, the task can be moved to a different CPU.
  866. * We must ensure this doesn't happen until the switch is completely
  867. * finished.
  868. */
  869. smp_wmb();
  870. prev->oncpu = 0;
  871. #endif
  872. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  873. local_irq_enable();
  874. #endif
  875. }
  876. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  877. /*
  878. * __task_rq_lock - lock the runqueue a given task resides on.
  879. * Must be called interrupts disabled.
  880. */
  881. static inline struct rq *__task_rq_lock(struct task_struct *p)
  882. __acquires(rq->lock)
  883. {
  884. for (;;) {
  885. struct rq *rq = task_rq(p);
  886. spin_lock(&rq->lock);
  887. if (likely(rq == task_rq(p)))
  888. return rq;
  889. spin_unlock(&rq->lock);
  890. }
  891. }
  892. /*
  893. * task_rq_lock - lock the runqueue a given task resides on and disable
  894. * interrupts. Note the ordering: we can safely lookup the task_rq without
  895. * explicitly disabling preemption.
  896. */
  897. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  898. __acquires(rq->lock)
  899. {
  900. struct rq *rq;
  901. for (;;) {
  902. local_irq_save(*flags);
  903. rq = task_rq(p);
  904. spin_lock(&rq->lock);
  905. if (likely(rq == task_rq(p)))
  906. return rq;
  907. spin_unlock_irqrestore(&rq->lock, *flags);
  908. }
  909. }
  910. static void __task_rq_unlock(struct rq *rq)
  911. __releases(rq->lock)
  912. {
  913. spin_unlock(&rq->lock);
  914. }
  915. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  916. __releases(rq->lock)
  917. {
  918. spin_unlock_irqrestore(&rq->lock, *flags);
  919. }
  920. /*
  921. * this_rq_lock - lock this runqueue and disable interrupts.
  922. */
  923. static struct rq *this_rq_lock(void)
  924. __acquires(rq->lock)
  925. {
  926. struct rq *rq;
  927. local_irq_disable();
  928. rq = this_rq();
  929. spin_lock(&rq->lock);
  930. return rq;
  931. }
  932. /*
  933. * We are going deep-idle (irqs are disabled):
  934. */
  935. void sched_clock_idle_sleep_event(void)
  936. {
  937. struct rq *rq = cpu_rq(smp_processor_id());
  938. WARN_ON(!irqs_disabled());
  939. spin_lock(&rq->lock);
  940. __update_rq_clock(rq);
  941. spin_unlock(&rq->lock);
  942. rq->clock_deep_idle_events++;
  943. }
  944. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  945. /*
  946. * We just idled delta nanoseconds (called with irqs disabled):
  947. */
  948. void sched_clock_idle_wakeup_event(u64 delta_ns)
  949. {
  950. struct rq *rq = cpu_rq(smp_processor_id());
  951. u64 now = sched_clock();
  952. WARN_ON(!irqs_disabled());
  953. rq->idle_clock += delta_ns;
  954. /*
  955. * Override the previous timestamp and ignore all
  956. * sched_clock() deltas that occured while we idled,
  957. * and use the PM-provided delta_ns to advance the
  958. * rq clock:
  959. */
  960. spin_lock(&rq->lock);
  961. rq->prev_clock_raw = now;
  962. rq->clock += delta_ns;
  963. spin_unlock(&rq->lock);
  964. touch_softlockup_watchdog();
  965. }
  966. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  967. static void __resched_task(struct task_struct *p, int tif_bit);
  968. static inline void resched_task(struct task_struct *p)
  969. {
  970. __resched_task(p, TIF_NEED_RESCHED);
  971. }
  972. #ifdef CONFIG_SCHED_HRTICK
  973. /*
  974. * Use HR-timers to deliver accurate preemption points.
  975. *
  976. * Its all a bit involved since we cannot program an hrt while holding the
  977. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  978. * reschedule event.
  979. *
  980. * When we get rescheduled we reprogram the hrtick_timer outside of the
  981. * rq->lock.
  982. */
  983. static inline void resched_hrt(struct task_struct *p)
  984. {
  985. __resched_task(p, TIF_HRTICK_RESCHED);
  986. }
  987. static inline void resched_rq(struct rq *rq)
  988. {
  989. unsigned long flags;
  990. spin_lock_irqsave(&rq->lock, flags);
  991. resched_task(rq->curr);
  992. spin_unlock_irqrestore(&rq->lock, flags);
  993. }
  994. enum {
  995. HRTICK_SET, /* re-programm hrtick_timer */
  996. HRTICK_RESET, /* not a new slice */
  997. HRTICK_BLOCK, /* stop hrtick operations */
  998. };
  999. /*
  1000. * Use hrtick when:
  1001. * - enabled by features
  1002. * - hrtimer is actually high res
  1003. */
  1004. static inline int hrtick_enabled(struct rq *rq)
  1005. {
  1006. if (!sched_feat(HRTICK))
  1007. return 0;
  1008. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  1009. return 0;
  1010. return hrtimer_is_hres_active(&rq->hrtick_timer);
  1011. }
  1012. /*
  1013. * Called to set the hrtick timer state.
  1014. *
  1015. * called with rq->lock held and irqs disabled
  1016. */
  1017. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  1018. {
  1019. assert_spin_locked(&rq->lock);
  1020. /*
  1021. * preempt at: now + delay
  1022. */
  1023. rq->hrtick_expire =
  1024. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  1025. /*
  1026. * indicate we need to program the timer
  1027. */
  1028. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  1029. if (reset)
  1030. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  1031. /*
  1032. * New slices are called from the schedule path and don't need a
  1033. * forced reschedule.
  1034. */
  1035. if (reset)
  1036. resched_hrt(rq->curr);
  1037. }
  1038. static void hrtick_clear(struct rq *rq)
  1039. {
  1040. if (hrtimer_active(&rq->hrtick_timer))
  1041. hrtimer_cancel(&rq->hrtick_timer);
  1042. }
  1043. /*
  1044. * Update the timer from the possible pending state.
  1045. */
  1046. static void hrtick_set(struct rq *rq)
  1047. {
  1048. ktime_t time;
  1049. int set, reset;
  1050. unsigned long flags;
  1051. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  1052. spin_lock_irqsave(&rq->lock, flags);
  1053. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  1054. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  1055. time = rq->hrtick_expire;
  1056. clear_thread_flag(TIF_HRTICK_RESCHED);
  1057. spin_unlock_irqrestore(&rq->lock, flags);
  1058. if (set) {
  1059. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  1060. if (reset && !hrtimer_active(&rq->hrtick_timer))
  1061. resched_rq(rq);
  1062. } else
  1063. hrtick_clear(rq);
  1064. }
  1065. /*
  1066. * High-resolution timer tick.
  1067. * Runs from hardirq context with interrupts disabled.
  1068. */
  1069. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  1070. {
  1071. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  1072. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  1073. spin_lock(&rq->lock);
  1074. __update_rq_clock(rq);
  1075. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  1076. spin_unlock(&rq->lock);
  1077. return HRTIMER_NORESTART;
  1078. }
  1079. static void hotplug_hrtick_disable(int cpu)
  1080. {
  1081. struct rq *rq = cpu_rq(cpu);
  1082. unsigned long flags;
  1083. spin_lock_irqsave(&rq->lock, flags);
  1084. rq->hrtick_flags = 0;
  1085. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  1086. spin_unlock_irqrestore(&rq->lock, flags);
  1087. hrtick_clear(rq);
  1088. }
  1089. static void hotplug_hrtick_enable(int cpu)
  1090. {
  1091. struct rq *rq = cpu_rq(cpu);
  1092. unsigned long flags;
  1093. spin_lock_irqsave(&rq->lock, flags);
  1094. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  1095. spin_unlock_irqrestore(&rq->lock, flags);
  1096. }
  1097. static int
  1098. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  1099. {
  1100. int cpu = (int)(long)hcpu;
  1101. switch (action) {
  1102. case CPU_UP_CANCELED:
  1103. case CPU_UP_CANCELED_FROZEN:
  1104. case CPU_DOWN_PREPARE:
  1105. case CPU_DOWN_PREPARE_FROZEN:
  1106. case CPU_DEAD:
  1107. case CPU_DEAD_FROZEN:
  1108. hotplug_hrtick_disable(cpu);
  1109. return NOTIFY_OK;
  1110. case CPU_UP_PREPARE:
  1111. case CPU_UP_PREPARE_FROZEN:
  1112. case CPU_DOWN_FAILED:
  1113. case CPU_DOWN_FAILED_FROZEN:
  1114. case CPU_ONLINE:
  1115. case CPU_ONLINE_FROZEN:
  1116. hotplug_hrtick_enable(cpu);
  1117. return NOTIFY_OK;
  1118. }
  1119. return NOTIFY_DONE;
  1120. }
  1121. static void init_hrtick(void)
  1122. {
  1123. hotcpu_notifier(hotplug_hrtick, 0);
  1124. }
  1125. static void init_rq_hrtick(struct rq *rq)
  1126. {
  1127. rq->hrtick_flags = 0;
  1128. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1129. rq->hrtick_timer.function = hrtick;
  1130. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  1131. }
  1132. void hrtick_resched(void)
  1133. {
  1134. struct rq *rq;
  1135. unsigned long flags;
  1136. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1137. return;
  1138. local_irq_save(flags);
  1139. rq = cpu_rq(smp_processor_id());
  1140. hrtick_set(rq);
  1141. local_irq_restore(flags);
  1142. }
  1143. #else
  1144. static inline void hrtick_clear(struct rq *rq)
  1145. {
  1146. }
  1147. static inline void hrtick_set(struct rq *rq)
  1148. {
  1149. }
  1150. static inline void init_rq_hrtick(struct rq *rq)
  1151. {
  1152. }
  1153. void hrtick_resched(void)
  1154. {
  1155. }
  1156. static inline void init_hrtick(void)
  1157. {
  1158. }
  1159. #endif
  1160. /*
  1161. * resched_task - mark a task 'to be rescheduled now'.
  1162. *
  1163. * On UP this means the setting of the need_resched flag, on SMP it
  1164. * might also involve a cross-CPU call to trigger the scheduler on
  1165. * the target CPU.
  1166. */
  1167. #ifdef CONFIG_SMP
  1168. #ifndef tsk_is_polling
  1169. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1170. #endif
  1171. static void __resched_task(struct task_struct *p, int tif_bit)
  1172. {
  1173. int cpu;
  1174. assert_spin_locked(&task_rq(p)->lock);
  1175. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1176. return;
  1177. set_tsk_thread_flag(p, tif_bit);
  1178. cpu = task_cpu(p);
  1179. if (cpu == smp_processor_id())
  1180. return;
  1181. /* NEED_RESCHED must be visible before we test polling */
  1182. smp_mb();
  1183. if (!tsk_is_polling(p))
  1184. smp_send_reschedule(cpu);
  1185. }
  1186. static void resched_cpu(int cpu)
  1187. {
  1188. struct rq *rq = cpu_rq(cpu);
  1189. unsigned long flags;
  1190. if (!spin_trylock_irqsave(&rq->lock, flags))
  1191. return;
  1192. resched_task(cpu_curr(cpu));
  1193. spin_unlock_irqrestore(&rq->lock, flags);
  1194. }
  1195. #ifdef CONFIG_NO_HZ
  1196. /*
  1197. * When add_timer_on() enqueues a timer into the timer wheel of an
  1198. * idle CPU then this timer might expire before the next timer event
  1199. * which is scheduled to wake up that CPU. In case of a completely
  1200. * idle system the next event might even be infinite time into the
  1201. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1202. * leaves the inner idle loop so the newly added timer is taken into
  1203. * account when the CPU goes back to idle and evaluates the timer
  1204. * wheel for the next timer event.
  1205. */
  1206. void wake_up_idle_cpu(int cpu)
  1207. {
  1208. struct rq *rq = cpu_rq(cpu);
  1209. if (cpu == smp_processor_id())
  1210. return;
  1211. /*
  1212. * This is safe, as this function is called with the timer
  1213. * wheel base lock of (cpu) held. When the CPU is on the way
  1214. * to idle and has not yet set rq->curr to idle then it will
  1215. * be serialized on the timer wheel base lock and take the new
  1216. * timer into account automatically.
  1217. */
  1218. if (rq->curr != rq->idle)
  1219. return;
  1220. /*
  1221. * We can set TIF_RESCHED on the idle task of the other CPU
  1222. * lockless. The worst case is that the other CPU runs the
  1223. * idle task through an additional NOOP schedule()
  1224. */
  1225. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1226. /* NEED_RESCHED must be visible before we test polling */
  1227. smp_mb();
  1228. if (!tsk_is_polling(rq->idle))
  1229. smp_send_reschedule(cpu);
  1230. }
  1231. #endif
  1232. #else
  1233. static void __resched_task(struct task_struct *p, int tif_bit)
  1234. {
  1235. assert_spin_locked(&task_rq(p)->lock);
  1236. set_tsk_thread_flag(p, tif_bit);
  1237. }
  1238. #endif
  1239. #if BITS_PER_LONG == 32
  1240. # define WMULT_CONST (~0UL)
  1241. #else
  1242. # define WMULT_CONST (1UL << 32)
  1243. #endif
  1244. #define WMULT_SHIFT 32
  1245. /*
  1246. * Shift right and round:
  1247. */
  1248. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1249. /*
  1250. * delta *= weight / lw
  1251. */
  1252. static unsigned long
  1253. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1254. struct load_weight *lw)
  1255. {
  1256. u64 tmp;
  1257. if (!lw->inv_weight)
  1258. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
  1259. tmp = (u64)delta_exec * weight;
  1260. /*
  1261. * Check whether we'd overflow the 64-bit multiplication:
  1262. */
  1263. if (unlikely(tmp > WMULT_CONST))
  1264. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1265. WMULT_SHIFT/2);
  1266. else
  1267. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1268. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1269. }
  1270. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1271. {
  1272. lw->weight += inc;
  1273. lw->inv_weight = 0;
  1274. }
  1275. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1276. {
  1277. lw->weight -= dec;
  1278. lw->inv_weight = 0;
  1279. }
  1280. /*
  1281. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1282. * of tasks with abnormal "nice" values across CPUs the contribution that
  1283. * each task makes to its run queue's load is weighted according to its
  1284. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1285. * scaled version of the new time slice allocation that they receive on time
  1286. * slice expiry etc.
  1287. */
  1288. #define WEIGHT_IDLEPRIO 2
  1289. #define WMULT_IDLEPRIO (1 << 31)
  1290. /*
  1291. * Nice levels are multiplicative, with a gentle 10% change for every
  1292. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1293. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1294. * that remained on nice 0.
  1295. *
  1296. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1297. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1298. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1299. * If a task goes up by ~10% and another task goes down by ~10% then
  1300. * the relative distance between them is ~25%.)
  1301. */
  1302. static const int prio_to_weight[40] = {
  1303. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1304. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1305. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1306. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1307. /* 0 */ 1024, 820, 655, 526, 423,
  1308. /* 5 */ 335, 272, 215, 172, 137,
  1309. /* 10 */ 110, 87, 70, 56, 45,
  1310. /* 15 */ 36, 29, 23, 18, 15,
  1311. };
  1312. /*
  1313. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1314. *
  1315. * In cases where the weight does not change often, we can use the
  1316. * precalculated inverse to speed up arithmetics by turning divisions
  1317. * into multiplications:
  1318. */
  1319. static const u32 prio_to_wmult[40] = {
  1320. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1321. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1322. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1323. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1324. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1325. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1326. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1327. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1328. };
  1329. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1330. /*
  1331. * runqueue iterator, to support SMP load-balancing between different
  1332. * scheduling classes, without having to expose their internal data
  1333. * structures to the load-balancing proper:
  1334. */
  1335. struct rq_iterator {
  1336. void *arg;
  1337. struct task_struct *(*start)(void *);
  1338. struct task_struct *(*next)(void *);
  1339. };
  1340. #ifdef CONFIG_SMP
  1341. static unsigned long
  1342. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1343. unsigned long max_load_move, struct sched_domain *sd,
  1344. enum cpu_idle_type idle, int *all_pinned,
  1345. int *this_best_prio, struct rq_iterator *iterator);
  1346. static int
  1347. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1348. struct sched_domain *sd, enum cpu_idle_type idle,
  1349. struct rq_iterator *iterator);
  1350. #endif
  1351. #ifdef CONFIG_CGROUP_CPUACCT
  1352. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1353. #else
  1354. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1355. #endif
  1356. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1357. {
  1358. update_load_add(&rq->load, load);
  1359. }
  1360. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1361. {
  1362. update_load_sub(&rq->load, load);
  1363. }
  1364. #ifdef CONFIG_SMP
  1365. static unsigned long source_load(int cpu, int type);
  1366. static unsigned long target_load(int cpu, int type);
  1367. static unsigned long cpu_avg_load_per_task(int cpu);
  1368. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1369. #ifdef CONFIG_FAIR_GROUP_SCHED
  1370. /*
  1371. * Group load balancing.
  1372. *
  1373. * We calculate a few balance domain wide aggregate numbers; load and weight.
  1374. * Given the pictures below, and assuming each item has equal weight:
  1375. *
  1376. * root 1 - thread
  1377. * / | \ A - group
  1378. * A 1 B
  1379. * /|\ / \
  1380. * C 2 D 3 4
  1381. * | |
  1382. * 5 6
  1383. *
  1384. * load:
  1385. * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
  1386. * which equals 1/9-th of the total load.
  1387. *
  1388. * shares:
  1389. * The weight of this group on the selected cpus.
  1390. *
  1391. * rq_weight:
  1392. * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
  1393. * B would get 2.
  1394. *
  1395. * task_weight:
  1396. * Part of the rq_weight contributed by tasks; all groups except B would
  1397. * get 1, B gets 2.
  1398. */
  1399. static inline struct aggregate_struct *
  1400. aggregate(struct task_group *tg, struct sched_domain *sd)
  1401. {
  1402. return &tg->cfs_rq[sd->first_cpu]->aggregate;
  1403. }
  1404. typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
  1405. /*
  1406. * Iterate the full tree, calling @down when first entering a node and @up when
  1407. * leaving it for the final time.
  1408. */
  1409. static
  1410. void aggregate_walk_tree(aggregate_func down, aggregate_func up,
  1411. struct sched_domain *sd)
  1412. {
  1413. struct task_group *parent, *child;
  1414. rcu_read_lock();
  1415. parent = &root_task_group;
  1416. down:
  1417. (*down)(parent, sd);
  1418. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1419. parent = child;
  1420. goto down;
  1421. up:
  1422. continue;
  1423. }
  1424. (*up)(parent, sd);
  1425. child = parent;
  1426. parent = parent->parent;
  1427. if (parent)
  1428. goto up;
  1429. rcu_read_unlock();
  1430. }
  1431. /*
  1432. * Calculate the aggregate runqueue weight.
  1433. */
  1434. static
  1435. void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
  1436. {
  1437. unsigned long rq_weight = 0;
  1438. unsigned long task_weight = 0;
  1439. int i;
  1440. for_each_cpu_mask(i, sd->span) {
  1441. rq_weight += tg->cfs_rq[i]->load.weight;
  1442. task_weight += tg->cfs_rq[i]->task_weight;
  1443. }
  1444. aggregate(tg, sd)->rq_weight = rq_weight;
  1445. aggregate(tg, sd)->task_weight = task_weight;
  1446. }
  1447. /*
  1448. * Compute the weight of this group on the given cpus.
  1449. */
  1450. static
  1451. void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
  1452. {
  1453. unsigned long shares = 0;
  1454. int i;
  1455. for_each_cpu_mask(i, sd->span)
  1456. shares += tg->cfs_rq[i]->shares;
  1457. if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
  1458. shares = tg->shares;
  1459. aggregate(tg, sd)->shares = shares;
  1460. }
  1461. /*
  1462. * Compute the load fraction assigned to this group, relies on the aggregate
  1463. * weight and this group's parent's load, i.e. top-down.
  1464. */
  1465. static
  1466. void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
  1467. {
  1468. unsigned long load;
  1469. if (!tg->parent) {
  1470. int i;
  1471. load = 0;
  1472. for_each_cpu_mask(i, sd->span)
  1473. load += cpu_rq(i)->load.weight;
  1474. } else {
  1475. load = aggregate(tg->parent, sd)->load;
  1476. /*
  1477. * shares is our weight in the parent's rq so
  1478. * shares/parent->rq_weight gives our fraction of the load
  1479. */
  1480. load *= aggregate(tg, sd)->shares;
  1481. load /= aggregate(tg->parent, sd)->rq_weight + 1;
  1482. }
  1483. aggregate(tg, sd)->load = load;
  1484. }
  1485. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1486. /*
  1487. * Calculate and set the cpu's group shares.
  1488. */
  1489. static void
  1490. __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
  1491. int tcpu)
  1492. {
  1493. int boost = 0;
  1494. unsigned long shares;
  1495. unsigned long rq_weight;
  1496. if (!tg->se[tcpu])
  1497. return;
  1498. rq_weight = tg->cfs_rq[tcpu]->load.weight;
  1499. /*
  1500. * If there are currently no tasks on the cpu pretend there is one of
  1501. * average load so that when a new task gets to run here it will not
  1502. * get delayed by group starvation.
  1503. */
  1504. if (!rq_weight) {
  1505. boost = 1;
  1506. rq_weight = NICE_0_LOAD;
  1507. }
  1508. /*
  1509. * \Sum shares * rq_weight
  1510. * shares = -----------------------
  1511. * \Sum rq_weight
  1512. *
  1513. */
  1514. shares = aggregate(tg, sd)->shares * rq_weight;
  1515. shares /= aggregate(tg, sd)->rq_weight + 1;
  1516. /*
  1517. * record the actual number of shares, not the boosted amount.
  1518. */
  1519. tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
  1520. if (shares < MIN_SHARES)
  1521. shares = MIN_SHARES;
  1522. __set_se_shares(tg->se[tcpu], shares);
  1523. }
  1524. /*
  1525. * Re-adjust the weights on the cpu the task came from and on the cpu the
  1526. * task went to.
  1527. */
  1528. static void
  1529. __move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1530. int scpu, int dcpu)
  1531. {
  1532. unsigned long shares;
  1533. shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1534. __update_group_shares_cpu(tg, sd, scpu);
  1535. __update_group_shares_cpu(tg, sd, dcpu);
  1536. /*
  1537. * ensure we never loose shares due to rounding errors in the
  1538. * above redistribution.
  1539. */
  1540. shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1541. if (shares)
  1542. tg->cfs_rq[dcpu]->shares += shares;
  1543. }
  1544. /*
  1545. * Because changing a group's shares changes the weight of the super-group
  1546. * we need to walk up the tree and change all shares until we hit the root.
  1547. */
  1548. static void
  1549. move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1550. int scpu, int dcpu)
  1551. {
  1552. while (tg) {
  1553. __move_group_shares(tg, sd, scpu, dcpu);
  1554. tg = tg->parent;
  1555. }
  1556. }
  1557. static
  1558. void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
  1559. {
  1560. unsigned long shares = aggregate(tg, sd)->shares;
  1561. int i;
  1562. for_each_cpu_mask(i, sd->span) {
  1563. struct rq *rq = cpu_rq(i);
  1564. unsigned long flags;
  1565. spin_lock_irqsave(&rq->lock, flags);
  1566. __update_group_shares_cpu(tg, sd, i);
  1567. spin_unlock_irqrestore(&rq->lock, flags);
  1568. }
  1569. aggregate_group_shares(tg, sd);
  1570. /*
  1571. * ensure we never loose shares due to rounding errors in the
  1572. * above redistribution.
  1573. */
  1574. shares -= aggregate(tg, sd)->shares;
  1575. if (shares) {
  1576. tg->cfs_rq[sd->first_cpu]->shares += shares;
  1577. aggregate(tg, sd)->shares += shares;
  1578. }
  1579. }
  1580. /*
  1581. * Calculate the accumulative weight and recursive load of each task group
  1582. * while walking down the tree.
  1583. */
  1584. static
  1585. void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
  1586. {
  1587. aggregate_group_weight(tg, sd);
  1588. aggregate_group_shares(tg, sd);
  1589. aggregate_group_load(tg, sd);
  1590. }
  1591. /*
  1592. * Rebalance the cpu shares while walking back up the tree.
  1593. */
  1594. static
  1595. void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
  1596. {
  1597. aggregate_group_set_shares(tg, sd);
  1598. }
  1599. static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
  1600. static void __init init_aggregate(void)
  1601. {
  1602. int i;
  1603. for_each_possible_cpu(i)
  1604. spin_lock_init(&per_cpu(aggregate_lock, i));
  1605. }
  1606. static int get_aggregate(struct sched_domain *sd)
  1607. {
  1608. if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
  1609. return 0;
  1610. aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
  1611. return 1;
  1612. }
  1613. static void put_aggregate(struct sched_domain *sd)
  1614. {
  1615. spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
  1616. }
  1617. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1618. {
  1619. cfs_rq->shares = shares;
  1620. }
  1621. #else
  1622. static inline void init_aggregate(void)
  1623. {
  1624. }
  1625. static inline int get_aggregate(struct sched_domain *sd)
  1626. {
  1627. return 0;
  1628. }
  1629. static inline void put_aggregate(struct sched_domain *sd)
  1630. {
  1631. }
  1632. #endif
  1633. #else /* CONFIG_SMP */
  1634. #ifdef CONFIG_FAIR_GROUP_SCHED
  1635. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1636. {
  1637. }
  1638. #endif
  1639. #endif /* CONFIG_SMP */
  1640. #include "sched_stats.h"
  1641. #include "sched_idletask.c"
  1642. #include "sched_fair.c"
  1643. #include "sched_rt.c"
  1644. #ifdef CONFIG_SCHED_DEBUG
  1645. # include "sched_debug.c"
  1646. #endif
  1647. #define sched_class_highest (&rt_sched_class)
  1648. static void inc_nr_running(struct rq *rq)
  1649. {
  1650. rq->nr_running++;
  1651. }
  1652. static void dec_nr_running(struct rq *rq)
  1653. {
  1654. rq->nr_running--;
  1655. }
  1656. static void set_load_weight(struct task_struct *p)
  1657. {
  1658. if (task_has_rt_policy(p)) {
  1659. p->se.load.weight = prio_to_weight[0] * 2;
  1660. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1661. return;
  1662. }
  1663. /*
  1664. * SCHED_IDLE tasks get minimal weight:
  1665. */
  1666. if (p->policy == SCHED_IDLE) {
  1667. p->se.load.weight = WEIGHT_IDLEPRIO;
  1668. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1669. return;
  1670. }
  1671. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1672. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1673. }
  1674. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1675. {
  1676. sched_info_queued(p);
  1677. p->sched_class->enqueue_task(rq, p, wakeup);
  1678. p->se.on_rq = 1;
  1679. }
  1680. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1681. {
  1682. p->sched_class->dequeue_task(rq, p, sleep);
  1683. p->se.on_rq = 0;
  1684. }
  1685. /*
  1686. * __normal_prio - return the priority that is based on the static prio
  1687. */
  1688. static inline int __normal_prio(struct task_struct *p)
  1689. {
  1690. return p->static_prio;
  1691. }
  1692. /*
  1693. * Calculate the expected normal priority: i.e. priority
  1694. * without taking RT-inheritance into account. Might be
  1695. * boosted by interactivity modifiers. Changes upon fork,
  1696. * setprio syscalls, and whenever the interactivity
  1697. * estimator recalculates.
  1698. */
  1699. static inline int normal_prio(struct task_struct *p)
  1700. {
  1701. int prio;
  1702. if (task_has_rt_policy(p))
  1703. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1704. else
  1705. prio = __normal_prio(p);
  1706. return prio;
  1707. }
  1708. /*
  1709. * Calculate the current priority, i.e. the priority
  1710. * taken into account by the scheduler. This value might
  1711. * be boosted by RT tasks, or might be boosted by
  1712. * interactivity modifiers. Will be RT if the task got
  1713. * RT-boosted. If not then it returns p->normal_prio.
  1714. */
  1715. static int effective_prio(struct task_struct *p)
  1716. {
  1717. p->normal_prio = normal_prio(p);
  1718. /*
  1719. * If we are RT tasks or we were boosted to RT priority,
  1720. * keep the priority unchanged. Otherwise, update priority
  1721. * to the normal priority:
  1722. */
  1723. if (!rt_prio(p->prio))
  1724. return p->normal_prio;
  1725. return p->prio;
  1726. }
  1727. /*
  1728. * activate_task - move a task to the runqueue.
  1729. */
  1730. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1731. {
  1732. if (task_contributes_to_load(p))
  1733. rq->nr_uninterruptible--;
  1734. enqueue_task(rq, p, wakeup);
  1735. inc_nr_running(rq);
  1736. }
  1737. /*
  1738. * deactivate_task - remove a task from the runqueue.
  1739. */
  1740. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1741. {
  1742. if (task_contributes_to_load(p))
  1743. rq->nr_uninterruptible++;
  1744. dequeue_task(rq, p, sleep);
  1745. dec_nr_running(rq);
  1746. }
  1747. /**
  1748. * task_curr - is this task currently executing on a CPU?
  1749. * @p: the task in question.
  1750. */
  1751. inline int task_curr(const struct task_struct *p)
  1752. {
  1753. return cpu_curr(task_cpu(p)) == p;
  1754. }
  1755. /* Used instead of source_load when we know the type == 0 */
  1756. unsigned long weighted_cpuload(const int cpu)
  1757. {
  1758. return cpu_rq(cpu)->load.weight;
  1759. }
  1760. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1761. {
  1762. set_task_rq(p, cpu);
  1763. #ifdef CONFIG_SMP
  1764. /*
  1765. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1766. * successfuly executed on another CPU. We must ensure that updates of
  1767. * per-task data have been completed by this moment.
  1768. */
  1769. smp_wmb();
  1770. task_thread_info(p)->cpu = cpu;
  1771. #endif
  1772. }
  1773. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1774. const struct sched_class *prev_class,
  1775. int oldprio, int running)
  1776. {
  1777. if (prev_class != p->sched_class) {
  1778. if (prev_class->switched_from)
  1779. prev_class->switched_from(rq, p, running);
  1780. p->sched_class->switched_to(rq, p, running);
  1781. } else
  1782. p->sched_class->prio_changed(rq, p, oldprio, running);
  1783. }
  1784. #ifdef CONFIG_SMP
  1785. /*
  1786. * Is this task likely cache-hot:
  1787. */
  1788. static int
  1789. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1790. {
  1791. s64 delta;
  1792. /*
  1793. * Buddy candidates are cache hot:
  1794. */
  1795. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1796. return 1;
  1797. if (p->sched_class != &fair_sched_class)
  1798. return 0;
  1799. if (sysctl_sched_migration_cost == -1)
  1800. return 1;
  1801. if (sysctl_sched_migration_cost == 0)
  1802. return 0;
  1803. delta = now - p->se.exec_start;
  1804. return delta < (s64)sysctl_sched_migration_cost;
  1805. }
  1806. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1807. {
  1808. int old_cpu = task_cpu(p);
  1809. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1810. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1811. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1812. u64 clock_offset;
  1813. clock_offset = old_rq->clock - new_rq->clock;
  1814. #ifdef CONFIG_SCHEDSTATS
  1815. if (p->se.wait_start)
  1816. p->se.wait_start -= clock_offset;
  1817. if (p->se.sleep_start)
  1818. p->se.sleep_start -= clock_offset;
  1819. if (p->se.block_start)
  1820. p->se.block_start -= clock_offset;
  1821. if (old_cpu != new_cpu) {
  1822. schedstat_inc(p, se.nr_migrations);
  1823. if (task_hot(p, old_rq->clock, NULL))
  1824. schedstat_inc(p, se.nr_forced2_migrations);
  1825. }
  1826. #endif
  1827. p->se.vruntime -= old_cfsrq->min_vruntime -
  1828. new_cfsrq->min_vruntime;
  1829. __set_task_cpu(p, new_cpu);
  1830. }
  1831. struct migration_req {
  1832. struct list_head list;
  1833. struct task_struct *task;
  1834. int dest_cpu;
  1835. struct completion done;
  1836. };
  1837. /*
  1838. * The task's runqueue lock must be held.
  1839. * Returns true if you have to wait for migration thread.
  1840. */
  1841. static int
  1842. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1843. {
  1844. struct rq *rq = task_rq(p);
  1845. /*
  1846. * If the task is not on a runqueue (and not running), then
  1847. * it is sufficient to simply update the task's cpu field.
  1848. */
  1849. if (!p->se.on_rq && !task_running(rq, p)) {
  1850. set_task_cpu(p, dest_cpu);
  1851. return 0;
  1852. }
  1853. init_completion(&req->done);
  1854. req->task = p;
  1855. req->dest_cpu = dest_cpu;
  1856. list_add(&req->list, &rq->migration_queue);
  1857. return 1;
  1858. }
  1859. /*
  1860. * wait_task_inactive - wait for a thread to unschedule.
  1861. *
  1862. * The caller must ensure that the task *will* unschedule sometime soon,
  1863. * else this function might spin for a *long* time. This function can't
  1864. * be called with interrupts off, or it may introduce deadlock with
  1865. * smp_call_function() if an IPI is sent by the same process we are
  1866. * waiting to become inactive.
  1867. */
  1868. void wait_task_inactive(struct task_struct *p)
  1869. {
  1870. unsigned long flags;
  1871. int running, on_rq;
  1872. struct rq *rq;
  1873. for (;;) {
  1874. /*
  1875. * We do the initial early heuristics without holding
  1876. * any task-queue locks at all. We'll only try to get
  1877. * the runqueue lock when things look like they will
  1878. * work out!
  1879. */
  1880. rq = task_rq(p);
  1881. /*
  1882. * If the task is actively running on another CPU
  1883. * still, just relax and busy-wait without holding
  1884. * any locks.
  1885. *
  1886. * NOTE! Since we don't hold any locks, it's not
  1887. * even sure that "rq" stays as the right runqueue!
  1888. * But we don't care, since "task_running()" will
  1889. * return false if the runqueue has changed and p
  1890. * is actually now running somewhere else!
  1891. */
  1892. while (task_running(rq, p))
  1893. cpu_relax();
  1894. /*
  1895. * Ok, time to look more closely! We need the rq
  1896. * lock now, to be *sure*. If we're wrong, we'll
  1897. * just go back and repeat.
  1898. */
  1899. rq = task_rq_lock(p, &flags);
  1900. running = task_running(rq, p);
  1901. on_rq = p->se.on_rq;
  1902. task_rq_unlock(rq, &flags);
  1903. /*
  1904. * Was it really running after all now that we
  1905. * checked with the proper locks actually held?
  1906. *
  1907. * Oops. Go back and try again..
  1908. */
  1909. if (unlikely(running)) {
  1910. cpu_relax();
  1911. continue;
  1912. }
  1913. /*
  1914. * It's not enough that it's not actively running,
  1915. * it must be off the runqueue _entirely_, and not
  1916. * preempted!
  1917. *
  1918. * So if it wa still runnable (but just not actively
  1919. * running right now), it's preempted, and we should
  1920. * yield - it could be a while.
  1921. */
  1922. if (unlikely(on_rq)) {
  1923. schedule_timeout_uninterruptible(1);
  1924. continue;
  1925. }
  1926. /*
  1927. * Ahh, all good. It wasn't running, and it wasn't
  1928. * runnable, which means that it will never become
  1929. * running in the future either. We're all done!
  1930. */
  1931. break;
  1932. }
  1933. }
  1934. /***
  1935. * kick_process - kick a running thread to enter/exit the kernel
  1936. * @p: the to-be-kicked thread
  1937. *
  1938. * Cause a process which is running on another CPU to enter
  1939. * kernel-mode, without any delay. (to get signals handled.)
  1940. *
  1941. * NOTE: this function doesnt have to take the runqueue lock,
  1942. * because all it wants to ensure is that the remote task enters
  1943. * the kernel. If the IPI races and the task has been migrated
  1944. * to another CPU then no harm is done and the purpose has been
  1945. * achieved as well.
  1946. */
  1947. void kick_process(struct task_struct *p)
  1948. {
  1949. int cpu;
  1950. preempt_disable();
  1951. cpu = task_cpu(p);
  1952. if ((cpu != smp_processor_id()) && task_curr(p))
  1953. smp_send_reschedule(cpu);
  1954. preempt_enable();
  1955. }
  1956. /*
  1957. * Return a low guess at the load of a migration-source cpu weighted
  1958. * according to the scheduling class and "nice" value.
  1959. *
  1960. * We want to under-estimate the load of migration sources, to
  1961. * balance conservatively.
  1962. */
  1963. static unsigned long source_load(int cpu, int type)
  1964. {
  1965. struct rq *rq = cpu_rq(cpu);
  1966. unsigned long total = weighted_cpuload(cpu);
  1967. if (type == 0)
  1968. return total;
  1969. return min(rq->cpu_load[type-1], total);
  1970. }
  1971. /*
  1972. * Return a high guess at the load of a migration-target cpu weighted
  1973. * according to the scheduling class and "nice" value.
  1974. */
  1975. static unsigned long target_load(int cpu, int type)
  1976. {
  1977. struct rq *rq = cpu_rq(cpu);
  1978. unsigned long total = weighted_cpuload(cpu);
  1979. if (type == 0)
  1980. return total;
  1981. return max(rq->cpu_load[type-1], total);
  1982. }
  1983. /*
  1984. * Return the average load per task on the cpu's run queue
  1985. */
  1986. static unsigned long cpu_avg_load_per_task(int cpu)
  1987. {
  1988. struct rq *rq = cpu_rq(cpu);
  1989. unsigned long total = weighted_cpuload(cpu);
  1990. unsigned long n = rq->nr_running;
  1991. return n ? total / n : SCHED_LOAD_SCALE;
  1992. }
  1993. /*
  1994. * find_idlest_group finds and returns the least busy CPU group within the
  1995. * domain.
  1996. */
  1997. static struct sched_group *
  1998. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1999. {
  2000. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  2001. unsigned long min_load = ULONG_MAX, this_load = 0;
  2002. int load_idx = sd->forkexec_idx;
  2003. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2004. do {
  2005. unsigned long load, avg_load;
  2006. int local_group;
  2007. int i;
  2008. /* Skip over this group if it has no CPUs allowed */
  2009. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  2010. continue;
  2011. local_group = cpu_isset(this_cpu, group->cpumask);
  2012. /* Tally up the load of all CPUs in the group */
  2013. avg_load = 0;
  2014. for_each_cpu_mask(i, group->cpumask) {
  2015. /* Bias balancing toward cpus of our domain */
  2016. if (local_group)
  2017. load = source_load(i, load_idx);
  2018. else
  2019. load = target_load(i, load_idx);
  2020. avg_load += load;
  2021. }
  2022. /* Adjust by relative CPU power of the group */
  2023. avg_load = sg_div_cpu_power(group,
  2024. avg_load * SCHED_LOAD_SCALE);
  2025. if (local_group) {
  2026. this_load = avg_load;
  2027. this = group;
  2028. } else if (avg_load < min_load) {
  2029. min_load = avg_load;
  2030. idlest = group;
  2031. }
  2032. } while (group = group->next, group != sd->groups);
  2033. if (!idlest || 100*this_load < imbalance*min_load)
  2034. return NULL;
  2035. return idlest;
  2036. }
  2037. /*
  2038. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2039. */
  2040. static int
  2041. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  2042. cpumask_t *tmp)
  2043. {
  2044. unsigned long load, min_load = ULONG_MAX;
  2045. int idlest = -1;
  2046. int i;
  2047. /* Traverse only the allowed CPUs */
  2048. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  2049. for_each_cpu_mask(i, *tmp) {
  2050. load = weighted_cpuload(i);
  2051. if (load < min_load || (load == min_load && i == this_cpu)) {
  2052. min_load = load;
  2053. idlest = i;
  2054. }
  2055. }
  2056. return idlest;
  2057. }
  2058. /*
  2059. * sched_balance_self: balance the current task (running on cpu) in domains
  2060. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2061. * SD_BALANCE_EXEC.
  2062. *
  2063. * Balance, ie. select the least loaded group.
  2064. *
  2065. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2066. *
  2067. * preempt must be disabled.
  2068. */
  2069. static int sched_balance_self(int cpu, int flag)
  2070. {
  2071. struct task_struct *t = current;
  2072. struct sched_domain *tmp, *sd = NULL;
  2073. for_each_domain(cpu, tmp) {
  2074. /*
  2075. * If power savings logic is enabled for a domain, stop there.
  2076. */
  2077. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2078. break;
  2079. if (tmp->flags & flag)
  2080. sd = tmp;
  2081. }
  2082. while (sd) {
  2083. cpumask_t span, tmpmask;
  2084. struct sched_group *group;
  2085. int new_cpu, weight;
  2086. if (!(sd->flags & flag)) {
  2087. sd = sd->child;
  2088. continue;
  2089. }
  2090. span = sd->span;
  2091. group = find_idlest_group(sd, t, cpu);
  2092. if (!group) {
  2093. sd = sd->child;
  2094. continue;
  2095. }
  2096. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  2097. if (new_cpu == -1 || new_cpu == cpu) {
  2098. /* Now try balancing at a lower domain level of cpu */
  2099. sd = sd->child;
  2100. continue;
  2101. }
  2102. /* Now try balancing at a lower domain level of new_cpu */
  2103. cpu = new_cpu;
  2104. sd = NULL;
  2105. weight = cpus_weight(span);
  2106. for_each_domain(cpu, tmp) {
  2107. if (weight <= cpus_weight(tmp->span))
  2108. break;
  2109. if (tmp->flags & flag)
  2110. sd = tmp;
  2111. }
  2112. /* while loop will break here if sd == NULL */
  2113. }
  2114. return cpu;
  2115. }
  2116. #endif /* CONFIG_SMP */
  2117. /***
  2118. * try_to_wake_up - wake up a thread
  2119. * @p: the to-be-woken-up thread
  2120. * @state: the mask of task states that can be woken
  2121. * @sync: do a synchronous wakeup?
  2122. *
  2123. * Put it on the run-queue if it's not already there. The "current"
  2124. * thread is always on the run-queue (except when the actual
  2125. * re-schedule is in progress), and as such you're allowed to do
  2126. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2127. * runnable without the overhead of this.
  2128. *
  2129. * returns failure only if the task is already active.
  2130. */
  2131. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2132. {
  2133. int cpu, orig_cpu, this_cpu, success = 0;
  2134. unsigned long flags;
  2135. long old_state;
  2136. struct rq *rq;
  2137. if (!sched_feat(SYNC_WAKEUPS))
  2138. sync = 0;
  2139. smp_wmb();
  2140. rq = task_rq_lock(p, &flags);
  2141. old_state = p->state;
  2142. if (!(old_state & state))
  2143. goto out;
  2144. if (p->se.on_rq)
  2145. goto out_running;
  2146. cpu = task_cpu(p);
  2147. orig_cpu = cpu;
  2148. this_cpu = smp_processor_id();
  2149. #ifdef CONFIG_SMP
  2150. if (unlikely(task_running(rq, p)))
  2151. goto out_activate;
  2152. cpu = p->sched_class->select_task_rq(p, sync);
  2153. if (cpu != orig_cpu) {
  2154. set_task_cpu(p, cpu);
  2155. task_rq_unlock(rq, &flags);
  2156. /* might preempt at this point */
  2157. rq = task_rq_lock(p, &flags);
  2158. old_state = p->state;
  2159. if (!(old_state & state))
  2160. goto out;
  2161. if (p->se.on_rq)
  2162. goto out_running;
  2163. this_cpu = smp_processor_id();
  2164. cpu = task_cpu(p);
  2165. }
  2166. #ifdef CONFIG_SCHEDSTATS
  2167. schedstat_inc(rq, ttwu_count);
  2168. if (cpu == this_cpu)
  2169. schedstat_inc(rq, ttwu_local);
  2170. else {
  2171. struct sched_domain *sd;
  2172. for_each_domain(this_cpu, sd) {
  2173. if (cpu_isset(cpu, sd->span)) {
  2174. schedstat_inc(sd, ttwu_wake_remote);
  2175. break;
  2176. }
  2177. }
  2178. }
  2179. #endif
  2180. out_activate:
  2181. #endif /* CONFIG_SMP */
  2182. schedstat_inc(p, se.nr_wakeups);
  2183. if (sync)
  2184. schedstat_inc(p, se.nr_wakeups_sync);
  2185. if (orig_cpu != cpu)
  2186. schedstat_inc(p, se.nr_wakeups_migrate);
  2187. if (cpu == this_cpu)
  2188. schedstat_inc(p, se.nr_wakeups_local);
  2189. else
  2190. schedstat_inc(p, se.nr_wakeups_remote);
  2191. update_rq_clock(rq);
  2192. activate_task(rq, p, 1);
  2193. success = 1;
  2194. out_running:
  2195. check_preempt_curr(rq, p);
  2196. p->state = TASK_RUNNING;
  2197. #ifdef CONFIG_SMP
  2198. if (p->sched_class->task_wake_up)
  2199. p->sched_class->task_wake_up(rq, p);
  2200. #endif
  2201. out:
  2202. task_rq_unlock(rq, &flags);
  2203. return success;
  2204. }
  2205. int wake_up_process(struct task_struct *p)
  2206. {
  2207. return try_to_wake_up(p, TASK_ALL, 0);
  2208. }
  2209. EXPORT_SYMBOL(wake_up_process);
  2210. int wake_up_state(struct task_struct *p, unsigned int state)
  2211. {
  2212. return try_to_wake_up(p, state, 0);
  2213. }
  2214. /*
  2215. * Perform scheduler related setup for a newly forked process p.
  2216. * p is forked by current.
  2217. *
  2218. * __sched_fork() is basic setup used by init_idle() too:
  2219. */
  2220. static void __sched_fork(struct task_struct *p)
  2221. {
  2222. p->se.exec_start = 0;
  2223. p->se.sum_exec_runtime = 0;
  2224. p->se.prev_sum_exec_runtime = 0;
  2225. p->se.last_wakeup = 0;
  2226. p->se.avg_overlap = 0;
  2227. #ifdef CONFIG_SCHEDSTATS
  2228. p->se.wait_start = 0;
  2229. p->se.sum_sleep_runtime = 0;
  2230. p->se.sleep_start = 0;
  2231. p->se.block_start = 0;
  2232. p->se.sleep_max = 0;
  2233. p->se.block_max = 0;
  2234. p->se.exec_max = 0;
  2235. p->se.slice_max = 0;
  2236. p->se.wait_max = 0;
  2237. #endif
  2238. INIT_LIST_HEAD(&p->rt.run_list);
  2239. p->se.on_rq = 0;
  2240. INIT_LIST_HEAD(&p->se.group_node);
  2241. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2242. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2243. #endif
  2244. /*
  2245. * We mark the process as running here, but have not actually
  2246. * inserted it onto the runqueue yet. This guarantees that
  2247. * nobody will actually run it, and a signal or other external
  2248. * event cannot wake it up and insert it on the runqueue either.
  2249. */
  2250. p->state = TASK_RUNNING;
  2251. }
  2252. /*
  2253. * fork()/clone()-time setup:
  2254. */
  2255. void sched_fork(struct task_struct *p, int clone_flags)
  2256. {
  2257. int cpu = get_cpu();
  2258. __sched_fork(p);
  2259. #ifdef CONFIG_SMP
  2260. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2261. #endif
  2262. set_task_cpu(p, cpu);
  2263. /*
  2264. * Make sure we do not leak PI boosting priority to the child:
  2265. */
  2266. p->prio = current->normal_prio;
  2267. if (!rt_prio(p->prio))
  2268. p->sched_class = &fair_sched_class;
  2269. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2270. if (likely(sched_info_on()))
  2271. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2272. #endif
  2273. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2274. p->oncpu = 0;
  2275. #endif
  2276. #ifdef CONFIG_PREEMPT
  2277. /* Want to start with kernel preemption disabled. */
  2278. task_thread_info(p)->preempt_count = 1;
  2279. #endif
  2280. put_cpu();
  2281. }
  2282. /*
  2283. * wake_up_new_task - wake up a newly created task for the first time.
  2284. *
  2285. * This function will do some initial scheduler statistics housekeeping
  2286. * that must be done for every newly created context, then puts the task
  2287. * on the runqueue and wakes it.
  2288. */
  2289. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2290. {
  2291. unsigned long flags;
  2292. struct rq *rq;
  2293. rq = task_rq_lock(p, &flags);
  2294. BUG_ON(p->state != TASK_RUNNING);
  2295. update_rq_clock(rq);
  2296. p->prio = effective_prio(p);
  2297. if (!p->sched_class->task_new || !current->se.on_rq) {
  2298. activate_task(rq, p, 0);
  2299. } else {
  2300. /*
  2301. * Let the scheduling class do new task startup
  2302. * management (if any):
  2303. */
  2304. p->sched_class->task_new(rq, p);
  2305. inc_nr_running(rq);
  2306. }
  2307. check_preempt_curr(rq, p);
  2308. #ifdef CONFIG_SMP
  2309. if (p->sched_class->task_wake_up)
  2310. p->sched_class->task_wake_up(rq, p);
  2311. #endif
  2312. task_rq_unlock(rq, &flags);
  2313. }
  2314. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2315. /**
  2316. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2317. * @notifier: notifier struct to register
  2318. */
  2319. void preempt_notifier_register(struct preempt_notifier *notifier)
  2320. {
  2321. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2322. }
  2323. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2324. /**
  2325. * preempt_notifier_unregister - no longer interested in preemption notifications
  2326. * @notifier: notifier struct to unregister
  2327. *
  2328. * This is safe to call from within a preemption notifier.
  2329. */
  2330. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2331. {
  2332. hlist_del(&notifier->link);
  2333. }
  2334. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2335. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2336. {
  2337. struct preempt_notifier *notifier;
  2338. struct hlist_node *node;
  2339. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2340. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2341. }
  2342. static void
  2343. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2344. struct task_struct *next)
  2345. {
  2346. struct preempt_notifier *notifier;
  2347. struct hlist_node *node;
  2348. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2349. notifier->ops->sched_out(notifier, next);
  2350. }
  2351. #else
  2352. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2353. {
  2354. }
  2355. static void
  2356. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2357. struct task_struct *next)
  2358. {
  2359. }
  2360. #endif
  2361. /**
  2362. * prepare_task_switch - prepare to switch tasks
  2363. * @rq: the runqueue preparing to switch
  2364. * @prev: the current task that is being switched out
  2365. * @next: the task we are going to switch to.
  2366. *
  2367. * This is called with the rq lock held and interrupts off. It must
  2368. * be paired with a subsequent finish_task_switch after the context
  2369. * switch.
  2370. *
  2371. * prepare_task_switch sets up locking and calls architecture specific
  2372. * hooks.
  2373. */
  2374. static inline void
  2375. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2376. struct task_struct *next)
  2377. {
  2378. fire_sched_out_preempt_notifiers(prev, next);
  2379. prepare_lock_switch(rq, next);
  2380. prepare_arch_switch(next);
  2381. }
  2382. /**
  2383. * finish_task_switch - clean up after a task-switch
  2384. * @rq: runqueue associated with task-switch
  2385. * @prev: the thread we just switched away from.
  2386. *
  2387. * finish_task_switch must be called after the context switch, paired
  2388. * with a prepare_task_switch call before the context switch.
  2389. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2390. * and do any other architecture-specific cleanup actions.
  2391. *
  2392. * Note that we may have delayed dropping an mm in context_switch(). If
  2393. * so, we finish that here outside of the runqueue lock. (Doing it
  2394. * with the lock held can cause deadlocks; see schedule() for
  2395. * details.)
  2396. */
  2397. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2398. __releases(rq->lock)
  2399. {
  2400. struct mm_struct *mm = rq->prev_mm;
  2401. long prev_state;
  2402. rq->prev_mm = NULL;
  2403. /*
  2404. * A task struct has one reference for the use as "current".
  2405. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2406. * schedule one last time. The schedule call will never return, and
  2407. * the scheduled task must drop that reference.
  2408. * The test for TASK_DEAD must occur while the runqueue locks are
  2409. * still held, otherwise prev could be scheduled on another cpu, die
  2410. * there before we look at prev->state, and then the reference would
  2411. * be dropped twice.
  2412. * Manfred Spraul <manfred@colorfullife.com>
  2413. */
  2414. prev_state = prev->state;
  2415. finish_arch_switch(prev);
  2416. finish_lock_switch(rq, prev);
  2417. #ifdef CONFIG_SMP
  2418. if (current->sched_class->post_schedule)
  2419. current->sched_class->post_schedule(rq);
  2420. #endif
  2421. fire_sched_in_preempt_notifiers(current);
  2422. if (mm)
  2423. mmdrop(mm);
  2424. if (unlikely(prev_state == TASK_DEAD)) {
  2425. /*
  2426. * Remove function-return probe instances associated with this
  2427. * task and put them back on the free list.
  2428. */
  2429. kprobe_flush_task(prev);
  2430. put_task_struct(prev);
  2431. }
  2432. }
  2433. /**
  2434. * schedule_tail - first thing a freshly forked thread must call.
  2435. * @prev: the thread we just switched away from.
  2436. */
  2437. asmlinkage void schedule_tail(struct task_struct *prev)
  2438. __releases(rq->lock)
  2439. {
  2440. struct rq *rq = this_rq();
  2441. finish_task_switch(rq, prev);
  2442. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2443. /* In this case, finish_task_switch does not reenable preemption */
  2444. preempt_enable();
  2445. #endif
  2446. if (current->set_child_tid)
  2447. put_user(task_pid_vnr(current), current->set_child_tid);
  2448. }
  2449. /*
  2450. * context_switch - switch to the new MM and the new
  2451. * thread's register state.
  2452. */
  2453. static inline void
  2454. context_switch(struct rq *rq, struct task_struct *prev,
  2455. struct task_struct *next)
  2456. {
  2457. struct mm_struct *mm, *oldmm;
  2458. prepare_task_switch(rq, prev, next);
  2459. mm = next->mm;
  2460. oldmm = prev->active_mm;
  2461. /*
  2462. * For paravirt, this is coupled with an exit in switch_to to
  2463. * combine the page table reload and the switch backend into
  2464. * one hypercall.
  2465. */
  2466. arch_enter_lazy_cpu_mode();
  2467. if (unlikely(!mm)) {
  2468. next->active_mm = oldmm;
  2469. atomic_inc(&oldmm->mm_count);
  2470. enter_lazy_tlb(oldmm, next);
  2471. } else
  2472. switch_mm(oldmm, mm, next);
  2473. if (unlikely(!prev->mm)) {
  2474. prev->active_mm = NULL;
  2475. rq->prev_mm = oldmm;
  2476. }
  2477. /*
  2478. * Since the runqueue lock will be released by the next
  2479. * task (which is an invalid locking op but in the case
  2480. * of the scheduler it's an obvious special-case), so we
  2481. * do an early lockdep release here:
  2482. */
  2483. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2484. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2485. #endif
  2486. /* Here we just switch the register state and the stack. */
  2487. switch_to(prev, next, prev);
  2488. barrier();
  2489. /*
  2490. * this_rq must be evaluated again because prev may have moved
  2491. * CPUs since it called schedule(), thus the 'rq' on its stack
  2492. * frame will be invalid.
  2493. */
  2494. finish_task_switch(this_rq(), prev);
  2495. }
  2496. /*
  2497. * nr_running, nr_uninterruptible and nr_context_switches:
  2498. *
  2499. * externally visible scheduler statistics: current number of runnable
  2500. * threads, current number of uninterruptible-sleeping threads, total
  2501. * number of context switches performed since bootup.
  2502. */
  2503. unsigned long nr_running(void)
  2504. {
  2505. unsigned long i, sum = 0;
  2506. for_each_online_cpu(i)
  2507. sum += cpu_rq(i)->nr_running;
  2508. return sum;
  2509. }
  2510. unsigned long nr_uninterruptible(void)
  2511. {
  2512. unsigned long i, sum = 0;
  2513. for_each_possible_cpu(i)
  2514. sum += cpu_rq(i)->nr_uninterruptible;
  2515. /*
  2516. * Since we read the counters lockless, it might be slightly
  2517. * inaccurate. Do not allow it to go below zero though:
  2518. */
  2519. if (unlikely((long)sum < 0))
  2520. sum = 0;
  2521. return sum;
  2522. }
  2523. unsigned long long nr_context_switches(void)
  2524. {
  2525. int i;
  2526. unsigned long long sum = 0;
  2527. for_each_possible_cpu(i)
  2528. sum += cpu_rq(i)->nr_switches;
  2529. return sum;
  2530. }
  2531. unsigned long nr_iowait(void)
  2532. {
  2533. unsigned long i, sum = 0;
  2534. for_each_possible_cpu(i)
  2535. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2536. return sum;
  2537. }
  2538. unsigned long nr_active(void)
  2539. {
  2540. unsigned long i, running = 0, uninterruptible = 0;
  2541. for_each_online_cpu(i) {
  2542. running += cpu_rq(i)->nr_running;
  2543. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2544. }
  2545. if (unlikely((long)uninterruptible < 0))
  2546. uninterruptible = 0;
  2547. return running + uninterruptible;
  2548. }
  2549. /*
  2550. * Update rq->cpu_load[] statistics. This function is usually called every
  2551. * scheduler tick (TICK_NSEC).
  2552. */
  2553. static void update_cpu_load(struct rq *this_rq)
  2554. {
  2555. unsigned long this_load = this_rq->load.weight;
  2556. int i, scale;
  2557. this_rq->nr_load_updates++;
  2558. /* Update our load: */
  2559. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2560. unsigned long old_load, new_load;
  2561. /* scale is effectively 1 << i now, and >> i divides by scale */
  2562. old_load = this_rq->cpu_load[i];
  2563. new_load = this_load;
  2564. /*
  2565. * Round up the averaging division if load is increasing. This
  2566. * prevents us from getting stuck on 9 if the load is 10, for
  2567. * example.
  2568. */
  2569. if (new_load > old_load)
  2570. new_load += scale-1;
  2571. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2572. }
  2573. }
  2574. #ifdef CONFIG_SMP
  2575. /*
  2576. * double_rq_lock - safely lock two runqueues
  2577. *
  2578. * Note this does not disable interrupts like task_rq_lock,
  2579. * you need to do so manually before calling.
  2580. */
  2581. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2582. __acquires(rq1->lock)
  2583. __acquires(rq2->lock)
  2584. {
  2585. BUG_ON(!irqs_disabled());
  2586. if (rq1 == rq2) {
  2587. spin_lock(&rq1->lock);
  2588. __acquire(rq2->lock); /* Fake it out ;) */
  2589. } else {
  2590. if (rq1 < rq2) {
  2591. spin_lock(&rq1->lock);
  2592. spin_lock(&rq2->lock);
  2593. } else {
  2594. spin_lock(&rq2->lock);
  2595. spin_lock(&rq1->lock);
  2596. }
  2597. }
  2598. update_rq_clock(rq1);
  2599. update_rq_clock(rq2);
  2600. }
  2601. /*
  2602. * double_rq_unlock - safely unlock two runqueues
  2603. *
  2604. * Note this does not restore interrupts like task_rq_unlock,
  2605. * you need to do so manually after calling.
  2606. */
  2607. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2608. __releases(rq1->lock)
  2609. __releases(rq2->lock)
  2610. {
  2611. spin_unlock(&rq1->lock);
  2612. if (rq1 != rq2)
  2613. spin_unlock(&rq2->lock);
  2614. else
  2615. __release(rq2->lock);
  2616. }
  2617. /*
  2618. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2619. */
  2620. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2621. __releases(this_rq->lock)
  2622. __acquires(busiest->lock)
  2623. __acquires(this_rq->lock)
  2624. {
  2625. int ret = 0;
  2626. if (unlikely(!irqs_disabled())) {
  2627. /* printk() doesn't work good under rq->lock */
  2628. spin_unlock(&this_rq->lock);
  2629. BUG_ON(1);
  2630. }
  2631. if (unlikely(!spin_trylock(&busiest->lock))) {
  2632. if (busiest < this_rq) {
  2633. spin_unlock(&this_rq->lock);
  2634. spin_lock(&busiest->lock);
  2635. spin_lock(&this_rq->lock);
  2636. ret = 1;
  2637. } else
  2638. spin_lock(&busiest->lock);
  2639. }
  2640. return ret;
  2641. }
  2642. /*
  2643. * If dest_cpu is allowed for this process, migrate the task to it.
  2644. * This is accomplished by forcing the cpu_allowed mask to only
  2645. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2646. * the cpu_allowed mask is restored.
  2647. */
  2648. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2649. {
  2650. struct migration_req req;
  2651. unsigned long flags;
  2652. struct rq *rq;
  2653. rq = task_rq_lock(p, &flags);
  2654. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2655. || unlikely(cpu_is_offline(dest_cpu)))
  2656. goto out;
  2657. /* force the process onto the specified CPU */
  2658. if (migrate_task(p, dest_cpu, &req)) {
  2659. /* Need to wait for migration thread (might exit: take ref). */
  2660. struct task_struct *mt = rq->migration_thread;
  2661. get_task_struct(mt);
  2662. task_rq_unlock(rq, &flags);
  2663. wake_up_process(mt);
  2664. put_task_struct(mt);
  2665. wait_for_completion(&req.done);
  2666. return;
  2667. }
  2668. out:
  2669. task_rq_unlock(rq, &flags);
  2670. }
  2671. /*
  2672. * sched_exec - execve() is a valuable balancing opportunity, because at
  2673. * this point the task has the smallest effective memory and cache footprint.
  2674. */
  2675. void sched_exec(void)
  2676. {
  2677. int new_cpu, this_cpu = get_cpu();
  2678. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2679. put_cpu();
  2680. if (new_cpu != this_cpu)
  2681. sched_migrate_task(current, new_cpu);
  2682. }
  2683. /*
  2684. * pull_task - move a task from a remote runqueue to the local runqueue.
  2685. * Both runqueues must be locked.
  2686. */
  2687. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2688. struct rq *this_rq, int this_cpu)
  2689. {
  2690. deactivate_task(src_rq, p, 0);
  2691. set_task_cpu(p, this_cpu);
  2692. activate_task(this_rq, p, 0);
  2693. /*
  2694. * Note that idle threads have a prio of MAX_PRIO, for this test
  2695. * to be always true for them.
  2696. */
  2697. check_preempt_curr(this_rq, p);
  2698. }
  2699. /*
  2700. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2701. */
  2702. static
  2703. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2704. struct sched_domain *sd, enum cpu_idle_type idle,
  2705. int *all_pinned)
  2706. {
  2707. /*
  2708. * We do not migrate tasks that are:
  2709. * 1) running (obviously), or
  2710. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2711. * 3) are cache-hot on their current CPU.
  2712. */
  2713. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2714. schedstat_inc(p, se.nr_failed_migrations_affine);
  2715. return 0;
  2716. }
  2717. *all_pinned = 0;
  2718. if (task_running(rq, p)) {
  2719. schedstat_inc(p, se.nr_failed_migrations_running);
  2720. return 0;
  2721. }
  2722. /*
  2723. * Aggressive migration if:
  2724. * 1) task is cache cold, or
  2725. * 2) too many balance attempts have failed.
  2726. */
  2727. if (!task_hot(p, rq->clock, sd) ||
  2728. sd->nr_balance_failed > sd->cache_nice_tries) {
  2729. #ifdef CONFIG_SCHEDSTATS
  2730. if (task_hot(p, rq->clock, sd)) {
  2731. schedstat_inc(sd, lb_hot_gained[idle]);
  2732. schedstat_inc(p, se.nr_forced_migrations);
  2733. }
  2734. #endif
  2735. return 1;
  2736. }
  2737. if (task_hot(p, rq->clock, sd)) {
  2738. schedstat_inc(p, se.nr_failed_migrations_hot);
  2739. return 0;
  2740. }
  2741. return 1;
  2742. }
  2743. static unsigned long
  2744. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2745. unsigned long max_load_move, struct sched_domain *sd,
  2746. enum cpu_idle_type idle, int *all_pinned,
  2747. int *this_best_prio, struct rq_iterator *iterator)
  2748. {
  2749. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2750. struct task_struct *p;
  2751. long rem_load_move = max_load_move;
  2752. if (max_load_move == 0)
  2753. goto out;
  2754. pinned = 1;
  2755. /*
  2756. * Start the load-balancing iterator:
  2757. */
  2758. p = iterator->start(iterator->arg);
  2759. next:
  2760. if (!p || loops++ > sysctl_sched_nr_migrate)
  2761. goto out;
  2762. /*
  2763. * To help distribute high priority tasks across CPUs we don't
  2764. * skip a task if it will be the highest priority task (i.e. smallest
  2765. * prio value) on its new queue regardless of its load weight
  2766. */
  2767. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2768. SCHED_LOAD_SCALE_FUZZ;
  2769. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2770. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2771. p = iterator->next(iterator->arg);
  2772. goto next;
  2773. }
  2774. pull_task(busiest, p, this_rq, this_cpu);
  2775. pulled++;
  2776. rem_load_move -= p->se.load.weight;
  2777. /*
  2778. * We only want to steal up to the prescribed amount of weighted load.
  2779. */
  2780. if (rem_load_move > 0) {
  2781. if (p->prio < *this_best_prio)
  2782. *this_best_prio = p->prio;
  2783. p = iterator->next(iterator->arg);
  2784. goto next;
  2785. }
  2786. out:
  2787. /*
  2788. * Right now, this is one of only two places pull_task() is called,
  2789. * so we can safely collect pull_task() stats here rather than
  2790. * inside pull_task().
  2791. */
  2792. schedstat_add(sd, lb_gained[idle], pulled);
  2793. if (all_pinned)
  2794. *all_pinned = pinned;
  2795. return max_load_move - rem_load_move;
  2796. }
  2797. /*
  2798. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2799. * this_rq, as part of a balancing operation within domain "sd".
  2800. * Returns 1 if successful and 0 otherwise.
  2801. *
  2802. * Called with both runqueues locked.
  2803. */
  2804. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2805. unsigned long max_load_move,
  2806. struct sched_domain *sd, enum cpu_idle_type idle,
  2807. int *all_pinned)
  2808. {
  2809. const struct sched_class *class = sched_class_highest;
  2810. unsigned long total_load_moved = 0;
  2811. int this_best_prio = this_rq->curr->prio;
  2812. do {
  2813. total_load_moved +=
  2814. class->load_balance(this_rq, this_cpu, busiest,
  2815. max_load_move - total_load_moved,
  2816. sd, idle, all_pinned, &this_best_prio);
  2817. class = class->next;
  2818. } while (class && max_load_move > total_load_moved);
  2819. return total_load_moved > 0;
  2820. }
  2821. static int
  2822. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2823. struct sched_domain *sd, enum cpu_idle_type idle,
  2824. struct rq_iterator *iterator)
  2825. {
  2826. struct task_struct *p = iterator->start(iterator->arg);
  2827. int pinned = 0;
  2828. while (p) {
  2829. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2830. pull_task(busiest, p, this_rq, this_cpu);
  2831. /*
  2832. * Right now, this is only the second place pull_task()
  2833. * is called, so we can safely collect pull_task()
  2834. * stats here rather than inside pull_task().
  2835. */
  2836. schedstat_inc(sd, lb_gained[idle]);
  2837. return 1;
  2838. }
  2839. p = iterator->next(iterator->arg);
  2840. }
  2841. return 0;
  2842. }
  2843. /*
  2844. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2845. * part of active balancing operations within "domain".
  2846. * Returns 1 if successful and 0 otherwise.
  2847. *
  2848. * Called with both runqueues locked.
  2849. */
  2850. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2851. struct sched_domain *sd, enum cpu_idle_type idle)
  2852. {
  2853. const struct sched_class *class;
  2854. for (class = sched_class_highest; class; class = class->next)
  2855. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2856. return 1;
  2857. return 0;
  2858. }
  2859. /*
  2860. * find_busiest_group finds and returns the busiest CPU group within the
  2861. * domain. It calculates and returns the amount of weighted load which
  2862. * should be moved to restore balance via the imbalance parameter.
  2863. */
  2864. static struct sched_group *
  2865. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2866. unsigned long *imbalance, enum cpu_idle_type idle,
  2867. int *sd_idle, const cpumask_t *cpus, int *balance)
  2868. {
  2869. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2870. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2871. unsigned long max_pull;
  2872. unsigned long busiest_load_per_task, busiest_nr_running;
  2873. unsigned long this_load_per_task, this_nr_running;
  2874. int load_idx, group_imb = 0;
  2875. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2876. int power_savings_balance = 1;
  2877. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2878. unsigned long min_nr_running = ULONG_MAX;
  2879. struct sched_group *group_min = NULL, *group_leader = NULL;
  2880. #endif
  2881. max_load = this_load = total_load = total_pwr = 0;
  2882. busiest_load_per_task = busiest_nr_running = 0;
  2883. this_load_per_task = this_nr_running = 0;
  2884. if (idle == CPU_NOT_IDLE)
  2885. load_idx = sd->busy_idx;
  2886. else if (idle == CPU_NEWLY_IDLE)
  2887. load_idx = sd->newidle_idx;
  2888. else
  2889. load_idx = sd->idle_idx;
  2890. do {
  2891. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2892. int local_group;
  2893. int i;
  2894. int __group_imb = 0;
  2895. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2896. unsigned long sum_nr_running, sum_weighted_load;
  2897. local_group = cpu_isset(this_cpu, group->cpumask);
  2898. if (local_group)
  2899. balance_cpu = first_cpu(group->cpumask);
  2900. /* Tally up the load of all CPUs in the group */
  2901. sum_weighted_load = sum_nr_running = avg_load = 0;
  2902. max_cpu_load = 0;
  2903. min_cpu_load = ~0UL;
  2904. for_each_cpu_mask(i, group->cpumask) {
  2905. struct rq *rq;
  2906. if (!cpu_isset(i, *cpus))
  2907. continue;
  2908. rq = cpu_rq(i);
  2909. if (*sd_idle && rq->nr_running)
  2910. *sd_idle = 0;
  2911. /* Bias balancing toward cpus of our domain */
  2912. if (local_group) {
  2913. if (idle_cpu(i) && !first_idle_cpu) {
  2914. first_idle_cpu = 1;
  2915. balance_cpu = i;
  2916. }
  2917. load = target_load(i, load_idx);
  2918. } else {
  2919. load = source_load(i, load_idx);
  2920. if (load > max_cpu_load)
  2921. max_cpu_load = load;
  2922. if (min_cpu_load > load)
  2923. min_cpu_load = load;
  2924. }
  2925. avg_load += load;
  2926. sum_nr_running += rq->nr_running;
  2927. sum_weighted_load += weighted_cpuload(i);
  2928. }
  2929. /*
  2930. * First idle cpu or the first cpu(busiest) in this sched group
  2931. * is eligible for doing load balancing at this and above
  2932. * domains. In the newly idle case, we will allow all the cpu's
  2933. * to do the newly idle load balance.
  2934. */
  2935. if (idle != CPU_NEWLY_IDLE && local_group &&
  2936. balance_cpu != this_cpu && balance) {
  2937. *balance = 0;
  2938. goto ret;
  2939. }
  2940. total_load += avg_load;
  2941. total_pwr += group->__cpu_power;
  2942. /* Adjust by relative CPU power of the group */
  2943. avg_load = sg_div_cpu_power(group,
  2944. avg_load * SCHED_LOAD_SCALE);
  2945. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2946. __group_imb = 1;
  2947. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2948. if (local_group) {
  2949. this_load = avg_load;
  2950. this = group;
  2951. this_nr_running = sum_nr_running;
  2952. this_load_per_task = sum_weighted_load;
  2953. } else if (avg_load > max_load &&
  2954. (sum_nr_running > group_capacity || __group_imb)) {
  2955. max_load = avg_load;
  2956. busiest = group;
  2957. busiest_nr_running = sum_nr_running;
  2958. busiest_load_per_task = sum_weighted_load;
  2959. group_imb = __group_imb;
  2960. }
  2961. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2962. /*
  2963. * Busy processors will not participate in power savings
  2964. * balance.
  2965. */
  2966. if (idle == CPU_NOT_IDLE ||
  2967. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2968. goto group_next;
  2969. /*
  2970. * If the local group is idle or completely loaded
  2971. * no need to do power savings balance at this domain
  2972. */
  2973. if (local_group && (this_nr_running >= group_capacity ||
  2974. !this_nr_running))
  2975. power_savings_balance = 0;
  2976. /*
  2977. * If a group is already running at full capacity or idle,
  2978. * don't include that group in power savings calculations
  2979. */
  2980. if (!power_savings_balance || sum_nr_running >= group_capacity
  2981. || !sum_nr_running)
  2982. goto group_next;
  2983. /*
  2984. * Calculate the group which has the least non-idle load.
  2985. * This is the group from where we need to pick up the load
  2986. * for saving power
  2987. */
  2988. if ((sum_nr_running < min_nr_running) ||
  2989. (sum_nr_running == min_nr_running &&
  2990. first_cpu(group->cpumask) <
  2991. first_cpu(group_min->cpumask))) {
  2992. group_min = group;
  2993. min_nr_running = sum_nr_running;
  2994. min_load_per_task = sum_weighted_load /
  2995. sum_nr_running;
  2996. }
  2997. /*
  2998. * Calculate the group which is almost near its
  2999. * capacity but still has some space to pick up some load
  3000. * from other group and save more power
  3001. */
  3002. if (sum_nr_running <= group_capacity - 1) {
  3003. if (sum_nr_running > leader_nr_running ||
  3004. (sum_nr_running == leader_nr_running &&
  3005. first_cpu(group->cpumask) >
  3006. first_cpu(group_leader->cpumask))) {
  3007. group_leader = group;
  3008. leader_nr_running = sum_nr_running;
  3009. }
  3010. }
  3011. group_next:
  3012. #endif
  3013. group = group->next;
  3014. } while (group != sd->groups);
  3015. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  3016. goto out_balanced;
  3017. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  3018. if (this_load >= avg_load ||
  3019. 100*max_load <= sd->imbalance_pct*this_load)
  3020. goto out_balanced;
  3021. busiest_load_per_task /= busiest_nr_running;
  3022. if (group_imb)
  3023. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  3024. /*
  3025. * We're trying to get all the cpus to the average_load, so we don't
  3026. * want to push ourselves above the average load, nor do we wish to
  3027. * reduce the max loaded cpu below the average load, as either of these
  3028. * actions would just result in more rebalancing later, and ping-pong
  3029. * tasks around. Thus we look for the minimum possible imbalance.
  3030. * Negative imbalances (*we* are more loaded than anyone else) will
  3031. * be counted as no imbalance for these purposes -- we can't fix that
  3032. * by pulling tasks to us. Be careful of negative numbers as they'll
  3033. * appear as very large values with unsigned longs.
  3034. */
  3035. if (max_load <= busiest_load_per_task)
  3036. goto out_balanced;
  3037. /*
  3038. * In the presence of smp nice balancing, certain scenarios can have
  3039. * max load less than avg load(as we skip the groups at or below
  3040. * its cpu_power, while calculating max_load..)
  3041. */
  3042. if (max_load < avg_load) {
  3043. *imbalance = 0;
  3044. goto small_imbalance;
  3045. }
  3046. /* Don't want to pull so many tasks that a group would go idle */
  3047. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  3048. /* How much load to actually move to equalise the imbalance */
  3049. *imbalance = min(max_pull * busiest->__cpu_power,
  3050. (avg_load - this_load) * this->__cpu_power)
  3051. / SCHED_LOAD_SCALE;
  3052. /*
  3053. * if *imbalance is less than the average load per runnable task
  3054. * there is no gaurantee that any tasks will be moved so we'll have
  3055. * a think about bumping its value to force at least one task to be
  3056. * moved
  3057. */
  3058. if (*imbalance < busiest_load_per_task) {
  3059. unsigned long tmp, pwr_now, pwr_move;
  3060. unsigned int imbn;
  3061. small_imbalance:
  3062. pwr_move = pwr_now = 0;
  3063. imbn = 2;
  3064. if (this_nr_running) {
  3065. this_load_per_task /= this_nr_running;
  3066. if (busiest_load_per_task > this_load_per_task)
  3067. imbn = 1;
  3068. } else
  3069. this_load_per_task = SCHED_LOAD_SCALE;
  3070. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  3071. busiest_load_per_task * imbn) {
  3072. *imbalance = busiest_load_per_task;
  3073. return busiest;
  3074. }
  3075. /*
  3076. * OK, we don't have enough imbalance to justify moving tasks,
  3077. * however we may be able to increase total CPU power used by
  3078. * moving them.
  3079. */
  3080. pwr_now += busiest->__cpu_power *
  3081. min(busiest_load_per_task, max_load);
  3082. pwr_now += this->__cpu_power *
  3083. min(this_load_per_task, this_load);
  3084. pwr_now /= SCHED_LOAD_SCALE;
  3085. /* Amount of load we'd subtract */
  3086. tmp = sg_div_cpu_power(busiest,
  3087. busiest_load_per_task * SCHED_LOAD_SCALE);
  3088. if (max_load > tmp)
  3089. pwr_move += busiest->__cpu_power *
  3090. min(busiest_load_per_task, max_load - tmp);
  3091. /* Amount of load we'd add */
  3092. if (max_load * busiest->__cpu_power <
  3093. busiest_load_per_task * SCHED_LOAD_SCALE)
  3094. tmp = sg_div_cpu_power(this,
  3095. max_load * busiest->__cpu_power);
  3096. else
  3097. tmp = sg_div_cpu_power(this,
  3098. busiest_load_per_task * SCHED_LOAD_SCALE);
  3099. pwr_move += this->__cpu_power *
  3100. min(this_load_per_task, this_load + tmp);
  3101. pwr_move /= SCHED_LOAD_SCALE;
  3102. /* Move if we gain throughput */
  3103. if (pwr_move > pwr_now)
  3104. *imbalance = busiest_load_per_task;
  3105. }
  3106. return busiest;
  3107. out_balanced:
  3108. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3109. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3110. goto ret;
  3111. if (this == group_leader && group_leader != group_min) {
  3112. *imbalance = min_load_per_task;
  3113. return group_min;
  3114. }
  3115. #endif
  3116. ret:
  3117. *imbalance = 0;
  3118. return NULL;
  3119. }
  3120. /*
  3121. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3122. */
  3123. static struct rq *
  3124. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3125. unsigned long imbalance, const cpumask_t *cpus)
  3126. {
  3127. struct rq *busiest = NULL, *rq;
  3128. unsigned long max_load = 0;
  3129. int i;
  3130. for_each_cpu_mask(i, group->cpumask) {
  3131. unsigned long wl;
  3132. if (!cpu_isset(i, *cpus))
  3133. continue;
  3134. rq = cpu_rq(i);
  3135. wl = weighted_cpuload(i);
  3136. if (rq->nr_running == 1 && wl > imbalance)
  3137. continue;
  3138. if (wl > max_load) {
  3139. max_load = wl;
  3140. busiest = rq;
  3141. }
  3142. }
  3143. return busiest;
  3144. }
  3145. /*
  3146. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3147. * so long as it is large enough.
  3148. */
  3149. #define MAX_PINNED_INTERVAL 512
  3150. /*
  3151. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3152. * tasks if there is an imbalance.
  3153. */
  3154. static int load_balance(int this_cpu, struct rq *this_rq,
  3155. struct sched_domain *sd, enum cpu_idle_type idle,
  3156. int *balance, cpumask_t *cpus)
  3157. {
  3158. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3159. struct sched_group *group;
  3160. unsigned long imbalance;
  3161. struct rq *busiest;
  3162. unsigned long flags;
  3163. int unlock_aggregate;
  3164. cpus_setall(*cpus);
  3165. unlock_aggregate = get_aggregate(sd);
  3166. /*
  3167. * When power savings policy is enabled for the parent domain, idle
  3168. * sibling can pick up load irrespective of busy siblings. In this case,
  3169. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3170. * portraying it as CPU_NOT_IDLE.
  3171. */
  3172. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3173. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3174. sd_idle = 1;
  3175. schedstat_inc(sd, lb_count[idle]);
  3176. redo:
  3177. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3178. cpus, balance);
  3179. if (*balance == 0)
  3180. goto out_balanced;
  3181. if (!group) {
  3182. schedstat_inc(sd, lb_nobusyg[idle]);
  3183. goto out_balanced;
  3184. }
  3185. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3186. if (!busiest) {
  3187. schedstat_inc(sd, lb_nobusyq[idle]);
  3188. goto out_balanced;
  3189. }
  3190. BUG_ON(busiest == this_rq);
  3191. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3192. ld_moved = 0;
  3193. if (busiest->nr_running > 1) {
  3194. /*
  3195. * Attempt to move tasks. If find_busiest_group has found
  3196. * an imbalance but busiest->nr_running <= 1, the group is
  3197. * still unbalanced. ld_moved simply stays zero, so it is
  3198. * correctly treated as an imbalance.
  3199. */
  3200. local_irq_save(flags);
  3201. double_rq_lock(this_rq, busiest);
  3202. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3203. imbalance, sd, idle, &all_pinned);
  3204. double_rq_unlock(this_rq, busiest);
  3205. local_irq_restore(flags);
  3206. /*
  3207. * some other cpu did the load balance for us.
  3208. */
  3209. if (ld_moved && this_cpu != smp_processor_id())
  3210. resched_cpu(this_cpu);
  3211. /* All tasks on this runqueue were pinned by CPU affinity */
  3212. if (unlikely(all_pinned)) {
  3213. cpu_clear(cpu_of(busiest), *cpus);
  3214. if (!cpus_empty(*cpus))
  3215. goto redo;
  3216. goto out_balanced;
  3217. }
  3218. }
  3219. if (!ld_moved) {
  3220. schedstat_inc(sd, lb_failed[idle]);
  3221. sd->nr_balance_failed++;
  3222. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3223. spin_lock_irqsave(&busiest->lock, flags);
  3224. /* don't kick the migration_thread, if the curr
  3225. * task on busiest cpu can't be moved to this_cpu
  3226. */
  3227. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3228. spin_unlock_irqrestore(&busiest->lock, flags);
  3229. all_pinned = 1;
  3230. goto out_one_pinned;
  3231. }
  3232. if (!busiest->active_balance) {
  3233. busiest->active_balance = 1;
  3234. busiest->push_cpu = this_cpu;
  3235. active_balance = 1;
  3236. }
  3237. spin_unlock_irqrestore(&busiest->lock, flags);
  3238. if (active_balance)
  3239. wake_up_process(busiest->migration_thread);
  3240. /*
  3241. * We've kicked active balancing, reset the failure
  3242. * counter.
  3243. */
  3244. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3245. }
  3246. } else
  3247. sd->nr_balance_failed = 0;
  3248. if (likely(!active_balance)) {
  3249. /* We were unbalanced, so reset the balancing interval */
  3250. sd->balance_interval = sd->min_interval;
  3251. } else {
  3252. /*
  3253. * If we've begun active balancing, start to back off. This
  3254. * case may not be covered by the all_pinned logic if there
  3255. * is only 1 task on the busy runqueue (because we don't call
  3256. * move_tasks).
  3257. */
  3258. if (sd->balance_interval < sd->max_interval)
  3259. sd->balance_interval *= 2;
  3260. }
  3261. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3262. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3263. ld_moved = -1;
  3264. goto out;
  3265. out_balanced:
  3266. schedstat_inc(sd, lb_balanced[idle]);
  3267. sd->nr_balance_failed = 0;
  3268. out_one_pinned:
  3269. /* tune up the balancing interval */
  3270. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3271. (sd->balance_interval < sd->max_interval))
  3272. sd->balance_interval *= 2;
  3273. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3274. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3275. ld_moved = -1;
  3276. else
  3277. ld_moved = 0;
  3278. out:
  3279. if (unlock_aggregate)
  3280. put_aggregate(sd);
  3281. return ld_moved;
  3282. }
  3283. /*
  3284. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3285. * tasks if there is an imbalance.
  3286. *
  3287. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3288. * this_rq is locked.
  3289. */
  3290. static int
  3291. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3292. cpumask_t *cpus)
  3293. {
  3294. struct sched_group *group;
  3295. struct rq *busiest = NULL;
  3296. unsigned long imbalance;
  3297. int ld_moved = 0;
  3298. int sd_idle = 0;
  3299. int all_pinned = 0;
  3300. cpus_setall(*cpus);
  3301. /*
  3302. * When power savings policy is enabled for the parent domain, idle
  3303. * sibling can pick up load irrespective of busy siblings. In this case,
  3304. * let the state of idle sibling percolate up as IDLE, instead of
  3305. * portraying it as CPU_NOT_IDLE.
  3306. */
  3307. if (sd->flags & SD_SHARE_CPUPOWER &&
  3308. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3309. sd_idle = 1;
  3310. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3311. redo:
  3312. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3313. &sd_idle, cpus, NULL);
  3314. if (!group) {
  3315. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3316. goto out_balanced;
  3317. }
  3318. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3319. if (!busiest) {
  3320. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3321. goto out_balanced;
  3322. }
  3323. BUG_ON(busiest == this_rq);
  3324. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3325. ld_moved = 0;
  3326. if (busiest->nr_running > 1) {
  3327. /* Attempt to move tasks */
  3328. double_lock_balance(this_rq, busiest);
  3329. /* this_rq->clock is already updated */
  3330. update_rq_clock(busiest);
  3331. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3332. imbalance, sd, CPU_NEWLY_IDLE,
  3333. &all_pinned);
  3334. spin_unlock(&busiest->lock);
  3335. if (unlikely(all_pinned)) {
  3336. cpu_clear(cpu_of(busiest), *cpus);
  3337. if (!cpus_empty(*cpus))
  3338. goto redo;
  3339. }
  3340. }
  3341. if (!ld_moved) {
  3342. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3343. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3344. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3345. return -1;
  3346. } else
  3347. sd->nr_balance_failed = 0;
  3348. return ld_moved;
  3349. out_balanced:
  3350. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3351. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3352. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3353. return -1;
  3354. sd->nr_balance_failed = 0;
  3355. return 0;
  3356. }
  3357. /*
  3358. * idle_balance is called by schedule() if this_cpu is about to become
  3359. * idle. Attempts to pull tasks from other CPUs.
  3360. */
  3361. static void idle_balance(int this_cpu, struct rq *this_rq)
  3362. {
  3363. struct sched_domain *sd;
  3364. int pulled_task = -1;
  3365. unsigned long next_balance = jiffies + HZ;
  3366. cpumask_t tmpmask;
  3367. for_each_domain(this_cpu, sd) {
  3368. unsigned long interval;
  3369. if (!(sd->flags & SD_LOAD_BALANCE))
  3370. continue;
  3371. if (sd->flags & SD_BALANCE_NEWIDLE)
  3372. /* If we've pulled tasks over stop searching: */
  3373. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3374. sd, &tmpmask);
  3375. interval = msecs_to_jiffies(sd->balance_interval);
  3376. if (time_after(next_balance, sd->last_balance + interval))
  3377. next_balance = sd->last_balance + interval;
  3378. if (pulled_task)
  3379. break;
  3380. }
  3381. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3382. /*
  3383. * We are going idle. next_balance may be set based on
  3384. * a busy processor. So reset next_balance.
  3385. */
  3386. this_rq->next_balance = next_balance;
  3387. }
  3388. }
  3389. /*
  3390. * active_load_balance is run by migration threads. It pushes running tasks
  3391. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3392. * running on each physical CPU where possible, and avoids physical /
  3393. * logical imbalances.
  3394. *
  3395. * Called with busiest_rq locked.
  3396. */
  3397. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3398. {
  3399. int target_cpu = busiest_rq->push_cpu;
  3400. struct sched_domain *sd;
  3401. struct rq *target_rq;
  3402. /* Is there any task to move? */
  3403. if (busiest_rq->nr_running <= 1)
  3404. return;
  3405. target_rq = cpu_rq(target_cpu);
  3406. /*
  3407. * This condition is "impossible", if it occurs
  3408. * we need to fix it. Originally reported by
  3409. * Bjorn Helgaas on a 128-cpu setup.
  3410. */
  3411. BUG_ON(busiest_rq == target_rq);
  3412. /* move a task from busiest_rq to target_rq */
  3413. double_lock_balance(busiest_rq, target_rq);
  3414. update_rq_clock(busiest_rq);
  3415. update_rq_clock(target_rq);
  3416. /* Search for an sd spanning us and the target CPU. */
  3417. for_each_domain(target_cpu, sd) {
  3418. if ((sd->flags & SD_LOAD_BALANCE) &&
  3419. cpu_isset(busiest_cpu, sd->span))
  3420. break;
  3421. }
  3422. if (likely(sd)) {
  3423. schedstat_inc(sd, alb_count);
  3424. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3425. sd, CPU_IDLE))
  3426. schedstat_inc(sd, alb_pushed);
  3427. else
  3428. schedstat_inc(sd, alb_failed);
  3429. }
  3430. spin_unlock(&target_rq->lock);
  3431. }
  3432. #ifdef CONFIG_NO_HZ
  3433. static struct {
  3434. atomic_t load_balancer;
  3435. cpumask_t cpu_mask;
  3436. } nohz ____cacheline_aligned = {
  3437. .load_balancer = ATOMIC_INIT(-1),
  3438. .cpu_mask = CPU_MASK_NONE,
  3439. };
  3440. /*
  3441. * This routine will try to nominate the ilb (idle load balancing)
  3442. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3443. * load balancing on behalf of all those cpus. If all the cpus in the system
  3444. * go into this tickless mode, then there will be no ilb owner (as there is
  3445. * no need for one) and all the cpus will sleep till the next wakeup event
  3446. * arrives...
  3447. *
  3448. * For the ilb owner, tick is not stopped. And this tick will be used
  3449. * for idle load balancing. ilb owner will still be part of
  3450. * nohz.cpu_mask..
  3451. *
  3452. * While stopping the tick, this cpu will become the ilb owner if there
  3453. * is no other owner. And will be the owner till that cpu becomes busy
  3454. * or if all cpus in the system stop their ticks at which point
  3455. * there is no need for ilb owner.
  3456. *
  3457. * When the ilb owner becomes busy, it nominates another owner, during the
  3458. * next busy scheduler_tick()
  3459. */
  3460. int select_nohz_load_balancer(int stop_tick)
  3461. {
  3462. int cpu = smp_processor_id();
  3463. if (stop_tick) {
  3464. cpu_set(cpu, nohz.cpu_mask);
  3465. cpu_rq(cpu)->in_nohz_recently = 1;
  3466. /*
  3467. * If we are going offline and still the leader, give up!
  3468. */
  3469. if (cpu_is_offline(cpu) &&
  3470. atomic_read(&nohz.load_balancer) == cpu) {
  3471. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3472. BUG();
  3473. return 0;
  3474. }
  3475. /* time for ilb owner also to sleep */
  3476. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3477. if (atomic_read(&nohz.load_balancer) == cpu)
  3478. atomic_set(&nohz.load_balancer, -1);
  3479. return 0;
  3480. }
  3481. if (atomic_read(&nohz.load_balancer) == -1) {
  3482. /* make me the ilb owner */
  3483. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3484. return 1;
  3485. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3486. return 1;
  3487. } else {
  3488. if (!cpu_isset(cpu, nohz.cpu_mask))
  3489. return 0;
  3490. cpu_clear(cpu, nohz.cpu_mask);
  3491. if (atomic_read(&nohz.load_balancer) == cpu)
  3492. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3493. BUG();
  3494. }
  3495. return 0;
  3496. }
  3497. #endif
  3498. static DEFINE_SPINLOCK(balancing);
  3499. /*
  3500. * It checks each scheduling domain to see if it is due to be balanced,
  3501. * and initiates a balancing operation if so.
  3502. *
  3503. * Balancing parameters are set up in arch_init_sched_domains.
  3504. */
  3505. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3506. {
  3507. int balance = 1;
  3508. struct rq *rq = cpu_rq(cpu);
  3509. unsigned long interval;
  3510. struct sched_domain *sd;
  3511. /* Earliest time when we have to do rebalance again */
  3512. unsigned long next_balance = jiffies + 60*HZ;
  3513. int update_next_balance = 0;
  3514. cpumask_t tmp;
  3515. for_each_domain(cpu, sd) {
  3516. if (!(sd->flags & SD_LOAD_BALANCE))
  3517. continue;
  3518. interval = sd->balance_interval;
  3519. if (idle != CPU_IDLE)
  3520. interval *= sd->busy_factor;
  3521. /* scale ms to jiffies */
  3522. interval = msecs_to_jiffies(interval);
  3523. if (unlikely(!interval))
  3524. interval = 1;
  3525. if (interval > HZ*NR_CPUS/10)
  3526. interval = HZ*NR_CPUS/10;
  3527. if (sd->flags & SD_SERIALIZE) {
  3528. if (!spin_trylock(&balancing))
  3529. goto out;
  3530. }
  3531. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3532. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3533. /*
  3534. * We've pulled tasks over so either we're no
  3535. * longer idle, or one of our SMT siblings is
  3536. * not idle.
  3537. */
  3538. idle = CPU_NOT_IDLE;
  3539. }
  3540. sd->last_balance = jiffies;
  3541. }
  3542. if (sd->flags & SD_SERIALIZE)
  3543. spin_unlock(&balancing);
  3544. out:
  3545. if (time_after(next_balance, sd->last_balance + interval)) {
  3546. next_balance = sd->last_balance + interval;
  3547. update_next_balance = 1;
  3548. }
  3549. /*
  3550. * Stop the load balance at this level. There is another
  3551. * CPU in our sched group which is doing load balancing more
  3552. * actively.
  3553. */
  3554. if (!balance)
  3555. break;
  3556. }
  3557. /*
  3558. * next_balance will be updated only when there is a need.
  3559. * When the cpu is attached to null domain for ex, it will not be
  3560. * updated.
  3561. */
  3562. if (likely(update_next_balance))
  3563. rq->next_balance = next_balance;
  3564. }
  3565. /*
  3566. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3567. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3568. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3569. */
  3570. static void run_rebalance_domains(struct softirq_action *h)
  3571. {
  3572. int this_cpu = smp_processor_id();
  3573. struct rq *this_rq = cpu_rq(this_cpu);
  3574. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3575. CPU_IDLE : CPU_NOT_IDLE;
  3576. rebalance_domains(this_cpu, idle);
  3577. #ifdef CONFIG_NO_HZ
  3578. /*
  3579. * If this cpu is the owner for idle load balancing, then do the
  3580. * balancing on behalf of the other idle cpus whose ticks are
  3581. * stopped.
  3582. */
  3583. if (this_rq->idle_at_tick &&
  3584. atomic_read(&nohz.load_balancer) == this_cpu) {
  3585. cpumask_t cpus = nohz.cpu_mask;
  3586. struct rq *rq;
  3587. int balance_cpu;
  3588. cpu_clear(this_cpu, cpus);
  3589. for_each_cpu_mask(balance_cpu, cpus) {
  3590. /*
  3591. * If this cpu gets work to do, stop the load balancing
  3592. * work being done for other cpus. Next load
  3593. * balancing owner will pick it up.
  3594. */
  3595. if (need_resched())
  3596. break;
  3597. rebalance_domains(balance_cpu, CPU_IDLE);
  3598. rq = cpu_rq(balance_cpu);
  3599. if (time_after(this_rq->next_balance, rq->next_balance))
  3600. this_rq->next_balance = rq->next_balance;
  3601. }
  3602. }
  3603. #endif
  3604. }
  3605. /*
  3606. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3607. *
  3608. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3609. * idle load balancing owner or decide to stop the periodic load balancing,
  3610. * if the whole system is idle.
  3611. */
  3612. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3613. {
  3614. #ifdef CONFIG_NO_HZ
  3615. /*
  3616. * If we were in the nohz mode recently and busy at the current
  3617. * scheduler tick, then check if we need to nominate new idle
  3618. * load balancer.
  3619. */
  3620. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3621. rq->in_nohz_recently = 0;
  3622. if (atomic_read(&nohz.load_balancer) == cpu) {
  3623. cpu_clear(cpu, nohz.cpu_mask);
  3624. atomic_set(&nohz.load_balancer, -1);
  3625. }
  3626. if (atomic_read(&nohz.load_balancer) == -1) {
  3627. /*
  3628. * simple selection for now: Nominate the
  3629. * first cpu in the nohz list to be the next
  3630. * ilb owner.
  3631. *
  3632. * TBD: Traverse the sched domains and nominate
  3633. * the nearest cpu in the nohz.cpu_mask.
  3634. */
  3635. int ilb = first_cpu(nohz.cpu_mask);
  3636. if (ilb < nr_cpu_ids)
  3637. resched_cpu(ilb);
  3638. }
  3639. }
  3640. /*
  3641. * If this cpu is idle and doing idle load balancing for all the
  3642. * cpus with ticks stopped, is it time for that to stop?
  3643. */
  3644. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3645. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3646. resched_cpu(cpu);
  3647. return;
  3648. }
  3649. /*
  3650. * If this cpu is idle and the idle load balancing is done by
  3651. * someone else, then no need raise the SCHED_SOFTIRQ
  3652. */
  3653. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3654. cpu_isset(cpu, nohz.cpu_mask))
  3655. return;
  3656. #endif
  3657. if (time_after_eq(jiffies, rq->next_balance))
  3658. raise_softirq(SCHED_SOFTIRQ);
  3659. }
  3660. #else /* CONFIG_SMP */
  3661. /*
  3662. * on UP we do not need to balance between CPUs:
  3663. */
  3664. static inline void idle_balance(int cpu, struct rq *rq)
  3665. {
  3666. }
  3667. #endif
  3668. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3669. EXPORT_PER_CPU_SYMBOL(kstat);
  3670. /*
  3671. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3672. * that have not yet been banked in case the task is currently running.
  3673. */
  3674. unsigned long long task_sched_runtime(struct task_struct *p)
  3675. {
  3676. unsigned long flags;
  3677. u64 ns, delta_exec;
  3678. struct rq *rq;
  3679. rq = task_rq_lock(p, &flags);
  3680. ns = p->se.sum_exec_runtime;
  3681. if (task_current(rq, p)) {
  3682. update_rq_clock(rq);
  3683. delta_exec = rq->clock - p->se.exec_start;
  3684. if ((s64)delta_exec > 0)
  3685. ns += delta_exec;
  3686. }
  3687. task_rq_unlock(rq, &flags);
  3688. return ns;
  3689. }
  3690. /*
  3691. * Account user cpu time to a process.
  3692. * @p: the process that the cpu time gets accounted to
  3693. * @cputime: the cpu time spent in user space since the last update
  3694. */
  3695. void account_user_time(struct task_struct *p, cputime_t cputime)
  3696. {
  3697. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3698. cputime64_t tmp;
  3699. p->utime = cputime_add(p->utime, cputime);
  3700. /* Add user time to cpustat. */
  3701. tmp = cputime_to_cputime64(cputime);
  3702. if (TASK_NICE(p) > 0)
  3703. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3704. else
  3705. cpustat->user = cputime64_add(cpustat->user, tmp);
  3706. }
  3707. /*
  3708. * Account guest cpu time to a process.
  3709. * @p: the process that the cpu time gets accounted to
  3710. * @cputime: the cpu time spent in virtual machine since the last update
  3711. */
  3712. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3713. {
  3714. cputime64_t tmp;
  3715. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3716. tmp = cputime_to_cputime64(cputime);
  3717. p->utime = cputime_add(p->utime, cputime);
  3718. p->gtime = cputime_add(p->gtime, cputime);
  3719. cpustat->user = cputime64_add(cpustat->user, tmp);
  3720. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3721. }
  3722. /*
  3723. * Account scaled user cpu time to a process.
  3724. * @p: the process that the cpu time gets accounted to
  3725. * @cputime: the cpu time spent in user space since the last update
  3726. */
  3727. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3728. {
  3729. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3730. }
  3731. /*
  3732. * Account system cpu time to a process.
  3733. * @p: the process that the cpu time gets accounted to
  3734. * @hardirq_offset: the offset to subtract from hardirq_count()
  3735. * @cputime: the cpu time spent in kernel space since the last update
  3736. */
  3737. void account_system_time(struct task_struct *p, int hardirq_offset,
  3738. cputime_t cputime)
  3739. {
  3740. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3741. struct rq *rq = this_rq();
  3742. cputime64_t tmp;
  3743. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3744. account_guest_time(p, cputime);
  3745. return;
  3746. }
  3747. p->stime = cputime_add(p->stime, cputime);
  3748. /* Add system time to cpustat. */
  3749. tmp = cputime_to_cputime64(cputime);
  3750. if (hardirq_count() - hardirq_offset)
  3751. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3752. else if (softirq_count())
  3753. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3754. else if (p != rq->idle)
  3755. cpustat->system = cputime64_add(cpustat->system, tmp);
  3756. else if (atomic_read(&rq->nr_iowait) > 0)
  3757. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3758. else
  3759. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3760. /* Account for system time used */
  3761. acct_update_integrals(p);
  3762. }
  3763. /*
  3764. * Account scaled system cpu time to a process.
  3765. * @p: the process that the cpu time gets accounted to
  3766. * @hardirq_offset: the offset to subtract from hardirq_count()
  3767. * @cputime: the cpu time spent in kernel space since the last update
  3768. */
  3769. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3770. {
  3771. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3772. }
  3773. /*
  3774. * Account for involuntary wait time.
  3775. * @p: the process from which the cpu time has been stolen
  3776. * @steal: the cpu time spent in involuntary wait
  3777. */
  3778. void account_steal_time(struct task_struct *p, cputime_t steal)
  3779. {
  3780. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3781. cputime64_t tmp = cputime_to_cputime64(steal);
  3782. struct rq *rq = this_rq();
  3783. if (p == rq->idle) {
  3784. p->stime = cputime_add(p->stime, steal);
  3785. if (atomic_read(&rq->nr_iowait) > 0)
  3786. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3787. else
  3788. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3789. } else
  3790. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3791. }
  3792. /*
  3793. * This function gets called by the timer code, with HZ frequency.
  3794. * We call it with interrupts disabled.
  3795. *
  3796. * It also gets called by the fork code, when changing the parent's
  3797. * timeslices.
  3798. */
  3799. void scheduler_tick(void)
  3800. {
  3801. int cpu = smp_processor_id();
  3802. struct rq *rq = cpu_rq(cpu);
  3803. struct task_struct *curr = rq->curr;
  3804. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3805. spin_lock(&rq->lock);
  3806. __update_rq_clock(rq);
  3807. /*
  3808. * Let rq->clock advance by at least TICK_NSEC:
  3809. */
  3810. if (unlikely(rq->clock < next_tick)) {
  3811. rq->clock = next_tick;
  3812. rq->clock_underflows++;
  3813. }
  3814. rq->tick_timestamp = rq->clock;
  3815. update_last_tick_seen(rq);
  3816. update_cpu_load(rq);
  3817. curr->sched_class->task_tick(rq, curr, 0);
  3818. spin_unlock(&rq->lock);
  3819. #ifdef CONFIG_SMP
  3820. rq->idle_at_tick = idle_cpu(cpu);
  3821. trigger_load_balance(rq, cpu);
  3822. #endif
  3823. }
  3824. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3825. void __kprobes add_preempt_count(int val)
  3826. {
  3827. /*
  3828. * Underflow?
  3829. */
  3830. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3831. return;
  3832. preempt_count() += val;
  3833. /*
  3834. * Spinlock count overflowing soon?
  3835. */
  3836. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3837. PREEMPT_MASK - 10);
  3838. }
  3839. EXPORT_SYMBOL(add_preempt_count);
  3840. void __kprobes sub_preempt_count(int val)
  3841. {
  3842. /*
  3843. * Underflow?
  3844. */
  3845. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3846. return;
  3847. /*
  3848. * Is the spinlock portion underflowing?
  3849. */
  3850. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3851. !(preempt_count() & PREEMPT_MASK)))
  3852. return;
  3853. preempt_count() -= val;
  3854. }
  3855. EXPORT_SYMBOL(sub_preempt_count);
  3856. #endif
  3857. /*
  3858. * Print scheduling while atomic bug:
  3859. */
  3860. static noinline void __schedule_bug(struct task_struct *prev)
  3861. {
  3862. struct pt_regs *regs = get_irq_regs();
  3863. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3864. prev->comm, prev->pid, preempt_count());
  3865. debug_show_held_locks(prev);
  3866. if (irqs_disabled())
  3867. print_irqtrace_events(prev);
  3868. if (regs)
  3869. show_regs(regs);
  3870. else
  3871. dump_stack();
  3872. }
  3873. /*
  3874. * Various schedule()-time debugging checks and statistics:
  3875. */
  3876. static inline void schedule_debug(struct task_struct *prev)
  3877. {
  3878. /*
  3879. * Test if we are atomic. Since do_exit() needs to call into
  3880. * schedule() atomically, we ignore that path for now.
  3881. * Otherwise, whine if we are scheduling when we should not be.
  3882. */
  3883. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3884. __schedule_bug(prev);
  3885. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3886. schedstat_inc(this_rq(), sched_count);
  3887. #ifdef CONFIG_SCHEDSTATS
  3888. if (unlikely(prev->lock_depth >= 0)) {
  3889. schedstat_inc(this_rq(), bkl_count);
  3890. schedstat_inc(prev, sched_info.bkl_count);
  3891. }
  3892. #endif
  3893. }
  3894. /*
  3895. * Pick up the highest-prio task:
  3896. */
  3897. static inline struct task_struct *
  3898. pick_next_task(struct rq *rq, struct task_struct *prev)
  3899. {
  3900. const struct sched_class *class;
  3901. struct task_struct *p;
  3902. /*
  3903. * Optimization: we know that if all tasks are in
  3904. * the fair class we can call that function directly:
  3905. */
  3906. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3907. p = fair_sched_class.pick_next_task(rq);
  3908. if (likely(p))
  3909. return p;
  3910. }
  3911. class = sched_class_highest;
  3912. for ( ; ; ) {
  3913. p = class->pick_next_task(rq);
  3914. if (p)
  3915. return p;
  3916. /*
  3917. * Will never be NULL as the idle class always
  3918. * returns a non-NULL p:
  3919. */
  3920. class = class->next;
  3921. }
  3922. }
  3923. /*
  3924. * schedule() is the main scheduler function.
  3925. */
  3926. asmlinkage void __sched schedule(void)
  3927. {
  3928. struct task_struct *prev, *next;
  3929. unsigned long *switch_count;
  3930. struct rq *rq;
  3931. int cpu;
  3932. need_resched:
  3933. preempt_disable();
  3934. cpu = smp_processor_id();
  3935. rq = cpu_rq(cpu);
  3936. rcu_qsctr_inc(cpu);
  3937. prev = rq->curr;
  3938. switch_count = &prev->nivcsw;
  3939. release_kernel_lock(prev);
  3940. need_resched_nonpreemptible:
  3941. schedule_debug(prev);
  3942. hrtick_clear(rq);
  3943. /*
  3944. * Do the rq-clock update outside the rq lock:
  3945. */
  3946. local_irq_disable();
  3947. __update_rq_clock(rq);
  3948. spin_lock(&rq->lock);
  3949. clear_tsk_need_resched(prev);
  3950. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3951. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3952. signal_pending(prev))) {
  3953. prev->state = TASK_RUNNING;
  3954. } else {
  3955. deactivate_task(rq, prev, 1);
  3956. }
  3957. switch_count = &prev->nvcsw;
  3958. }
  3959. #ifdef CONFIG_SMP
  3960. if (prev->sched_class->pre_schedule)
  3961. prev->sched_class->pre_schedule(rq, prev);
  3962. #endif
  3963. if (unlikely(!rq->nr_running))
  3964. idle_balance(cpu, rq);
  3965. prev->sched_class->put_prev_task(rq, prev);
  3966. next = pick_next_task(rq, prev);
  3967. if (likely(prev != next)) {
  3968. sched_info_switch(prev, next);
  3969. rq->nr_switches++;
  3970. rq->curr = next;
  3971. ++*switch_count;
  3972. context_switch(rq, prev, next); /* unlocks the rq */
  3973. /*
  3974. * the context switch might have flipped the stack from under
  3975. * us, hence refresh the local variables.
  3976. */
  3977. cpu = smp_processor_id();
  3978. rq = cpu_rq(cpu);
  3979. } else
  3980. spin_unlock_irq(&rq->lock);
  3981. hrtick_set(rq);
  3982. if (unlikely(reacquire_kernel_lock(current) < 0))
  3983. goto need_resched_nonpreemptible;
  3984. preempt_enable_no_resched();
  3985. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3986. goto need_resched;
  3987. }
  3988. EXPORT_SYMBOL(schedule);
  3989. #ifdef CONFIG_PREEMPT
  3990. /*
  3991. * this is the entry point to schedule() from in-kernel preemption
  3992. * off of preempt_enable. Kernel preemptions off return from interrupt
  3993. * occur there and call schedule directly.
  3994. */
  3995. asmlinkage void __sched preempt_schedule(void)
  3996. {
  3997. struct thread_info *ti = current_thread_info();
  3998. struct task_struct *task = current;
  3999. int saved_lock_depth;
  4000. /*
  4001. * If there is a non-zero preempt_count or interrupts are disabled,
  4002. * we do not want to preempt the current task. Just return..
  4003. */
  4004. if (likely(ti->preempt_count || irqs_disabled()))
  4005. return;
  4006. do {
  4007. add_preempt_count(PREEMPT_ACTIVE);
  4008. /*
  4009. * We keep the big kernel semaphore locked, but we
  4010. * clear ->lock_depth so that schedule() doesnt
  4011. * auto-release the semaphore:
  4012. */
  4013. saved_lock_depth = task->lock_depth;
  4014. task->lock_depth = -1;
  4015. schedule();
  4016. task->lock_depth = saved_lock_depth;
  4017. sub_preempt_count(PREEMPT_ACTIVE);
  4018. /*
  4019. * Check again in case we missed a preemption opportunity
  4020. * between schedule and now.
  4021. */
  4022. barrier();
  4023. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4024. }
  4025. EXPORT_SYMBOL(preempt_schedule);
  4026. /*
  4027. * this is the entry point to schedule() from kernel preemption
  4028. * off of irq context.
  4029. * Note, that this is called and return with irqs disabled. This will
  4030. * protect us against recursive calling from irq.
  4031. */
  4032. asmlinkage void __sched preempt_schedule_irq(void)
  4033. {
  4034. struct thread_info *ti = current_thread_info();
  4035. struct task_struct *task = current;
  4036. int saved_lock_depth;
  4037. /* Catch callers which need to be fixed */
  4038. BUG_ON(ti->preempt_count || !irqs_disabled());
  4039. do {
  4040. add_preempt_count(PREEMPT_ACTIVE);
  4041. /*
  4042. * We keep the big kernel semaphore locked, but we
  4043. * clear ->lock_depth so that schedule() doesnt
  4044. * auto-release the semaphore:
  4045. */
  4046. saved_lock_depth = task->lock_depth;
  4047. task->lock_depth = -1;
  4048. local_irq_enable();
  4049. schedule();
  4050. local_irq_disable();
  4051. task->lock_depth = saved_lock_depth;
  4052. sub_preempt_count(PREEMPT_ACTIVE);
  4053. /*
  4054. * Check again in case we missed a preemption opportunity
  4055. * between schedule and now.
  4056. */
  4057. barrier();
  4058. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4059. }
  4060. #endif /* CONFIG_PREEMPT */
  4061. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4062. void *key)
  4063. {
  4064. return try_to_wake_up(curr->private, mode, sync);
  4065. }
  4066. EXPORT_SYMBOL(default_wake_function);
  4067. /*
  4068. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4069. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4070. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4071. *
  4072. * There are circumstances in which we can try to wake a task which has already
  4073. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4074. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4075. */
  4076. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4077. int nr_exclusive, int sync, void *key)
  4078. {
  4079. wait_queue_t *curr, *next;
  4080. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4081. unsigned flags = curr->flags;
  4082. if (curr->func(curr, mode, sync, key) &&
  4083. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4084. break;
  4085. }
  4086. }
  4087. /**
  4088. * __wake_up - wake up threads blocked on a waitqueue.
  4089. * @q: the waitqueue
  4090. * @mode: which threads
  4091. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4092. * @key: is directly passed to the wakeup function
  4093. */
  4094. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4095. int nr_exclusive, void *key)
  4096. {
  4097. unsigned long flags;
  4098. spin_lock_irqsave(&q->lock, flags);
  4099. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4100. spin_unlock_irqrestore(&q->lock, flags);
  4101. }
  4102. EXPORT_SYMBOL(__wake_up);
  4103. /*
  4104. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4105. */
  4106. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4107. {
  4108. __wake_up_common(q, mode, 1, 0, NULL);
  4109. }
  4110. /**
  4111. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4112. * @q: the waitqueue
  4113. * @mode: which threads
  4114. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4115. *
  4116. * The sync wakeup differs that the waker knows that it will schedule
  4117. * away soon, so while the target thread will be woken up, it will not
  4118. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4119. * with each other. This can prevent needless bouncing between CPUs.
  4120. *
  4121. * On UP it can prevent extra preemption.
  4122. */
  4123. void
  4124. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4125. {
  4126. unsigned long flags;
  4127. int sync = 1;
  4128. if (unlikely(!q))
  4129. return;
  4130. if (unlikely(!nr_exclusive))
  4131. sync = 0;
  4132. spin_lock_irqsave(&q->lock, flags);
  4133. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4134. spin_unlock_irqrestore(&q->lock, flags);
  4135. }
  4136. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4137. void complete(struct completion *x)
  4138. {
  4139. unsigned long flags;
  4140. spin_lock_irqsave(&x->wait.lock, flags);
  4141. x->done++;
  4142. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4143. spin_unlock_irqrestore(&x->wait.lock, flags);
  4144. }
  4145. EXPORT_SYMBOL(complete);
  4146. void complete_all(struct completion *x)
  4147. {
  4148. unsigned long flags;
  4149. spin_lock_irqsave(&x->wait.lock, flags);
  4150. x->done += UINT_MAX/2;
  4151. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4152. spin_unlock_irqrestore(&x->wait.lock, flags);
  4153. }
  4154. EXPORT_SYMBOL(complete_all);
  4155. static inline long __sched
  4156. do_wait_for_common(struct completion *x, long timeout, int state)
  4157. {
  4158. if (!x->done) {
  4159. DECLARE_WAITQUEUE(wait, current);
  4160. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4161. __add_wait_queue_tail(&x->wait, &wait);
  4162. do {
  4163. if ((state == TASK_INTERRUPTIBLE &&
  4164. signal_pending(current)) ||
  4165. (state == TASK_KILLABLE &&
  4166. fatal_signal_pending(current))) {
  4167. __remove_wait_queue(&x->wait, &wait);
  4168. return -ERESTARTSYS;
  4169. }
  4170. __set_current_state(state);
  4171. spin_unlock_irq(&x->wait.lock);
  4172. timeout = schedule_timeout(timeout);
  4173. spin_lock_irq(&x->wait.lock);
  4174. if (!timeout) {
  4175. __remove_wait_queue(&x->wait, &wait);
  4176. return timeout;
  4177. }
  4178. } while (!x->done);
  4179. __remove_wait_queue(&x->wait, &wait);
  4180. }
  4181. x->done--;
  4182. return timeout;
  4183. }
  4184. static long __sched
  4185. wait_for_common(struct completion *x, long timeout, int state)
  4186. {
  4187. might_sleep();
  4188. spin_lock_irq(&x->wait.lock);
  4189. timeout = do_wait_for_common(x, timeout, state);
  4190. spin_unlock_irq(&x->wait.lock);
  4191. return timeout;
  4192. }
  4193. void __sched wait_for_completion(struct completion *x)
  4194. {
  4195. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4196. }
  4197. EXPORT_SYMBOL(wait_for_completion);
  4198. unsigned long __sched
  4199. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4200. {
  4201. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4202. }
  4203. EXPORT_SYMBOL(wait_for_completion_timeout);
  4204. int __sched wait_for_completion_interruptible(struct completion *x)
  4205. {
  4206. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4207. if (t == -ERESTARTSYS)
  4208. return t;
  4209. return 0;
  4210. }
  4211. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4212. unsigned long __sched
  4213. wait_for_completion_interruptible_timeout(struct completion *x,
  4214. unsigned long timeout)
  4215. {
  4216. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4217. }
  4218. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4219. int __sched wait_for_completion_killable(struct completion *x)
  4220. {
  4221. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4222. if (t == -ERESTARTSYS)
  4223. return t;
  4224. return 0;
  4225. }
  4226. EXPORT_SYMBOL(wait_for_completion_killable);
  4227. static long __sched
  4228. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4229. {
  4230. unsigned long flags;
  4231. wait_queue_t wait;
  4232. init_waitqueue_entry(&wait, current);
  4233. __set_current_state(state);
  4234. spin_lock_irqsave(&q->lock, flags);
  4235. __add_wait_queue(q, &wait);
  4236. spin_unlock(&q->lock);
  4237. timeout = schedule_timeout(timeout);
  4238. spin_lock_irq(&q->lock);
  4239. __remove_wait_queue(q, &wait);
  4240. spin_unlock_irqrestore(&q->lock, flags);
  4241. return timeout;
  4242. }
  4243. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4244. {
  4245. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4246. }
  4247. EXPORT_SYMBOL(interruptible_sleep_on);
  4248. long __sched
  4249. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4250. {
  4251. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4252. }
  4253. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4254. void __sched sleep_on(wait_queue_head_t *q)
  4255. {
  4256. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4257. }
  4258. EXPORT_SYMBOL(sleep_on);
  4259. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4260. {
  4261. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4262. }
  4263. EXPORT_SYMBOL(sleep_on_timeout);
  4264. #ifdef CONFIG_RT_MUTEXES
  4265. /*
  4266. * rt_mutex_setprio - set the current priority of a task
  4267. * @p: task
  4268. * @prio: prio value (kernel-internal form)
  4269. *
  4270. * This function changes the 'effective' priority of a task. It does
  4271. * not touch ->normal_prio like __setscheduler().
  4272. *
  4273. * Used by the rt_mutex code to implement priority inheritance logic.
  4274. */
  4275. void rt_mutex_setprio(struct task_struct *p, int prio)
  4276. {
  4277. unsigned long flags;
  4278. int oldprio, on_rq, running;
  4279. struct rq *rq;
  4280. const struct sched_class *prev_class = p->sched_class;
  4281. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4282. rq = task_rq_lock(p, &flags);
  4283. update_rq_clock(rq);
  4284. oldprio = p->prio;
  4285. on_rq = p->se.on_rq;
  4286. running = task_current(rq, p);
  4287. if (on_rq)
  4288. dequeue_task(rq, p, 0);
  4289. if (running)
  4290. p->sched_class->put_prev_task(rq, p);
  4291. if (rt_prio(prio))
  4292. p->sched_class = &rt_sched_class;
  4293. else
  4294. p->sched_class = &fair_sched_class;
  4295. p->prio = prio;
  4296. if (running)
  4297. p->sched_class->set_curr_task(rq);
  4298. if (on_rq) {
  4299. enqueue_task(rq, p, 0);
  4300. check_class_changed(rq, p, prev_class, oldprio, running);
  4301. }
  4302. task_rq_unlock(rq, &flags);
  4303. }
  4304. #endif
  4305. void set_user_nice(struct task_struct *p, long nice)
  4306. {
  4307. int old_prio, delta, on_rq;
  4308. unsigned long flags;
  4309. struct rq *rq;
  4310. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4311. return;
  4312. /*
  4313. * We have to be careful, if called from sys_setpriority(),
  4314. * the task might be in the middle of scheduling on another CPU.
  4315. */
  4316. rq = task_rq_lock(p, &flags);
  4317. update_rq_clock(rq);
  4318. /*
  4319. * The RT priorities are set via sched_setscheduler(), but we still
  4320. * allow the 'normal' nice value to be set - but as expected
  4321. * it wont have any effect on scheduling until the task is
  4322. * SCHED_FIFO/SCHED_RR:
  4323. */
  4324. if (task_has_rt_policy(p)) {
  4325. p->static_prio = NICE_TO_PRIO(nice);
  4326. goto out_unlock;
  4327. }
  4328. on_rq = p->se.on_rq;
  4329. if (on_rq)
  4330. dequeue_task(rq, p, 0);
  4331. p->static_prio = NICE_TO_PRIO(nice);
  4332. set_load_weight(p);
  4333. old_prio = p->prio;
  4334. p->prio = effective_prio(p);
  4335. delta = p->prio - old_prio;
  4336. if (on_rq) {
  4337. enqueue_task(rq, p, 0);
  4338. /*
  4339. * If the task increased its priority or is running and
  4340. * lowered its priority, then reschedule its CPU:
  4341. */
  4342. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4343. resched_task(rq->curr);
  4344. }
  4345. out_unlock:
  4346. task_rq_unlock(rq, &flags);
  4347. }
  4348. EXPORT_SYMBOL(set_user_nice);
  4349. /*
  4350. * can_nice - check if a task can reduce its nice value
  4351. * @p: task
  4352. * @nice: nice value
  4353. */
  4354. int can_nice(const struct task_struct *p, const int nice)
  4355. {
  4356. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4357. int nice_rlim = 20 - nice;
  4358. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4359. capable(CAP_SYS_NICE));
  4360. }
  4361. #ifdef __ARCH_WANT_SYS_NICE
  4362. /*
  4363. * sys_nice - change the priority of the current process.
  4364. * @increment: priority increment
  4365. *
  4366. * sys_setpriority is a more generic, but much slower function that
  4367. * does similar things.
  4368. */
  4369. asmlinkage long sys_nice(int increment)
  4370. {
  4371. long nice, retval;
  4372. /*
  4373. * Setpriority might change our priority at the same moment.
  4374. * We don't have to worry. Conceptually one call occurs first
  4375. * and we have a single winner.
  4376. */
  4377. if (increment < -40)
  4378. increment = -40;
  4379. if (increment > 40)
  4380. increment = 40;
  4381. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4382. if (nice < -20)
  4383. nice = -20;
  4384. if (nice > 19)
  4385. nice = 19;
  4386. if (increment < 0 && !can_nice(current, nice))
  4387. return -EPERM;
  4388. retval = security_task_setnice(current, nice);
  4389. if (retval)
  4390. return retval;
  4391. set_user_nice(current, nice);
  4392. return 0;
  4393. }
  4394. #endif
  4395. /**
  4396. * task_prio - return the priority value of a given task.
  4397. * @p: the task in question.
  4398. *
  4399. * This is the priority value as seen by users in /proc.
  4400. * RT tasks are offset by -200. Normal tasks are centered
  4401. * around 0, value goes from -16 to +15.
  4402. */
  4403. int task_prio(const struct task_struct *p)
  4404. {
  4405. return p->prio - MAX_RT_PRIO;
  4406. }
  4407. /**
  4408. * task_nice - return the nice value of a given task.
  4409. * @p: the task in question.
  4410. */
  4411. int task_nice(const struct task_struct *p)
  4412. {
  4413. return TASK_NICE(p);
  4414. }
  4415. EXPORT_SYMBOL(task_nice);
  4416. /**
  4417. * idle_cpu - is a given cpu idle currently?
  4418. * @cpu: the processor in question.
  4419. */
  4420. int idle_cpu(int cpu)
  4421. {
  4422. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4423. }
  4424. /**
  4425. * idle_task - return the idle task for a given cpu.
  4426. * @cpu: the processor in question.
  4427. */
  4428. struct task_struct *idle_task(int cpu)
  4429. {
  4430. return cpu_rq(cpu)->idle;
  4431. }
  4432. /**
  4433. * find_process_by_pid - find a process with a matching PID value.
  4434. * @pid: the pid in question.
  4435. */
  4436. static struct task_struct *find_process_by_pid(pid_t pid)
  4437. {
  4438. return pid ? find_task_by_vpid(pid) : current;
  4439. }
  4440. /* Actually do priority change: must hold rq lock. */
  4441. static void
  4442. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4443. {
  4444. BUG_ON(p->se.on_rq);
  4445. p->policy = policy;
  4446. switch (p->policy) {
  4447. case SCHED_NORMAL:
  4448. case SCHED_BATCH:
  4449. case SCHED_IDLE:
  4450. p->sched_class = &fair_sched_class;
  4451. break;
  4452. case SCHED_FIFO:
  4453. case SCHED_RR:
  4454. p->sched_class = &rt_sched_class;
  4455. break;
  4456. }
  4457. p->rt_priority = prio;
  4458. p->normal_prio = normal_prio(p);
  4459. /* we are holding p->pi_lock already */
  4460. p->prio = rt_mutex_getprio(p);
  4461. set_load_weight(p);
  4462. }
  4463. /**
  4464. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4465. * @p: the task in question.
  4466. * @policy: new policy.
  4467. * @param: structure containing the new RT priority.
  4468. *
  4469. * NOTE that the task may be already dead.
  4470. */
  4471. int sched_setscheduler(struct task_struct *p, int policy,
  4472. struct sched_param *param)
  4473. {
  4474. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4475. unsigned long flags;
  4476. const struct sched_class *prev_class = p->sched_class;
  4477. struct rq *rq;
  4478. /* may grab non-irq protected spin_locks */
  4479. BUG_ON(in_interrupt());
  4480. recheck:
  4481. /* double check policy once rq lock held */
  4482. if (policy < 0)
  4483. policy = oldpolicy = p->policy;
  4484. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4485. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4486. policy != SCHED_IDLE)
  4487. return -EINVAL;
  4488. /*
  4489. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4490. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4491. * SCHED_BATCH and SCHED_IDLE is 0.
  4492. */
  4493. if (param->sched_priority < 0 ||
  4494. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4495. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4496. return -EINVAL;
  4497. if (rt_policy(policy) != (param->sched_priority != 0))
  4498. return -EINVAL;
  4499. /*
  4500. * Allow unprivileged RT tasks to decrease priority:
  4501. */
  4502. if (!capable(CAP_SYS_NICE)) {
  4503. if (rt_policy(policy)) {
  4504. unsigned long rlim_rtprio;
  4505. if (!lock_task_sighand(p, &flags))
  4506. return -ESRCH;
  4507. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4508. unlock_task_sighand(p, &flags);
  4509. /* can't set/change the rt policy */
  4510. if (policy != p->policy && !rlim_rtprio)
  4511. return -EPERM;
  4512. /* can't increase priority */
  4513. if (param->sched_priority > p->rt_priority &&
  4514. param->sched_priority > rlim_rtprio)
  4515. return -EPERM;
  4516. }
  4517. /*
  4518. * Like positive nice levels, dont allow tasks to
  4519. * move out of SCHED_IDLE either:
  4520. */
  4521. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4522. return -EPERM;
  4523. /* can't change other user's priorities */
  4524. if ((current->euid != p->euid) &&
  4525. (current->euid != p->uid))
  4526. return -EPERM;
  4527. }
  4528. #ifdef CONFIG_RT_GROUP_SCHED
  4529. /*
  4530. * Do not allow realtime tasks into groups that have no runtime
  4531. * assigned.
  4532. */
  4533. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4534. return -EPERM;
  4535. #endif
  4536. retval = security_task_setscheduler(p, policy, param);
  4537. if (retval)
  4538. return retval;
  4539. /*
  4540. * make sure no PI-waiters arrive (or leave) while we are
  4541. * changing the priority of the task:
  4542. */
  4543. spin_lock_irqsave(&p->pi_lock, flags);
  4544. /*
  4545. * To be able to change p->policy safely, the apropriate
  4546. * runqueue lock must be held.
  4547. */
  4548. rq = __task_rq_lock(p);
  4549. /* recheck policy now with rq lock held */
  4550. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4551. policy = oldpolicy = -1;
  4552. __task_rq_unlock(rq);
  4553. spin_unlock_irqrestore(&p->pi_lock, flags);
  4554. goto recheck;
  4555. }
  4556. update_rq_clock(rq);
  4557. on_rq = p->se.on_rq;
  4558. running = task_current(rq, p);
  4559. if (on_rq)
  4560. deactivate_task(rq, p, 0);
  4561. if (running)
  4562. p->sched_class->put_prev_task(rq, p);
  4563. oldprio = p->prio;
  4564. __setscheduler(rq, p, policy, param->sched_priority);
  4565. if (running)
  4566. p->sched_class->set_curr_task(rq);
  4567. if (on_rq) {
  4568. activate_task(rq, p, 0);
  4569. check_class_changed(rq, p, prev_class, oldprio, running);
  4570. }
  4571. __task_rq_unlock(rq);
  4572. spin_unlock_irqrestore(&p->pi_lock, flags);
  4573. rt_mutex_adjust_pi(p);
  4574. return 0;
  4575. }
  4576. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4577. static int
  4578. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4579. {
  4580. struct sched_param lparam;
  4581. struct task_struct *p;
  4582. int retval;
  4583. if (!param || pid < 0)
  4584. return -EINVAL;
  4585. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4586. return -EFAULT;
  4587. rcu_read_lock();
  4588. retval = -ESRCH;
  4589. p = find_process_by_pid(pid);
  4590. if (p != NULL)
  4591. retval = sched_setscheduler(p, policy, &lparam);
  4592. rcu_read_unlock();
  4593. return retval;
  4594. }
  4595. /**
  4596. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4597. * @pid: the pid in question.
  4598. * @policy: new policy.
  4599. * @param: structure containing the new RT priority.
  4600. */
  4601. asmlinkage long
  4602. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4603. {
  4604. /* negative values for policy are not valid */
  4605. if (policy < 0)
  4606. return -EINVAL;
  4607. return do_sched_setscheduler(pid, policy, param);
  4608. }
  4609. /**
  4610. * sys_sched_setparam - set/change the RT priority of a thread
  4611. * @pid: the pid in question.
  4612. * @param: structure containing the new RT priority.
  4613. */
  4614. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4615. {
  4616. return do_sched_setscheduler(pid, -1, param);
  4617. }
  4618. /**
  4619. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4620. * @pid: the pid in question.
  4621. */
  4622. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4623. {
  4624. struct task_struct *p;
  4625. int retval;
  4626. if (pid < 0)
  4627. return -EINVAL;
  4628. retval = -ESRCH;
  4629. read_lock(&tasklist_lock);
  4630. p = find_process_by_pid(pid);
  4631. if (p) {
  4632. retval = security_task_getscheduler(p);
  4633. if (!retval)
  4634. retval = p->policy;
  4635. }
  4636. read_unlock(&tasklist_lock);
  4637. return retval;
  4638. }
  4639. /**
  4640. * sys_sched_getscheduler - get the RT priority of a thread
  4641. * @pid: the pid in question.
  4642. * @param: structure containing the RT priority.
  4643. */
  4644. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4645. {
  4646. struct sched_param lp;
  4647. struct task_struct *p;
  4648. int retval;
  4649. if (!param || pid < 0)
  4650. return -EINVAL;
  4651. read_lock(&tasklist_lock);
  4652. p = find_process_by_pid(pid);
  4653. retval = -ESRCH;
  4654. if (!p)
  4655. goto out_unlock;
  4656. retval = security_task_getscheduler(p);
  4657. if (retval)
  4658. goto out_unlock;
  4659. lp.sched_priority = p->rt_priority;
  4660. read_unlock(&tasklist_lock);
  4661. /*
  4662. * This one might sleep, we cannot do it with a spinlock held ...
  4663. */
  4664. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4665. return retval;
  4666. out_unlock:
  4667. read_unlock(&tasklist_lock);
  4668. return retval;
  4669. }
  4670. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4671. {
  4672. cpumask_t cpus_allowed;
  4673. cpumask_t new_mask = *in_mask;
  4674. struct task_struct *p;
  4675. int retval;
  4676. get_online_cpus();
  4677. read_lock(&tasklist_lock);
  4678. p = find_process_by_pid(pid);
  4679. if (!p) {
  4680. read_unlock(&tasklist_lock);
  4681. put_online_cpus();
  4682. return -ESRCH;
  4683. }
  4684. /*
  4685. * It is not safe to call set_cpus_allowed with the
  4686. * tasklist_lock held. We will bump the task_struct's
  4687. * usage count and then drop tasklist_lock.
  4688. */
  4689. get_task_struct(p);
  4690. read_unlock(&tasklist_lock);
  4691. retval = -EPERM;
  4692. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4693. !capable(CAP_SYS_NICE))
  4694. goto out_unlock;
  4695. retval = security_task_setscheduler(p, 0, NULL);
  4696. if (retval)
  4697. goto out_unlock;
  4698. cpuset_cpus_allowed(p, &cpus_allowed);
  4699. cpus_and(new_mask, new_mask, cpus_allowed);
  4700. again:
  4701. retval = set_cpus_allowed_ptr(p, &new_mask);
  4702. if (!retval) {
  4703. cpuset_cpus_allowed(p, &cpus_allowed);
  4704. if (!cpus_subset(new_mask, cpus_allowed)) {
  4705. /*
  4706. * We must have raced with a concurrent cpuset
  4707. * update. Just reset the cpus_allowed to the
  4708. * cpuset's cpus_allowed
  4709. */
  4710. new_mask = cpus_allowed;
  4711. goto again;
  4712. }
  4713. }
  4714. out_unlock:
  4715. put_task_struct(p);
  4716. put_online_cpus();
  4717. return retval;
  4718. }
  4719. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4720. cpumask_t *new_mask)
  4721. {
  4722. if (len < sizeof(cpumask_t)) {
  4723. memset(new_mask, 0, sizeof(cpumask_t));
  4724. } else if (len > sizeof(cpumask_t)) {
  4725. len = sizeof(cpumask_t);
  4726. }
  4727. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4728. }
  4729. /**
  4730. * sys_sched_setaffinity - set the cpu affinity of a process
  4731. * @pid: pid of the process
  4732. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4733. * @user_mask_ptr: user-space pointer to the new cpu mask
  4734. */
  4735. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4736. unsigned long __user *user_mask_ptr)
  4737. {
  4738. cpumask_t new_mask;
  4739. int retval;
  4740. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4741. if (retval)
  4742. return retval;
  4743. return sched_setaffinity(pid, &new_mask);
  4744. }
  4745. /*
  4746. * Represents all cpu's present in the system
  4747. * In systems capable of hotplug, this map could dynamically grow
  4748. * as new cpu's are detected in the system via any platform specific
  4749. * method, such as ACPI for e.g.
  4750. */
  4751. cpumask_t cpu_present_map __read_mostly;
  4752. EXPORT_SYMBOL(cpu_present_map);
  4753. #ifndef CONFIG_SMP
  4754. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4755. EXPORT_SYMBOL(cpu_online_map);
  4756. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4757. EXPORT_SYMBOL(cpu_possible_map);
  4758. #endif
  4759. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4760. {
  4761. struct task_struct *p;
  4762. int retval;
  4763. get_online_cpus();
  4764. read_lock(&tasklist_lock);
  4765. retval = -ESRCH;
  4766. p = find_process_by_pid(pid);
  4767. if (!p)
  4768. goto out_unlock;
  4769. retval = security_task_getscheduler(p);
  4770. if (retval)
  4771. goto out_unlock;
  4772. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4773. out_unlock:
  4774. read_unlock(&tasklist_lock);
  4775. put_online_cpus();
  4776. return retval;
  4777. }
  4778. /**
  4779. * sys_sched_getaffinity - get the cpu affinity of a process
  4780. * @pid: pid of the process
  4781. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4782. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4783. */
  4784. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4785. unsigned long __user *user_mask_ptr)
  4786. {
  4787. int ret;
  4788. cpumask_t mask;
  4789. if (len < sizeof(cpumask_t))
  4790. return -EINVAL;
  4791. ret = sched_getaffinity(pid, &mask);
  4792. if (ret < 0)
  4793. return ret;
  4794. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4795. return -EFAULT;
  4796. return sizeof(cpumask_t);
  4797. }
  4798. /**
  4799. * sys_sched_yield - yield the current processor to other threads.
  4800. *
  4801. * This function yields the current CPU to other tasks. If there are no
  4802. * other threads running on this CPU then this function will return.
  4803. */
  4804. asmlinkage long sys_sched_yield(void)
  4805. {
  4806. struct rq *rq = this_rq_lock();
  4807. schedstat_inc(rq, yld_count);
  4808. current->sched_class->yield_task(rq);
  4809. /*
  4810. * Since we are going to call schedule() anyway, there's
  4811. * no need to preempt or enable interrupts:
  4812. */
  4813. __release(rq->lock);
  4814. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4815. _raw_spin_unlock(&rq->lock);
  4816. preempt_enable_no_resched();
  4817. schedule();
  4818. return 0;
  4819. }
  4820. static void __cond_resched(void)
  4821. {
  4822. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4823. __might_sleep(__FILE__, __LINE__);
  4824. #endif
  4825. /*
  4826. * The BKS might be reacquired before we have dropped
  4827. * PREEMPT_ACTIVE, which could trigger a second
  4828. * cond_resched() call.
  4829. */
  4830. do {
  4831. add_preempt_count(PREEMPT_ACTIVE);
  4832. schedule();
  4833. sub_preempt_count(PREEMPT_ACTIVE);
  4834. } while (need_resched());
  4835. }
  4836. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4837. int __sched _cond_resched(void)
  4838. {
  4839. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4840. system_state == SYSTEM_RUNNING) {
  4841. __cond_resched();
  4842. return 1;
  4843. }
  4844. return 0;
  4845. }
  4846. EXPORT_SYMBOL(_cond_resched);
  4847. #endif
  4848. /*
  4849. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4850. * call schedule, and on return reacquire the lock.
  4851. *
  4852. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4853. * operations here to prevent schedule() from being called twice (once via
  4854. * spin_unlock(), once by hand).
  4855. */
  4856. int cond_resched_lock(spinlock_t *lock)
  4857. {
  4858. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4859. int ret = 0;
  4860. if (spin_needbreak(lock) || resched) {
  4861. spin_unlock(lock);
  4862. if (resched && need_resched())
  4863. __cond_resched();
  4864. else
  4865. cpu_relax();
  4866. ret = 1;
  4867. spin_lock(lock);
  4868. }
  4869. return ret;
  4870. }
  4871. EXPORT_SYMBOL(cond_resched_lock);
  4872. int __sched cond_resched_softirq(void)
  4873. {
  4874. BUG_ON(!in_softirq());
  4875. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4876. local_bh_enable();
  4877. __cond_resched();
  4878. local_bh_disable();
  4879. return 1;
  4880. }
  4881. return 0;
  4882. }
  4883. EXPORT_SYMBOL(cond_resched_softirq);
  4884. /**
  4885. * yield - yield the current processor to other threads.
  4886. *
  4887. * This is a shortcut for kernel-space yielding - it marks the
  4888. * thread runnable and calls sys_sched_yield().
  4889. */
  4890. void __sched yield(void)
  4891. {
  4892. set_current_state(TASK_RUNNING);
  4893. sys_sched_yield();
  4894. }
  4895. EXPORT_SYMBOL(yield);
  4896. /*
  4897. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4898. * that process accounting knows that this is a task in IO wait state.
  4899. *
  4900. * But don't do that if it is a deliberate, throttling IO wait (this task
  4901. * has set its backing_dev_info: the queue against which it should throttle)
  4902. */
  4903. void __sched io_schedule(void)
  4904. {
  4905. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4906. delayacct_blkio_start();
  4907. atomic_inc(&rq->nr_iowait);
  4908. schedule();
  4909. atomic_dec(&rq->nr_iowait);
  4910. delayacct_blkio_end();
  4911. }
  4912. EXPORT_SYMBOL(io_schedule);
  4913. long __sched io_schedule_timeout(long timeout)
  4914. {
  4915. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4916. long ret;
  4917. delayacct_blkio_start();
  4918. atomic_inc(&rq->nr_iowait);
  4919. ret = schedule_timeout(timeout);
  4920. atomic_dec(&rq->nr_iowait);
  4921. delayacct_blkio_end();
  4922. return ret;
  4923. }
  4924. /**
  4925. * sys_sched_get_priority_max - return maximum RT priority.
  4926. * @policy: scheduling class.
  4927. *
  4928. * this syscall returns the maximum rt_priority that can be used
  4929. * by a given scheduling class.
  4930. */
  4931. asmlinkage long sys_sched_get_priority_max(int policy)
  4932. {
  4933. int ret = -EINVAL;
  4934. switch (policy) {
  4935. case SCHED_FIFO:
  4936. case SCHED_RR:
  4937. ret = MAX_USER_RT_PRIO-1;
  4938. break;
  4939. case SCHED_NORMAL:
  4940. case SCHED_BATCH:
  4941. case SCHED_IDLE:
  4942. ret = 0;
  4943. break;
  4944. }
  4945. return ret;
  4946. }
  4947. /**
  4948. * sys_sched_get_priority_min - return minimum RT priority.
  4949. * @policy: scheduling class.
  4950. *
  4951. * this syscall returns the minimum rt_priority that can be used
  4952. * by a given scheduling class.
  4953. */
  4954. asmlinkage long sys_sched_get_priority_min(int policy)
  4955. {
  4956. int ret = -EINVAL;
  4957. switch (policy) {
  4958. case SCHED_FIFO:
  4959. case SCHED_RR:
  4960. ret = 1;
  4961. break;
  4962. case SCHED_NORMAL:
  4963. case SCHED_BATCH:
  4964. case SCHED_IDLE:
  4965. ret = 0;
  4966. }
  4967. return ret;
  4968. }
  4969. /**
  4970. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4971. * @pid: pid of the process.
  4972. * @interval: userspace pointer to the timeslice value.
  4973. *
  4974. * this syscall writes the default timeslice value of a given process
  4975. * into the user-space timespec buffer. A value of '0' means infinity.
  4976. */
  4977. asmlinkage
  4978. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4979. {
  4980. struct task_struct *p;
  4981. unsigned int time_slice;
  4982. int retval;
  4983. struct timespec t;
  4984. if (pid < 0)
  4985. return -EINVAL;
  4986. retval = -ESRCH;
  4987. read_lock(&tasklist_lock);
  4988. p = find_process_by_pid(pid);
  4989. if (!p)
  4990. goto out_unlock;
  4991. retval = security_task_getscheduler(p);
  4992. if (retval)
  4993. goto out_unlock;
  4994. /*
  4995. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4996. * tasks that are on an otherwise idle runqueue:
  4997. */
  4998. time_slice = 0;
  4999. if (p->policy == SCHED_RR) {
  5000. time_slice = DEF_TIMESLICE;
  5001. } else if (p->policy != SCHED_FIFO) {
  5002. struct sched_entity *se = &p->se;
  5003. unsigned long flags;
  5004. struct rq *rq;
  5005. rq = task_rq_lock(p, &flags);
  5006. if (rq->cfs.load.weight)
  5007. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5008. task_rq_unlock(rq, &flags);
  5009. }
  5010. read_unlock(&tasklist_lock);
  5011. jiffies_to_timespec(time_slice, &t);
  5012. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5013. return retval;
  5014. out_unlock:
  5015. read_unlock(&tasklist_lock);
  5016. return retval;
  5017. }
  5018. static const char stat_nam[] = "RSDTtZX";
  5019. void sched_show_task(struct task_struct *p)
  5020. {
  5021. unsigned long free = 0;
  5022. unsigned state;
  5023. state = p->state ? __ffs(p->state) + 1 : 0;
  5024. printk(KERN_INFO "%-13.13s %c", p->comm,
  5025. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5026. #if BITS_PER_LONG == 32
  5027. if (state == TASK_RUNNING)
  5028. printk(KERN_CONT " running ");
  5029. else
  5030. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5031. #else
  5032. if (state == TASK_RUNNING)
  5033. printk(KERN_CONT " running task ");
  5034. else
  5035. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5036. #endif
  5037. #ifdef CONFIG_DEBUG_STACK_USAGE
  5038. {
  5039. unsigned long *n = end_of_stack(p);
  5040. while (!*n)
  5041. n++;
  5042. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  5043. }
  5044. #endif
  5045. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5046. task_pid_nr(p), task_pid_nr(p->real_parent));
  5047. show_stack(p, NULL);
  5048. }
  5049. void show_state_filter(unsigned long state_filter)
  5050. {
  5051. struct task_struct *g, *p;
  5052. #if BITS_PER_LONG == 32
  5053. printk(KERN_INFO
  5054. " task PC stack pid father\n");
  5055. #else
  5056. printk(KERN_INFO
  5057. " task PC stack pid father\n");
  5058. #endif
  5059. read_lock(&tasklist_lock);
  5060. do_each_thread(g, p) {
  5061. /*
  5062. * reset the NMI-timeout, listing all files on a slow
  5063. * console might take alot of time:
  5064. */
  5065. touch_nmi_watchdog();
  5066. if (!state_filter || (p->state & state_filter))
  5067. sched_show_task(p);
  5068. } while_each_thread(g, p);
  5069. touch_all_softlockup_watchdogs();
  5070. #ifdef CONFIG_SCHED_DEBUG
  5071. sysrq_sched_debug_show();
  5072. #endif
  5073. read_unlock(&tasklist_lock);
  5074. /*
  5075. * Only show locks if all tasks are dumped:
  5076. */
  5077. if (state_filter == -1)
  5078. debug_show_all_locks();
  5079. }
  5080. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5081. {
  5082. idle->sched_class = &idle_sched_class;
  5083. }
  5084. /**
  5085. * init_idle - set up an idle thread for a given CPU
  5086. * @idle: task in question
  5087. * @cpu: cpu the idle task belongs to
  5088. *
  5089. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5090. * flag, to make booting more robust.
  5091. */
  5092. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5093. {
  5094. struct rq *rq = cpu_rq(cpu);
  5095. unsigned long flags;
  5096. __sched_fork(idle);
  5097. idle->se.exec_start = sched_clock();
  5098. idle->prio = idle->normal_prio = MAX_PRIO;
  5099. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5100. __set_task_cpu(idle, cpu);
  5101. spin_lock_irqsave(&rq->lock, flags);
  5102. rq->curr = rq->idle = idle;
  5103. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5104. idle->oncpu = 1;
  5105. #endif
  5106. spin_unlock_irqrestore(&rq->lock, flags);
  5107. /* Set the preempt count _outside_ the spinlocks! */
  5108. task_thread_info(idle)->preempt_count = 0;
  5109. /*
  5110. * The idle tasks have their own, simple scheduling class:
  5111. */
  5112. idle->sched_class = &idle_sched_class;
  5113. }
  5114. /*
  5115. * In a system that switches off the HZ timer nohz_cpu_mask
  5116. * indicates which cpus entered this state. This is used
  5117. * in the rcu update to wait only for active cpus. For system
  5118. * which do not switch off the HZ timer nohz_cpu_mask should
  5119. * always be CPU_MASK_NONE.
  5120. */
  5121. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5122. /*
  5123. * Increase the granularity value when there are more CPUs,
  5124. * because with more CPUs the 'effective latency' as visible
  5125. * to users decreases. But the relationship is not linear,
  5126. * so pick a second-best guess by going with the log2 of the
  5127. * number of CPUs.
  5128. *
  5129. * This idea comes from the SD scheduler of Con Kolivas:
  5130. */
  5131. static inline void sched_init_granularity(void)
  5132. {
  5133. unsigned int factor = 1 + ilog2(num_online_cpus());
  5134. const unsigned long limit = 200000000;
  5135. sysctl_sched_min_granularity *= factor;
  5136. if (sysctl_sched_min_granularity > limit)
  5137. sysctl_sched_min_granularity = limit;
  5138. sysctl_sched_latency *= factor;
  5139. if (sysctl_sched_latency > limit)
  5140. sysctl_sched_latency = limit;
  5141. sysctl_sched_wakeup_granularity *= factor;
  5142. }
  5143. #ifdef CONFIG_SMP
  5144. /*
  5145. * This is how migration works:
  5146. *
  5147. * 1) we queue a struct migration_req structure in the source CPU's
  5148. * runqueue and wake up that CPU's migration thread.
  5149. * 2) we down() the locked semaphore => thread blocks.
  5150. * 3) migration thread wakes up (implicitly it forces the migrated
  5151. * thread off the CPU)
  5152. * 4) it gets the migration request and checks whether the migrated
  5153. * task is still in the wrong runqueue.
  5154. * 5) if it's in the wrong runqueue then the migration thread removes
  5155. * it and puts it into the right queue.
  5156. * 6) migration thread up()s the semaphore.
  5157. * 7) we wake up and the migration is done.
  5158. */
  5159. /*
  5160. * Change a given task's CPU affinity. Migrate the thread to a
  5161. * proper CPU and schedule it away if the CPU it's executing on
  5162. * is removed from the allowed bitmask.
  5163. *
  5164. * NOTE: the caller must have a valid reference to the task, the
  5165. * task must not exit() & deallocate itself prematurely. The
  5166. * call is not atomic; no spinlocks may be held.
  5167. */
  5168. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5169. {
  5170. struct migration_req req;
  5171. unsigned long flags;
  5172. struct rq *rq;
  5173. int ret = 0;
  5174. rq = task_rq_lock(p, &flags);
  5175. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5176. ret = -EINVAL;
  5177. goto out;
  5178. }
  5179. if (p->sched_class->set_cpus_allowed)
  5180. p->sched_class->set_cpus_allowed(p, new_mask);
  5181. else {
  5182. p->cpus_allowed = *new_mask;
  5183. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5184. }
  5185. /* Can the task run on the task's current CPU? If so, we're done */
  5186. if (cpu_isset(task_cpu(p), *new_mask))
  5187. goto out;
  5188. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5189. /* Need help from migration thread: drop lock and wait. */
  5190. task_rq_unlock(rq, &flags);
  5191. wake_up_process(rq->migration_thread);
  5192. wait_for_completion(&req.done);
  5193. tlb_migrate_finish(p->mm);
  5194. return 0;
  5195. }
  5196. out:
  5197. task_rq_unlock(rq, &flags);
  5198. return ret;
  5199. }
  5200. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5201. /*
  5202. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5203. * this because either it can't run here any more (set_cpus_allowed()
  5204. * away from this CPU, or CPU going down), or because we're
  5205. * attempting to rebalance this task on exec (sched_exec).
  5206. *
  5207. * So we race with normal scheduler movements, but that's OK, as long
  5208. * as the task is no longer on this CPU.
  5209. *
  5210. * Returns non-zero if task was successfully migrated.
  5211. */
  5212. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5213. {
  5214. struct rq *rq_dest, *rq_src;
  5215. int ret = 0, on_rq;
  5216. if (unlikely(cpu_is_offline(dest_cpu)))
  5217. return ret;
  5218. rq_src = cpu_rq(src_cpu);
  5219. rq_dest = cpu_rq(dest_cpu);
  5220. double_rq_lock(rq_src, rq_dest);
  5221. /* Already moved. */
  5222. if (task_cpu(p) != src_cpu)
  5223. goto out;
  5224. /* Affinity changed (again). */
  5225. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5226. goto out;
  5227. on_rq = p->se.on_rq;
  5228. if (on_rq)
  5229. deactivate_task(rq_src, p, 0);
  5230. set_task_cpu(p, dest_cpu);
  5231. if (on_rq) {
  5232. activate_task(rq_dest, p, 0);
  5233. check_preempt_curr(rq_dest, p);
  5234. }
  5235. ret = 1;
  5236. out:
  5237. double_rq_unlock(rq_src, rq_dest);
  5238. return ret;
  5239. }
  5240. /*
  5241. * migration_thread - this is a highprio system thread that performs
  5242. * thread migration by bumping thread off CPU then 'pushing' onto
  5243. * another runqueue.
  5244. */
  5245. static int migration_thread(void *data)
  5246. {
  5247. int cpu = (long)data;
  5248. struct rq *rq;
  5249. rq = cpu_rq(cpu);
  5250. BUG_ON(rq->migration_thread != current);
  5251. set_current_state(TASK_INTERRUPTIBLE);
  5252. while (!kthread_should_stop()) {
  5253. struct migration_req *req;
  5254. struct list_head *head;
  5255. spin_lock_irq(&rq->lock);
  5256. if (cpu_is_offline(cpu)) {
  5257. spin_unlock_irq(&rq->lock);
  5258. goto wait_to_die;
  5259. }
  5260. if (rq->active_balance) {
  5261. active_load_balance(rq, cpu);
  5262. rq->active_balance = 0;
  5263. }
  5264. head = &rq->migration_queue;
  5265. if (list_empty(head)) {
  5266. spin_unlock_irq(&rq->lock);
  5267. schedule();
  5268. set_current_state(TASK_INTERRUPTIBLE);
  5269. continue;
  5270. }
  5271. req = list_entry(head->next, struct migration_req, list);
  5272. list_del_init(head->next);
  5273. spin_unlock(&rq->lock);
  5274. __migrate_task(req->task, cpu, req->dest_cpu);
  5275. local_irq_enable();
  5276. complete(&req->done);
  5277. }
  5278. __set_current_state(TASK_RUNNING);
  5279. return 0;
  5280. wait_to_die:
  5281. /* Wait for kthread_stop */
  5282. set_current_state(TASK_INTERRUPTIBLE);
  5283. while (!kthread_should_stop()) {
  5284. schedule();
  5285. set_current_state(TASK_INTERRUPTIBLE);
  5286. }
  5287. __set_current_state(TASK_RUNNING);
  5288. return 0;
  5289. }
  5290. #ifdef CONFIG_HOTPLUG_CPU
  5291. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5292. {
  5293. int ret;
  5294. local_irq_disable();
  5295. ret = __migrate_task(p, src_cpu, dest_cpu);
  5296. local_irq_enable();
  5297. return ret;
  5298. }
  5299. /*
  5300. * Figure out where task on dead CPU should go, use force if necessary.
  5301. * NOTE: interrupts should be disabled by the caller
  5302. */
  5303. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5304. {
  5305. unsigned long flags;
  5306. cpumask_t mask;
  5307. struct rq *rq;
  5308. int dest_cpu;
  5309. do {
  5310. /* On same node? */
  5311. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5312. cpus_and(mask, mask, p->cpus_allowed);
  5313. dest_cpu = any_online_cpu(mask);
  5314. /* On any allowed CPU? */
  5315. if (dest_cpu >= nr_cpu_ids)
  5316. dest_cpu = any_online_cpu(p->cpus_allowed);
  5317. /* No more Mr. Nice Guy. */
  5318. if (dest_cpu >= nr_cpu_ids) {
  5319. cpumask_t cpus_allowed;
  5320. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5321. /*
  5322. * Try to stay on the same cpuset, where the
  5323. * current cpuset may be a subset of all cpus.
  5324. * The cpuset_cpus_allowed_locked() variant of
  5325. * cpuset_cpus_allowed() will not block. It must be
  5326. * called within calls to cpuset_lock/cpuset_unlock.
  5327. */
  5328. rq = task_rq_lock(p, &flags);
  5329. p->cpus_allowed = cpus_allowed;
  5330. dest_cpu = any_online_cpu(p->cpus_allowed);
  5331. task_rq_unlock(rq, &flags);
  5332. /*
  5333. * Don't tell them about moving exiting tasks or
  5334. * kernel threads (both mm NULL), since they never
  5335. * leave kernel.
  5336. */
  5337. if (p->mm && printk_ratelimit()) {
  5338. printk(KERN_INFO "process %d (%s) no "
  5339. "longer affine to cpu%d\n",
  5340. task_pid_nr(p), p->comm, dead_cpu);
  5341. }
  5342. }
  5343. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5344. }
  5345. /*
  5346. * While a dead CPU has no uninterruptible tasks queued at this point,
  5347. * it might still have a nonzero ->nr_uninterruptible counter, because
  5348. * for performance reasons the counter is not stricly tracking tasks to
  5349. * their home CPUs. So we just add the counter to another CPU's counter,
  5350. * to keep the global sum constant after CPU-down:
  5351. */
  5352. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5353. {
  5354. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5355. unsigned long flags;
  5356. local_irq_save(flags);
  5357. double_rq_lock(rq_src, rq_dest);
  5358. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5359. rq_src->nr_uninterruptible = 0;
  5360. double_rq_unlock(rq_src, rq_dest);
  5361. local_irq_restore(flags);
  5362. }
  5363. /* Run through task list and migrate tasks from the dead cpu. */
  5364. static void migrate_live_tasks(int src_cpu)
  5365. {
  5366. struct task_struct *p, *t;
  5367. read_lock(&tasklist_lock);
  5368. do_each_thread(t, p) {
  5369. if (p == current)
  5370. continue;
  5371. if (task_cpu(p) == src_cpu)
  5372. move_task_off_dead_cpu(src_cpu, p);
  5373. } while_each_thread(t, p);
  5374. read_unlock(&tasklist_lock);
  5375. }
  5376. /*
  5377. * Schedules idle task to be the next runnable task on current CPU.
  5378. * It does so by boosting its priority to highest possible.
  5379. * Used by CPU offline code.
  5380. */
  5381. void sched_idle_next(void)
  5382. {
  5383. int this_cpu = smp_processor_id();
  5384. struct rq *rq = cpu_rq(this_cpu);
  5385. struct task_struct *p = rq->idle;
  5386. unsigned long flags;
  5387. /* cpu has to be offline */
  5388. BUG_ON(cpu_online(this_cpu));
  5389. /*
  5390. * Strictly not necessary since rest of the CPUs are stopped by now
  5391. * and interrupts disabled on the current cpu.
  5392. */
  5393. spin_lock_irqsave(&rq->lock, flags);
  5394. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5395. update_rq_clock(rq);
  5396. activate_task(rq, p, 0);
  5397. spin_unlock_irqrestore(&rq->lock, flags);
  5398. }
  5399. /*
  5400. * Ensures that the idle task is using init_mm right before its cpu goes
  5401. * offline.
  5402. */
  5403. void idle_task_exit(void)
  5404. {
  5405. struct mm_struct *mm = current->active_mm;
  5406. BUG_ON(cpu_online(smp_processor_id()));
  5407. if (mm != &init_mm)
  5408. switch_mm(mm, &init_mm, current);
  5409. mmdrop(mm);
  5410. }
  5411. /* called under rq->lock with disabled interrupts */
  5412. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5413. {
  5414. struct rq *rq = cpu_rq(dead_cpu);
  5415. /* Must be exiting, otherwise would be on tasklist. */
  5416. BUG_ON(!p->exit_state);
  5417. /* Cannot have done final schedule yet: would have vanished. */
  5418. BUG_ON(p->state == TASK_DEAD);
  5419. get_task_struct(p);
  5420. /*
  5421. * Drop lock around migration; if someone else moves it,
  5422. * that's OK. No task can be added to this CPU, so iteration is
  5423. * fine.
  5424. */
  5425. spin_unlock_irq(&rq->lock);
  5426. move_task_off_dead_cpu(dead_cpu, p);
  5427. spin_lock_irq(&rq->lock);
  5428. put_task_struct(p);
  5429. }
  5430. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5431. static void migrate_dead_tasks(unsigned int dead_cpu)
  5432. {
  5433. struct rq *rq = cpu_rq(dead_cpu);
  5434. struct task_struct *next;
  5435. for ( ; ; ) {
  5436. if (!rq->nr_running)
  5437. break;
  5438. update_rq_clock(rq);
  5439. next = pick_next_task(rq, rq->curr);
  5440. if (!next)
  5441. break;
  5442. migrate_dead(dead_cpu, next);
  5443. }
  5444. }
  5445. #endif /* CONFIG_HOTPLUG_CPU */
  5446. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5447. static struct ctl_table sd_ctl_dir[] = {
  5448. {
  5449. .procname = "sched_domain",
  5450. .mode = 0555,
  5451. },
  5452. {0, },
  5453. };
  5454. static struct ctl_table sd_ctl_root[] = {
  5455. {
  5456. .ctl_name = CTL_KERN,
  5457. .procname = "kernel",
  5458. .mode = 0555,
  5459. .child = sd_ctl_dir,
  5460. },
  5461. {0, },
  5462. };
  5463. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5464. {
  5465. struct ctl_table *entry =
  5466. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5467. return entry;
  5468. }
  5469. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5470. {
  5471. struct ctl_table *entry;
  5472. /*
  5473. * In the intermediate directories, both the child directory and
  5474. * procname are dynamically allocated and could fail but the mode
  5475. * will always be set. In the lowest directory the names are
  5476. * static strings and all have proc handlers.
  5477. */
  5478. for (entry = *tablep; entry->mode; entry++) {
  5479. if (entry->child)
  5480. sd_free_ctl_entry(&entry->child);
  5481. if (entry->proc_handler == NULL)
  5482. kfree(entry->procname);
  5483. }
  5484. kfree(*tablep);
  5485. *tablep = NULL;
  5486. }
  5487. static void
  5488. set_table_entry(struct ctl_table *entry,
  5489. const char *procname, void *data, int maxlen,
  5490. mode_t mode, proc_handler *proc_handler)
  5491. {
  5492. entry->procname = procname;
  5493. entry->data = data;
  5494. entry->maxlen = maxlen;
  5495. entry->mode = mode;
  5496. entry->proc_handler = proc_handler;
  5497. }
  5498. static struct ctl_table *
  5499. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5500. {
  5501. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5502. if (table == NULL)
  5503. return NULL;
  5504. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5505. sizeof(long), 0644, proc_doulongvec_minmax);
  5506. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5507. sizeof(long), 0644, proc_doulongvec_minmax);
  5508. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5509. sizeof(int), 0644, proc_dointvec_minmax);
  5510. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5511. sizeof(int), 0644, proc_dointvec_minmax);
  5512. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5513. sizeof(int), 0644, proc_dointvec_minmax);
  5514. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5515. sizeof(int), 0644, proc_dointvec_minmax);
  5516. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5517. sizeof(int), 0644, proc_dointvec_minmax);
  5518. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5519. sizeof(int), 0644, proc_dointvec_minmax);
  5520. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5521. sizeof(int), 0644, proc_dointvec_minmax);
  5522. set_table_entry(&table[9], "cache_nice_tries",
  5523. &sd->cache_nice_tries,
  5524. sizeof(int), 0644, proc_dointvec_minmax);
  5525. set_table_entry(&table[10], "flags", &sd->flags,
  5526. sizeof(int), 0644, proc_dointvec_minmax);
  5527. /* &table[11] is terminator */
  5528. return table;
  5529. }
  5530. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5531. {
  5532. struct ctl_table *entry, *table;
  5533. struct sched_domain *sd;
  5534. int domain_num = 0, i;
  5535. char buf[32];
  5536. for_each_domain(cpu, sd)
  5537. domain_num++;
  5538. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5539. if (table == NULL)
  5540. return NULL;
  5541. i = 0;
  5542. for_each_domain(cpu, sd) {
  5543. snprintf(buf, 32, "domain%d", i);
  5544. entry->procname = kstrdup(buf, GFP_KERNEL);
  5545. entry->mode = 0555;
  5546. entry->child = sd_alloc_ctl_domain_table(sd);
  5547. entry++;
  5548. i++;
  5549. }
  5550. return table;
  5551. }
  5552. static struct ctl_table_header *sd_sysctl_header;
  5553. static void register_sched_domain_sysctl(void)
  5554. {
  5555. int i, cpu_num = num_online_cpus();
  5556. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5557. char buf[32];
  5558. WARN_ON(sd_ctl_dir[0].child);
  5559. sd_ctl_dir[0].child = entry;
  5560. if (entry == NULL)
  5561. return;
  5562. for_each_online_cpu(i) {
  5563. snprintf(buf, 32, "cpu%d", i);
  5564. entry->procname = kstrdup(buf, GFP_KERNEL);
  5565. entry->mode = 0555;
  5566. entry->child = sd_alloc_ctl_cpu_table(i);
  5567. entry++;
  5568. }
  5569. WARN_ON(sd_sysctl_header);
  5570. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5571. }
  5572. /* may be called multiple times per register */
  5573. static void unregister_sched_domain_sysctl(void)
  5574. {
  5575. if (sd_sysctl_header)
  5576. unregister_sysctl_table(sd_sysctl_header);
  5577. sd_sysctl_header = NULL;
  5578. if (sd_ctl_dir[0].child)
  5579. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5580. }
  5581. #else
  5582. static void register_sched_domain_sysctl(void)
  5583. {
  5584. }
  5585. static void unregister_sched_domain_sysctl(void)
  5586. {
  5587. }
  5588. #endif
  5589. /*
  5590. * migration_call - callback that gets triggered when a CPU is added.
  5591. * Here we can start up the necessary migration thread for the new CPU.
  5592. */
  5593. static int __cpuinit
  5594. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5595. {
  5596. struct task_struct *p;
  5597. int cpu = (long)hcpu;
  5598. unsigned long flags;
  5599. struct rq *rq;
  5600. switch (action) {
  5601. case CPU_UP_PREPARE:
  5602. case CPU_UP_PREPARE_FROZEN:
  5603. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5604. if (IS_ERR(p))
  5605. return NOTIFY_BAD;
  5606. kthread_bind(p, cpu);
  5607. /* Must be high prio: stop_machine expects to yield to it. */
  5608. rq = task_rq_lock(p, &flags);
  5609. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5610. task_rq_unlock(rq, &flags);
  5611. cpu_rq(cpu)->migration_thread = p;
  5612. break;
  5613. case CPU_ONLINE:
  5614. case CPU_ONLINE_FROZEN:
  5615. /* Strictly unnecessary, as first user will wake it. */
  5616. wake_up_process(cpu_rq(cpu)->migration_thread);
  5617. /* Update our root-domain */
  5618. rq = cpu_rq(cpu);
  5619. spin_lock_irqsave(&rq->lock, flags);
  5620. if (rq->rd) {
  5621. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5622. cpu_set(cpu, rq->rd->online);
  5623. }
  5624. spin_unlock_irqrestore(&rq->lock, flags);
  5625. break;
  5626. #ifdef CONFIG_HOTPLUG_CPU
  5627. case CPU_UP_CANCELED:
  5628. case CPU_UP_CANCELED_FROZEN:
  5629. if (!cpu_rq(cpu)->migration_thread)
  5630. break;
  5631. /* Unbind it from offline cpu so it can run. Fall thru. */
  5632. kthread_bind(cpu_rq(cpu)->migration_thread,
  5633. any_online_cpu(cpu_online_map));
  5634. kthread_stop(cpu_rq(cpu)->migration_thread);
  5635. cpu_rq(cpu)->migration_thread = NULL;
  5636. break;
  5637. case CPU_DEAD:
  5638. case CPU_DEAD_FROZEN:
  5639. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5640. migrate_live_tasks(cpu);
  5641. rq = cpu_rq(cpu);
  5642. kthread_stop(rq->migration_thread);
  5643. rq->migration_thread = NULL;
  5644. /* Idle task back to normal (off runqueue, low prio) */
  5645. spin_lock_irq(&rq->lock);
  5646. update_rq_clock(rq);
  5647. deactivate_task(rq, rq->idle, 0);
  5648. rq->idle->static_prio = MAX_PRIO;
  5649. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5650. rq->idle->sched_class = &idle_sched_class;
  5651. migrate_dead_tasks(cpu);
  5652. spin_unlock_irq(&rq->lock);
  5653. cpuset_unlock();
  5654. migrate_nr_uninterruptible(rq);
  5655. BUG_ON(rq->nr_running != 0);
  5656. /*
  5657. * No need to migrate the tasks: it was best-effort if
  5658. * they didn't take sched_hotcpu_mutex. Just wake up
  5659. * the requestors.
  5660. */
  5661. spin_lock_irq(&rq->lock);
  5662. while (!list_empty(&rq->migration_queue)) {
  5663. struct migration_req *req;
  5664. req = list_entry(rq->migration_queue.next,
  5665. struct migration_req, list);
  5666. list_del_init(&req->list);
  5667. complete(&req->done);
  5668. }
  5669. spin_unlock_irq(&rq->lock);
  5670. break;
  5671. case CPU_DYING:
  5672. case CPU_DYING_FROZEN:
  5673. /* Update our root-domain */
  5674. rq = cpu_rq(cpu);
  5675. spin_lock_irqsave(&rq->lock, flags);
  5676. if (rq->rd) {
  5677. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5678. cpu_clear(cpu, rq->rd->online);
  5679. }
  5680. spin_unlock_irqrestore(&rq->lock, flags);
  5681. break;
  5682. #endif
  5683. }
  5684. return NOTIFY_OK;
  5685. }
  5686. /* Register at highest priority so that task migration (migrate_all_tasks)
  5687. * happens before everything else.
  5688. */
  5689. static struct notifier_block __cpuinitdata migration_notifier = {
  5690. .notifier_call = migration_call,
  5691. .priority = 10
  5692. };
  5693. void __init migration_init(void)
  5694. {
  5695. void *cpu = (void *)(long)smp_processor_id();
  5696. int err;
  5697. /* Start one for the boot CPU: */
  5698. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5699. BUG_ON(err == NOTIFY_BAD);
  5700. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5701. register_cpu_notifier(&migration_notifier);
  5702. }
  5703. #endif
  5704. #ifdef CONFIG_SMP
  5705. #ifdef CONFIG_SCHED_DEBUG
  5706. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5707. cpumask_t *groupmask)
  5708. {
  5709. struct sched_group *group = sd->groups;
  5710. char str[256];
  5711. cpulist_scnprintf(str, sizeof(str), sd->span);
  5712. cpus_clear(*groupmask);
  5713. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5714. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5715. printk("does not load-balance\n");
  5716. if (sd->parent)
  5717. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5718. " has parent");
  5719. return -1;
  5720. }
  5721. printk(KERN_CONT "span %s\n", str);
  5722. if (!cpu_isset(cpu, sd->span)) {
  5723. printk(KERN_ERR "ERROR: domain->span does not contain "
  5724. "CPU%d\n", cpu);
  5725. }
  5726. if (!cpu_isset(cpu, group->cpumask)) {
  5727. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5728. " CPU%d\n", cpu);
  5729. }
  5730. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5731. do {
  5732. if (!group) {
  5733. printk("\n");
  5734. printk(KERN_ERR "ERROR: group is NULL\n");
  5735. break;
  5736. }
  5737. if (!group->__cpu_power) {
  5738. printk(KERN_CONT "\n");
  5739. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5740. "set\n");
  5741. break;
  5742. }
  5743. if (!cpus_weight(group->cpumask)) {
  5744. printk(KERN_CONT "\n");
  5745. printk(KERN_ERR "ERROR: empty group\n");
  5746. break;
  5747. }
  5748. if (cpus_intersects(*groupmask, group->cpumask)) {
  5749. printk(KERN_CONT "\n");
  5750. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5751. break;
  5752. }
  5753. cpus_or(*groupmask, *groupmask, group->cpumask);
  5754. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5755. printk(KERN_CONT " %s", str);
  5756. group = group->next;
  5757. } while (group != sd->groups);
  5758. printk(KERN_CONT "\n");
  5759. if (!cpus_equal(sd->span, *groupmask))
  5760. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5761. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5762. printk(KERN_ERR "ERROR: parent span is not a superset "
  5763. "of domain->span\n");
  5764. return 0;
  5765. }
  5766. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5767. {
  5768. cpumask_t *groupmask;
  5769. int level = 0;
  5770. if (!sd) {
  5771. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5772. return;
  5773. }
  5774. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5775. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5776. if (!groupmask) {
  5777. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5778. return;
  5779. }
  5780. for (;;) {
  5781. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5782. break;
  5783. level++;
  5784. sd = sd->parent;
  5785. if (!sd)
  5786. break;
  5787. }
  5788. kfree(groupmask);
  5789. }
  5790. #else
  5791. # define sched_domain_debug(sd, cpu) do { } while (0)
  5792. #endif
  5793. static int sd_degenerate(struct sched_domain *sd)
  5794. {
  5795. if (cpus_weight(sd->span) == 1)
  5796. return 1;
  5797. /* Following flags need at least 2 groups */
  5798. if (sd->flags & (SD_LOAD_BALANCE |
  5799. SD_BALANCE_NEWIDLE |
  5800. SD_BALANCE_FORK |
  5801. SD_BALANCE_EXEC |
  5802. SD_SHARE_CPUPOWER |
  5803. SD_SHARE_PKG_RESOURCES)) {
  5804. if (sd->groups != sd->groups->next)
  5805. return 0;
  5806. }
  5807. /* Following flags don't use groups */
  5808. if (sd->flags & (SD_WAKE_IDLE |
  5809. SD_WAKE_AFFINE |
  5810. SD_WAKE_BALANCE))
  5811. return 0;
  5812. return 1;
  5813. }
  5814. static int
  5815. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5816. {
  5817. unsigned long cflags = sd->flags, pflags = parent->flags;
  5818. if (sd_degenerate(parent))
  5819. return 1;
  5820. if (!cpus_equal(sd->span, parent->span))
  5821. return 0;
  5822. /* Does parent contain flags not in child? */
  5823. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5824. if (cflags & SD_WAKE_AFFINE)
  5825. pflags &= ~SD_WAKE_BALANCE;
  5826. /* Flags needing groups don't count if only 1 group in parent */
  5827. if (parent->groups == parent->groups->next) {
  5828. pflags &= ~(SD_LOAD_BALANCE |
  5829. SD_BALANCE_NEWIDLE |
  5830. SD_BALANCE_FORK |
  5831. SD_BALANCE_EXEC |
  5832. SD_SHARE_CPUPOWER |
  5833. SD_SHARE_PKG_RESOURCES);
  5834. }
  5835. if (~cflags & pflags)
  5836. return 0;
  5837. return 1;
  5838. }
  5839. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5840. {
  5841. unsigned long flags;
  5842. const struct sched_class *class;
  5843. spin_lock_irqsave(&rq->lock, flags);
  5844. if (rq->rd) {
  5845. struct root_domain *old_rd = rq->rd;
  5846. for (class = sched_class_highest; class; class = class->next) {
  5847. if (class->leave_domain)
  5848. class->leave_domain(rq);
  5849. }
  5850. cpu_clear(rq->cpu, old_rd->span);
  5851. cpu_clear(rq->cpu, old_rd->online);
  5852. if (atomic_dec_and_test(&old_rd->refcount))
  5853. kfree(old_rd);
  5854. }
  5855. atomic_inc(&rd->refcount);
  5856. rq->rd = rd;
  5857. cpu_set(rq->cpu, rd->span);
  5858. if (cpu_isset(rq->cpu, cpu_online_map))
  5859. cpu_set(rq->cpu, rd->online);
  5860. for (class = sched_class_highest; class; class = class->next) {
  5861. if (class->join_domain)
  5862. class->join_domain(rq);
  5863. }
  5864. spin_unlock_irqrestore(&rq->lock, flags);
  5865. }
  5866. static void init_rootdomain(struct root_domain *rd)
  5867. {
  5868. memset(rd, 0, sizeof(*rd));
  5869. cpus_clear(rd->span);
  5870. cpus_clear(rd->online);
  5871. }
  5872. static void init_defrootdomain(void)
  5873. {
  5874. init_rootdomain(&def_root_domain);
  5875. atomic_set(&def_root_domain.refcount, 1);
  5876. }
  5877. static struct root_domain *alloc_rootdomain(void)
  5878. {
  5879. struct root_domain *rd;
  5880. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5881. if (!rd)
  5882. return NULL;
  5883. init_rootdomain(rd);
  5884. return rd;
  5885. }
  5886. /*
  5887. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5888. * hold the hotplug lock.
  5889. */
  5890. static void
  5891. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5892. {
  5893. struct rq *rq = cpu_rq(cpu);
  5894. struct sched_domain *tmp;
  5895. /* Remove the sched domains which do not contribute to scheduling. */
  5896. for (tmp = sd; tmp; tmp = tmp->parent) {
  5897. struct sched_domain *parent = tmp->parent;
  5898. if (!parent)
  5899. break;
  5900. if (sd_parent_degenerate(tmp, parent)) {
  5901. tmp->parent = parent->parent;
  5902. if (parent->parent)
  5903. parent->parent->child = tmp;
  5904. }
  5905. }
  5906. if (sd && sd_degenerate(sd)) {
  5907. sd = sd->parent;
  5908. if (sd)
  5909. sd->child = NULL;
  5910. }
  5911. sched_domain_debug(sd, cpu);
  5912. rq_attach_root(rq, rd);
  5913. rcu_assign_pointer(rq->sd, sd);
  5914. }
  5915. /* cpus with isolated domains */
  5916. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5917. /* Setup the mask of cpus configured for isolated domains */
  5918. static int __init isolated_cpu_setup(char *str)
  5919. {
  5920. int ints[NR_CPUS], i;
  5921. str = get_options(str, ARRAY_SIZE(ints), ints);
  5922. cpus_clear(cpu_isolated_map);
  5923. for (i = 1; i <= ints[0]; i++)
  5924. if (ints[i] < NR_CPUS)
  5925. cpu_set(ints[i], cpu_isolated_map);
  5926. return 1;
  5927. }
  5928. __setup("isolcpus=", isolated_cpu_setup);
  5929. /*
  5930. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5931. * to a function which identifies what group(along with sched group) a CPU
  5932. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5933. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5934. *
  5935. * init_sched_build_groups will build a circular linked list of the groups
  5936. * covered by the given span, and will set each group's ->cpumask correctly,
  5937. * and ->cpu_power to 0.
  5938. */
  5939. static void
  5940. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5941. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5942. struct sched_group **sg,
  5943. cpumask_t *tmpmask),
  5944. cpumask_t *covered, cpumask_t *tmpmask)
  5945. {
  5946. struct sched_group *first = NULL, *last = NULL;
  5947. int i;
  5948. cpus_clear(*covered);
  5949. for_each_cpu_mask(i, *span) {
  5950. struct sched_group *sg;
  5951. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5952. int j;
  5953. if (cpu_isset(i, *covered))
  5954. continue;
  5955. cpus_clear(sg->cpumask);
  5956. sg->__cpu_power = 0;
  5957. for_each_cpu_mask(j, *span) {
  5958. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5959. continue;
  5960. cpu_set(j, *covered);
  5961. cpu_set(j, sg->cpumask);
  5962. }
  5963. if (!first)
  5964. first = sg;
  5965. if (last)
  5966. last->next = sg;
  5967. last = sg;
  5968. }
  5969. last->next = first;
  5970. }
  5971. #define SD_NODES_PER_DOMAIN 16
  5972. #ifdef CONFIG_NUMA
  5973. /**
  5974. * find_next_best_node - find the next node to include in a sched_domain
  5975. * @node: node whose sched_domain we're building
  5976. * @used_nodes: nodes already in the sched_domain
  5977. *
  5978. * Find the next node to include in a given scheduling domain. Simply
  5979. * finds the closest node not already in the @used_nodes map.
  5980. *
  5981. * Should use nodemask_t.
  5982. */
  5983. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5984. {
  5985. int i, n, val, min_val, best_node = 0;
  5986. min_val = INT_MAX;
  5987. for (i = 0; i < MAX_NUMNODES; i++) {
  5988. /* Start at @node */
  5989. n = (node + i) % MAX_NUMNODES;
  5990. if (!nr_cpus_node(n))
  5991. continue;
  5992. /* Skip already used nodes */
  5993. if (node_isset(n, *used_nodes))
  5994. continue;
  5995. /* Simple min distance search */
  5996. val = node_distance(node, n);
  5997. if (val < min_val) {
  5998. min_val = val;
  5999. best_node = n;
  6000. }
  6001. }
  6002. node_set(best_node, *used_nodes);
  6003. return best_node;
  6004. }
  6005. /**
  6006. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6007. * @node: node whose cpumask we're constructing
  6008. * @span: resulting cpumask
  6009. *
  6010. * Given a node, construct a good cpumask for its sched_domain to span. It
  6011. * should be one that prevents unnecessary balancing, but also spreads tasks
  6012. * out optimally.
  6013. */
  6014. static void sched_domain_node_span(int node, cpumask_t *span)
  6015. {
  6016. nodemask_t used_nodes;
  6017. node_to_cpumask_ptr(nodemask, node);
  6018. int i;
  6019. cpus_clear(*span);
  6020. nodes_clear(used_nodes);
  6021. cpus_or(*span, *span, *nodemask);
  6022. node_set(node, used_nodes);
  6023. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6024. int next_node = find_next_best_node(node, &used_nodes);
  6025. node_to_cpumask_ptr_next(nodemask, next_node);
  6026. cpus_or(*span, *span, *nodemask);
  6027. }
  6028. }
  6029. #endif
  6030. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6031. /*
  6032. * SMT sched-domains:
  6033. */
  6034. #ifdef CONFIG_SCHED_SMT
  6035. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6036. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6037. static int
  6038. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6039. cpumask_t *unused)
  6040. {
  6041. if (sg)
  6042. *sg = &per_cpu(sched_group_cpus, cpu);
  6043. return cpu;
  6044. }
  6045. #endif
  6046. /*
  6047. * multi-core sched-domains:
  6048. */
  6049. #ifdef CONFIG_SCHED_MC
  6050. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6051. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6052. #endif
  6053. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6054. static int
  6055. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6056. cpumask_t *mask)
  6057. {
  6058. int group;
  6059. *mask = per_cpu(cpu_sibling_map, cpu);
  6060. cpus_and(*mask, *mask, *cpu_map);
  6061. group = first_cpu(*mask);
  6062. if (sg)
  6063. *sg = &per_cpu(sched_group_core, group);
  6064. return group;
  6065. }
  6066. #elif defined(CONFIG_SCHED_MC)
  6067. static int
  6068. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6069. cpumask_t *unused)
  6070. {
  6071. if (sg)
  6072. *sg = &per_cpu(sched_group_core, cpu);
  6073. return cpu;
  6074. }
  6075. #endif
  6076. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6077. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6078. static int
  6079. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6080. cpumask_t *mask)
  6081. {
  6082. int group;
  6083. #ifdef CONFIG_SCHED_MC
  6084. *mask = cpu_coregroup_map(cpu);
  6085. cpus_and(*mask, *mask, *cpu_map);
  6086. group = first_cpu(*mask);
  6087. #elif defined(CONFIG_SCHED_SMT)
  6088. *mask = per_cpu(cpu_sibling_map, cpu);
  6089. cpus_and(*mask, *mask, *cpu_map);
  6090. group = first_cpu(*mask);
  6091. #else
  6092. group = cpu;
  6093. #endif
  6094. if (sg)
  6095. *sg = &per_cpu(sched_group_phys, group);
  6096. return group;
  6097. }
  6098. #ifdef CONFIG_NUMA
  6099. /*
  6100. * The init_sched_build_groups can't handle what we want to do with node
  6101. * groups, so roll our own. Now each node has its own list of groups which
  6102. * gets dynamically allocated.
  6103. */
  6104. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6105. static struct sched_group ***sched_group_nodes_bycpu;
  6106. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6107. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6108. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6109. struct sched_group **sg, cpumask_t *nodemask)
  6110. {
  6111. int group;
  6112. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6113. cpus_and(*nodemask, *nodemask, *cpu_map);
  6114. group = first_cpu(*nodemask);
  6115. if (sg)
  6116. *sg = &per_cpu(sched_group_allnodes, group);
  6117. return group;
  6118. }
  6119. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6120. {
  6121. struct sched_group *sg = group_head;
  6122. int j;
  6123. if (!sg)
  6124. return;
  6125. do {
  6126. for_each_cpu_mask(j, sg->cpumask) {
  6127. struct sched_domain *sd;
  6128. sd = &per_cpu(phys_domains, j);
  6129. if (j != first_cpu(sd->groups->cpumask)) {
  6130. /*
  6131. * Only add "power" once for each
  6132. * physical package.
  6133. */
  6134. continue;
  6135. }
  6136. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6137. }
  6138. sg = sg->next;
  6139. } while (sg != group_head);
  6140. }
  6141. #endif
  6142. #ifdef CONFIG_NUMA
  6143. /* Free memory allocated for various sched_group structures */
  6144. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6145. {
  6146. int cpu, i;
  6147. for_each_cpu_mask(cpu, *cpu_map) {
  6148. struct sched_group **sched_group_nodes
  6149. = sched_group_nodes_bycpu[cpu];
  6150. if (!sched_group_nodes)
  6151. continue;
  6152. for (i = 0; i < MAX_NUMNODES; i++) {
  6153. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6154. *nodemask = node_to_cpumask(i);
  6155. cpus_and(*nodemask, *nodemask, *cpu_map);
  6156. if (cpus_empty(*nodemask))
  6157. continue;
  6158. if (sg == NULL)
  6159. continue;
  6160. sg = sg->next;
  6161. next_sg:
  6162. oldsg = sg;
  6163. sg = sg->next;
  6164. kfree(oldsg);
  6165. if (oldsg != sched_group_nodes[i])
  6166. goto next_sg;
  6167. }
  6168. kfree(sched_group_nodes);
  6169. sched_group_nodes_bycpu[cpu] = NULL;
  6170. }
  6171. }
  6172. #else
  6173. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6174. {
  6175. }
  6176. #endif
  6177. /*
  6178. * Initialize sched groups cpu_power.
  6179. *
  6180. * cpu_power indicates the capacity of sched group, which is used while
  6181. * distributing the load between different sched groups in a sched domain.
  6182. * Typically cpu_power for all the groups in a sched domain will be same unless
  6183. * there are asymmetries in the topology. If there are asymmetries, group
  6184. * having more cpu_power will pickup more load compared to the group having
  6185. * less cpu_power.
  6186. *
  6187. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6188. * the maximum number of tasks a group can handle in the presence of other idle
  6189. * or lightly loaded groups in the same sched domain.
  6190. */
  6191. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6192. {
  6193. struct sched_domain *child;
  6194. struct sched_group *group;
  6195. WARN_ON(!sd || !sd->groups);
  6196. if (cpu != first_cpu(sd->groups->cpumask))
  6197. return;
  6198. child = sd->child;
  6199. sd->groups->__cpu_power = 0;
  6200. /*
  6201. * For perf policy, if the groups in child domain share resources
  6202. * (for example cores sharing some portions of the cache hierarchy
  6203. * or SMT), then set this domain groups cpu_power such that each group
  6204. * can handle only one task, when there are other idle groups in the
  6205. * same sched domain.
  6206. */
  6207. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6208. (child->flags &
  6209. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6210. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6211. return;
  6212. }
  6213. /*
  6214. * add cpu_power of each child group to this groups cpu_power
  6215. */
  6216. group = child->groups;
  6217. do {
  6218. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6219. group = group->next;
  6220. } while (group != child->groups);
  6221. }
  6222. /*
  6223. * Initializers for schedule domains
  6224. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6225. */
  6226. #define SD_INIT(sd, type) sd_init_##type(sd)
  6227. #define SD_INIT_FUNC(type) \
  6228. static noinline void sd_init_##type(struct sched_domain *sd) \
  6229. { \
  6230. memset(sd, 0, sizeof(*sd)); \
  6231. *sd = SD_##type##_INIT; \
  6232. sd->level = SD_LV_##type; \
  6233. }
  6234. SD_INIT_FUNC(CPU)
  6235. #ifdef CONFIG_NUMA
  6236. SD_INIT_FUNC(ALLNODES)
  6237. SD_INIT_FUNC(NODE)
  6238. #endif
  6239. #ifdef CONFIG_SCHED_SMT
  6240. SD_INIT_FUNC(SIBLING)
  6241. #endif
  6242. #ifdef CONFIG_SCHED_MC
  6243. SD_INIT_FUNC(MC)
  6244. #endif
  6245. /*
  6246. * To minimize stack usage kmalloc room for cpumasks and share the
  6247. * space as the usage in build_sched_domains() dictates. Used only
  6248. * if the amount of space is significant.
  6249. */
  6250. struct allmasks {
  6251. cpumask_t tmpmask; /* make this one first */
  6252. union {
  6253. cpumask_t nodemask;
  6254. cpumask_t this_sibling_map;
  6255. cpumask_t this_core_map;
  6256. };
  6257. cpumask_t send_covered;
  6258. #ifdef CONFIG_NUMA
  6259. cpumask_t domainspan;
  6260. cpumask_t covered;
  6261. cpumask_t notcovered;
  6262. #endif
  6263. };
  6264. #if NR_CPUS > 128
  6265. #define SCHED_CPUMASK_ALLOC 1
  6266. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6267. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6268. #else
  6269. #define SCHED_CPUMASK_ALLOC 0
  6270. #define SCHED_CPUMASK_FREE(v)
  6271. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6272. #endif
  6273. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6274. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6275. static int default_relax_domain_level = -1;
  6276. static int __init setup_relax_domain_level(char *str)
  6277. {
  6278. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  6279. return 1;
  6280. }
  6281. __setup("relax_domain_level=", setup_relax_domain_level);
  6282. static void set_domain_attribute(struct sched_domain *sd,
  6283. struct sched_domain_attr *attr)
  6284. {
  6285. int request;
  6286. if (!attr || attr->relax_domain_level < 0) {
  6287. if (default_relax_domain_level < 0)
  6288. return;
  6289. else
  6290. request = default_relax_domain_level;
  6291. } else
  6292. request = attr->relax_domain_level;
  6293. if (request < sd->level) {
  6294. /* turn off idle balance on this domain */
  6295. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6296. } else {
  6297. /* turn on idle balance on this domain */
  6298. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6299. }
  6300. }
  6301. /*
  6302. * Build sched domains for a given set of cpus and attach the sched domains
  6303. * to the individual cpus
  6304. */
  6305. static int __build_sched_domains(const cpumask_t *cpu_map,
  6306. struct sched_domain_attr *attr)
  6307. {
  6308. int i;
  6309. struct root_domain *rd;
  6310. SCHED_CPUMASK_DECLARE(allmasks);
  6311. cpumask_t *tmpmask;
  6312. #ifdef CONFIG_NUMA
  6313. struct sched_group **sched_group_nodes = NULL;
  6314. int sd_allnodes = 0;
  6315. /*
  6316. * Allocate the per-node list of sched groups
  6317. */
  6318. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6319. GFP_KERNEL);
  6320. if (!sched_group_nodes) {
  6321. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6322. return -ENOMEM;
  6323. }
  6324. #endif
  6325. rd = alloc_rootdomain();
  6326. if (!rd) {
  6327. printk(KERN_WARNING "Cannot alloc root domain\n");
  6328. #ifdef CONFIG_NUMA
  6329. kfree(sched_group_nodes);
  6330. #endif
  6331. return -ENOMEM;
  6332. }
  6333. #if SCHED_CPUMASK_ALLOC
  6334. /* get space for all scratch cpumask variables */
  6335. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6336. if (!allmasks) {
  6337. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6338. kfree(rd);
  6339. #ifdef CONFIG_NUMA
  6340. kfree(sched_group_nodes);
  6341. #endif
  6342. return -ENOMEM;
  6343. }
  6344. #endif
  6345. tmpmask = (cpumask_t *)allmasks;
  6346. #ifdef CONFIG_NUMA
  6347. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6348. #endif
  6349. /*
  6350. * Set up domains for cpus specified by the cpu_map.
  6351. */
  6352. for_each_cpu_mask(i, *cpu_map) {
  6353. struct sched_domain *sd = NULL, *p;
  6354. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6355. *nodemask = node_to_cpumask(cpu_to_node(i));
  6356. cpus_and(*nodemask, *nodemask, *cpu_map);
  6357. #ifdef CONFIG_NUMA
  6358. if (cpus_weight(*cpu_map) >
  6359. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6360. sd = &per_cpu(allnodes_domains, i);
  6361. SD_INIT(sd, ALLNODES);
  6362. set_domain_attribute(sd, attr);
  6363. sd->span = *cpu_map;
  6364. sd->first_cpu = first_cpu(sd->span);
  6365. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6366. p = sd;
  6367. sd_allnodes = 1;
  6368. } else
  6369. p = NULL;
  6370. sd = &per_cpu(node_domains, i);
  6371. SD_INIT(sd, NODE);
  6372. set_domain_attribute(sd, attr);
  6373. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6374. sd->first_cpu = first_cpu(sd->span);
  6375. sd->parent = p;
  6376. if (p)
  6377. p->child = sd;
  6378. cpus_and(sd->span, sd->span, *cpu_map);
  6379. #endif
  6380. p = sd;
  6381. sd = &per_cpu(phys_domains, i);
  6382. SD_INIT(sd, CPU);
  6383. set_domain_attribute(sd, attr);
  6384. sd->span = *nodemask;
  6385. sd->first_cpu = first_cpu(sd->span);
  6386. sd->parent = p;
  6387. if (p)
  6388. p->child = sd;
  6389. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6390. #ifdef CONFIG_SCHED_MC
  6391. p = sd;
  6392. sd = &per_cpu(core_domains, i);
  6393. SD_INIT(sd, MC);
  6394. set_domain_attribute(sd, attr);
  6395. sd->span = cpu_coregroup_map(i);
  6396. sd->first_cpu = first_cpu(sd->span);
  6397. cpus_and(sd->span, sd->span, *cpu_map);
  6398. sd->parent = p;
  6399. p->child = sd;
  6400. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6401. #endif
  6402. #ifdef CONFIG_SCHED_SMT
  6403. p = sd;
  6404. sd = &per_cpu(cpu_domains, i);
  6405. SD_INIT(sd, SIBLING);
  6406. set_domain_attribute(sd, attr);
  6407. sd->span = per_cpu(cpu_sibling_map, i);
  6408. sd->first_cpu = first_cpu(sd->span);
  6409. cpus_and(sd->span, sd->span, *cpu_map);
  6410. sd->parent = p;
  6411. p->child = sd;
  6412. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6413. #endif
  6414. }
  6415. #ifdef CONFIG_SCHED_SMT
  6416. /* Set up CPU (sibling) groups */
  6417. for_each_cpu_mask(i, *cpu_map) {
  6418. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6419. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6420. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6421. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6422. if (i != first_cpu(*this_sibling_map))
  6423. continue;
  6424. init_sched_build_groups(this_sibling_map, cpu_map,
  6425. &cpu_to_cpu_group,
  6426. send_covered, tmpmask);
  6427. }
  6428. #endif
  6429. #ifdef CONFIG_SCHED_MC
  6430. /* Set up multi-core groups */
  6431. for_each_cpu_mask(i, *cpu_map) {
  6432. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6433. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6434. *this_core_map = cpu_coregroup_map(i);
  6435. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6436. if (i != first_cpu(*this_core_map))
  6437. continue;
  6438. init_sched_build_groups(this_core_map, cpu_map,
  6439. &cpu_to_core_group,
  6440. send_covered, tmpmask);
  6441. }
  6442. #endif
  6443. /* Set up physical groups */
  6444. for (i = 0; i < MAX_NUMNODES; i++) {
  6445. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6446. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6447. *nodemask = node_to_cpumask(i);
  6448. cpus_and(*nodemask, *nodemask, *cpu_map);
  6449. if (cpus_empty(*nodemask))
  6450. continue;
  6451. init_sched_build_groups(nodemask, cpu_map,
  6452. &cpu_to_phys_group,
  6453. send_covered, tmpmask);
  6454. }
  6455. #ifdef CONFIG_NUMA
  6456. /* Set up node groups */
  6457. if (sd_allnodes) {
  6458. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6459. init_sched_build_groups(cpu_map, cpu_map,
  6460. &cpu_to_allnodes_group,
  6461. send_covered, tmpmask);
  6462. }
  6463. for (i = 0; i < MAX_NUMNODES; i++) {
  6464. /* Set up node groups */
  6465. struct sched_group *sg, *prev;
  6466. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6467. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6468. SCHED_CPUMASK_VAR(covered, allmasks);
  6469. int j;
  6470. *nodemask = node_to_cpumask(i);
  6471. cpus_clear(*covered);
  6472. cpus_and(*nodemask, *nodemask, *cpu_map);
  6473. if (cpus_empty(*nodemask)) {
  6474. sched_group_nodes[i] = NULL;
  6475. continue;
  6476. }
  6477. sched_domain_node_span(i, domainspan);
  6478. cpus_and(*domainspan, *domainspan, *cpu_map);
  6479. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6480. if (!sg) {
  6481. printk(KERN_WARNING "Can not alloc domain group for "
  6482. "node %d\n", i);
  6483. goto error;
  6484. }
  6485. sched_group_nodes[i] = sg;
  6486. for_each_cpu_mask(j, *nodemask) {
  6487. struct sched_domain *sd;
  6488. sd = &per_cpu(node_domains, j);
  6489. sd->groups = sg;
  6490. }
  6491. sg->__cpu_power = 0;
  6492. sg->cpumask = *nodemask;
  6493. sg->next = sg;
  6494. cpus_or(*covered, *covered, *nodemask);
  6495. prev = sg;
  6496. for (j = 0; j < MAX_NUMNODES; j++) {
  6497. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6498. int n = (i + j) % MAX_NUMNODES;
  6499. node_to_cpumask_ptr(pnodemask, n);
  6500. cpus_complement(*notcovered, *covered);
  6501. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6502. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6503. if (cpus_empty(*tmpmask))
  6504. break;
  6505. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6506. if (cpus_empty(*tmpmask))
  6507. continue;
  6508. sg = kmalloc_node(sizeof(struct sched_group),
  6509. GFP_KERNEL, i);
  6510. if (!sg) {
  6511. printk(KERN_WARNING
  6512. "Can not alloc domain group for node %d\n", j);
  6513. goto error;
  6514. }
  6515. sg->__cpu_power = 0;
  6516. sg->cpumask = *tmpmask;
  6517. sg->next = prev->next;
  6518. cpus_or(*covered, *covered, *tmpmask);
  6519. prev->next = sg;
  6520. prev = sg;
  6521. }
  6522. }
  6523. #endif
  6524. /* Calculate CPU power for physical packages and nodes */
  6525. #ifdef CONFIG_SCHED_SMT
  6526. for_each_cpu_mask(i, *cpu_map) {
  6527. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6528. init_sched_groups_power(i, sd);
  6529. }
  6530. #endif
  6531. #ifdef CONFIG_SCHED_MC
  6532. for_each_cpu_mask(i, *cpu_map) {
  6533. struct sched_domain *sd = &per_cpu(core_domains, i);
  6534. init_sched_groups_power(i, sd);
  6535. }
  6536. #endif
  6537. for_each_cpu_mask(i, *cpu_map) {
  6538. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6539. init_sched_groups_power(i, sd);
  6540. }
  6541. #ifdef CONFIG_NUMA
  6542. for (i = 0; i < MAX_NUMNODES; i++)
  6543. init_numa_sched_groups_power(sched_group_nodes[i]);
  6544. if (sd_allnodes) {
  6545. struct sched_group *sg;
  6546. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6547. tmpmask);
  6548. init_numa_sched_groups_power(sg);
  6549. }
  6550. #endif
  6551. /* Attach the domains */
  6552. for_each_cpu_mask(i, *cpu_map) {
  6553. struct sched_domain *sd;
  6554. #ifdef CONFIG_SCHED_SMT
  6555. sd = &per_cpu(cpu_domains, i);
  6556. #elif defined(CONFIG_SCHED_MC)
  6557. sd = &per_cpu(core_domains, i);
  6558. #else
  6559. sd = &per_cpu(phys_domains, i);
  6560. #endif
  6561. cpu_attach_domain(sd, rd, i);
  6562. }
  6563. SCHED_CPUMASK_FREE((void *)allmasks);
  6564. return 0;
  6565. #ifdef CONFIG_NUMA
  6566. error:
  6567. free_sched_groups(cpu_map, tmpmask);
  6568. SCHED_CPUMASK_FREE((void *)allmasks);
  6569. return -ENOMEM;
  6570. #endif
  6571. }
  6572. static int build_sched_domains(const cpumask_t *cpu_map)
  6573. {
  6574. return __build_sched_domains(cpu_map, NULL);
  6575. }
  6576. static cpumask_t *doms_cur; /* current sched domains */
  6577. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6578. static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
  6579. in 'doms_cur' */
  6580. /*
  6581. * Special case: If a kmalloc of a doms_cur partition (array of
  6582. * cpumask_t) fails, then fallback to a single sched domain,
  6583. * as determined by the single cpumask_t fallback_doms.
  6584. */
  6585. static cpumask_t fallback_doms;
  6586. void __attribute__((weak)) arch_update_cpu_topology(void)
  6587. {
  6588. }
  6589. /*
  6590. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6591. * For now this just excludes isolated cpus, but could be used to
  6592. * exclude other special cases in the future.
  6593. */
  6594. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6595. {
  6596. int err;
  6597. arch_update_cpu_topology();
  6598. ndoms_cur = 1;
  6599. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6600. if (!doms_cur)
  6601. doms_cur = &fallback_doms;
  6602. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6603. dattr_cur = NULL;
  6604. err = build_sched_domains(doms_cur);
  6605. register_sched_domain_sysctl();
  6606. return err;
  6607. }
  6608. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6609. cpumask_t *tmpmask)
  6610. {
  6611. free_sched_groups(cpu_map, tmpmask);
  6612. }
  6613. /*
  6614. * Detach sched domains from a group of cpus specified in cpu_map
  6615. * These cpus will now be attached to the NULL domain
  6616. */
  6617. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6618. {
  6619. cpumask_t tmpmask;
  6620. int i;
  6621. unregister_sched_domain_sysctl();
  6622. for_each_cpu_mask(i, *cpu_map)
  6623. cpu_attach_domain(NULL, &def_root_domain, i);
  6624. synchronize_sched();
  6625. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6626. }
  6627. /* handle null as "default" */
  6628. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6629. struct sched_domain_attr *new, int idx_new)
  6630. {
  6631. struct sched_domain_attr tmp;
  6632. /* fast path */
  6633. if (!new && !cur)
  6634. return 1;
  6635. tmp = SD_ATTR_INIT;
  6636. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6637. new ? (new + idx_new) : &tmp,
  6638. sizeof(struct sched_domain_attr));
  6639. }
  6640. /*
  6641. * Partition sched domains as specified by the 'ndoms_new'
  6642. * cpumasks in the array doms_new[] of cpumasks. This compares
  6643. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6644. * It destroys each deleted domain and builds each new domain.
  6645. *
  6646. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6647. * The masks don't intersect (don't overlap.) We should setup one
  6648. * sched domain for each mask. CPUs not in any of the cpumasks will
  6649. * not be load balanced. If the same cpumask appears both in the
  6650. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6651. * it as it is.
  6652. *
  6653. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6654. * ownership of it and will kfree it when done with it. If the caller
  6655. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6656. * and partition_sched_domains() will fallback to the single partition
  6657. * 'fallback_doms'.
  6658. *
  6659. * Call with hotplug lock held
  6660. */
  6661. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6662. struct sched_domain_attr *dattr_new)
  6663. {
  6664. int i, j;
  6665. lock_doms_cur();
  6666. /* always unregister in case we don't destroy any domains */
  6667. unregister_sched_domain_sysctl();
  6668. if (doms_new == NULL) {
  6669. ndoms_new = 1;
  6670. doms_new = &fallback_doms;
  6671. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6672. dattr_new = NULL;
  6673. }
  6674. /* Destroy deleted domains */
  6675. for (i = 0; i < ndoms_cur; i++) {
  6676. for (j = 0; j < ndoms_new; j++) {
  6677. if (cpus_equal(doms_cur[i], doms_new[j])
  6678. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6679. goto match1;
  6680. }
  6681. /* no match - a current sched domain not in new doms_new[] */
  6682. detach_destroy_domains(doms_cur + i);
  6683. match1:
  6684. ;
  6685. }
  6686. /* Build new domains */
  6687. for (i = 0; i < ndoms_new; i++) {
  6688. for (j = 0; j < ndoms_cur; j++) {
  6689. if (cpus_equal(doms_new[i], doms_cur[j])
  6690. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6691. goto match2;
  6692. }
  6693. /* no match - add a new doms_new */
  6694. __build_sched_domains(doms_new + i,
  6695. dattr_new ? dattr_new + i : NULL);
  6696. match2:
  6697. ;
  6698. }
  6699. /* Remember the new sched domains */
  6700. if (doms_cur != &fallback_doms)
  6701. kfree(doms_cur);
  6702. kfree(dattr_cur); /* kfree(NULL) is safe */
  6703. doms_cur = doms_new;
  6704. dattr_cur = dattr_new;
  6705. ndoms_cur = ndoms_new;
  6706. register_sched_domain_sysctl();
  6707. unlock_doms_cur();
  6708. }
  6709. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6710. int arch_reinit_sched_domains(void)
  6711. {
  6712. int err;
  6713. get_online_cpus();
  6714. detach_destroy_domains(&cpu_online_map);
  6715. err = arch_init_sched_domains(&cpu_online_map);
  6716. put_online_cpus();
  6717. return err;
  6718. }
  6719. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6720. {
  6721. int ret;
  6722. if (buf[0] != '0' && buf[0] != '1')
  6723. return -EINVAL;
  6724. if (smt)
  6725. sched_smt_power_savings = (buf[0] == '1');
  6726. else
  6727. sched_mc_power_savings = (buf[0] == '1');
  6728. ret = arch_reinit_sched_domains();
  6729. return ret ? ret : count;
  6730. }
  6731. #ifdef CONFIG_SCHED_MC
  6732. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6733. {
  6734. return sprintf(page, "%u\n", sched_mc_power_savings);
  6735. }
  6736. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6737. const char *buf, size_t count)
  6738. {
  6739. return sched_power_savings_store(buf, count, 0);
  6740. }
  6741. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6742. sched_mc_power_savings_store);
  6743. #endif
  6744. #ifdef CONFIG_SCHED_SMT
  6745. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6746. {
  6747. return sprintf(page, "%u\n", sched_smt_power_savings);
  6748. }
  6749. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6750. const char *buf, size_t count)
  6751. {
  6752. return sched_power_savings_store(buf, count, 1);
  6753. }
  6754. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6755. sched_smt_power_savings_store);
  6756. #endif
  6757. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6758. {
  6759. int err = 0;
  6760. #ifdef CONFIG_SCHED_SMT
  6761. if (smt_capable())
  6762. err = sysfs_create_file(&cls->kset.kobj,
  6763. &attr_sched_smt_power_savings.attr);
  6764. #endif
  6765. #ifdef CONFIG_SCHED_MC
  6766. if (!err && mc_capable())
  6767. err = sysfs_create_file(&cls->kset.kobj,
  6768. &attr_sched_mc_power_savings.attr);
  6769. #endif
  6770. return err;
  6771. }
  6772. #endif
  6773. /*
  6774. * Force a reinitialization of the sched domains hierarchy. The domains
  6775. * and groups cannot be updated in place without racing with the balancing
  6776. * code, so we temporarily attach all running cpus to the NULL domain
  6777. * which will prevent rebalancing while the sched domains are recalculated.
  6778. */
  6779. static int update_sched_domains(struct notifier_block *nfb,
  6780. unsigned long action, void *hcpu)
  6781. {
  6782. switch (action) {
  6783. case CPU_UP_PREPARE:
  6784. case CPU_UP_PREPARE_FROZEN:
  6785. case CPU_DOWN_PREPARE:
  6786. case CPU_DOWN_PREPARE_FROZEN:
  6787. detach_destroy_domains(&cpu_online_map);
  6788. return NOTIFY_OK;
  6789. case CPU_UP_CANCELED:
  6790. case CPU_UP_CANCELED_FROZEN:
  6791. case CPU_DOWN_FAILED:
  6792. case CPU_DOWN_FAILED_FROZEN:
  6793. case CPU_ONLINE:
  6794. case CPU_ONLINE_FROZEN:
  6795. case CPU_DEAD:
  6796. case CPU_DEAD_FROZEN:
  6797. /*
  6798. * Fall through and re-initialise the domains.
  6799. */
  6800. break;
  6801. default:
  6802. return NOTIFY_DONE;
  6803. }
  6804. /* The hotplug lock is already held by cpu_up/cpu_down */
  6805. arch_init_sched_domains(&cpu_online_map);
  6806. return NOTIFY_OK;
  6807. }
  6808. void __init sched_init_smp(void)
  6809. {
  6810. cpumask_t non_isolated_cpus;
  6811. #if defined(CONFIG_NUMA)
  6812. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6813. GFP_KERNEL);
  6814. BUG_ON(sched_group_nodes_bycpu == NULL);
  6815. #endif
  6816. get_online_cpus();
  6817. arch_init_sched_domains(&cpu_online_map);
  6818. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6819. if (cpus_empty(non_isolated_cpus))
  6820. cpu_set(smp_processor_id(), non_isolated_cpus);
  6821. put_online_cpus();
  6822. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6823. hotcpu_notifier(update_sched_domains, 0);
  6824. init_hrtick();
  6825. /* Move init over to a non-isolated CPU */
  6826. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6827. BUG();
  6828. sched_init_granularity();
  6829. }
  6830. #else
  6831. void __init sched_init_smp(void)
  6832. {
  6833. sched_init_granularity();
  6834. }
  6835. #endif /* CONFIG_SMP */
  6836. int in_sched_functions(unsigned long addr)
  6837. {
  6838. return in_lock_functions(addr) ||
  6839. (addr >= (unsigned long)__sched_text_start
  6840. && addr < (unsigned long)__sched_text_end);
  6841. }
  6842. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6843. {
  6844. cfs_rq->tasks_timeline = RB_ROOT;
  6845. INIT_LIST_HEAD(&cfs_rq->tasks);
  6846. #ifdef CONFIG_FAIR_GROUP_SCHED
  6847. cfs_rq->rq = rq;
  6848. #endif
  6849. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6850. }
  6851. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6852. {
  6853. struct rt_prio_array *array;
  6854. int i;
  6855. array = &rt_rq->active;
  6856. for (i = 0; i < MAX_RT_PRIO; i++) {
  6857. INIT_LIST_HEAD(array->queue + i);
  6858. __clear_bit(i, array->bitmap);
  6859. }
  6860. /* delimiter for bitsearch: */
  6861. __set_bit(MAX_RT_PRIO, array->bitmap);
  6862. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6863. rt_rq->highest_prio = MAX_RT_PRIO;
  6864. #endif
  6865. #ifdef CONFIG_SMP
  6866. rt_rq->rt_nr_migratory = 0;
  6867. rt_rq->overloaded = 0;
  6868. #endif
  6869. rt_rq->rt_time = 0;
  6870. rt_rq->rt_throttled = 0;
  6871. rt_rq->rt_runtime = 0;
  6872. spin_lock_init(&rt_rq->rt_runtime_lock);
  6873. #ifdef CONFIG_RT_GROUP_SCHED
  6874. rt_rq->rt_nr_boosted = 0;
  6875. rt_rq->rq = rq;
  6876. #endif
  6877. }
  6878. #ifdef CONFIG_FAIR_GROUP_SCHED
  6879. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6880. struct sched_entity *se, int cpu, int add,
  6881. struct sched_entity *parent)
  6882. {
  6883. struct rq *rq = cpu_rq(cpu);
  6884. tg->cfs_rq[cpu] = cfs_rq;
  6885. init_cfs_rq(cfs_rq, rq);
  6886. cfs_rq->tg = tg;
  6887. if (add)
  6888. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6889. tg->se[cpu] = se;
  6890. /* se could be NULL for init_task_group */
  6891. if (!se)
  6892. return;
  6893. if (!parent)
  6894. se->cfs_rq = &rq->cfs;
  6895. else
  6896. se->cfs_rq = parent->my_q;
  6897. se->my_q = cfs_rq;
  6898. se->load.weight = tg->shares;
  6899. se->load.inv_weight = 0;
  6900. se->parent = parent;
  6901. }
  6902. #endif
  6903. #ifdef CONFIG_RT_GROUP_SCHED
  6904. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6905. struct sched_rt_entity *rt_se, int cpu, int add,
  6906. struct sched_rt_entity *parent)
  6907. {
  6908. struct rq *rq = cpu_rq(cpu);
  6909. tg->rt_rq[cpu] = rt_rq;
  6910. init_rt_rq(rt_rq, rq);
  6911. rt_rq->tg = tg;
  6912. rt_rq->rt_se = rt_se;
  6913. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6914. if (add)
  6915. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6916. tg->rt_se[cpu] = rt_se;
  6917. if (!rt_se)
  6918. return;
  6919. if (!parent)
  6920. rt_se->rt_rq = &rq->rt;
  6921. else
  6922. rt_se->rt_rq = parent->my_q;
  6923. rt_se->rt_rq = &rq->rt;
  6924. rt_se->my_q = rt_rq;
  6925. rt_se->parent = parent;
  6926. INIT_LIST_HEAD(&rt_se->run_list);
  6927. }
  6928. #endif
  6929. void __init sched_init(void)
  6930. {
  6931. int i, j;
  6932. unsigned long alloc_size = 0, ptr;
  6933. #ifdef CONFIG_FAIR_GROUP_SCHED
  6934. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6935. #endif
  6936. #ifdef CONFIG_RT_GROUP_SCHED
  6937. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6938. #endif
  6939. #ifdef CONFIG_USER_SCHED
  6940. alloc_size *= 2;
  6941. #endif
  6942. /*
  6943. * As sched_init() is called before page_alloc is setup,
  6944. * we use alloc_bootmem().
  6945. */
  6946. if (alloc_size) {
  6947. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6948. #ifdef CONFIG_FAIR_GROUP_SCHED
  6949. init_task_group.se = (struct sched_entity **)ptr;
  6950. ptr += nr_cpu_ids * sizeof(void **);
  6951. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6952. ptr += nr_cpu_ids * sizeof(void **);
  6953. #ifdef CONFIG_USER_SCHED
  6954. root_task_group.se = (struct sched_entity **)ptr;
  6955. ptr += nr_cpu_ids * sizeof(void **);
  6956. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6957. ptr += nr_cpu_ids * sizeof(void **);
  6958. #endif
  6959. #endif
  6960. #ifdef CONFIG_RT_GROUP_SCHED
  6961. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6962. ptr += nr_cpu_ids * sizeof(void **);
  6963. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6964. ptr += nr_cpu_ids * sizeof(void **);
  6965. #ifdef CONFIG_USER_SCHED
  6966. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6967. ptr += nr_cpu_ids * sizeof(void **);
  6968. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6969. ptr += nr_cpu_ids * sizeof(void **);
  6970. #endif
  6971. #endif
  6972. }
  6973. #ifdef CONFIG_SMP
  6974. init_aggregate();
  6975. init_defrootdomain();
  6976. #endif
  6977. init_rt_bandwidth(&def_rt_bandwidth,
  6978. global_rt_period(), global_rt_runtime());
  6979. #ifdef CONFIG_RT_GROUP_SCHED
  6980. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6981. global_rt_period(), global_rt_runtime());
  6982. #ifdef CONFIG_USER_SCHED
  6983. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6984. global_rt_period(), RUNTIME_INF);
  6985. #endif
  6986. #endif
  6987. #ifdef CONFIG_GROUP_SCHED
  6988. list_add(&init_task_group.list, &task_groups);
  6989. INIT_LIST_HEAD(&init_task_group.children);
  6990. #ifdef CONFIG_USER_SCHED
  6991. INIT_LIST_HEAD(&root_task_group.children);
  6992. init_task_group.parent = &root_task_group;
  6993. list_add(&init_task_group.siblings, &root_task_group.children);
  6994. #endif
  6995. #endif
  6996. for_each_possible_cpu(i) {
  6997. struct rq *rq;
  6998. rq = cpu_rq(i);
  6999. spin_lock_init(&rq->lock);
  7000. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  7001. rq->nr_running = 0;
  7002. rq->clock = 1;
  7003. update_last_tick_seen(rq);
  7004. init_cfs_rq(&rq->cfs, rq);
  7005. init_rt_rq(&rq->rt, rq);
  7006. #ifdef CONFIG_FAIR_GROUP_SCHED
  7007. init_task_group.shares = init_task_group_load;
  7008. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7009. #ifdef CONFIG_CGROUP_SCHED
  7010. /*
  7011. * How much cpu bandwidth does init_task_group get?
  7012. *
  7013. * In case of task-groups formed thr' the cgroup filesystem, it
  7014. * gets 100% of the cpu resources in the system. This overall
  7015. * system cpu resource is divided among the tasks of
  7016. * init_task_group and its child task-groups in a fair manner,
  7017. * based on each entity's (task or task-group's) weight
  7018. * (se->load.weight).
  7019. *
  7020. * In other words, if init_task_group has 10 tasks of weight
  7021. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7022. * then A0's share of the cpu resource is:
  7023. *
  7024. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7025. *
  7026. * We achieve this by letting init_task_group's tasks sit
  7027. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7028. */
  7029. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7030. #elif defined CONFIG_USER_SCHED
  7031. root_task_group.shares = NICE_0_LOAD;
  7032. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7033. /*
  7034. * In case of task-groups formed thr' the user id of tasks,
  7035. * init_task_group represents tasks belonging to root user.
  7036. * Hence it forms a sibling of all subsequent groups formed.
  7037. * In this case, init_task_group gets only a fraction of overall
  7038. * system cpu resource, based on the weight assigned to root
  7039. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7040. * by letting tasks of init_task_group sit in a separate cfs_rq
  7041. * (init_cfs_rq) and having one entity represent this group of
  7042. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7043. */
  7044. init_tg_cfs_entry(&init_task_group,
  7045. &per_cpu(init_cfs_rq, i),
  7046. &per_cpu(init_sched_entity, i), i, 1,
  7047. root_task_group.se[i]);
  7048. #endif
  7049. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7050. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7051. #ifdef CONFIG_RT_GROUP_SCHED
  7052. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7053. #ifdef CONFIG_CGROUP_SCHED
  7054. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7055. #elif defined CONFIG_USER_SCHED
  7056. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7057. init_tg_rt_entry(&init_task_group,
  7058. &per_cpu(init_rt_rq, i),
  7059. &per_cpu(init_sched_rt_entity, i), i, 1,
  7060. root_task_group.rt_se[i]);
  7061. #endif
  7062. #endif
  7063. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7064. rq->cpu_load[j] = 0;
  7065. #ifdef CONFIG_SMP
  7066. rq->sd = NULL;
  7067. rq->rd = NULL;
  7068. rq->active_balance = 0;
  7069. rq->next_balance = jiffies;
  7070. rq->push_cpu = 0;
  7071. rq->cpu = i;
  7072. rq->migration_thread = NULL;
  7073. INIT_LIST_HEAD(&rq->migration_queue);
  7074. rq_attach_root(rq, &def_root_domain);
  7075. #endif
  7076. init_rq_hrtick(rq);
  7077. atomic_set(&rq->nr_iowait, 0);
  7078. }
  7079. set_load_weight(&init_task);
  7080. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7081. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7082. #endif
  7083. #ifdef CONFIG_SMP
  7084. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  7085. #endif
  7086. #ifdef CONFIG_RT_MUTEXES
  7087. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7088. #endif
  7089. /*
  7090. * The boot idle thread does lazy MMU switching as well:
  7091. */
  7092. atomic_inc(&init_mm.mm_count);
  7093. enter_lazy_tlb(&init_mm, current);
  7094. /*
  7095. * Make us the idle thread. Technically, schedule() should not be
  7096. * called from this thread, however somewhere below it might be,
  7097. * but because we are the idle thread, we just pick up running again
  7098. * when this runqueue becomes "idle".
  7099. */
  7100. init_idle(current, smp_processor_id());
  7101. /*
  7102. * During early bootup we pretend to be a normal task:
  7103. */
  7104. current->sched_class = &fair_sched_class;
  7105. scheduler_running = 1;
  7106. }
  7107. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7108. void __might_sleep(char *file, int line)
  7109. {
  7110. #ifdef in_atomic
  7111. static unsigned long prev_jiffy; /* ratelimiting */
  7112. if ((in_atomic() || irqs_disabled()) &&
  7113. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  7114. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7115. return;
  7116. prev_jiffy = jiffies;
  7117. printk(KERN_ERR "BUG: sleeping function called from invalid"
  7118. " context at %s:%d\n", file, line);
  7119. printk("in_atomic():%d, irqs_disabled():%d\n",
  7120. in_atomic(), irqs_disabled());
  7121. debug_show_held_locks(current);
  7122. if (irqs_disabled())
  7123. print_irqtrace_events(current);
  7124. dump_stack();
  7125. }
  7126. #endif
  7127. }
  7128. EXPORT_SYMBOL(__might_sleep);
  7129. #endif
  7130. #ifdef CONFIG_MAGIC_SYSRQ
  7131. static void normalize_task(struct rq *rq, struct task_struct *p)
  7132. {
  7133. int on_rq;
  7134. update_rq_clock(rq);
  7135. on_rq = p->se.on_rq;
  7136. if (on_rq)
  7137. deactivate_task(rq, p, 0);
  7138. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7139. if (on_rq) {
  7140. activate_task(rq, p, 0);
  7141. resched_task(rq->curr);
  7142. }
  7143. }
  7144. void normalize_rt_tasks(void)
  7145. {
  7146. struct task_struct *g, *p;
  7147. unsigned long flags;
  7148. struct rq *rq;
  7149. read_lock_irqsave(&tasklist_lock, flags);
  7150. do_each_thread(g, p) {
  7151. /*
  7152. * Only normalize user tasks:
  7153. */
  7154. if (!p->mm)
  7155. continue;
  7156. p->se.exec_start = 0;
  7157. #ifdef CONFIG_SCHEDSTATS
  7158. p->se.wait_start = 0;
  7159. p->se.sleep_start = 0;
  7160. p->se.block_start = 0;
  7161. #endif
  7162. task_rq(p)->clock = 0;
  7163. if (!rt_task(p)) {
  7164. /*
  7165. * Renice negative nice level userspace
  7166. * tasks back to 0:
  7167. */
  7168. if (TASK_NICE(p) < 0 && p->mm)
  7169. set_user_nice(p, 0);
  7170. continue;
  7171. }
  7172. spin_lock(&p->pi_lock);
  7173. rq = __task_rq_lock(p);
  7174. normalize_task(rq, p);
  7175. __task_rq_unlock(rq);
  7176. spin_unlock(&p->pi_lock);
  7177. } while_each_thread(g, p);
  7178. read_unlock_irqrestore(&tasklist_lock, flags);
  7179. }
  7180. #endif /* CONFIG_MAGIC_SYSRQ */
  7181. #ifdef CONFIG_IA64
  7182. /*
  7183. * These functions are only useful for the IA64 MCA handling.
  7184. *
  7185. * They can only be called when the whole system has been
  7186. * stopped - every CPU needs to be quiescent, and no scheduling
  7187. * activity can take place. Using them for anything else would
  7188. * be a serious bug, and as a result, they aren't even visible
  7189. * under any other configuration.
  7190. */
  7191. /**
  7192. * curr_task - return the current task for a given cpu.
  7193. * @cpu: the processor in question.
  7194. *
  7195. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7196. */
  7197. struct task_struct *curr_task(int cpu)
  7198. {
  7199. return cpu_curr(cpu);
  7200. }
  7201. /**
  7202. * set_curr_task - set the current task for a given cpu.
  7203. * @cpu: the processor in question.
  7204. * @p: the task pointer to set.
  7205. *
  7206. * Description: This function must only be used when non-maskable interrupts
  7207. * are serviced on a separate stack. It allows the architecture to switch the
  7208. * notion of the current task on a cpu in a non-blocking manner. This function
  7209. * must be called with all CPU's synchronized, and interrupts disabled, the
  7210. * and caller must save the original value of the current task (see
  7211. * curr_task() above) and restore that value before reenabling interrupts and
  7212. * re-starting the system.
  7213. *
  7214. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7215. */
  7216. void set_curr_task(int cpu, struct task_struct *p)
  7217. {
  7218. cpu_curr(cpu) = p;
  7219. }
  7220. #endif
  7221. #ifdef CONFIG_FAIR_GROUP_SCHED
  7222. static void free_fair_sched_group(struct task_group *tg)
  7223. {
  7224. int i;
  7225. for_each_possible_cpu(i) {
  7226. if (tg->cfs_rq)
  7227. kfree(tg->cfs_rq[i]);
  7228. if (tg->se)
  7229. kfree(tg->se[i]);
  7230. }
  7231. kfree(tg->cfs_rq);
  7232. kfree(tg->se);
  7233. }
  7234. static
  7235. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7236. {
  7237. struct cfs_rq *cfs_rq;
  7238. struct sched_entity *se, *parent_se;
  7239. struct rq *rq;
  7240. int i;
  7241. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7242. if (!tg->cfs_rq)
  7243. goto err;
  7244. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7245. if (!tg->se)
  7246. goto err;
  7247. tg->shares = NICE_0_LOAD;
  7248. for_each_possible_cpu(i) {
  7249. rq = cpu_rq(i);
  7250. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7251. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7252. if (!cfs_rq)
  7253. goto err;
  7254. se = kmalloc_node(sizeof(struct sched_entity),
  7255. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7256. if (!se)
  7257. goto err;
  7258. parent_se = parent ? parent->se[i] : NULL;
  7259. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7260. }
  7261. return 1;
  7262. err:
  7263. return 0;
  7264. }
  7265. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7266. {
  7267. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7268. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7269. }
  7270. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7271. {
  7272. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7273. }
  7274. #else
  7275. static inline void free_fair_sched_group(struct task_group *tg)
  7276. {
  7277. }
  7278. static inline
  7279. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7280. {
  7281. return 1;
  7282. }
  7283. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7284. {
  7285. }
  7286. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7287. {
  7288. }
  7289. #endif
  7290. #ifdef CONFIG_RT_GROUP_SCHED
  7291. static void free_rt_sched_group(struct task_group *tg)
  7292. {
  7293. int i;
  7294. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7295. for_each_possible_cpu(i) {
  7296. if (tg->rt_rq)
  7297. kfree(tg->rt_rq[i]);
  7298. if (tg->rt_se)
  7299. kfree(tg->rt_se[i]);
  7300. }
  7301. kfree(tg->rt_rq);
  7302. kfree(tg->rt_se);
  7303. }
  7304. static
  7305. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7306. {
  7307. struct rt_rq *rt_rq;
  7308. struct sched_rt_entity *rt_se, *parent_se;
  7309. struct rq *rq;
  7310. int i;
  7311. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7312. if (!tg->rt_rq)
  7313. goto err;
  7314. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7315. if (!tg->rt_se)
  7316. goto err;
  7317. init_rt_bandwidth(&tg->rt_bandwidth,
  7318. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7319. for_each_possible_cpu(i) {
  7320. rq = cpu_rq(i);
  7321. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7322. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7323. if (!rt_rq)
  7324. goto err;
  7325. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7326. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7327. if (!rt_se)
  7328. goto err;
  7329. parent_se = parent ? parent->rt_se[i] : NULL;
  7330. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7331. }
  7332. return 1;
  7333. err:
  7334. return 0;
  7335. }
  7336. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7337. {
  7338. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7339. &cpu_rq(cpu)->leaf_rt_rq_list);
  7340. }
  7341. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7342. {
  7343. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7344. }
  7345. #else
  7346. static inline void free_rt_sched_group(struct task_group *tg)
  7347. {
  7348. }
  7349. static inline
  7350. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7351. {
  7352. return 1;
  7353. }
  7354. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7355. {
  7356. }
  7357. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7358. {
  7359. }
  7360. #endif
  7361. #ifdef CONFIG_GROUP_SCHED
  7362. static void free_sched_group(struct task_group *tg)
  7363. {
  7364. free_fair_sched_group(tg);
  7365. free_rt_sched_group(tg);
  7366. kfree(tg);
  7367. }
  7368. /* allocate runqueue etc for a new task group */
  7369. struct task_group *sched_create_group(struct task_group *parent)
  7370. {
  7371. struct task_group *tg;
  7372. unsigned long flags;
  7373. int i;
  7374. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7375. if (!tg)
  7376. return ERR_PTR(-ENOMEM);
  7377. if (!alloc_fair_sched_group(tg, parent))
  7378. goto err;
  7379. if (!alloc_rt_sched_group(tg, parent))
  7380. goto err;
  7381. spin_lock_irqsave(&task_group_lock, flags);
  7382. for_each_possible_cpu(i) {
  7383. register_fair_sched_group(tg, i);
  7384. register_rt_sched_group(tg, i);
  7385. }
  7386. list_add_rcu(&tg->list, &task_groups);
  7387. WARN_ON(!parent); /* root should already exist */
  7388. tg->parent = parent;
  7389. list_add_rcu(&tg->siblings, &parent->children);
  7390. INIT_LIST_HEAD(&tg->children);
  7391. spin_unlock_irqrestore(&task_group_lock, flags);
  7392. return tg;
  7393. err:
  7394. free_sched_group(tg);
  7395. return ERR_PTR(-ENOMEM);
  7396. }
  7397. /* rcu callback to free various structures associated with a task group */
  7398. static void free_sched_group_rcu(struct rcu_head *rhp)
  7399. {
  7400. /* now it should be safe to free those cfs_rqs */
  7401. free_sched_group(container_of(rhp, struct task_group, rcu));
  7402. }
  7403. /* Destroy runqueue etc associated with a task group */
  7404. void sched_destroy_group(struct task_group *tg)
  7405. {
  7406. unsigned long flags;
  7407. int i;
  7408. spin_lock_irqsave(&task_group_lock, flags);
  7409. for_each_possible_cpu(i) {
  7410. unregister_fair_sched_group(tg, i);
  7411. unregister_rt_sched_group(tg, i);
  7412. }
  7413. list_del_rcu(&tg->list);
  7414. list_del_rcu(&tg->siblings);
  7415. spin_unlock_irqrestore(&task_group_lock, flags);
  7416. /* wait for possible concurrent references to cfs_rqs complete */
  7417. call_rcu(&tg->rcu, free_sched_group_rcu);
  7418. }
  7419. /* change task's runqueue when it moves between groups.
  7420. * The caller of this function should have put the task in its new group
  7421. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7422. * reflect its new group.
  7423. */
  7424. void sched_move_task(struct task_struct *tsk)
  7425. {
  7426. int on_rq, running;
  7427. unsigned long flags;
  7428. struct rq *rq;
  7429. rq = task_rq_lock(tsk, &flags);
  7430. update_rq_clock(rq);
  7431. running = task_current(rq, tsk);
  7432. on_rq = tsk->se.on_rq;
  7433. if (on_rq)
  7434. dequeue_task(rq, tsk, 0);
  7435. if (unlikely(running))
  7436. tsk->sched_class->put_prev_task(rq, tsk);
  7437. set_task_rq(tsk, task_cpu(tsk));
  7438. #ifdef CONFIG_FAIR_GROUP_SCHED
  7439. if (tsk->sched_class->moved_group)
  7440. tsk->sched_class->moved_group(tsk);
  7441. #endif
  7442. if (unlikely(running))
  7443. tsk->sched_class->set_curr_task(rq);
  7444. if (on_rq)
  7445. enqueue_task(rq, tsk, 0);
  7446. task_rq_unlock(rq, &flags);
  7447. }
  7448. #endif
  7449. #ifdef CONFIG_FAIR_GROUP_SCHED
  7450. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7451. {
  7452. struct cfs_rq *cfs_rq = se->cfs_rq;
  7453. int on_rq;
  7454. on_rq = se->on_rq;
  7455. if (on_rq)
  7456. dequeue_entity(cfs_rq, se, 0);
  7457. se->load.weight = shares;
  7458. se->load.inv_weight = 0;
  7459. if (on_rq)
  7460. enqueue_entity(cfs_rq, se, 0);
  7461. }
  7462. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7463. {
  7464. struct cfs_rq *cfs_rq = se->cfs_rq;
  7465. struct rq *rq = cfs_rq->rq;
  7466. unsigned long flags;
  7467. spin_lock_irqsave(&rq->lock, flags);
  7468. __set_se_shares(se, shares);
  7469. spin_unlock_irqrestore(&rq->lock, flags);
  7470. }
  7471. static DEFINE_MUTEX(shares_mutex);
  7472. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7473. {
  7474. int i;
  7475. unsigned long flags;
  7476. /*
  7477. * We can't change the weight of the root cgroup.
  7478. */
  7479. if (!tg->se[0])
  7480. return -EINVAL;
  7481. /*
  7482. * A weight of 0 or 1 can cause arithmetics problems.
  7483. * (The default weight is 1024 - so there's no practical
  7484. * limitation from this.)
  7485. */
  7486. if (shares < MIN_SHARES)
  7487. shares = MIN_SHARES;
  7488. mutex_lock(&shares_mutex);
  7489. if (tg->shares == shares)
  7490. goto done;
  7491. spin_lock_irqsave(&task_group_lock, flags);
  7492. for_each_possible_cpu(i)
  7493. unregister_fair_sched_group(tg, i);
  7494. list_del_rcu(&tg->siblings);
  7495. spin_unlock_irqrestore(&task_group_lock, flags);
  7496. /* wait for any ongoing reference to this group to finish */
  7497. synchronize_sched();
  7498. /*
  7499. * Now we are free to modify the group's share on each cpu
  7500. * w/o tripping rebalance_share or load_balance_fair.
  7501. */
  7502. tg->shares = shares;
  7503. for_each_possible_cpu(i) {
  7504. /*
  7505. * force a rebalance
  7506. */
  7507. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7508. set_se_shares(tg->se[i], shares/nr_cpu_ids);
  7509. }
  7510. /*
  7511. * Enable load balance activity on this group, by inserting it back on
  7512. * each cpu's rq->leaf_cfs_rq_list.
  7513. */
  7514. spin_lock_irqsave(&task_group_lock, flags);
  7515. for_each_possible_cpu(i)
  7516. register_fair_sched_group(tg, i);
  7517. list_add_rcu(&tg->siblings, &tg->parent->children);
  7518. spin_unlock_irqrestore(&task_group_lock, flags);
  7519. done:
  7520. mutex_unlock(&shares_mutex);
  7521. return 0;
  7522. }
  7523. unsigned long sched_group_shares(struct task_group *tg)
  7524. {
  7525. return tg->shares;
  7526. }
  7527. #endif
  7528. #ifdef CONFIG_RT_GROUP_SCHED
  7529. /*
  7530. * Ensure that the real time constraints are schedulable.
  7531. */
  7532. static DEFINE_MUTEX(rt_constraints_mutex);
  7533. static unsigned long to_ratio(u64 period, u64 runtime)
  7534. {
  7535. if (runtime == RUNTIME_INF)
  7536. return 1ULL << 16;
  7537. return div64_u64(runtime << 16, period);
  7538. }
  7539. #ifdef CONFIG_CGROUP_SCHED
  7540. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7541. {
  7542. struct task_group *tgi, *parent = tg->parent;
  7543. unsigned long total = 0;
  7544. if (!parent) {
  7545. if (global_rt_period() < period)
  7546. return 0;
  7547. return to_ratio(period, runtime) <
  7548. to_ratio(global_rt_period(), global_rt_runtime());
  7549. }
  7550. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7551. return 0;
  7552. rcu_read_lock();
  7553. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7554. if (tgi == tg)
  7555. continue;
  7556. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7557. tgi->rt_bandwidth.rt_runtime);
  7558. }
  7559. rcu_read_unlock();
  7560. return total + to_ratio(period, runtime) <
  7561. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7562. parent->rt_bandwidth.rt_runtime);
  7563. }
  7564. #elif defined CONFIG_USER_SCHED
  7565. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7566. {
  7567. struct task_group *tgi;
  7568. unsigned long total = 0;
  7569. unsigned long global_ratio =
  7570. to_ratio(global_rt_period(), global_rt_runtime());
  7571. rcu_read_lock();
  7572. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7573. if (tgi == tg)
  7574. continue;
  7575. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7576. tgi->rt_bandwidth.rt_runtime);
  7577. }
  7578. rcu_read_unlock();
  7579. return total + to_ratio(period, runtime) < global_ratio;
  7580. }
  7581. #endif
  7582. /* Must be called with tasklist_lock held */
  7583. static inline int tg_has_rt_tasks(struct task_group *tg)
  7584. {
  7585. struct task_struct *g, *p;
  7586. do_each_thread(g, p) {
  7587. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7588. return 1;
  7589. } while_each_thread(g, p);
  7590. return 0;
  7591. }
  7592. static int tg_set_bandwidth(struct task_group *tg,
  7593. u64 rt_period, u64 rt_runtime)
  7594. {
  7595. int i, err = 0;
  7596. mutex_lock(&rt_constraints_mutex);
  7597. read_lock(&tasklist_lock);
  7598. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7599. err = -EBUSY;
  7600. goto unlock;
  7601. }
  7602. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7603. err = -EINVAL;
  7604. goto unlock;
  7605. }
  7606. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7607. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7608. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7609. for_each_possible_cpu(i) {
  7610. struct rt_rq *rt_rq = tg->rt_rq[i];
  7611. spin_lock(&rt_rq->rt_runtime_lock);
  7612. rt_rq->rt_runtime = rt_runtime;
  7613. spin_unlock(&rt_rq->rt_runtime_lock);
  7614. }
  7615. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7616. unlock:
  7617. read_unlock(&tasklist_lock);
  7618. mutex_unlock(&rt_constraints_mutex);
  7619. return err;
  7620. }
  7621. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7622. {
  7623. u64 rt_runtime, rt_period;
  7624. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7625. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7626. if (rt_runtime_us < 0)
  7627. rt_runtime = RUNTIME_INF;
  7628. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7629. }
  7630. long sched_group_rt_runtime(struct task_group *tg)
  7631. {
  7632. u64 rt_runtime_us;
  7633. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7634. return -1;
  7635. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7636. do_div(rt_runtime_us, NSEC_PER_USEC);
  7637. return rt_runtime_us;
  7638. }
  7639. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7640. {
  7641. u64 rt_runtime, rt_period;
  7642. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7643. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7644. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7645. }
  7646. long sched_group_rt_period(struct task_group *tg)
  7647. {
  7648. u64 rt_period_us;
  7649. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7650. do_div(rt_period_us, NSEC_PER_USEC);
  7651. return rt_period_us;
  7652. }
  7653. static int sched_rt_global_constraints(void)
  7654. {
  7655. int ret = 0;
  7656. mutex_lock(&rt_constraints_mutex);
  7657. if (!__rt_schedulable(NULL, 1, 0))
  7658. ret = -EINVAL;
  7659. mutex_unlock(&rt_constraints_mutex);
  7660. return ret;
  7661. }
  7662. #else
  7663. static int sched_rt_global_constraints(void)
  7664. {
  7665. unsigned long flags;
  7666. int i;
  7667. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7668. for_each_possible_cpu(i) {
  7669. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7670. spin_lock(&rt_rq->rt_runtime_lock);
  7671. rt_rq->rt_runtime = global_rt_runtime();
  7672. spin_unlock(&rt_rq->rt_runtime_lock);
  7673. }
  7674. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7675. return 0;
  7676. }
  7677. #endif
  7678. int sched_rt_handler(struct ctl_table *table, int write,
  7679. struct file *filp, void __user *buffer, size_t *lenp,
  7680. loff_t *ppos)
  7681. {
  7682. int ret;
  7683. int old_period, old_runtime;
  7684. static DEFINE_MUTEX(mutex);
  7685. mutex_lock(&mutex);
  7686. old_period = sysctl_sched_rt_period;
  7687. old_runtime = sysctl_sched_rt_runtime;
  7688. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7689. if (!ret && write) {
  7690. ret = sched_rt_global_constraints();
  7691. if (ret) {
  7692. sysctl_sched_rt_period = old_period;
  7693. sysctl_sched_rt_runtime = old_runtime;
  7694. } else {
  7695. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7696. def_rt_bandwidth.rt_period =
  7697. ns_to_ktime(global_rt_period());
  7698. }
  7699. }
  7700. mutex_unlock(&mutex);
  7701. return ret;
  7702. }
  7703. #ifdef CONFIG_CGROUP_SCHED
  7704. /* return corresponding task_group object of a cgroup */
  7705. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7706. {
  7707. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7708. struct task_group, css);
  7709. }
  7710. static struct cgroup_subsys_state *
  7711. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7712. {
  7713. struct task_group *tg, *parent;
  7714. if (!cgrp->parent) {
  7715. /* This is early initialization for the top cgroup */
  7716. init_task_group.css.cgroup = cgrp;
  7717. return &init_task_group.css;
  7718. }
  7719. parent = cgroup_tg(cgrp->parent);
  7720. tg = sched_create_group(parent);
  7721. if (IS_ERR(tg))
  7722. return ERR_PTR(-ENOMEM);
  7723. /* Bind the cgroup to task_group object we just created */
  7724. tg->css.cgroup = cgrp;
  7725. return &tg->css;
  7726. }
  7727. static void
  7728. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7729. {
  7730. struct task_group *tg = cgroup_tg(cgrp);
  7731. sched_destroy_group(tg);
  7732. }
  7733. static int
  7734. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7735. struct task_struct *tsk)
  7736. {
  7737. #ifdef CONFIG_RT_GROUP_SCHED
  7738. /* Don't accept realtime tasks when there is no way for them to run */
  7739. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7740. return -EINVAL;
  7741. #else
  7742. /* We don't support RT-tasks being in separate groups */
  7743. if (tsk->sched_class != &fair_sched_class)
  7744. return -EINVAL;
  7745. #endif
  7746. return 0;
  7747. }
  7748. static void
  7749. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7750. struct cgroup *old_cont, struct task_struct *tsk)
  7751. {
  7752. sched_move_task(tsk);
  7753. }
  7754. #ifdef CONFIG_FAIR_GROUP_SCHED
  7755. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7756. u64 shareval)
  7757. {
  7758. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7759. }
  7760. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7761. {
  7762. struct task_group *tg = cgroup_tg(cgrp);
  7763. return (u64) tg->shares;
  7764. }
  7765. #endif
  7766. #ifdef CONFIG_RT_GROUP_SCHED
  7767. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7768. s64 val)
  7769. {
  7770. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7771. }
  7772. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7773. {
  7774. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7775. }
  7776. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7777. u64 rt_period_us)
  7778. {
  7779. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7780. }
  7781. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7782. {
  7783. return sched_group_rt_period(cgroup_tg(cgrp));
  7784. }
  7785. #endif
  7786. static struct cftype cpu_files[] = {
  7787. #ifdef CONFIG_FAIR_GROUP_SCHED
  7788. {
  7789. .name = "shares",
  7790. .read_u64 = cpu_shares_read_u64,
  7791. .write_u64 = cpu_shares_write_u64,
  7792. },
  7793. #endif
  7794. #ifdef CONFIG_RT_GROUP_SCHED
  7795. {
  7796. .name = "rt_runtime_us",
  7797. .read_s64 = cpu_rt_runtime_read,
  7798. .write_s64 = cpu_rt_runtime_write,
  7799. },
  7800. {
  7801. .name = "rt_period_us",
  7802. .read_u64 = cpu_rt_period_read_uint,
  7803. .write_u64 = cpu_rt_period_write_uint,
  7804. },
  7805. #endif
  7806. };
  7807. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7808. {
  7809. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7810. }
  7811. struct cgroup_subsys cpu_cgroup_subsys = {
  7812. .name = "cpu",
  7813. .create = cpu_cgroup_create,
  7814. .destroy = cpu_cgroup_destroy,
  7815. .can_attach = cpu_cgroup_can_attach,
  7816. .attach = cpu_cgroup_attach,
  7817. .populate = cpu_cgroup_populate,
  7818. .subsys_id = cpu_cgroup_subsys_id,
  7819. .early_init = 1,
  7820. };
  7821. #endif /* CONFIG_CGROUP_SCHED */
  7822. #ifdef CONFIG_CGROUP_CPUACCT
  7823. /*
  7824. * CPU accounting code for task groups.
  7825. *
  7826. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7827. * (balbir@in.ibm.com).
  7828. */
  7829. /* track cpu usage of a group of tasks */
  7830. struct cpuacct {
  7831. struct cgroup_subsys_state css;
  7832. /* cpuusage holds pointer to a u64-type object on every cpu */
  7833. u64 *cpuusage;
  7834. };
  7835. struct cgroup_subsys cpuacct_subsys;
  7836. /* return cpu accounting group corresponding to this container */
  7837. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7838. {
  7839. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7840. struct cpuacct, css);
  7841. }
  7842. /* return cpu accounting group to which this task belongs */
  7843. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7844. {
  7845. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7846. struct cpuacct, css);
  7847. }
  7848. /* create a new cpu accounting group */
  7849. static struct cgroup_subsys_state *cpuacct_create(
  7850. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7851. {
  7852. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7853. if (!ca)
  7854. return ERR_PTR(-ENOMEM);
  7855. ca->cpuusage = alloc_percpu(u64);
  7856. if (!ca->cpuusage) {
  7857. kfree(ca);
  7858. return ERR_PTR(-ENOMEM);
  7859. }
  7860. return &ca->css;
  7861. }
  7862. /* destroy an existing cpu accounting group */
  7863. static void
  7864. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7865. {
  7866. struct cpuacct *ca = cgroup_ca(cgrp);
  7867. free_percpu(ca->cpuusage);
  7868. kfree(ca);
  7869. }
  7870. /* return total cpu usage (in nanoseconds) of a group */
  7871. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7872. {
  7873. struct cpuacct *ca = cgroup_ca(cgrp);
  7874. u64 totalcpuusage = 0;
  7875. int i;
  7876. for_each_possible_cpu(i) {
  7877. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7878. /*
  7879. * Take rq->lock to make 64-bit addition safe on 32-bit
  7880. * platforms.
  7881. */
  7882. spin_lock_irq(&cpu_rq(i)->lock);
  7883. totalcpuusage += *cpuusage;
  7884. spin_unlock_irq(&cpu_rq(i)->lock);
  7885. }
  7886. return totalcpuusage;
  7887. }
  7888. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7889. u64 reset)
  7890. {
  7891. struct cpuacct *ca = cgroup_ca(cgrp);
  7892. int err = 0;
  7893. int i;
  7894. if (reset) {
  7895. err = -EINVAL;
  7896. goto out;
  7897. }
  7898. for_each_possible_cpu(i) {
  7899. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7900. spin_lock_irq(&cpu_rq(i)->lock);
  7901. *cpuusage = 0;
  7902. spin_unlock_irq(&cpu_rq(i)->lock);
  7903. }
  7904. out:
  7905. return err;
  7906. }
  7907. static struct cftype files[] = {
  7908. {
  7909. .name = "usage",
  7910. .read_u64 = cpuusage_read,
  7911. .write_u64 = cpuusage_write,
  7912. },
  7913. };
  7914. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7915. {
  7916. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7917. }
  7918. /*
  7919. * charge this task's execution time to its accounting group.
  7920. *
  7921. * called with rq->lock held.
  7922. */
  7923. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7924. {
  7925. struct cpuacct *ca;
  7926. if (!cpuacct_subsys.active)
  7927. return;
  7928. ca = task_ca(tsk);
  7929. if (ca) {
  7930. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7931. *cpuusage += cputime;
  7932. }
  7933. }
  7934. struct cgroup_subsys cpuacct_subsys = {
  7935. .name = "cpuacct",
  7936. .create = cpuacct_create,
  7937. .destroy = cpuacct_destroy,
  7938. .populate = cpuacct_populate,
  7939. .subsys_id = cpuacct_subsys_id,
  7940. };
  7941. #endif /* CONFIG_CGROUP_CPUACCT */