sched.c 214 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
  143. struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start(&rt_b->rt_period_timer,
  195. rt_b->rt_period_timer.expires,
  196. HRTIMER_MODE_ABS);
  197. }
  198. spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. struct task_group *parent;
  235. struct list_head siblings;
  236. struct list_head children;
  237. };
  238. #ifdef CONFIG_USER_SCHED
  239. /*
  240. * Root task group.
  241. * Every UID task group (including init_task_group aka UID-0) will
  242. * be a child to this group.
  243. */
  244. struct task_group root_task_group;
  245. #ifdef CONFIG_FAIR_GROUP_SCHED
  246. /* Default task group's sched entity on each cpu */
  247. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  248. /* Default task group's cfs_rq on each cpu */
  249. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  250. #endif /* CONFIG_FAIR_GROUP_SCHED */
  251. #ifdef CONFIG_RT_GROUP_SCHED
  252. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  253. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_RT_GROUP_SCHED */
  255. #else /* !CONFIG_FAIR_GROUP_SCHED */
  256. #define root_task_group init_task_group
  257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  258. /* task_group_lock serializes add/remove of task groups and also changes to
  259. * a task group's cpu shares.
  260. */
  261. static DEFINE_SPINLOCK(task_group_lock);
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. #ifdef CONFIG_USER_SCHED
  264. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  265. #else /* !CONFIG_USER_SCHED */
  266. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  267. #endif /* CONFIG_USER_SCHED */
  268. /*
  269. * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
  270. * (The default weight is 1024 - so there's no practical
  271. * limitation from this.)
  272. */
  273. #define MIN_SHARES 2
  274. #define MAX_SHARES (ULONG_MAX - 1)
  275. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  276. #endif
  277. /* Default task group.
  278. * Every task in system belong to this group at bootup.
  279. */
  280. struct task_group init_task_group;
  281. /* return group to which a task belongs */
  282. static inline struct task_group *task_group(struct task_struct *p)
  283. {
  284. struct task_group *tg;
  285. #ifdef CONFIG_USER_SCHED
  286. tg = p->user->tg;
  287. #elif defined(CONFIG_CGROUP_SCHED)
  288. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  289. struct task_group, css);
  290. #else
  291. tg = &init_task_group;
  292. #endif
  293. return tg;
  294. }
  295. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  296. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  297. {
  298. #ifdef CONFIG_FAIR_GROUP_SCHED
  299. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  300. p->se.parent = task_group(p)->se[cpu];
  301. #endif
  302. #ifdef CONFIG_RT_GROUP_SCHED
  303. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  304. p->rt.parent = task_group(p)->rt_se[cpu];
  305. #endif
  306. }
  307. #else
  308. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  309. #endif /* CONFIG_GROUP_SCHED */
  310. /* CFS-related fields in a runqueue */
  311. struct cfs_rq {
  312. struct load_weight load;
  313. unsigned long nr_running;
  314. u64 exec_clock;
  315. u64 min_vruntime;
  316. struct rb_root tasks_timeline;
  317. struct rb_node *rb_leftmost;
  318. struct list_head tasks;
  319. struct list_head *balance_iterator;
  320. /*
  321. * 'curr' points to currently running entity on this cfs_rq.
  322. * It is set to NULL otherwise (i.e when none are currently running).
  323. */
  324. struct sched_entity *curr, *next;
  325. unsigned long nr_spread_over;
  326. #ifdef CONFIG_FAIR_GROUP_SCHED
  327. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  328. /*
  329. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  330. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  331. * (like users, containers etc.)
  332. *
  333. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  334. * list is used during load balance.
  335. */
  336. struct list_head leaf_cfs_rq_list;
  337. struct task_group *tg; /* group that "owns" this runqueue */
  338. #endif
  339. };
  340. /* Real-Time classes' related field in a runqueue: */
  341. struct rt_rq {
  342. struct rt_prio_array active;
  343. unsigned long rt_nr_running;
  344. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  345. int highest_prio; /* highest queued rt task prio */
  346. #endif
  347. #ifdef CONFIG_SMP
  348. unsigned long rt_nr_migratory;
  349. int overloaded;
  350. #endif
  351. int rt_throttled;
  352. u64 rt_time;
  353. u64 rt_runtime;
  354. /* Nests inside the rq lock: */
  355. spinlock_t rt_runtime_lock;
  356. #ifdef CONFIG_RT_GROUP_SCHED
  357. unsigned long rt_nr_boosted;
  358. struct rq *rq;
  359. struct list_head leaf_rt_rq_list;
  360. struct task_group *tg;
  361. struct sched_rt_entity *rt_se;
  362. #endif
  363. };
  364. #ifdef CONFIG_SMP
  365. /*
  366. * We add the notion of a root-domain which will be used to define per-domain
  367. * variables. Each exclusive cpuset essentially defines an island domain by
  368. * fully partitioning the member cpus from any other cpuset. Whenever a new
  369. * exclusive cpuset is created, we also create and attach a new root-domain
  370. * object.
  371. *
  372. */
  373. struct root_domain {
  374. atomic_t refcount;
  375. cpumask_t span;
  376. cpumask_t online;
  377. /*
  378. * The "RT overload" flag: it gets set if a CPU has more than
  379. * one runnable RT task.
  380. */
  381. cpumask_t rto_mask;
  382. atomic_t rto_count;
  383. #ifdef CONFIG_SMP
  384. struct cpupri cpupri;
  385. #endif
  386. };
  387. /*
  388. * By default the system creates a single root-domain with all cpus as
  389. * members (mimicking the global state we have today).
  390. */
  391. static struct root_domain def_root_domain;
  392. #endif
  393. /*
  394. * This is the main, per-CPU runqueue data structure.
  395. *
  396. * Locking rule: those places that want to lock multiple runqueues
  397. * (such as the load balancing or the thread migration code), lock
  398. * acquire operations must be ordered by ascending &runqueue.
  399. */
  400. struct rq {
  401. /* runqueue lock: */
  402. spinlock_t lock;
  403. /*
  404. * nr_running and cpu_load should be in the same cacheline because
  405. * remote CPUs use both these fields when doing load calculation.
  406. */
  407. unsigned long nr_running;
  408. #define CPU_LOAD_IDX_MAX 5
  409. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  410. unsigned char idle_at_tick;
  411. #ifdef CONFIG_NO_HZ
  412. unsigned long last_tick_seen;
  413. unsigned char in_nohz_recently;
  414. #endif
  415. /* capture load from *all* tasks on this cpu: */
  416. struct load_weight load;
  417. unsigned long nr_load_updates;
  418. u64 nr_switches;
  419. struct cfs_rq cfs;
  420. struct rt_rq rt;
  421. #ifdef CONFIG_FAIR_GROUP_SCHED
  422. /* list of leaf cfs_rq on this cpu: */
  423. struct list_head leaf_cfs_rq_list;
  424. #endif
  425. #ifdef CONFIG_RT_GROUP_SCHED
  426. struct list_head leaf_rt_rq_list;
  427. #endif
  428. /*
  429. * This is part of a global counter where only the total sum
  430. * over all CPUs matters. A task can increase this counter on
  431. * one CPU and if it got migrated afterwards it may decrease
  432. * it on another CPU. Always updated under the runqueue lock:
  433. */
  434. unsigned long nr_uninterruptible;
  435. struct task_struct *curr, *idle;
  436. unsigned long next_balance;
  437. struct mm_struct *prev_mm;
  438. u64 clock;
  439. atomic_t nr_iowait;
  440. #ifdef CONFIG_SMP
  441. struct root_domain *rd;
  442. struct sched_domain *sd;
  443. /* For active balancing */
  444. int active_balance;
  445. int push_cpu;
  446. /* cpu of this runqueue: */
  447. int cpu;
  448. int online;
  449. struct task_struct *migration_thread;
  450. struct list_head migration_queue;
  451. #endif
  452. #ifdef CONFIG_SCHED_HRTICK
  453. unsigned long hrtick_flags;
  454. ktime_t hrtick_expire;
  455. struct hrtimer hrtick_timer;
  456. #endif
  457. #ifdef CONFIG_SCHEDSTATS
  458. /* latency stats */
  459. struct sched_info rq_sched_info;
  460. /* sys_sched_yield() stats */
  461. unsigned int yld_exp_empty;
  462. unsigned int yld_act_empty;
  463. unsigned int yld_both_empty;
  464. unsigned int yld_count;
  465. /* schedule() stats */
  466. unsigned int sched_switch;
  467. unsigned int sched_count;
  468. unsigned int sched_goidle;
  469. /* try_to_wake_up() stats */
  470. unsigned int ttwu_count;
  471. unsigned int ttwu_local;
  472. /* BKL stats */
  473. unsigned int bkl_count;
  474. #endif
  475. struct lock_class_key rq_lock_key;
  476. };
  477. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  478. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  479. {
  480. rq->curr->sched_class->check_preempt_curr(rq, p);
  481. }
  482. static inline int cpu_of(struct rq *rq)
  483. {
  484. #ifdef CONFIG_SMP
  485. return rq->cpu;
  486. #else
  487. return 0;
  488. #endif
  489. }
  490. /*
  491. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  492. * See detach_destroy_domains: synchronize_sched for details.
  493. *
  494. * The domain tree of any CPU may only be accessed from within
  495. * preempt-disabled sections.
  496. */
  497. #define for_each_domain(cpu, __sd) \
  498. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  499. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  500. #define this_rq() (&__get_cpu_var(runqueues))
  501. #define task_rq(p) cpu_rq(task_cpu(p))
  502. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  503. static inline void update_rq_clock(struct rq *rq)
  504. {
  505. rq->clock = sched_clock_cpu(cpu_of(rq));
  506. }
  507. /*
  508. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  509. */
  510. #ifdef CONFIG_SCHED_DEBUG
  511. # define const_debug __read_mostly
  512. #else
  513. # define const_debug static const
  514. #endif
  515. /*
  516. * Debugging: various feature bits
  517. */
  518. #define SCHED_FEAT(name, enabled) \
  519. __SCHED_FEAT_##name ,
  520. enum {
  521. #include "sched_features.h"
  522. };
  523. #undef SCHED_FEAT
  524. #define SCHED_FEAT(name, enabled) \
  525. (1UL << __SCHED_FEAT_##name) * enabled |
  526. const_debug unsigned int sysctl_sched_features =
  527. #include "sched_features.h"
  528. 0;
  529. #undef SCHED_FEAT
  530. #ifdef CONFIG_SCHED_DEBUG
  531. #define SCHED_FEAT(name, enabled) \
  532. #name ,
  533. static __read_mostly char *sched_feat_names[] = {
  534. #include "sched_features.h"
  535. NULL
  536. };
  537. #undef SCHED_FEAT
  538. static int sched_feat_open(struct inode *inode, struct file *filp)
  539. {
  540. filp->private_data = inode->i_private;
  541. return 0;
  542. }
  543. static ssize_t
  544. sched_feat_read(struct file *filp, char __user *ubuf,
  545. size_t cnt, loff_t *ppos)
  546. {
  547. char *buf;
  548. int r = 0;
  549. int len = 0;
  550. int i;
  551. for (i = 0; sched_feat_names[i]; i++) {
  552. len += strlen(sched_feat_names[i]);
  553. len += 4;
  554. }
  555. buf = kmalloc(len + 2, GFP_KERNEL);
  556. if (!buf)
  557. return -ENOMEM;
  558. for (i = 0; sched_feat_names[i]; i++) {
  559. if (sysctl_sched_features & (1UL << i))
  560. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  561. else
  562. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  563. }
  564. r += sprintf(buf + r, "\n");
  565. WARN_ON(r >= len + 2);
  566. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  567. kfree(buf);
  568. return r;
  569. }
  570. static ssize_t
  571. sched_feat_write(struct file *filp, const char __user *ubuf,
  572. size_t cnt, loff_t *ppos)
  573. {
  574. char buf[64];
  575. char *cmp = buf;
  576. int neg = 0;
  577. int i;
  578. if (cnt > 63)
  579. cnt = 63;
  580. if (copy_from_user(&buf, ubuf, cnt))
  581. return -EFAULT;
  582. buf[cnt] = 0;
  583. if (strncmp(buf, "NO_", 3) == 0) {
  584. neg = 1;
  585. cmp += 3;
  586. }
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. int len = strlen(sched_feat_names[i]);
  589. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  590. if (neg)
  591. sysctl_sched_features &= ~(1UL << i);
  592. else
  593. sysctl_sched_features |= (1UL << i);
  594. break;
  595. }
  596. }
  597. if (!sched_feat_names[i])
  598. return -EINVAL;
  599. filp->f_pos += cnt;
  600. return cnt;
  601. }
  602. static struct file_operations sched_feat_fops = {
  603. .open = sched_feat_open,
  604. .read = sched_feat_read,
  605. .write = sched_feat_write,
  606. };
  607. static __init int sched_init_debug(void)
  608. {
  609. debugfs_create_file("sched_features", 0644, NULL, NULL,
  610. &sched_feat_fops);
  611. return 0;
  612. }
  613. late_initcall(sched_init_debug);
  614. #endif
  615. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  616. /*
  617. * Number of tasks to iterate in a single balance run.
  618. * Limited because this is done with IRQs disabled.
  619. */
  620. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  621. /*
  622. * period over which we measure -rt task cpu usage in us.
  623. * default: 1s
  624. */
  625. unsigned int sysctl_sched_rt_period = 1000000;
  626. static __read_mostly int scheduler_running;
  627. /*
  628. * part of the period that we allow rt tasks to run in us.
  629. * default: 0.95s
  630. */
  631. int sysctl_sched_rt_runtime = 950000;
  632. static inline u64 global_rt_period(void)
  633. {
  634. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  635. }
  636. static inline u64 global_rt_runtime(void)
  637. {
  638. if (sysctl_sched_rt_period < 0)
  639. return RUNTIME_INF;
  640. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  641. }
  642. unsigned long long time_sync_thresh = 100000;
  643. static DEFINE_PER_CPU(unsigned long long, time_offset);
  644. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  645. /*
  646. * Global lock which we take every now and then to synchronize
  647. * the CPUs time. This method is not warp-safe, but it's good
  648. * enough to synchronize slowly diverging time sources and thus
  649. * it's good enough for tracing:
  650. */
  651. static DEFINE_SPINLOCK(time_sync_lock);
  652. static unsigned long long prev_global_time;
  653. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  654. {
  655. /*
  656. * We want this inlined, to not get tracer function calls
  657. * in this critical section:
  658. */
  659. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  660. __raw_spin_lock(&time_sync_lock.raw_lock);
  661. if (time < prev_global_time) {
  662. per_cpu(time_offset, cpu) += prev_global_time - time;
  663. time = prev_global_time;
  664. } else {
  665. prev_global_time = time;
  666. }
  667. __raw_spin_unlock(&time_sync_lock.raw_lock);
  668. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  669. return time;
  670. }
  671. static unsigned long long __cpu_clock(int cpu)
  672. {
  673. unsigned long long now;
  674. /*
  675. * Only call sched_clock() if the scheduler has already been
  676. * initialized (some code might call cpu_clock() very early):
  677. */
  678. if (unlikely(!scheduler_running))
  679. return 0;
  680. now = sched_clock_cpu(cpu);
  681. return now;
  682. }
  683. /*
  684. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  685. * clock constructed from sched_clock():
  686. */
  687. unsigned long long cpu_clock(int cpu)
  688. {
  689. unsigned long long prev_cpu_time, time, delta_time;
  690. unsigned long flags;
  691. local_irq_save(flags);
  692. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  693. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  694. delta_time = time-prev_cpu_time;
  695. if (unlikely(delta_time > time_sync_thresh)) {
  696. time = __sync_cpu_clock(time, cpu);
  697. per_cpu(prev_cpu_time, cpu) = time;
  698. }
  699. local_irq_restore(flags);
  700. return time;
  701. }
  702. EXPORT_SYMBOL_GPL(cpu_clock);
  703. #ifndef prepare_arch_switch
  704. # define prepare_arch_switch(next) do { } while (0)
  705. #endif
  706. #ifndef finish_arch_switch
  707. # define finish_arch_switch(prev) do { } while (0)
  708. #endif
  709. static inline int task_current(struct rq *rq, struct task_struct *p)
  710. {
  711. return rq->curr == p;
  712. }
  713. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  714. static inline int task_running(struct rq *rq, struct task_struct *p)
  715. {
  716. return task_current(rq, p);
  717. }
  718. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  719. {
  720. }
  721. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  722. {
  723. #ifdef CONFIG_DEBUG_SPINLOCK
  724. /* this is a valid case when another task releases the spinlock */
  725. rq->lock.owner = current;
  726. #endif
  727. /*
  728. * If we are tracking spinlock dependencies then we have to
  729. * fix up the runqueue lock - which gets 'carried over' from
  730. * prev into current:
  731. */
  732. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  733. spin_unlock_irq(&rq->lock);
  734. }
  735. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  736. static inline int task_running(struct rq *rq, struct task_struct *p)
  737. {
  738. #ifdef CONFIG_SMP
  739. return p->oncpu;
  740. #else
  741. return task_current(rq, p);
  742. #endif
  743. }
  744. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  745. {
  746. #ifdef CONFIG_SMP
  747. /*
  748. * We can optimise this out completely for !SMP, because the
  749. * SMP rebalancing from interrupt is the only thing that cares
  750. * here.
  751. */
  752. next->oncpu = 1;
  753. #endif
  754. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  755. spin_unlock_irq(&rq->lock);
  756. #else
  757. spin_unlock(&rq->lock);
  758. #endif
  759. }
  760. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  761. {
  762. #ifdef CONFIG_SMP
  763. /*
  764. * After ->oncpu is cleared, the task can be moved to a different CPU.
  765. * We must ensure this doesn't happen until the switch is completely
  766. * finished.
  767. */
  768. smp_wmb();
  769. prev->oncpu = 0;
  770. #endif
  771. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  772. local_irq_enable();
  773. #endif
  774. }
  775. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  776. /*
  777. * __task_rq_lock - lock the runqueue a given task resides on.
  778. * Must be called interrupts disabled.
  779. */
  780. static inline struct rq *__task_rq_lock(struct task_struct *p)
  781. __acquires(rq->lock)
  782. {
  783. for (;;) {
  784. struct rq *rq = task_rq(p);
  785. spin_lock(&rq->lock);
  786. if (likely(rq == task_rq(p)))
  787. return rq;
  788. spin_unlock(&rq->lock);
  789. }
  790. }
  791. /*
  792. * task_rq_lock - lock the runqueue a given task resides on and disable
  793. * interrupts. Note the ordering: we can safely lookup the task_rq without
  794. * explicitly disabling preemption.
  795. */
  796. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  797. __acquires(rq->lock)
  798. {
  799. struct rq *rq;
  800. for (;;) {
  801. local_irq_save(*flags);
  802. rq = task_rq(p);
  803. spin_lock(&rq->lock);
  804. if (likely(rq == task_rq(p)))
  805. return rq;
  806. spin_unlock_irqrestore(&rq->lock, *flags);
  807. }
  808. }
  809. static void __task_rq_unlock(struct rq *rq)
  810. __releases(rq->lock)
  811. {
  812. spin_unlock(&rq->lock);
  813. }
  814. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  815. __releases(rq->lock)
  816. {
  817. spin_unlock_irqrestore(&rq->lock, *flags);
  818. }
  819. /*
  820. * this_rq_lock - lock this runqueue and disable interrupts.
  821. */
  822. static struct rq *this_rq_lock(void)
  823. __acquires(rq->lock)
  824. {
  825. struct rq *rq;
  826. local_irq_disable();
  827. rq = this_rq();
  828. spin_lock(&rq->lock);
  829. return rq;
  830. }
  831. static void __resched_task(struct task_struct *p, int tif_bit);
  832. static inline void resched_task(struct task_struct *p)
  833. {
  834. __resched_task(p, TIF_NEED_RESCHED);
  835. }
  836. #ifdef CONFIG_SCHED_HRTICK
  837. /*
  838. * Use HR-timers to deliver accurate preemption points.
  839. *
  840. * Its all a bit involved since we cannot program an hrt while holding the
  841. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  842. * reschedule event.
  843. *
  844. * When we get rescheduled we reprogram the hrtick_timer outside of the
  845. * rq->lock.
  846. */
  847. static inline void resched_hrt(struct task_struct *p)
  848. {
  849. __resched_task(p, TIF_HRTICK_RESCHED);
  850. }
  851. static inline void resched_rq(struct rq *rq)
  852. {
  853. unsigned long flags;
  854. spin_lock_irqsave(&rq->lock, flags);
  855. resched_task(rq->curr);
  856. spin_unlock_irqrestore(&rq->lock, flags);
  857. }
  858. enum {
  859. HRTICK_SET, /* re-programm hrtick_timer */
  860. HRTICK_RESET, /* not a new slice */
  861. HRTICK_BLOCK, /* stop hrtick operations */
  862. };
  863. /*
  864. * Use hrtick when:
  865. * - enabled by features
  866. * - hrtimer is actually high res
  867. */
  868. static inline int hrtick_enabled(struct rq *rq)
  869. {
  870. if (!sched_feat(HRTICK))
  871. return 0;
  872. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  873. return 0;
  874. return hrtimer_is_hres_active(&rq->hrtick_timer);
  875. }
  876. /*
  877. * Called to set the hrtick timer state.
  878. *
  879. * called with rq->lock held and irqs disabled
  880. */
  881. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  882. {
  883. assert_spin_locked(&rq->lock);
  884. /*
  885. * preempt at: now + delay
  886. */
  887. rq->hrtick_expire =
  888. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  889. /*
  890. * indicate we need to program the timer
  891. */
  892. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  893. if (reset)
  894. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  895. /*
  896. * New slices are called from the schedule path and don't need a
  897. * forced reschedule.
  898. */
  899. if (reset)
  900. resched_hrt(rq->curr);
  901. }
  902. static void hrtick_clear(struct rq *rq)
  903. {
  904. if (hrtimer_active(&rq->hrtick_timer))
  905. hrtimer_cancel(&rq->hrtick_timer);
  906. }
  907. /*
  908. * Update the timer from the possible pending state.
  909. */
  910. static void hrtick_set(struct rq *rq)
  911. {
  912. ktime_t time;
  913. int set, reset;
  914. unsigned long flags;
  915. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  916. spin_lock_irqsave(&rq->lock, flags);
  917. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  918. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  919. time = rq->hrtick_expire;
  920. clear_thread_flag(TIF_HRTICK_RESCHED);
  921. spin_unlock_irqrestore(&rq->lock, flags);
  922. if (set) {
  923. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  924. if (reset && !hrtimer_active(&rq->hrtick_timer))
  925. resched_rq(rq);
  926. } else
  927. hrtick_clear(rq);
  928. }
  929. /*
  930. * High-resolution timer tick.
  931. * Runs from hardirq context with interrupts disabled.
  932. */
  933. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  934. {
  935. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  936. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  937. spin_lock(&rq->lock);
  938. update_rq_clock(rq);
  939. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  940. spin_unlock(&rq->lock);
  941. return HRTIMER_NORESTART;
  942. }
  943. #ifdef CONFIG_SMP
  944. static void hotplug_hrtick_disable(int cpu)
  945. {
  946. struct rq *rq = cpu_rq(cpu);
  947. unsigned long flags;
  948. spin_lock_irqsave(&rq->lock, flags);
  949. rq->hrtick_flags = 0;
  950. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  951. spin_unlock_irqrestore(&rq->lock, flags);
  952. hrtick_clear(rq);
  953. }
  954. static void hotplug_hrtick_enable(int cpu)
  955. {
  956. struct rq *rq = cpu_rq(cpu);
  957. unsigned long flags;
  958. spin_lock_irqsave(&rq->lock, flags);
  959. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  960. spin_unlock_irqrestore(&rq->lock, flags);
  961. }
  962. static int
  963. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  964. {
  965. int cpu = (int)(long)hcpu;
  966. switch (action) {
  967. case CPU_UP_CANCELED:
  968. case CPU_UP_CANCELED_FROZEN:
  969. case CPU_DOWN_PREPARE:
  970. case CPU_DOWN_PREPARE_FROZEN:
  971. case CPU_DEAD:
  972. case CPU_DEAD_FROZEN:
  973. hotplug_hrtick_disable(cpu);
  974. return NOTIFY_OK;
  975. case CPU_UP_PREPARE:
  976. case CPU_UP_PREPARE_FROZEN:
  977. case CPU_DOWN_FAILED:
  978. case CPU_DOWN_FAILED_FROZEN:
  979. case CPU_ONLINE:
  980. case CPU_ONLINE_FROZEN:
  981. hotplug_hrtick_enable(cpu);
  982. return NOTIFY_OK;
  983. }
  984. return NOTIFY_DONE;
  985. }
  986. static void init_hrtick(void)
  987. {
  988. hotcpu_notifier(hotplug_hrtick, 0);
  989. }
  990. #endif /* CONFIG_SMP */
  991. static void init_rq_hrtick(struct rq *rq)
  992. {
  993. rq->hrtick_flags = 0;
  994. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  995. rq->hrtick_timer.function = hrtick;
  996. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  997. }
  998. void hrtick_resched(void)
  999. {
  1000. struct rq *rq;
  1001. unsigned long flags;
  1002. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1003. return;
  1004. local_irq_save(flags);
  1005. rq = cpu_rq(smp_processor_id());
  1006. hrtick_set(rq);
  1007. local_irq_restore(flags);
  1008. }
  1009. #else
  1010. static inline void hrtick_clear(struct rq *rq)
  1011. {
  1012. }
  1013. static inline void hrtick_set(struct rq *rq)
  1014. {
  1015. }
  1016. static inline void init_rq_hrtick(struct rq *rq)
  1017. {
  1018. }
  1019. void hrtick_resched(void)
  1020. {
  1021. }
  1022. static inline void init_hrtick(void)
  1023. {
  1024. }
  1025. #endif
  1026. /*
  1027. * resched_task - mark a task 'to be rescheduled now'.
  1028. *
  1029. * On UP this means the setting of the need_resched flag, on SMP it
  1030. * might also involve a cross-CPU call to trigger the scheduler on
  1031. * the target CPU.
  1032. */
  1033. #ifdef CONFIG_SMP
  1034. #ifndef tsk_is_polling
  1035. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1036. #endif
  1037. static void __resched_task(struct task_struct *p, int tif_bit)
  1038. {
  1039. int cpu;
  1040. assert_spin_locked(&task_rq(p)->lock);
  1041. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1042. return;
  1043. set_tsk_thread_flag(p, tif_bit);
  1044. cpu = task_cpu(p);
  1045. if (cpu == smp_processor_id())
  1046. return;
  1047. /* NEED_RESCHED must be visible before we test polling */
  1048. smp_mb();
  1049. if (!tsk_is_polling(p))
  1050. smp_send_reschedule(cpu);
  1051. }
  1052. static void resched_cpu(int cpu)
  1053. {
  1054. struct rq *rq = cpu_rq(cpu);
  1055. unsigned long flags;
  1056. if (!spin_trylock_irqsave(&rq->lock, flags))
  1057. return;
  1058. resched_task(cpu_curr(cpu));
  1059. spin_unlock_irqrestore(&rq->lock, flags);
  1060. }
  1061. #ifdef CONFIG_NO_HZ
  1062. /*
  1063. * When add_timer_on() enqueues a timer into the timer wheel of an
  1064. * idle CPU then this timer might expire before the next timer event
  1065. * which is scheduled to wake up that CPU. In case of a completely
  1066. * idle system the next event might even be infinite time into the
  1067. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1068. * leaves the inner idle loop so the newly added timer is taken into
  1069. * account when the CPU goes back to idle and evaluates the timer
  1070. * wheel for the next timer event.
  1071. */
  1072. void wake_up_idle_cpu(int cpu)
  1073. {
  1074. struct rq *rq = cpu_rq(cpu);
  1075. if (cpu == smp_processor_id())
  1076. return;
  1077. /*
  1078. * This is safe, as this function is called with the timer
  1079. * wheel base lock of (cpu) held. When the CPU is on the way
  1080. * to idle and has not yet set rq->curr to idle then it will
  1081. * be serialized on the timer wheel base lock and take the new
  1082. * timer into account automatically.
  1083. */
  1084. if (rq->curr != rq->idle)
  1085. return;
  1086. /*
  1087. * We can set TIF_RESCHED on the idle task of the other CPU
  1088. * lockless. The worst case is that the other CPU runs the
  1089. * idle task through an additional NOOP schedule()
  1090. */
  1091. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1092. /* NEED_RESCHED must be visible before we test polling */
  1093. smp_mb();
  1094. if (!tsk_is_polling(rq->idle))
  1095. smp_send_reschedule(cpu);
  1096. }
  1097. #endif /* CONFIG_NO_HZ */
  1098. #else /* !CONFIG_SMP */
  1099. static void __resched_task(struct task_struct *p, int tif_bit)
  1100. {
  1101. assert_spin_locked(&task_rq(p)->lock);
  1102. set_tsk_thread_flag(p, tif_bit);
  1103. }
  1104. #endif /* CONFIG_SMP */
  1105. #if BITS_PER_LONG == 32
  1106. # define WMULT_CONST (~0UL)
  1107. #else
  1108. # define WMULT_CONST (1UL << 32)
  1109. #endif
  1110. #define WMULT_SHIFT 32
  1111. /*
  1112. * Shift right and round:
  1113. */
  1114. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1115. static unsigned long
  1116. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1117. struct load_weight *lw)
  1118. {
  1119. u64 tmp;
  1120. if (!lw->inv_weight)
  1121. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
  1122. tmp = (u64)delta_exec * weight;
  1123. /*
  1124. * Check whether we'd overflow the 64-bit multiplication:
  1125. */
  1126. if (unlikely(tmp > WMULT_CONST))
  1127. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1128. WMULT_SHIFT/2);
  1129. else
  1130. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1131. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1132. }
  1133. static inline unsigned long
  1134. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1135. {
  1136. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1137. }
  1138. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1139. {
  1140. lw->weight += inc;
  1141. lw->inv_weight = 0;
  1142. }
  1143. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1144. {
  1145. lw->weight -= dec;
  1146. lw->inv_weight = 0;
  1147. }
  1148. /*
  1149. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1150. * of tasks with abnormal "nice" values across CPUs the contribution that
  1151. * each task makes to its run queue's load is weighted according to its
  1152. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1153. * scaled version of the new time slice allocation that they receive on time
  1154. * slice expiry etc.
  1155. */
  1156. #define WEIGHT_IDLEPRIO 2
  1157. #define WMULT_IDLEPRIO (1 << 31)
  1158. /*
  1159. * Nice levels are multiplicative, with a gentle 10% change for every
  1160. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1161. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1162. * that remained on nice 0.
  1163. *
  1164. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1165. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1166. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1167. * If a task goes up by ~10% and another task goes down by ~10% then
  1168. * the relative distance between them is ~25%.)
  1169. */
  1170. static const int prio_to_weight[40] = {
  1171. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1172. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1173. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1174. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1175. /* 0 */ 1024, 820, 655, 526, 423,
  1176. /* 5 */ 335, 272, 215, 172, 137,
  1177. /* 10 */ 110, 87, 70, 56, 45,
  1178. /* 15 */ 36, 29, 23, 18, 15,
  1179. };
  1180. /*
  1181. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1182. *
  1183. * In cases where the weight does not change often, we can use the
  1184. * precalculated inverse to speed up arithmetics by turning divisions
  1185. * into multiplications:
  1186. */
  1187. static const u32 prio_to_wmult[40] = {
  1188. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1189. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1190. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1191. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1192. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1193. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1194. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1195. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1196. };
  1197. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1198. /*
  1199. * runqueue iterator, to support SMP load-balancing between different
  1200. * scheduling classes, without having to expose their internal data
  1201. * structures to the load-balancing proper:
  1202. */
  1203. struct rq_iterator {
  1204. void *arg;
  1205. struct task_struct *(*start)(void *);
  1206. struct task_struct *(*next)(void *);
  1207. };
  1208. #ifdef CONFIG_SMP
  1209. static unsigned long
  1210. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1211. unsigned long max_load_move, struct sched_domain *sd,
  1212. enum cpu_idle_type idle, int *all_pinned,
  1213. int *this_best_prio, struct rq_iterator *iterator);
  1214. static int
  1215. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1216. struct sched_domain *sd, enum cpu_idle_type idle,
  1217. struct rq_iterator *iterator);
  1218. #endif
  1219. #ifdef CONFIG_CGROUP_CPUACCT
  1220. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1221. #else
  1222. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1223. #endif
  1224. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1225. {
  1226. update_load_add(&rq->load, load);
  1227. }
  1228. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1229. {
  1230. update_load_sub(&rq->load, load);
  1231. }
  1232. #ifdef CONFIG_SMP
  1233. static unsigned long source_load(int cpu, int type);
  1234. static unsigned long target_load(int cpu, int type);
  1235. static unsigned long cpu_avg_load_per_task(int cpu);
  1236. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1237. #else /* CONFIG_SMP */
  1238. #ifdef CONFIG_FAIR_GROUP_SCHED
  1239. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1240. {
  1241. }
  1242. #endif
  1243. #endif /* CONFIG_SMP */
  1244. #include "sched_stats.h"
  1245. #include "sched_idletask.c"
  1246. #include "sched_fair.c"
  1247. #include "sched_rt.c"
  1248. #ifdef CONFIG_SCHED_DEBUG
  1249. # include "sched_debug.c"
  1250. #endif
  1251. #define sched_class_highest (&rt_sched_class)
  1252. #define for_each_class(class) \
  1253. for (class = sched_class_highest; class; class = class->next)
  1254. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1255. {
  1256. update_load_add(&rq->load, p->se.load.weight);
  1257. }
  1258. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1259. {
  1260. update_load_sub(&rq->load, p->se.load.weight);
  1261. }
  1262. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1263. {
  1264. rq->nr_running++;
  1265. inc_load(rq, p);
  1266. }
  1267. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1268. {
  1269. rq->nr_running--;
  1270. dec_load(rq, p);
  1271. }
  1272. static void set_load_weight(struct task_struct *p)
  1273. {
  1274. if (task_has_rt_policy(p)) {
  1275. p->se.load.weight = prio_to_weight[0] * 2;
  1276. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1277. return;
  1278. }
  1279. /*
  1280. * SCHED_IDLE tasks get minimal weight:
  1281. */
  1282. if (p->policy == SCHED_IDLE) {
  1283. p->se.load.weight = WEIGHT_IDLEPRIO;
  1284. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1285. return;
  1286. }
  1287. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1288. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1289. }
  1290. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1291. {
  1292. sched_info_queued(p);
  1293. p->sched_class->enqueue_task(rq, p, wakeup);
  1294. p->se.on_rq = 1;
  1295. }
  1296. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1297. {
  1298. p->sched_class->dequeue_task(rq, p, sleep);
  1299. p->se.on_rq = 0;
  1300. }
  1301. /*
  1302. * __normal_prio - return the priority that is based on the static prio
  1303. */
  1304. static inline int __normal_prio(struct task_struct *p)
  1305. {
  1306. return p->static_prio;
  1307. }
  1308. /*
  1309. * Calculate the expected normal priority: i.e. priority
  1310. * without taking RT-inheritance into account. Might be
  1311. * boosted by interactivity modifiers. Changes upon fork,
  1312. * setprio syscalls, and whenever the interactivity
  1313. * estimator recalculates.
  1314. */
  1315. static inline int normal_prio(struct task_struct *p)
  1316. {
  1317. int prio;
  1318. if (task_has_rt_policy(p))
  1319. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1320. else
  1321. prio = __normal_prio(p);
  1322. return prio;
  1323. }
  1324. /*
  1325. * Calculate the current priority, i.e. the priority
  1326. * taken into account by the scheduler. This value might
  1327. * be boosted by RT tasks, or might be boosted by
  1328. * interactivity modifiers. Will be RT if the task got
  1329. * RT-boosted. If not then it returns p->normal_prio.
  1330. */
  1331. static int effective_prio(struct task_struct *p)
  1332. {
  1333. p->normal_prio = normal_prio(p);
  1334. /*
  1335. * If we are RT tasks or we were boosted to RT priority,
  1336. * keep the priority unchanged. Otherwise, update priority
  1337. * to the normal priority:
  1338. */
  1339. if (!rt_prio(p->prio))
  1340. return p->normal_prio;
  1341. return p->prio;
  1342. }
  1343. /*
  1344. * activate_task - move a task to the runqueue.
  1345. */
  1346. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1347. {
  1348. if (task_contributes_to_load(p))
  1349. rq->nr_uninterruptible--;
  1350. enqueue_task(rq, p, wakeup);
  1351. inc_nr_running(p, rq);
  1352. }
  1353. /*
  1354. * deactivate_task - remove a task from the runqueue.
  1355. */
  1356. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1357. {
  1358. if (task_contributes_to_load(p))
  1359. rq->nr_uninterruptible++;
  1360. dequeue_task(rq, p, sleep);
  1361. dec_nr_running(p, rq);
  1362. }
  1363. /**
  1364. * task_curr - is this task currently executing on a CPU?
  1365. * @p: the task in question.
  1366. */
  1367. inline int task_curr(const struct task_struct *p)
  1368. {
  1369. return cpu_curr(task_cpu(p)) == p;
  1370. }
  1371. /* Used instead of source_load when we know the type == 0 */
  1372. static unsigned long weighted_cpuload(const int cpu)
  1373. {
  1374. return cpu_rq(cpu)->load.weight;
  1375. }
  1376. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1377. {
  1378. set_task_rq(p, cpu);
  1379. #ifdef CONFIG_SMP
  1380. /*
  1381. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1382. * successfuly executed on another CPU. We must ensure that updates of
  1383. * per-task data have been completed by this moment.
  1384. */
  1385. smp_wmb();
  1386. task_thread_info(p)->cpu = cpu;
  1387. #endif
  1388. }
  1389. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1390. const struct sched_class *prev_class,
  1391. int oldprio, int running)
  1392. {
  1393. if (prev_class != p->sched_class) {
  1394. if (prev_class->switched_from)
  1395. prev_class->switched_from(rq, p, running);
  1396. p->sched_class->switched_to(rq, p, running);
  1397. } else
  1398. p->sched_class->prio_changed(rq, p, oldprio, running);
  1399. }
  1400. #ifdef CONFIG_SMP
  1401. /*
  1402. * Is this task likely cache-hot:
  1403. */
  1404. static int
  1405. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1406. {
  1407. s64 delta;
  1408. /*
  1409. * Buddy candidates are cache hot:
  1410. */
  1411. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1412. return 1;
  1413. if (p->sched_class != &fair_sched_class)
  1414. return 0;
  1415. if (sysctl_sched_migration_cost == -1)
  1416. return 1;
  1417. if (sysctl_sched_migration_cost == 0)
  1418. return 0;
  1419. delta = now - p->se.exec_start;
  1420. return delta < (s64)sysctl_sched_migration_cost;
  1421. }
  1422. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1423. {
  1424. int old_cpu = task_cpu(p);
  1425. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1426. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1427. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1428. u64 clock_offset;
  1429. clock_offset = old_rq->clock - new_rq->clock;
  1430. #ifdef CONFIG_SCHEDSTATS
  1431. if (p->se.wait_start)
  1432. p->se.wait_start -= clock_offset;
  1433. if (p->se.sleep_start)
  1434. p->se.sleep_start -= clock_offset;
  1435. if (p->se.block_start)
  1436. p->se.block_start -= clock_offset;
  1437. if (old_cpu != new_cpu) {
  1438. schedstat_inc(p, se.nr_migrations);
  1439. if (task_hot(p, old_rq->clock, NULL))
  1440. schedstat_inc(p, se.nr_forced2_migrations);
  1441. }
  1442. #endif
  1443. p->se.vruntime -= old_cfsrq->min_vruntime -
  1444. new_cfsrq->min_vruntime;
  1445. __set_task_cpu(p, new_cpu);
  1446. }
  1447. struct migration_req {
  1448. struct list_head list;
  1449. struct task_struct *task;
  1450. int dest_cpu;
  1451. struct completion done;
  1452. };
  1453. /*
  1454. * The task's runqueue lock must be held.
  1455. * Returns true if you have to wait for migration thread.
  1456. */
  1457. static int
  1458. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1459. {
  1460. struct rq *rq = task_rq(p);
  1461. /*
  1462. * If the task is not on a runqueue (and not running), then
  1463. * it is sufficient to simply update the task's cpu field.
  1464. */
  1465. if (!p->se.on_rq && !task_running(rq, p)) {
  1466. set_task_cpu(p, dest_cpu);
  1467. return 0;
  1468. }
  1469. init_completion(&req->done);
  1470. req->task = p;
  1471. req->dest_cpu = dest_cpu;
  1472. list_add(&req->list, &rq->migration_queue);
  1473. return 1;
  1474. }
  1475. /*
  1476. * wait_task_inactive - wait for a thread to unschedule.
  1477. *
  1478. * The caller must ensure that the task *will* unschedule sometime soon,
  1479. * else this function might spin for a *long* time. This function can't
  1480. * be called with interrupts off, or it may introduce deadlock with
  1481. * smp_call_function() if an IPI is sent by the same process we are
  1482. * waiting to become inactive.
  1483. */
  1484. void wait_task_inactive(struct task_struct *p)
  1485. {
  1486. unsigned long flags;
  1487. int running, on_rq;
  1488. struct rq *rq;
  1489. for (;;) {
  1490. /*
  1491. * We do the initial early heuristics without holding
  1492. * any task-queue locks at all. We'll only try to get
  1493. * the runqueue lock when things look like they will
  1494. * work out!
  1495. */
  1496. rq = task_rq(p);
  1497. /*
  1498. * If the task is actively running on another CPU
  1499. * still, just relax and busy-wait without holding
  1500. * any locks.
  1501. *
  1502. * NOTE! Since we don't hold any locks, it's not
  1503. * even sure that "rq" stays as the right runqueue!
  1504. * But we don't care, since "task_running()" will
  1505. * return false if the runqueue has changed and p
  1506. * is actually now running somewhere else!
  1507. */
  1508. while (task_running(rq, p))
  1509. cpu_relax();
  1510. /*
  1511. * Ok, time to look more closely! We need the rq
  1512. * lock now, to be *sure*. If we're wrong, we'll
  1513. * just go back and repeat.
  1514. */
  1515. rq = task_rq_lock(p, &flags);
  1516. running = task_running(rq, p);
  1517. on_rq = p->se.on_rq;
  1518. task_rq_unlock(rq, &flags);
  1519. /*
  1520. * Was it really running after all now that we
  1521. * checked with the proper locks actually held?
  1522. *
  1523. * Oops. Go back and try again..
  1524. */
  1525. if (unlikely(running)) {
  1526. cpu_relax();
  1527. continue;
  1528. }
  1529. /*
  1530. * It's not enough that it's not actively running,
  1531. * it must be off the runqueue _entirely_, and not
  1532. * preempted!
  1533. *
  1534. * So if it wa still runnable (but just not actively
  1535. * running right now), it's preempted, and we should
  1536. * yield - it could be a while.
  1537. */
  1538. if (unlikely(on_rq)) {
  1539. schedule_timeout_uninterruptible(1);
  1540. continue;
  1541. }
  1542. /*
  1543. * Ahh, all good. It wasn't running, and it wasn't
  1544. * runnable, which means that it will never become
  1545. * running in the future either. We're all done!
  1546. */
  1547. break;
  1548. }
  1549. }
  1550. /***
  1551. * kick_process - kick a running thread to enter/exit the kernel
  1552. * @p: the to-be-kicked thread
  1553. *
  1554. * Cause a process which is running on another CPU to enter
  1555. * kernel-mode, without any delay. (to get signals handled.)
  1556. *
  1557. * NOTE: this function doesnt have to take the runqueue lock,
  1558. * because all it wants to ensure is that the remote task enters
  1559. * the kernel. If the IPI races and the task has been migrated
  1560. * to another CPU then no harm is done and the purpose has been
  1561. * achieved as well.
  1562. */
  1563. void kick_process(struct task_struct *p)
  1564. {
  1565. int cpu;
  1566. preempt_disable();
  1567. cpu = task_cpu(p);
  1568. if ((cpu != smp_processor_id()) && task_curr(p))
  1569. smp_send_reschedule(cpu);
  1570. preempt_enable();
  1571. }
  1572. /*
  1573. * Return a low guess at the load of a migration-source cpu weighted
  1574. * according to the scheduling class and "nice" value.
  1575. *
  1576. * We want to under-estimate the load of migration sources, to
  1577. * balance conservatively.
  1578. */
  1579. static unsigned long source_load(int cpu, int type)
  1580. {
  1581. struct rq *rq = cpu_rq(cpu);
  1582. unsigned long total = weighted_cpuload(cpu);
  1583. if (type == 0)
  1584. return total;
  1585. return min(rq->cpu_load[type-1], total);
  1586. }
  1587. /*
  1588. * Return a high guess at the load of a migration-target cpu weighted
  1589. * according to the scheduling class and "nice" value.
  1590. */
  1591. static unsigned long target_load(int cpu, int type)
  1592. {
  1593. struct rq *rq = cpu_rq(cpu);
  1594. unsigned long total = weighted_cpuload(cpu);
  1595. if (type == 0)
  1596. return total;
  1597. return max(rq->cpu_load[type-1], total);
  1598. }
  1599. /*
  1600. * Return the average load per task on the cpu's run queue
  1601. */
  1602. static unsigned long cpu_avg_load_per_task(int cpu)
  1603. {
  1604. struct rq *rq = cpu_rq(cpu);
  1605. unsigned long total = weighted_cpuload(cpu);
  1606. unsigned long n = rq->nr_running;
  1607. return n ? total / n : SCHED_LOAD_SCALE;
  1608. }
  1609. /*
  1610. * find_idlest_group finds and returns the least busy CPU group within the
  1611. * domain.
  1612. */
  1613. static struct sched_group *
  1614. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1615. {
  1616. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1617. unsigned long min_load = ULONG_MAX, this_load = 0;
  1618. int load_idx = sd->forkexec_idx;
  1619. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1620. do {
  1621. unsigned long load, avg_load;
  1622. int local_group;
  1623. int i;
  1624. /* Skip over this group if it has no CPUs allowed */
  1625. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1626. continue;
  1627. local_group = cpu_isset(this_cpu, group->cpumask);
  1628. /* Tally up the load of all CPUs in the group */
  1629. avg_load = 0;
  1630. for_each_cpu_mask(i, group->cpumask) {
  1631. /* Bias balancing toward cpus of our domain */
  1632. if (local_group)
  1633. load = source_load(i, load_idx);
  1634. else
  1635. load = target_load(i, load_idx);
  1636. avg_load += load;
  1637. }
  1638. /* Adjust by relative CPU power of the group */
  1639. avg_load = sg_div_cpu_power(group,
  1640. avg_load * SCHED_LOAD_SCALE);
  1641. if (local_group) {
  1642. this_load = avg_load;
  1643. this = group;
  1644. } else if (avg_load < min_load) {
  1645. min_load = avg_load;
  1646. idlest = group;
  1647. }
  1648. } while (group = group->next, group != sd->groups);
  1649. if (!idlest || 100*this_load < imbalance*min_load)
  1650. return NULL;
  1651. return idlest;
  1652. }
  1653. /*
  1654. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1655. */
  1656. static int
  1657. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1658. cpumask_t *tmp)
  1659. {
  1660. unsigned long load, min_load = ULONG_MAX;
  1661. int idlest = -1;
  1662. int i;
  1663. /* Traverse only the allowed CPUs */
  1664. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1665. for_each_cpu_mask(i, *tmp) {
  1666. load = weighted_cpuload(i);
  1667. if (load < min_load || (load == min_load && i == this_cpu)) {
  1668. min_load = load;
  1669. idlest = i;
  1670. }
  1671. }
  1672. return idlest;
  1673. }
  1674. /*
  1675. * sched_balance_self: balance the current task (running on cpu) in domains
  1676. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1677. * SD_BALANCE_EXEC.
  1678. *
  1679. * Balance, ie. select the least loaded group.
  1680. *
  1681. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1682. *
  1683. * preempt must be disabled.
  1684. */
  1685. static int sched_balance_self(int cpu, int flag)
  1686. {
  1687. struct task_struct *t = current;
  1688. struct sched_domain *tmp, *sd = NULL;
  1689. for_each_domain(cpu, tmp) {
  1690. /*
  1691. * If power savings logic is enabled for a domain, stop there.
  1692. */
  1693. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1694. break;
  1695. if (tmp->flags & flag)
  1696. sd = tmp;
  1697. }
  1698. while (sd) {
  1699. cpumask_t span, tmpmask;
  1700. struct sched_group *group;
  1701. int new_cpu, weight;
  1702. if (!(sd->flags & flag)) {
  1703. sd = sd->child;
  1704. continue;
  1705. }
  1706. span = sd->span;
  1707. group = find_idlest_group(sd, t, cpu);
  1708. if (!group) {
  1709. sd = sd->child;
  1710. continue;
  1711. }
  1712. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1713. if (new_cpu == -1 || new_cpu == cpu) {
  1714. /* Now try balancing at a lower domain level of cpu */
  1715. sd = sd->child;
  1716. continue;
  1717. }
  1718. /* Now try balancing at a lower domain level of new_cpu */
  1719. cpu = new_cpu;
  1720. sd = NULL;
  1721. weight = cpus_weight(span);
  1722. for_each_domain(cpu, tmp) {
  1723. if (weight <= cpus_weight(tmp->span))
  1724. break;
  1725. if (tmp->flags & flag)
  1726. sd = tmp;
  1727. }
  1728. /* while loop will break here if sd == NULL */
  1729. }
  1730. return cpu;
  1731. }
  1732. #endif /* CONFIG_SMP */
  1733. /***
  1734. * try_to_wake_up - wake up a thread
  1735. * @p: the to-be-woken-up thread
  1736. * @state: the mask of task states that can be woken
  1737. * @sync: do a synchronous wakeup?
  1738. *
  1739. * Put it on the run-queue if it's not already there. The "current"
  1740. * thread is always on the run-queue (except when the actual
  1741. * re-schedule is in progress), and as such you're allowed to do
  1742. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1743. * runnable without the overhead of this.
  1744. *
  1745. * returns failure only if the task is already active.
  1746. */
  1747. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1748. {
  1749. int cpu, orig_cpu, this_cpu, success = 0;
  1750. unsigned long flags;
  1751. long old_state;
  1752. struct rq *rq;
  1753. if (!sched_feat(SYNC_WAKEUPS))
  1754. sync = 0;
  1755. smp_wmb();
  1756. rq = task_rq_lock(p, &flags);
  1757. old_state = p->state;
  1758. if (!(old_state & state))
  1759. goto out;
  1760. if (p->se.on_rq)
  1761. goto out_running;
  1762. cpu = task_cpu(p);
  1763. orig_cpu = cpu;
  1764. this_cpu = smp_processor_id();
  1765. #ifdef CONFIG_SMP
  1766. if (unlikely(task_running(rq, p)))
  1767. goto out_activate;
  1768. cpu = p->sched_class->select_task_rq(p, sync);
  1769. if (cpu != orig_cpu) {
  1770. set_task_cpu(p, cpu);
  1771. task_rq_unlock(rq, &flags);
  1772. /* might preempt at this point */
  1773. rq = task_rq_lock(p, &flags);
  1774. old_state = p->state;
  1775. if (!(old_state & state))
  1776. goto out;
  1777. if (p->se.on_rq)
  1778. goto out_running;
  1779. this_cpu = smp_processor_id();
  1780. cpu = task_cpu(p);
  1781. }
  1782. #ifdef CONFIG_SCHEDSTATS
  1783. schedstat_inc(rq, ttwu_count);
  1784. if (cpu == this_cpu)
  1785. schedstat_inc(rq, ttwu_local);
  1786. else {
  1787. struct sched_domain *sd;
  1788. for_each_domain(this_cpu, sd) {
  1789. if (cpu_isset(cpu, sd->span)) {
  1790. schedstat_inc(sd, ttwu_wake_remote);
  1791. break;
  1792. }
  1793. }
  1794. }
  1795. #endif /* CONFIG_SCHEDSTATS */
  1796. out_activate:
  1797. #endif /* CONFIG_SMP */
  1798. schedstat_inc(p, se.nr_wakeups);
  1799. if (sync)
  1800. schedstat_inc(p, se.nr_wakeups_sync);
  1801. if (orig_cpu != cpu)
  1802. schedstat_inc(p, se.nr_wakeups_migrate);
  1803. if (cpu == this_cpu)
  1804. schedstat_inc(p, se.nr_wakeups_local);
  1805. else
  1806. schedstat_inc(p, se.nr_wakeups_remote);
  1807. update_rq_clock(rq);
  1808. activate_task(rq, p, 1);
  1809. success = 1;
  1810. out_running:
  1811. check_preempt_curr(rq, p);
  1812. p->state = TASK_RUNNING;
  1813. #ifdef CONFIG_SMP
  1814. if (p->sched_class->task_wake_up)
  1815. p->sched_class->task_wake_up(rq, p);
  1816. #endif
  1817. out:
  1818. task_rq_unlock(rq, &flags);
  1819. return success;
  1820. }
  1821. int wake_up_process(struct task_struct *p)
  1822. {
  1823. return try_to_wake_up(p, TASK_ALL, 0);
  1824. }
  1825. EXPORT_SYMBOL(wake_up_process);
  1826. int wake_up_state(struct task_struct *p, unsigned int state)
  1827. {
  1828. return try_to_wake_up(p, state, 0);
  1829. }
  1830. /*
  1831. * Perform scheduler related setup for a newly forked process p.
  1832. * p is forked by current.
  1833. *
  1834. * __sched_fork() is basic setup used by init_idle() too:
  1835. */
  1836. static void __sched_fork(struct task_struct *p)
  1837. {
  1838. p->se.exec_start = 0;
  1839. p->se.sum_exec_runtime = 0;
  1840. p->se.prev_sum_exec_runtime = 0;
  1841. p->se.last_wakeup = 0;
  1842. p->se.avg_overlap = 0;
  1843. #ifdef CONFIG_SCHEDSTATS
  1844. p->se.wait_start = 0;
  1845. p->se.sum_sleep_runtime = 0;
  1846. p->se.sleep_start = 0;
  1847. p->se.block_start = 0;
  1848. p->se.sleep_max = 0;
  1849. p->se.block_max = 0;
  1850. p->se.exec_max = 0;
  1851. p->se.slice_max = 0;
  1852. p->se.wait_max = 0;
  1853. #endif
  1854. INIT_LIST_HEAD(&p->rt.run_list);
  1855. p->se.on_rq = 0;
  1856. INIT_LIST_HEAD(&p->se.group_node);
  1857. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1858. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1859. #endif
  1860. /*
  1861. * We mark the process as running here, but have not actually
  1862. * inserted it onto the runqueue yet. This guarantees that
  1863. * nobody will actually run it, and a signal or other external
  1864. * event cannot wake it up and insert it on the runqueue either.
  1865. */
  1866. p->state = TASK_RUNNING;
  1867. }
  1868. /*
  1869. * fork()/clone()-time setup:
  1870. */
  1871. void sched_fork(struct task_struct *p, int clone_flags)
  1872. {
  1873. int cpu = get_cpu();
  1874. __sched_fork(p);
  1875. #ifdef CONFIG_SMP
  1876. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1877. #endif
  1878. set_task_cpu(p, cpu);
  1879. /*
  1880. * Make sure we do not leak PI boosting priority to the child:
  1881. */
  1882. p->prio = current->normal_prio;
  1883. if (!rt_prio(p->prio))
  1884. p->sched_class = &fair_sched_class;
  1885. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1886. if (likely(sched_info_on()))
  1887. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1888. #endif
  1889. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1890. p->oncpu = 0;
  1891. #endif
  1892. #ifdef CONFIG_PREEMPT
  1893. /* Want to start with kernel preemption disabled. */
  1894. task_thread_info(p)->preempt_count = 1;
  1895. #endif
  1896. put_cpu();
  1897. }
  1898. /*
  1899. * wake_up_new_task - wake up a newly created task for the first time.
  1900. *
  1901. * This function will do some initial scheduler statistics housekeeping
  1902. * that must be done for every newly created context, then puts the task
  1903. * on the runqueue and wakes it.
  1904. */
  1905. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1906. {
  1907. unsigned long flags;
  1908. struct rq *rq;
  1909. rq = task_rq_lock(p, &flags);
  1910. BUG_ON(p->state != TASK_RUNNING);
  1911. update_rq_clock(rq);
  1912. p->prio = effective_prio(p);
  1913. if (!p->sched_class->task_new || !current->se.on_rq) {
  1914. activate_task(rq, p, 0);
  1915. } else {
  1916. /*
  1917. * Let the scheduling class do new task startup
  1918. * management (if any):
  1919. */
  1920. p->sched_class->task_new(rq, p);
  1921. inc_nr_running(p, rq);
  1922. }
  1923. check_preempt_curr(rq, p);
  1924. #ifdef CONFIG_SMP
  1925. if (p->sched_class->task_wake_up)
  1926. p->sched_class->task_wake_up(rq, p);
  1927. #endif
  1928. task_rq_unlock(rq, &flags);
  1929. }
  1930. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1931. /**
  1932. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1933. * @notifier: notifier struct to register
  1934. */
  1935. void preempt_notifier_register(struct preempt_notifier *notifier)
  1936. {
  1937. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1938. }
  1939. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1940. /**
  1941. * preempt_notifier_unregister - no longer interested in preemption notifications
  1942. * @notifier: notifier struct to unregister
  1943. *
  1944. * This is safe to call from within a preemption notifier.
  1945. */
  1946. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1947. {
  1948. hlist_del(&notifier->link);
  1949. }
  1950. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1951. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1952. {
  1953. struct preempt_notifier *notifier;
  1954. struct hlist_node *node;
  1955. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1956. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1957. }
  1958. static void
  1959. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1960. struct task_struct *next)
  1961. {
  1962. struct preempt_notifier *notifier;
  1963. struct hlist_node *node;
  1964. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1965. notifier->ops->sched_out(notifier, next);
  1966. }
  1967. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1968. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1969. {
  1970. }
  1971. static void
  1972. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1973. struct task_struct *next)
  1974. {
  1975. }
  1976. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1977. /**
  1978. * prepare_task_switch - prepare to switch tasks
  1979. * @rq: the runqueue preparing to switch
  1980. * @prev: the current task that is being switched out
  1981. * @next: the task we are going to switch to.
  1982. *
  1983. * This is called with the rq lock held and interrupts off. It must
  1984. * be paired with a subsequent finish_task_switch after the context
  1985. * switch.
  1986. *
  1987. * prepare_task_switch sets up locking and calls architecture specific
  1988. * hooks.
  1989. */
  1990. static inline void
  1991. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1992. struct task_struct *next)
  1993. {
  1994. fire_sched_out_preempt_notifiers(prev, next);
  1995. prepare_lock_switch(rq, next);
  1996. prepare_arch_switch(next);
  1997. }
  1998. /**
  1999. * finish_task_switch - clean up after a task-switch
  2000. * @rq: runqueue associated with task-switch
  2001. * @prev: the thread we just switched away from.
  2002. *
  2003. * finish_task_switch must be called after the context switch, paired
  2004. * with a prepare_task_switch call before the context switch.
  2005. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2006. * and do any other architecture-specific cleanup actions.
  2007. *
  2008. * Note that we may have delayed dropping an mm in context_switch(). If
  2009. * so, we finish that here outside of the runqueue lock. (Doing it
  2010. * with the lock held can cause deadlocks; see schedule() for
  2011. * details.)
  2012. */
  2013. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2014. __releases(rq->lock)
  2015. {
  2016. struct mm_struct *mm = rq->prev_mm;
  2017. long prev_state;
  2018. rq->prev_mm = NULL;
  2019. /*
  2020. * A task struct has one reference for the use as "current".
  2021. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2022. * schedule one last time. The schedule call will never return, and
  2023. * the scheduled task must drop that reference.
  2024. * The test for TASK_DEAD must occur while the runqueue locks are
  2025. * still held, otherwise prev could be scheduled on another cpu, die
  2026. * there before we look at prev->state, and then the reference would
  2027. * be dropped twice.
  2028. * Manfred Spraul <manfred@colorfullife.com>
  2029. */
  2030. prev_state = prev->state;
  2031. finish_arch_switch(prev);
  2032. finish_lock_switch(rq, prev);
  2033. #ifdef CONFIG_SMP
  2034. if (current->sched_class->post_schedule)
  2035. current->sched_class->post_schedule(rq);
  2036. #endif
  2037. fire_sched_in_preempt_notifiers(current);
  2038. if (mm)
  2039. mmdrop(mm);
  2040. if (unlikely(prev_state == TASK_DEAD)) {
  2041. /*
  2042. * Remove function-return probe instances associated with this
  2043. * task and put them back on the free list.
  2044. */
  2045. kprobe_flush_task(prev);
  2046. put_task_struct(prev);
  2047. }
  2048. }
  2049. /**
  2050. * schedule_tail - first thing a freshly forked thread must call.
  2051. * @prev: the thread we just switched away from.
  2052. */
  2053. asmlinkage void schedule_tail(struct task_struct *prev)
  2054. __releases(rq->lock)
  2055. {
  2056. struct rq *rq = this_rq();
  2057. finish_task_switch(rq, prev);
  2058. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2059. /* In this case, finish_task_switch does not reenable preemption */
  2060. preempt_enable();
  2061. #endif
  2062. if (current->set_child_tid)
  2063. put_user(task_pid_vnr(current), current->set_child_tid);
  2064. }
  2065. /*
  2066. * context_switch - switch to the new MM and the new
  2067. * thread's register state.
  2068. */
  2069. static inline void
  2070. context_switch(struct rq *rq, struct task_struct *prev,
  2071. struct task_struct *next)
  2072. {
  2073. struct mm_struct *mm, *oldmm;
  2074. prepare_task_switch(rq, prev, next);
  2075. mm = next->mm;
  2076. oldmm = prev->active_mm;
  2077. /*
  2078. * For paravirt, this is coupled with an exit in switch_to to
  2079. * combine the page table reload and the switch backend into
  2080. * one hypercall.
  2081. */
  2082. arch_enter_lazy_cpu_mode();
  2083. if (unlikely(!mm)) {
  2084. next->active_mm = oldmm;
  2085. atomic_inc(&oldmm->mm_count);
  2086. enter_lazy_tlb(oldmm, next);
  2087. } else
  2088. switch_mm(oldmm, mm, next);
  2089. if (unlikely(!prev->mm)) {
  2090. prev->active_mm = NULL;
  2091. rq->prev_mm = oldmm;
  2092. }
  2093. /*
  2094. * Since the runqueue lock will be released by the next
  2095. * task (which is an invalid locking op but in the case
  2096. * of the scheduler it's an obvious special-case), so we
  2097. * do an early lockdep release here:
  2098. */
  2099. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2100. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2101. #endif
  2102. /* Here we just switch the register state and the stack. */
  2103. switch_to(prev, next, prev);
  2104. barrier();
  2105. /*
  2106. * this_rq must be evaluated again because prev may have moved
  2107. * CPUs since it called schedule(), thus the 'rq' on its stack
  2108. * frame will be invalid.
  2109. */
  2110. finish_task_switch(this_rq(), prev);
  2111. }
  2112. /*
  2113. * nr_running, nr_uninterruptible and nr_context_switches:
  2114. *
  2115. * externally visible scheduler statistics: current number of runnable
  2116. * threads, current number of uninterruptible-sleeping threads, total
  2117. * number of context switches performed since bootup.
  2118. */
  2119. unsigned long nr_running(void)
  2120. {
  2121. unsigned long i, sum = 0;
  2122. for_each_online_cpu(i)
  2123. sum += cpu_rq(i)->nr_running;
  2124. return sum;
  2125. }
  2126. unsigned long nr_uninterruptible(void)
  2127. {
  2128. unsigned long i, sum = 0;
  2129. for_each_possible_cpu(i)
  2130. sum += cpu_rq(i)->nr_uninterruptible;
  2131. /*
  2132. * Since we read the counters lockless, it might be slightly
  2133. * inaccurate. Do not allow it to go below zero though:
  2134. */
  2135. if (unlikely((long)sum < 0))
  2136. sum = 0;
  2137. return sum;
  2138. }
  2139. unsigned long long nr_context_switches(void)
  2140. {
  2141. int i;
  2142. unsigned long long sum = 0;
  2143. for_each_possible_cpu(i)
  2144. sum += cpu_rq(i)->nr_switches;
  2145. return sum;
  2146. }
  2147. unsigned long nr_iowait(void)
  2148. {
  2149. unsigned long i, sum = 0;
  2150. for_each_possible_cpu(i)
  2151. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2152. return sum;
  2153. }
  2154. unsigned long nr_active(void)
  2155. {
  2156. unsigned long i, running = 0, uninterruptible = 0;
  2157. for_each_online_cpu(i) {
  2158. running += cpu_rq(i)->nr_running;
  2159. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2160. }
  2161. if (unlikely((long)uninterruptible < 0))
  2162. uninterruptible = 0;
  2163. return running + uninterruptible;
  2164. }
  2165. /*
  2166. * Update rq->cpu_load[] statistics. This function is usually called every
  2167. * scheduler tick (TICK_NSEC).
  2168. */
  2169. static void update_cpu_load(struct rq *this_rq)
  2170. {
  2171. unsigned long this_load = this_rq->load.weight;
  2172. int i, scale;
  2173. this_rq->nr_load_updates++;
  2174. /* Update our load: */
  2175. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2176. unsigned long old_load, new_load;
  2177. /* scale is effectively 1 << i now, and >> i divides by scale */
  2178. old_load = this_rq->cpu_load[i];
  2179. new_load = this_load;
  2180. /*
  2181. * Round up the averaging division if load is increasing. This
  2182. * prevents us from getting stuck on 9 if the load is 10, for
  2183. * example.
  2184. */
  2185. if (new_load > old_load)
  2186. new_load += scale-1;
  2187. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2188. }
  2189. }
  2190. #ifdef CONFIG_SMP
  2191. /*
  2192. * double_rq_lock - safely lock two runqueues
  2193. *
  2194. * Note this does not disable interrupts like task_rq_lock,
  2195. * you need to do so manually before calling.
  2196. */
  2197. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2198. __acquires(rq1->lock)
  2199. __acquires(rq2->lock)
  2200. {
  2201. BUG_ON(!irqs_disabled());
  2202. if (rq1 == rq2) {
  2203. spin_lock(&rq1->lock);
  2204. __acquire(rq2->lock); /* Fake it out ;) */
  2205. } else {
  2206. if (rq1 < rq2) {
  2207. spin_lock(&rq1->lock);
  2208. spin_lock(&rq2->lock);
  2209. } else {
  2210. spin_lock(&rq2->lock);
  2211. spin_lock(&rq1->lock);
  2212. }
  2213. }
  2214. update_rq_clock(rq1);
  2215. update_rq_clock(rq2);
  2216. }
  2217. /*
  2218. * double_rq_unlock - safely unlock two runqueues
  2219. *
  2220. * Note this does not restore interrupts like task_rq_unlock,
  2221. * you need to do so manually after calling.
  2222. */
  2223. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2224. __releases(rq1->lock)
  2225. __releases(rq2->lock)
  2226. {
  2227. spin_unlock(&rq1->lock);
  2228. if (rq1 != rq2)
  2229. spin_unlock(&rq2->lock);
  2230. else
  2231. __release(rq2->lock);
  2232. }
  2233. /*
  2234. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2235. */
  2236. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2237. __releases(this_rq->lock)
  2238. __acquires(busiest->lock)
  2239. __acquires(this_rq->lock)
  2240. {
  2241. int ret = 0;
  2242. if (unlikely(!irqs_disabled())) {
  2243. /* printk() doesn't work good under rq->lock */
  2244. spin_unlock(&this_rq->lock);
  2245. BUG_ON(1);
  2246. }
  2247. if (unlikely(!spin_trylock(&busiest->lock))) {
  2248. if (busiest < this_rq) {
  2249. spin_unlock(&this_rq->lock);
  2250. spin_lock(&busiest->lock);
  2251. spin_lock(&this_rq->lock);
  2252. ret = 1;
  2253. } else
  2254. spin_lock(&busiest->lock);
  2255. }
  2256. return ret;
  2257. }
  2258. /*
  2259. * If dest_cpu is allowed for this process, migrate the task to it.
  2260. * This is accomplished by forcing the cpu_allowed mask to only
  2261. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2262. * the cpu_allowed mask is restored.
  2263. */
  2264. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2265. {
  2266. struct migration_req req;
  2267. unsigned long flags;
  2268. struct rq *rq;
  2269. rq = task_rq_lock(p, &flags);
  2270. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2271. || unlikely(cpu_is_offline(dest_cpu)))
  2272. goto out;
  2273. /* force the process onto the specified CPU */
  2274. if (migrate_task(p, dest_cpu, &req)) {
  2275. /* Need to wait for migration thread (might exit: take ref). */
  2276. struct task_struct *mt = rq->migration_thread;
  2277. get_task_struct(mt);
  2278. task_rq_unlock(rq, &flags);
  2279. wake_up_process(mt);
  2280. put_task_struct(mt);
  2281. wait_for_completion(&req.done);
  2282. return;
  2283. }
  2284. out:
  2285. task_rq_unlock(rq, &flags);
  2286. }
  2287. /*
  2288. * sched_exec - execve() is a valuable balancing opportunity, because at
  2289. * this point the task has the smallest effective memory and cache footprint.
  2290. */
  2291. void sched_exec(void)
  2292. {
  2293. int new_cpu, this_cpu = get_cpu();
  2294. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2295. put_cpu();
  2296. if (new_cpu != this_cpu)
  2297. sched_migrate_task(current, new_cpu);
  2298. }
  2299. /*
  2300. * pull_task - move a task from a remote runqueue to the local runqueue.
  2301. * Both runqueues must be locked.
  2302. */
  2303. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2304. struct rq *this_rq, int this_cpu)
  2305. {
  2306. deactivate_task(src_rq, p, 0);
  2307. set_task_cpu(p, this_cpu);
  2308. activate_task(this_rq, p, 0);
  2309. /*
  2310. * Note that idle threads have a prio of MAX_PRIO, for this test
  2311. * to be always true for them.
  2312. */
  2313. check_preempt_curr(this_rq, p);
  2314. }
  2315. /*
  2316. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2317. */
  2318. static
  2319. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2320. struct sched_domain *sd, enum cpu_idle_type idle,
  2321. int *all_pinned)
  2322. {
  2323. /*
  2324. * We do not migrate tasks that are:
  2325. * 1) running (obviously), or
  2326. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2327. * 3) are cache-hot on their current CPU.
  2328. */
  2329. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2330. schedstat_inc(p, se.nr_failed_migrations_affine);
  2331. return 0;
  2332. }
  2333. *all_pinned = 0;
  2334. if (task_running(rq, p)) {
  2335. schedstat_inc(p, se.nr_failed_migrations_running);
  2336. return 0;
  2337. }
  2338. /*
  2339. * Aggressive migration if:
  2340. * 1) task is cache cold, or
  2341. * 2) too many balance attempts have failed.
  2342. */
  2343. if (!task_hot(p, rq->clock, sd) ||
  2344. sd->nr_balance_failed > sd->cache_nice_tries) {
  2345. #ifdef CONFIG_SCHEDSTATS
  2346. if (task_hot(p, rq->clock, sd)) {
  2347. schedstat_inc(sd, lb_hot_gained[idle]);
  2348. schedstat_inc(p, se.nr_forced_migrations);
  2349. }
  2350. #endif
  2351. return 1;
  2352. }
  2353. if (task_hot(p, rq->clock, sd)) {
  2354. schedstat_inc(p, se.nr_failed_migrations_hot);
  2355. return 0;
  2356. }
  2357. return 1;
  2358. }
  2359. static unsigned long
  2360. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2361. unsigned long max_load_move, struct sched_domain *sd,
  2362. enum cpu_idle_type idle, int *all_pinned,
  2363. int *this_best_prio, struct rq_iterator *iterator)
  2364. {
  2365. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2366. struct task_struct *p;
  2367. long rem_load_move = max_load_move;
  2368. if (max_load_move == 0)
  2369. goto out;
  2370. pinned = 1;
  2371. /*
  2372. * Start the load-balancing iterator:
  2373. */
  2374. p = iterator->start(iterator->arg);
  2375. next:
  2376. if (!p || loops++ > sysctl_sched_nr_migrate)
  2377. goto out;
  2378. /*
  2379. * To help distribute high priority tasks across CPUs we don't
  2380. * skip a task if it will be the highest priority task (i.e. smallest
  2381. * prio value) on its new queue regardless of its load weight
  2382. */
  2383. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2384. SCHED_LOAD_SCALE_FUZZ;
  2385. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2386. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2387. p = iterator->next(iterator->arg);
  2388. goto next;
  2389. }
  2390. pull_task(busiest, p, this_rq, this_cpu);
  2391. pulled++;
  2392. rem_load_move -= p->se.load.weight;
  2393. /*
  2394. * We only want to steal up to the prescribed amount of weighted load.
  2395. */
  2396. if (rem_load_move > 0) {
  2397. if (p->prio < *this_best_prio)
  2398. *this_best_prio = p->prio;
  2399. p = iterator->next(iterator->arg);
  2400. goto next;
  2401. }
  2402. out:
  2403. /*
  2404. * Right now, this is one of only two places pull_task() is called,
  2405. * so we can safely collect pull_task() stats here rather than
  2406. * inside pull_task().
  2407. */
  2408. schedstat_add(sd, lb_gained[idle], pulled);
  2409. if (all_pinned)
  2410. *all_pinned = pinned;
  2411. return max_load_move - rem_load_move;
  2412. }
  2413. /*
  2414. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2415. * this_rq, as part of a balancing operation within domain "sd".
  2416. * Returns 1 if successful and 0 otherwise.
  2417. *
  2418. * Called with both runqueues locked.
  2419. */
  2420. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2421. unsigned long max_load_move,
  2422. struct sched_domain *sd, enum cpu_idle_type idle,
  2423. int *all_pinned)
  2424. {
  2425. const struct sched_class *class = sched_class_highest;
  2426. unsigned long total_load_moved = 0;
  2427. int this_best_prio = this_rq->curr->prio;
  2428. do {
  2429. total_load_moved +=
  2430. class->load_balance(this_rq, this_cpu, busiest,
  2431. max_load_move - total_load_moved,
  2432. sd, idle, all_pinned, &this_best_prio);
  2433. class = class->next;
  2434. } while (class && max_load_move > total_load_moved);
  2435. return total_load_moved > 0;
  2436. }
  2437. static int
  2438. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2439. struct sched_domain *sd, enum cpu_idle_type idle,
  2440. struct rq_iterator *iterator)
  2441. {
  2442. struct task_struct *p = iterator->start(iterator->arg);
  2443. int pinned = 0;
  2444. while (p) {
  2445. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2446. pull_task(busiest, p, this_rq, this_cpu);
  2447. /*
  2448. * Right now, this is only the second place pull_task()
  2449. * is called, so we can safely collect pull_task()
  2450. * stats here rather than inside pull_task().
  2451. */
  2452. schedstat_inc(sd, lb_gained[idle]);
  2453. return 1;
  2454. }
  2455. p = iterator->next(iterator->arg);
  2456. }
  2457. return 0;
  2458. }
  2459. /*
  2460. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2461. * part of active balancing operations within "domain".
  2462. * Returns 1 if successful and 0 otherwise.
  2463. *
  2464. * Called with both runqueues locked.
  2465. */
  2466. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2467. struct sched_domain *sd, enum cpu_idle_type idle)
  2468. {
  2469. const struct sched_class *class;
  2470. for (class = sched_class_highest; class; class = class->next)
  2471. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2472. return 1;
  2473. return 0;
  2474. }
  2475. /*
  2476. * find_busiest_group finds and returns the busiest CPU group within the
  2477. * domain. It calculates and returns the amount of weighted load which
  2478. * should be moved to restore balance via the imbalance parameter.
  2479. */
  2480. static struct sched_group *
  2481. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2482. unsigned long *imbalance, enum cpu_idle_type idle,
  2483. int *sd_idle, const cpumask_t *cpus, int *balance)
  2484. {
  2485. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2486. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2487. unsigned long max_pull;
  2488. unsigned long busiest_load_per_task, busiest_nr_running;
  2489. unsigned long this_load_per_task, this_nr_running;
  2490. int load_idx, group_imb = 0;
  2491. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2492. int power_savings_balance = 1;
  2493. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2494. unsigned long min_nr_running = ULONG_MAX;
  2495. struct sched_group *group_min = NULL, *group_leader = NULL;
  2496. #endif
  2497. max_load = this_load = total_load = total_pwr = 0;
  2498. busiest_load_per_task = busiest_nr_running = 0;
  2499. this_load_per_task = this_nr_running = 0;
  2500. if (idle == CPU_NOT_IDLE)
  2501. load_idx = sd->busy_idx;
  2502. else if (idle == CPU_NEWLY_IDLE)
  2503. load_idx = sd->newidle_idx;
  2504. else
  2505. load_idx = sd->idle_idx;
  2506. do {
  2507. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2508. int local_group;
  2509. int i;
  2510. int __group_imb = 0;
  2511. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2512. unsigned long sum_nr_running, sum_weighted_load;
  2513. local_group = cpu_isset(this_cpu, group->cpumask);
  2514. if (local_group)
  2515. balance_cpu = first_cpu(group->cpumask);
  2516. /* Tally up the load of all CPUs in the group */
  2517. sum_weighted_load = sum_nr_running = avg_load = 0;
  2518. max_cpu_load = 0;
  2519. min_cpu_load = ~0UL;
  2520. for_each_cpu_mask(i, group->cpumask) {
  2521. struct rq *rq;
  2522. if (!cpu_isset(i, *cpus))
  2523. continue;
  2524. rq = cpu_rq(i);
  2525. if (*sd_idle && rq->nr_running)
  2526. *sd_idle = 0;
  2527. /* Bias balancing toward cpus of our domain */
  2528. if (local_group) {
  2529. if (idle_cpu(i) && !first_idle_cpu) {
  2530. first_idle_cpu = 1;
  2531. balance_cpu = i;
  2532. }
  2533. load = target_load(i, load_idx);
  2534. } else {
  2535. load = source_load(i, load_idx);
  2536. if (load > max_cpu_load)
  2537. max_cpu_load = load;
  2538. if (min_cpu_load > load)
  2539. min_cpu_load = load;
  2540. }
  2541. avg_load += load;
  2542. sum_nr_running += rq->nr_running;
  2543. sum_weighted_load += weighted_cpuload(i);
  2544. }
  2545. /*
  2546. * First idle cpu or the first cpu(busiest) in this sched group
  2547. * is eligible for doing load balancing at this and above
  2548. * domains. In the newly idle case, we will allow all the cpu's
  2549. * to do the newly idle load balance.
  2550. */
  2551. if (idle != CPU_NEWLY_IDLE && local_group &&
  2552. balance_cpu != this_cpu && balance) {
  2553. *balance = 0;
  2554. goto ret;
  2555. }
  2556. total_load += avg_load;
  2557. total_pwr += group->__cpu_power;
  2558. /* Adjust by relative CPU power of the group */
  2559. avg_load = sg_div_cpu_power(group,
  2560. avg_load * SCHED_LOAD_SCALE);
  2561. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2562. __group_imb = 1;
  2563. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2564. if (local_group) {
  2565. this_load = avg_load;
  2566. this = group;
  2567. this_nr_running = sum_nr_running;
  2568. this_load_per_task = sum_weighted_load;
  2569. } else if (avg_load > max_load &&
  2570. (sum_nr_running > group_capacity || __group_imb)) {
  2571. max_load = avg_load;
  2572. busiest = group;
  2573. busiest_nr_running = sum_nr_running;
  2574. busiest_load_per_task = sum_weighted_load;
  2575. group_imb = __group_imb;
  2576. }
  2577. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2578. /*
  2579. * Busy processors will not participate in power savings
  2580. * balance.
  2581. */
  2582. if (idle == CPU_NOT_IDLE ||
  2583. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2584. goto group_next;
  2585. /*
  2586. * If the local group is idle or completely loaded
  2587. * no need to do power savings balance at this domain
  2588. */
  2589. if (local_group && (this_nr_running >= group_capacity ||
  2590. !this_nr_running))
  2591. power_savings_balance = 0;
  2592. /*
  2593. * If a group is already running at full capacity or idle,
  2594. * don't include that group in power savings calculations
  2595. */
  2596. if (!power_savings_balance || sum_nr_running >= group_capacity
  2597. || !sum_nr_running)
  2598. goto group_next;
  2599. /*
  2600. * Calculate the group which has the least non-idle load.
  2601. * This is the group from where we need to pick up the load
  2602. * for saving power
  2603. */
  2604. if ((sum_nr_running < min_nr_running) ||
  2605. (sum_nr_running == min_nr_running &&
  2606. first_cpu(group->cpumask) <
  2607. first_cpu(group_min->cpumask))) {
  2608. group_min = group;
  2609. min_nr_running = sum_nr_running;
  2610. min_load_per_task = sum_weighted_load /
  2611. sum_nr_running;
  2612. }
  2613. /*
  2614. * Calculate the group which is almost near its
  2615. * capacity but still has some space to pick up some load
  2616. * from other group and save more power
  2617. */
  2618. if (sum_nr_running <= group_capacity - 1) {
  2619. if (sum_nr_running > leader_nr_running ||
  2620. (sum_nr_running == leader_nr_running &&
  2621. first_cpu(group->cpumask) >
  2622. first_cpu(group_leader->cpumask))) {
  2623. group_leader = group;
  2624. leader_nr_running = sum_nr_running;
  2625. }
  2626. }
  2627. group_next:
  2628. #endif
  2629. group = group->next;
  2630. } while (group != sd->groups);
  2631. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2632. goto out_balanced;
  2633. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2634. if (this_load >= avg_load ||
  2635. 100*max_load <= sd->imbalance_pct*this_load)
  2636. goto out_balanced;
  2637. busiest_load_per_task /= busiest_nr_running;
  2638. if (group_imb)
  2639. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2640. /*
  2641. * We're trying to get all the cpus to the average_load, so we don't
  2642. * want to push ourselves above the average load, nor do we wish to
  2643. * reduce the max loaded cpu below the average load, as either of these
  2644. * actions would just result in more rebalancing later, and ping-pong
  2645. * tasks around. Thus we look for the minimum possible imbalance.
  2646. * Negative imbalances (*we* are more loaded than anyone else) will
  2647. * be counted as no imbalance for these purposes -- we can't fix that
  2648. * by pulling tasks to us. Be careful of negative numbers as they'll
  2649. * appear as very large values with unsigned longs.
  2650. */
  2651. if (max_load <= busiest_load_per_task)
  2652. goto out_balanced;
  2653. /*
  2654. * In the presence of smp nice balancing, certain scenarios can have
  2655. * max load less than avg load(as we skip the groups at or below
  2656. * its cpu_power, while calculating max_load..)
  2657. */
  2658. if (max_load < avg_load) {
  2659. *imbalance = 0;
  2660. goto small_imbalance;
  2661. }
  2662. /* Don't want to pull so many tasks that a group would go idle */
  2663. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2664. /* How much load to actually move to equalise the imbalance */
  2665. *imbalance = min(max_pull * busiest->__cpu_power,
  2666. (avg_load - this_load) * this->__cpu_power)
  2667. / SCHED_LOAD_SCALE;
  2668. /*
  2669. * if *imbalance is less than the average load per runnable task
  2670. * there is no gaurantee that any tasks will be moved so we'll have
  2671. * a think about bumping its value to force at least one task to be
  2672. * moved
  2673. */
  2674. if (*imbalance < busiest_load_per_task) {
  2675. unsigned long tmp, pwr_now, pwr_move;
  2676. unsigned int imbn;
  2677. small_imbalance:
  2678. pwr_move = pwr_now = 0;
  2679. imbn = 2;
  2680. if (this_nr_running) {
  2681. this_load_per_task /= this_nr_running;
  2682. if (busiest_load_per_task > this_load_per_task)
  2683. imbn = 1;
  2684. } else
  2685. this_load_per_task = SCHED_LOAD_SCALE;
  2686. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2687. busiest_load_per_task * imbn) {
  2688. *imbalance = busiest_load_per_task;
  2689. return busiest;
  2690. }
  2691. /*
  2692. * OK, we don't have enough imbalance to justify moving tasks,
  2693. * however we may be able to increase total CPU power used by
  2694. * moving them.
  2695. */
  2696. pwr_now += busiest->__cpu_power *
  2697. min(busiest_load_per_task, max_load);
  2698. pwr_now += this->__cpu_power *
  2699. min(this_load_per_task, this_load);
  2700. pwr_now /= SCHED_LOAD_SCALE;
  2701. /* Amount of load we'd subtract */
  2702. tmp = sg_div_cpu_power(busiest,
  2703. busiest_load_per_task * SCHED_LOAD_SCALE);
  2704. if (max_load > tmp)
  2705. pwr_move += busiest->__cpu_power *
  2706. min(busiest_load_per_task, max_load - tmp);
  2707. /* Amount of load we'd add */
  2708. if (max_load * busiest->__cpu_power <
  2709. busiest_load_per_task * SCHED_LOAD_SCALE)
  2710. tmp = sg_div_cpu_power(this,
  2711. max_load * busiest->__cpu_power);
  2712. else
  2713. tmp = sg_div_cpu_power(this,
  2714. busiest_load_per_task * SCHED_LOAD_SCALE);
  2715. pwr_move += this->__cpu_power *
  2716. min(this_load_per_task, this_load + tmp);
  2717. pwr_move /= SCHED_LOAD_SCALE;
  2718. /* Move if we gain throughput */
  2719. if (pwr_move > pwr_now)
  2720. *imbalance = busiest_load_per_task;
  2721. }
  2722. return busiest;
  2723. out_balanced:
  2724. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2725. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2726. goto ret;
  2727. if (this == group_leader && group_leader != group_min) {
  2728. *imbalance = min_load_per_task;
  2729. return group_min;
  2730. }
  2731. #endif
  2732. ret:
  2733. *imbalance = 0;
  2734. return NULL;
  2735. }
  2736. /*
  2737. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2738. */
  2739. static struct rq *
  2740. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2741. unsigned long imbalance, const cpumask_t *cpus)
  2742. {
  2743. struct rq *busiest = NULL, *rq;
  2744. unsigned long max_load = 0;
  2745. int i;
  2746. for_each_cpu_mask(i, group->cpumask) {
  2747. unsigned long wl;
  2748. if (!cpu_isset(i, *cpus))
  2749. continue;
  2750. rq = cpu_rq(i);
  2751. wl = weighted_cpuload(i);
  2752. if (rq->nr_running == 1 && wl > imbalance)
  2753. continue;
  2754. if (wl > max_load) {
  2755. max_load = wl;
  2756. busiest = rq;
  2757. }
  2758. }
  2759. return busiest;
  2760. }
  2761. /*
  2762. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2763. * so long as it is large enough.
  2764. */
  2765. #define MAX_PINNED_INTERVAL 512
  2766. /*
  2767. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2768. * tasks if there is an imbalance.
  2769. */
  2770. static int load_balance(int this_cpu, struct rq *this_rq,
  2771. struct sched_domain *sd, enum cpu_idle_type idle,
  2772. int *balance, cpumask_t *cpus)
  2773. {
  2774. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2775. struct sched_group *group;
  2776. unsigned long imbalance;
  2777. struct rq *busiest;
  2778. unsigned long flags;
  2779. cpus_setall(*cpus);
  2780. /*
  2781. * When power savings policy is enabled for the parent domain, idle
  2782. * sibling can pick up load irrespective of busy siblings. In this case,
  2783. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2784. * portraying it as CPU_NOT_IDLE.
  2785. */
  2786. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2787. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2788. sd_idle = 1;
  2789. schedstat_inc(sd, lb_count[idle]);
  2790. redo:
  2791. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2792. cpus, balance);
  2793. if (*balance == 0)
  2794. goto out_balanced;
  2795. if (!group) {
  2796. schedstat_inc(sd, lb_nobusyg[idle]);
  2797. goto out_balanced;
  2798. }
  2799. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2800. if (!busiest) {
  2801. schedstat_inc(sd, lb_nobusyq[idle]);
  2802. goto out_balanced;
  2803. }
  2804. BUG_ON(busiest == this_rq);
  2805. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2806. ld_moved = 0;
  2807. if (busiest->nr_running > 1) {
  2808. /*
  2809. * Attempt to move tasks. If find_busiest_group has found
  2810. * an imbalance but busiest->nr_running <= 1, the group is
  2811. * still unbalanced. ld_moved simply stays zero, so it is
  2812. * correctly treated as an imbalance.
  2813. */
  2814. local_irq_save(flags);
  2815. double_rq_lock(this_rq, busiest);
  2816. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2817. imbalance, sd, idle, &all_pinned);
  2818. double_rq_unlock(this_rq, busiest);
  2819. local_irq_restore(flags);
  2820. /*
  2821. * some other cpu did the load balance for us.
  2822. */
  2823. if (ld_moved && this_cpu != smp_processor_id())
  2824. resched_cpu(this_cpu);
  2825. /* All tasks on this runqueue were pinned by CPU affinity */
  2826. if (unlikely(all_pinned)) {
  2827. cpu_clear(cpu_of(busiest), *cpus);
  2828. if (!cpus_empty(*cpus))
  2829. goto redo;
  2830. goto out_balanced;
  2831. }
  2832. }
  2833. if (!ld_moved) {
  2834. schedstat_inc(sd, lb_failed[idle]);
  2835. sd->nr_balance_failed++;
  2836. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2837. spin_lock_irqsave(&busiest->lock, flags);
  2838. /* don't kick the migration_thread, if the curr
  2839. * task on busiest cpu can't be moved to this_cpu
  2840. */
  2841. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2842. spin_unlock_irqrestore(&busiest->lock, flags);
  2843. all_pinned = 1;
  2844. goto out_one_pinned;
  2845. }
  2846. if (!busiest->active_balance) {
  2847. busiest->active_balance = 1;
  2848. busiest->push_cpu = this_cpu;
  2849. active_balance = 1;
  2850. }
  2851. spin_unlock_irqrestore(&busiest->lock, flags);
  2852. if (active_balance)
  2853. wake_up_process(busiest->migration_thread);
  2854. /*
  2855. * We've kicked active balancing, reset the failure
  2856. * counter.
  2857. */
  2858. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2859. }
  2860. } else
  2861. sd->nr_balance_failed = 0;
  2862. if (likely(!active_balance)) {
  2863. /* We were unbalanced, so reset the balancing interval */
  2864. sd->balance_interval = sd->min_interval;
  2865. } else {
  2866. /*
  2867. * If we've begun active balancing, start to back off. This
  2868. * case may not be covered by the all_pinned logic if there
  2869. * is only 1 task on the busy runqueue (because we don't call
  2870. * move_tasks).
  2871. */
  2872. if (sd->balance_interval < sd->max_interval)
  2873. sd->balance_interval *= 2;
  2874. }
  2875. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2876. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2877. return -1;
  2878. return ld_moved;
  2879. out_balanced:
  2880. schedstat_inc(sd, lb_balanced[idle]);
  2881. sd->nr_balance_failed = 0;
  2882. out_one_pinned:
  2883. /* tune up the balancing interval */
  2884. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2885. (sd->balance_interval < sd->max_interval))
  2886. sd->balance_interval *= 2;
  2887. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2888. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2889. return -1;
  2890. return 0;
  2891. }
  2892. /*
  2893. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2894. * tasks if there is an imbalance.
  2895. *
  2896. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2897. * this_rq is locked.
  2898. */
  2899. static int
  2900. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2901. cpumask_t *cpus)
  2902. {
  2903. struct sched_group *group;
  2904. struct rq *busiest = NULL;
  2905. unsigned long imbalance;
  2906. int ld_moved = 0;
  2907. int sd_idle = 0;
  2908. int all_pinned = 0;
  2909. cpus_setall(*cpus);
  2910. /*
  2911. * When power savings policy is enabled for the parent domain, idle
  2912. * sibling can pick up load irrespective of busy siblings. In this case,
  2913. * let the state of idle sibling percolate up as IDLE, instead of
  2914. * portraying it as CPU_NOT_IDLE.
  2915. */
  2916. if (sd->flags & SD_SHARE_CPUPOWER &&
  2917. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2918. sd_idle = 1;
  2919. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2920. redo:
  2921. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2922. &sd_idle, cpus, NULL);
  2923. if (!group) {
  2924. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2925. goto out_balanced;
  2926. }
  2927. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2928. if (!busiest) {
  2929. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2930. goto out_balanced;
  2931. }
  2932. BUG_ON(busiest == this_rq);
  2933. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2934. ld_moved = 0;
  2935. if (busiest->nr_running > 1) {
  2936. /* Attempt to move tasks */
  2937. double_lock_balance(this_rq, busiest);
  2938. /* this_rq->clock is already updated */
  2939. update_rq_clock(busiest);
  2940. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2941. imbalance, sd, CPU_NEWLY_IDLE,
  2942. &all_pinned);
  2943. spin_unlock(&busiest->lock);
  2944. if (unlikely(all_pinned)) {
  2945. cpu_clear(cpu_of(busiest), *cpus);
  2946. if (!cpus_empty(*cpus))
  2947. goto redo;
  2948. }
  2949. }
  2950. if (!ld_moved) {
  2951. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2952. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2953. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2954. return -1;
  2955. } else
  2956. sd->nr_balance_failed = 0;
  2957. return ld_moved;
  2958. out_balanced:
  2959. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2960. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2961. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2962. return -1;
  2963. sd->nr_balance_failed = 0;
  2964. return 0;
  2965. }
  2966. /*
  2967. * idle_balance is called by schedule() if this_cpu is about to become
  2968. * idle. Attempts to pull tasks from other CPUs.
  2969. */
  2970. static void idle_balance(int this_cpu, struct rq *this_rq)
  2971. {
  2972. struct sched_domain *sd;
  2973. int pulled_task = -1;
  2974. unsigned long next_balance = jiffies + HZ;
  2975. cpumask_t tmpmask;
  2976. for_each_domain(this_cpu, sd) {
  2977. unsigned long interval;
  2978. if (!(sd->flags & SD_LOAD_BALANCE))
  2979. continue;
  2980. if (sd->flags & SD_BALANCE_NEWIDLE)
  2981. /* If we've pulled tasks over stop searching: */
  2982. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2983. sd, &tmpmask);
  2984. interval = msecs_to_jiffies(sd->balance_interval);
  2985. if (time_after(next_balance, sd->last_balance + interval))
  2986. next_balance = sd->last_balance + interval;
  2987. if (pulled_task)
  2988. break;
  2989. }
  2990. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2991. /*
  2992. * We are going idle. next_balance may be set based on
  2993. * a busy processor. So reset next_balance.
  2994. */
  2995. this_rq->next_balance = next_balance;
  2996. }
  2997. }
  2998. /*
  2999. * active_load_balance is run by migration threads. It pushes running tasks
  3000. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3001. * running on each physical CPU where possible, and avoids physical /
  3002. * logical imbalances.
  3003. *
  3004. * Called with busiest_rq locked.
  3005. */
  3006. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3007. {
  3008. int target_cpu = busiest_rq->push_cpu;
  3009. struct sched_domain *sd;
  3010. struct rq *target_rq;
  3011. /* Is there any task to move? */
  3012. if (busiest_rq->nr_running <= 1)
  3013. return;
  3014. target_rq = cpu_rq(target_cpu);
  3015. /*
  3016. * This condition is "impossible", if it occurs
  3017. * we need to fix it. Originally reported by
  3018. * Bjorn Helgaas on a 128-cpu setup.
  3019. */
  3020. BUG_ON(busiest_rq == target_rq);
  3021. /* move a task from busiest_rq to target_rq */
  3022. double_lock_balance(busiest_rq, target_rq);
  3023. update_rq_clock(busiest_rq);
  3024. update_rq_clock(target_rq);
  3025. /* Search for an sd spanning us and the target CPU. */
  3026. for_each_domain(target_cpu, sd) {
  3027. if ((sd->flags & SD_LOAD_BALANCE) &&
  3028. cpu_isset(busiest_cpu, sd->span))
  3029. break;
  3030. }
  3031. if (likely(sd)) {
  3032. schedstat_inc(sd, alb_count);
  3033. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3034. sd, CPU_IDLE))
  3035. schedstat_inc(sd, alb_pushed);
  3036. else
  3037. schedstat_inc(sd, alb_failed);
  3038. }
  3039. spin_unlock(&target_rq->lock);
  3040. }
  3041. #ifdef CONFIG_NO_HZ
  3042. static struct {
  3043. atomic_t load_balancer;
  3044. cpumask_t cpu_mask;
  3045. } nohz ____cacheline_aligned = {
  3046. .load_balancer = ATOMIC_INIT(-1),
  3047. .cpu_mask = CPU_MASK_NONE,
  3048. };
  3049. /*
  3050. * This routine will try to nominate the ilb (idle load balancing)
  3051. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3052. * load balancing on behalf of all those cpus. If all the cpus in the system
  3053. * go into this tickless mode, then there will be no ilb owner (as there is
  3054. * no need for one) and all the cpus will sleep till the next wakeup event
  3055. * arrives...
  3056. *
  3057. * For the ilb owner, tick is not stopped. And this tick will be used
  3058. * for idle load balancing. ilb owner will still be part of
  3059. * nohz.cpu_mask..
  3060. *
  3061. * While stopping the tick, this cpu will become the ilb owner if there
  3062. * is no other owner. And will be the owner till that cpu becomes busy
  3063. * or if all cpus in the system stop their ticks at which point
  3064. * there is no need for ilb owner.
  3065. *
  3066. * When the ilb owner becomes busy, it nominates another owner, during the
  3067. * next busy scheduler_tick()
  3068. */
  3069. int select_nohz_load_balancer(int stop_tick)
  3070. {
  3071. int cpu = smp_processor_id();
  3072. if (stop_tick) {
  3073. cpu_set(cpu, nohz.cpu_mask);
  3074. cpu_rq(cpu)->in_nohz_recently = 1;
  3075. /*
  3076. * If we are going offline and still the leader, give up!
  3077. */
  3078. if (cpu_is_offline(cpu) &&
  3079. atomic_read(&nohz.load_balancer) == cpu) {
  3080. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3081. BUG();
  3082. return 0;
  3083. }
  3084. /* time for ilb owner also to sleep */
  3085. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3086. if (atomic_read(&nohz.load_balancer) == cpu)
  3087. atomic_set(&nohz.load_balancer, -1);
  3088. return 0;
  3089. }
  3090. if (atomic_read(&nohz.load_balancer) == -1) {
  3091. /* make me the ilb owner */
  3092. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3093. return 1;
  3094. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3095. return 1;
  3096. } else {
  3097. if (!cpu_isset(cpu, nohz.cpu_mask))
  3098. return 0;
  3099. cpu_clear(cpu, nohz.cpu_mask);
  3100. if (atomic_read(&nohz.load_balancer) == cpu)
  3101. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3102. BUG();
  3103. }
  3104. return 0;
  3105. }
  3106. #endif
  3107. static DEFINE_SPINLOCK(balancing);
  3108. /*
  3109. * It checks each scheduling domain to see if it is due to be balanced,
  3110. * and initiates a balancing operation if so.
  3111. *
  3112. * Balancing parameters are set up in arch_init_sched_domains.
  3113. */
  3114. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3115. {
  3116. int balance = 1;
  3117. struct rq *rq = cpu_rq(cpu);
  3118. unsigned long interval;
  3119. struct sched_domain *sd;
  3120. /* Earliest time when we have to do rebalance again */
  3121. unsigned long next_balance = jiffies + 60*HZ;
  3122. int update_next_balance = 0;
  3123. int need_serialize;
  3124. cpumask_t tmp;
  3125. for_each_domain(cpu, sd) {
  3126. if (!(sd->flags & SD_LOAD_BALANCE))
  3127. continue;
  3128. interval = sd->balance_interval;
  3129. if (idle != CPU_IDLE)
  3130. interval *= sd->busy_factor;
  3131. /* scale ms to jiffies */
  3132. interval = msecs_to_jiffies(interval);
  3133. if (unlikely(!interval))
  3134. interval = 1;
  3135. if (interval > HZ*NR_CPUS/10)
  3136. interval = HZ*NR_CPUS/10;
  3137. need_serialize = sd->flags & SD_SERIALIZE;
  3138. if (need_serialize) {
  3139. if (!spin_trylock(&balancing))
  3140. goto out;
  3141. }
  3142. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3143. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3144. /*
  3145. * We've pulled tasks over so either we're no
  3146. * longer idle, or one of our SMT siblings is
  3147. * not idle.
  3148. */
  3149. idle = CPU_NOT_IDLE;
  3150. }
  3151. sd->last_balance = jiffies;
  3152. }
  3153. if (need_serialize)
  3154. spin_unlock(&balancing);
  3155. out:
  3156. if (time_after(next_balance, sd->last_balance + interval)) {
  3157. next_balance = sd->last_balance + interval;
  3158. update_next_balance = 1;
  3159. }
  3160. /*
  3161. * Stop the load balance at this level. There is another
  3162. * CPU in our sched group which is doing load balancing more
  3163. * actively.
  3164. */
  3165. if (!balance)
  3166. break;
  3167. }
  3168. /*
  3169. * next_balance will be updated only when there is a need.
  3170. * When the cpu is attached to null domain for ex, it will not be
  3171. * updated.
  3172. */
  3173. if (likely(update_next_balance))
  3174. rq->next_balance = next_balance;
  3175. }
  3176. /*
  3177. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3178. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3179. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3180. */
  3181. static void run_rebalance_domains(struct softirq_action *h)
  3182. {
  3183. int this_cpu = smp_processor_id();
  3184. struct rq *this_rq = cpu_rq(this_cpu);
  3185. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3186. CPU_IDLE : CPU_NOT_IDLE;
  3187. rebalance_domains(this_cpu, idle);
  3188. #ifdef CONFIG_NO_HZ
  3189. /*
  3190. * If this cpu is the owner for idle load balancing, then do the
  3191. * balancing on behalf of the other idle cpus whose ticks are
  3192. * stopped.
  3193. */
  3194. if (this_rq->idle_at_tick &&
  3195. atomic_read(&nohz.load_balancer) == this_cpu) {
  3196. cpumask_t cpus = nohz.cpu_mask;
  3197. struct rq *rq;
  3198. int balance_cpu;
  3199. cpu_clear(this_cpu, cpus);
  3200. for_each_cpu_mask(balance_cpu, cpus) {
  3201. /*
  3202. * If this cpu gets work to do, stop the load balancing
  3203. * work being done for other cpus. Next load
  3204. * balancing owner will pick it up.
  3205. */
  3206. if (need_resched())
  3207. break;
  3208. rebalance_domains(balance_cpu, CPU_IDLE);
  3209. rq = cpu_rq(balance_cpu);
  3210. if (time_after(this_rq->next_balance, rq->next_balance))
  3211. this_rq->next_balance = rq->next_balance;
  3212. }
  3213. }
  3214. #endif
  3215. }
  3216. /*
  3217. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3218. *
  3219. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3220. * idle load balancing owner or decide to stop the periodic load balancing,
  3221. * if the whole system is idle.
  3222. */
  3223. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3224. {
  3225. #ifdef CONFIG_NO_HZ
  3226. /*
  3227. * If we were in the nohz mode recently and busy at the current
  3228. * scheduler tick, then check if we need to nominate new idle
  3229. * load balancer.
  3230. */
  3231. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3232. rq->in_nohz_recently = 0;
  3233. if (atomic_read(&nohz.load_balancer) == cpu) {
  3234. cpu_clear(cpu, nohz.cpu_mask);
  3235. atomic_set(&nohz.load_balancer, -1);
  3236. }
  3237. if (atomic_read(&nohz.load_balancer) == -1) {
  3238. /*
  3239. * simple selection for now: Nominate the
  3240. * first cpu in the nohz list to be the next
  3241. * ilb owner.
  3242. *
  3243. * TBD: Traverse the sched domains and nominate
  3244. * the nearest cpu in the nohz.cpu_mask.
  3245. */
  3246. int ilb = first_cpu(nohz.cpu_mask);
  3247. if (ilb < nr_cpu_ids)
  3248. resched_cpu(ilb);
  3249. }
  3250. }
  3251. /*
  3252. * If this cpu is idle and doing idle load balancing for all the
  3253. * cpus with ticks stopped, is it time for that to stop?
  3254. */
  3255. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3256. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3257. resched_cpu(cpu);
  3258. return;
  3259. }
  3260. /*
  3261. * If this cpu is idle and the idle load balancing is done by
  3262. * someone else, then no need raise the SCHED_SOFTIRQ
  3263. */
  3264. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3265. cpu_isset(cpu, nohz.cpu_mask))
  3266. return;
  3267. #endif
  3268. if (time_after_eq(jiffies, rq->next_balance))
  3269. raise_softirq(SCHED_SOFTIRQ);
  3270. }
  3271. #else /* CONFIG_SMP */
  3272. /*
  3273. * on UP we do not need to balance between CPUs:
  3274. */
  3275. static inline void idle_balance(int cpu, struct rq *rq)
  3276. {
  3277. }
  3278. #endif
  3279. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3280. EXPORT_PER_CPU_SYMBOL(kstat);
  3281. /*
  3282. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3283. * that have not yet been banked in case the task is currently running.
  3284. */
  3285. unsigned long long task_sched_runtime(struct task_struct *p)
  3286. {
  3287. unsigned long flags;
  3288. u64 ns, delta_exec;
  3289. struct rq *rq;
  3290. rq = task_rq_lock(p, &flags);
  3291. ns = p->se.sum_exec_runtime;
  3292. if (task_current(rq, p)) {
  3293. update_rq_clock(rq);
  3294. delta_exec = rq->clock - p->se.exec_start;
  3295. if ((s64)delta_exec > 0)
  3296. ns += delta_exec;
  3297. }
  3298. task_rq_unlock(rq, &flags);
  3299. return ns;
  3300. }
  3301. /*
  3302. * Account user cpu time to a process.
  3303. * @p: the process that the cpu time gets accounted to
  3304. * @cputime: the cpu time spent in user space since the last update
  3305. */
  3306. void account_user_time(struct task_struct *p, cputime_t cputime)
  3307. {
  3308. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3309. cputime64_t tmp;
  3310. p->utime = cputime_add(p->utime, cputime);
  3311. /* Add user time to cpustat. */
  3312. tmp = cputime_to_cputime64(cputime);
  3313. if (TASK_NICE(p) > 0)
  3314. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3315. else
  3316. cpustat->user = cputime64_add(cpustat->user, tmp);
  3317. }
  3318. /*
  3319. * Account guest cpu time to a process.
  3320. * @p: the process that the cpu time gets accounted to
  3321. * @cputime: the cpu time spent in virtual machine since the last update
  3322. */
  3323. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3324. {
  3325. cputime64_t tmp;
  3326. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3327. tmp = cputime_to_cputime64(cputime);
  3328. p->utime = cputime_add(p->utime, cputime);
  3329. p->gtime = cputime_add(p->gtime, cputime);
  3330. cpustat->user = cputime64_add(cpustat->user, tmp);
  3331. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3332. }
  3333. /*
  3334. * Account scaled user cpu time to a process.
  3335. * @p: the process that the cpu time gets accounted to
  3336. * @cputime: the cpu time spent in user space since the last update
  3337. */
  3338. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3339. {
  3340. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3341. }
  3342. /*
  3343. * Account system cpu time to a process.
  3344. * @p: the process that the cpu time gets accounted to
  3345. * @hardirq_offset: the offset to subtract from hardirq_count()
  3346. * @cputime: the cpu time spent in kernel space since the last update
  3347. */
  3348. void account_system_time(struct task_struct *p, int hardirq_offset,
  3349. cputime_t cputime)
  3350. {
  3351. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3352. struct rq *rq = this_rq();
  3353. cputime64_t tmp;
  3354. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3355. account_guest_time(p, cputime);
  3356. return;
  3357. }
  3358. p->stime = cputime_add(p->stime, cputime);
  3359. /* Add system time to cpustat. */
  3360. tmp = cputime_to_cputime64(cputime);
  3361. if (hardirq_count() - hardirq_offset)
  3362. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3363. else if (softirq_count())
  3364. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3365. else if (p != rq->idle)
  3366. cpustat->system = cputime64_add(cpustat->system, tmp);
  3367. else if (atomic_read(&rq->nr_iowait) > 0)
  3368. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3369. else
  3370. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3371. /* Account for system time used */
  3372. acct_update_integrals(p);
  3373. }
  3374. /*
  3375. * Account scaled system cpu time to a process.
  3376. * @p: the process that the cpu time gets accounted to
  3377. * @hardirq_offset: the offset to subtract from hardirq_count()
  3378. * @cputime: the cpu time spent in kernel space since the last update
  3379. */
  3380. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3381. {
  3382. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3383. }
  3384. /*
  3385. * Account for involuntary wait time.
  3386. * @p: the process from which the cpu time has been stolen
  3387. * @steal: the cpu time spent in involuntary wait
  3388. */
  3389. void account_steal_time(struct task_struct *p, cputime_t steal)
  3390. {
  3391. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3392. cputime64_t tmp = cputime_to_cputime64(steal);
  3393. struct rq *rq = this_rq();
  3394. if (p == rq->idle) {
  3395. p->stime = cputime_add(p->stime, steal);
  3396. if (atomic_read(&rq->nr_iowait) > 0)
  3397. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3398. else
  3399. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3400. } else
  3401. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3402. }
  3403. /*
  3404. * This function gets called by the timer code, with HZ frequency.
  3405. * We call it with interrupts disabled.
  3406. *
  3407. * It also gets called by the fork code, when changing the parent's
  3408. * timeslices.
  3409. */
  3410. void scheduler_tick(void)
  3411. {
  3412. int cpu = smp_processor_id();
  3413. struct rq *rq = cpu_rq(cpu);
  3414. struct task_struct *curr = rq->curr;
  3415. sched_clock_tick();
  3416. spin_lock(&rq->lock);
  3417. update_rq_clock(rq);
  3418. update_cpu_load(rq);
  3419. curr->sched_class->task_tick(rq, curr, 0);
  3420. spin_unlock(&rq->lock);
  3421. #ifdef CONFIG_SMP
  3422. rq->idle_at_tick = idle_cpu(cpu);
  3423. trigger_load_balance(rq, cpu);
  3424. #endif
  3425. }
  3426. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3427. void __kprobes add_preempt_count(int val)
  3428. {
  3429. /*
  3430. * Underflow?
  3431. */
  3432. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3433. return;
  3434. preempt_count() += val;
  3435. /*
  3436. * Spinlock count overflowing soon?
  3437. */
  3438. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3439. PREEMPT_MASK - 10);
  3440. }
  3441. EXPORT_SYMBOL(add_preempt_count);
  3442. void __kprobes sub_preempt_count(int val)
  3443. {
  3444. /*
  3445. * Underflow?
  3446. */
  3447. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3448. return;
  3449. /*
  3450. * Is the spinlock portion underflowing?
  3451. */
  3452. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3453. !(preempt_count() & PREEMPT_MASK)))
  3454. return;
  3455. preempt_count() -= val;
  3456. }
  3457. EXPORT_SYMBOL(sub_preempt_count);
  3458. #endif
  3459. /*
  3460. * Print scheduling while atomic bug:
  3461. */
  3462. static noinline void __schedule_bug(struct task_struct *prev)
  3463. {
  3464. struct pt_regs *regs = get_irq_regs();
  3465. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3466. prev->comm, prev->pid, preempt_count());
  3467. debug_show_held_locks(prev);
  3468. print_modules();
  3469. if (irqs_disabled())
  3470. print_irqtrace_events(prev);
  3471. if (regs)
  3472. show_regs(regs);
  3473. else
  3474. dump_stack();
  3475. }
  3476. /*
  3477. * Various schedule()-time debugging checks and statistics:
  3478. */
  3479. static inline void schedule_debug(struct task_struct *prev)
  3480. {
  3481. /*
  3482. * Test if we are atomic. Since do_exit() needs to call into
  3483. * schedule() atomically, we ignore that path for now.
  3484. * Otherwise, whine if we are scheduling when we should not be.
  3485. */
  3486. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3487. __schedule_bug(prev);
  3488. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3489. schedstat_inc(this_rq(), sched_count);
  3490. #ifdef CONFIG_SCHEDSTATS
  3491. if (unlikely(prev->lock_depth >= 0)) {
  3492. schedstat_inc(this_rq(), bkl_count);
  3493. schedstat_inc(prev, sched_info.bkl_count);
  3494. }
  3495. #endif
  3496. }
  3497. /*
  3498. * Pick up the highest-prio task:
  3499. */
  3500. static inline struct task_struct *
  3501. pick_next_task(struct rq *rq, struct task_struct *prev)
  3502. {
  3503. const struct sched_class *class;
  3504. struct task_struct *p;
  3505. /*
  3506. * Optimization: we know that if all tasks are in
  3507. * the fair class we can call that function directly:
  3508. */
  3509. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3510. p = fair_sched_class.pick_next_task(rq);
  3511. if (likely(p))
  3512. return p;
  3513. }
  3514. class = sched_class_highest;
  3515. for ( ; ; ) {
  3516. p = class->pick_next_task(rq);
  3517. if (p)
  3518. return p;
  3519. /*
  3520. * Will never be NULL as the idle class always
  3521. * returns a non-NULL p:
  3522. */
  3523. class = class->next;
  3524. }
  3525. }
  3526. /*
  3527. * schedule() is the main scheduler function.
  3528. */
  3529. asmlinkage void __sched schedule(void)
  3530. {
  3531. struct task_struct *prev, *next;
  3532. unsigned long *switch_count;
  3533. struct rq *rq;
  3534. int cpu, hrtick = sched_feat(HRTICK);
  3535. need_resched:
  3536. preempt_disable();
  3537. cpu = smp_processor_id();
  3538. rq = cpu_rq(cpu);
  3539. rcu_qsctr_inc(cpu);
  3540. prev = rq->curr;
  3541. switch_count = &prev->nivcsw;
  3542. release_kernel_lock(prev);
  3543. need_resched_nonpreemptible:
  3544. schedule_debug(prev);
  3545. if (hrtick)
  3546. hrtick_clear(rq);
  3547. /*
  3548. * Do the rq-clock update outside the rq lock:
  3549. */
  3550. local_irq_disable();
  3551. update_rq_clock(rq);
  3552. spin_lock(&rq->lock);
  3553. clear_tsk_need_resched(prev);
  3554. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3555. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3556. signal_pending(prev))) {
  3557. prev->state = TASK_RUNNING;
  3558. } else {
  3559. deactivate_task(rq, prev, 1);
  3560. }
  3561. switch_count = &prev->nvcsw;
  3562. }
  3563. #ifdef CONFIG_SMP
  3564. if (prev->sched_class->pre_schedule)
  3565. prev->sched_class->pre_schedule(rq, prev);
  3566. #endif
  3567. if (unlikely(!rq->nr_running))
  3568. idle_balance(cpu, rq);
  3569. prev->sched_class->put_prev_task(rq, prev);
  3570. next = pick_next_task(rq, prev);
  3571. if (likely(prev != next)) {
  3572. sched_info_switch(prev, next);
  3573. rq->nr_switches++;
  3574. rq->curr = next;
  3575. ++*switch_count;
  3576. context_switch(rq, prev, next); /* unlocks the rq */
  3577. /*
  3578. * the context switch might have flipped the stack from under
  3579. * us, hence refresh the local variables.
  3580. */
  3581. cpu = smp_processor_id();
  3582. rq = cpu_rq(cpu);
  3583. } else
  3584. spin_unlock_irq(&rq->lock);
  3585. if (hrtick)
  3586. hrtick_set(rq);
  3587. if (unlikely(reacquire_kernel_lock(current) < 0))
  3588. goto need_resched_nonpreemptible;
  3589. preempt_enable_no_resched();
  3590. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3591. goto need_resched;
  3592. }
  3593. EXPORT_SYMBOL(schedule);
  3594. #ifdef CONFIG_PREEMPT
  3595. /*
  3596. * this is the entry point to schedule() from in-kernel preemption
  3597. * off of preempt_enable. Kernel preemptions off return from interrupt
  3598. * occur there and call schedule directly.
  3599. */
  3600. asmlinkage void __sched preempt_schedule(void)
  3601. {
  3602. struct thread_info *ti = current_thread_info();
  3603. /*
  3604. * If there is a non-zero preempt_count or interrupts are disabled,
  3605. * we do not want to preempt the current task. Just return..
  3606. */
  3607. if (likely(ti->preempt_count || irqs_disabled()))
  3608. return;
  3609. do {
  3610. add_preempt_count(PREEMPT_ACTIVE);
  3611. schedule();
  3612. sub_preempt_count(PREEMPT_ACTIVE);
  3613. /*
  3614. * Check again in case we missed a preemption opportunity
  3615. * between schedule and now.
  3616. */
  3617. barrier();
  3618. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3619. }
  3620. EXPORT_SYMBOL(preempt_schedule);
  3621. /*
  3622. * this is the entry point to schedule() from kernel preemption
  3623. * off of irq context.
  3624. * Note, that this is called and return with irqs disabled. This will
  3625. * protect us against recursive calling from irq.
  3626. */
  3627. asmlinkage void __sched preempt_schedule_irq(void)
  3628. {
  3629. struct thread_info *ti = current_thread_info();
  3630. /* Catch callers which need to be fixed */
  3631. BUG_ON(ti->preempt_count || !irqs_disabled());
  3632. do {
  3633. add_preempt_count(PREEMPT_ACTIVE);
  3634. local_irq_enable();
  3635. schedule();
  3636. local_irq_disable();
  3637. sub_preempt_count(PREEMPT_ACTIVE);
  3638. /*
  3639. * Check again in case we missed a preemption opportunity
  3640. * between schedule and now.
  3641. */
  3642. barrier();
  3643. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3644. }
  3645. #endif /* CONFIG_PREEMPT */
  3646. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3647. void *key)
  3648. {
  3649. return try_to_wake_up(curr->private, mode, sync);
  3650. }
  3651. EXPORT_SYMBOL(default_wake_function);
  3652. /*
  3653. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3654. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3655. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3656. *
  3657. * There are circumstances in which we can try to wake a task which has already
  3658. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3659. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3660. */
  3661. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3662. int nr_exclusive, int sync, void *key)
  3663. {
  3664. wait_queue_t *curr, *next;
  3665. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3666. unsigned flags = curr->flags;
  3667. if (curr->func(curr, mode, sync, key) &&
  3668. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3669. break;
  3670. }
  3671. }
  3672. /**
  3673. * __wake_up - wake up threads blocked on a waitqueue.
  3674. * @q: the waitqueue
  3675. * @mode: which threads
  3676. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3677. * @key: is directly passed to the wakeup function
  3678. */
  3679. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3680. int nr_exclusive, void *key)
  3681. {
  3682. unsigned long flags;
  3683. spin_lock_irqsave(&q->lock, flags);
  3684. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3685. spin_unlock_irqrestore(&q->lock, flags);
  3686. }
  3687. EXPORT_SYMBOL(__wake_up);
  3688. /*
  3689. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3690. */
  3691. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3692. {
  3693. __wake_up_common(q, mode, 1, 0, NULL);
  3694. }
  3695. /**
  3696. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3697. * @q: the waitqueue
  3698. * @mode: which threads
  3699. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3700. *
  3701. * The sync wakeup differs that the waker knows that it will schedule
  3702. * away soon, so while the target thread will be woken up, it will not
  3703. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3704. * with each other. This can prevent needless bouncing between CPUs.
  3705. *
  3706. * On UP it can prevent extra preemption.
  3707. */
  3708. void
  3709. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3710. {
  3711. unsigned long flags;
  3712. int sync = 1;
  3713. if (unlikely(!q))
  3714. return;
  3715. if (unlikely(!nr_exclusive))
  3716. sync = 0;
  3717. spin_lock_irqsave(&q->lock, flags);
  3718. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3719. spin_unlock_irqrestore(&q->lock, flags);
  3720. }
  3721. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3722. void complete(struct completion *x)
  3723. {
  3724. unsigned long flags;
  3725. spin_lock_irqsave(&x->wait.lock, flags);
  3726. x->done++;
  3727. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3728. spin_unlock_irqrestore(&x->wait.lock, flags);
  3729. }
  3730. EXPORT_SYMBOL(complete);
  3731. void complete_all(struct completion *x)
  3732. {
  3733. unsigned long flags;
  3734. spin_lock_irqsave(&x->wait.lock, flags);
  3735. x->done += UINT_MAX/2;
  3736. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3737. spin_unlock_irqrestore(&x->wait.lock, flags);
  3738. }
  3739. EXPORT_SYMBOL(complete_all);
  3740. static inline long __sched
  3741. do_wait_for_common(struct completion *x, long timeout, int state)
  3742. {
  3743. if (!x->done) {
  3744. DECLARE_WAITQUEUE(wait, current);
  3745. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3746. __add_wait_queue_tail(&x->wait, &wait);
  3747. do {
  3748. if ((state == TASK_INTERRUPTIBLE &&
  3749. signal_pending(current)) ||
  3750. (state == TASK_KILLABLE &&
  3751. fatal_signal_pending(current))) {
  3752. __remove_wait_queue(&x->wait, &wait);
  3753. return -ERESTARTSYS;
  3754. }
  3755. __set_current_state(state);
  3756. spin_unlock_irq(&x->wait.lock);
  3757. timeout = schedule_timeout(timeout);
  3758. spin_lock_irq(&x->wait.lock);
  3759. if (!timeout) {
  3760. __remove_wait_queue(&x->wait, &wait);
  3761. return timeout;
  3762. }
  3763. } while (!x->done);
  3764. __remove_wait_queue(&x->wait, &wait);
  3765. }
  3766. x->done--;
  3767. return timeout;
  3768. }
  3769. static long __sched
  3770. wait_for_common(struct completion *x, long timeout, int state)
  3771. {
  3772. might_sleep();
  3773. spin_lock_irq(&x->wait.lock);
  3774. timeout = do_wait_for_common(x, timeout, state);
  3775. spin_unlock_irq(&x->wait.lock);
  3776. return timeout;
  3777. }
  3778. void __sched wait_for_completion(struct completion *x)
  3779. {
  3780. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3781. }
  3782. EXPORT_SYMBOL(wait_for_completion);
  3783. unsigned long __sched
  3784. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3785. {
  3786. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3787. }
  3788. EXPORT_SYMBOL(wait_for_completion_timeout);
  3789. int __sched wait_for_completion_interruptible(struct completion *x)
  3790. {
  3791. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3792. if (t == -ERESTARTSYS)
  3793. return t;
  3794. return 0;
  3795. }
  3796. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3797. unsigned long __sched
  3798. wait_for_completion_interruptible_timeout(struct completion *x,
  3799. unsigned long timeout)
  3800. {
  3801. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3802. }
  3803. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3804. int __sched wait_for_completion_killable(struct completion *x)
  3805. {
  3806. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3807. if (t == -ERESTARTSYS)
  3808. return t;
  3809. return 0;
  3810. }
  3811. EXPORT_SYMBOL(wait_for_completion_killable);
  3812. static long __sched
  3813. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3814. {
  3815. unsigned long flags;
  3816. wait_queue_t wait;
  3817. init_waitqueue_entry(&wait, current);
  3818. __set_current_state(state);
  3819. spin_lock_irqsave(&q->lock, flags);
  3820. __add_wait_queue(q, &wait);
  3821. spin_unlock(&q->lock);
  3822. timeout = schedule_timeout(timeout);
  3823. spin_lock_irq(&q->lock);
  3824. __remove_wait_queue(q, &wait);
  3825. spin_unlock_irqrestore(&q->lock, flags);
  3826. return timeout;
  3827. }
  3828. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3829. {
  3830. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3831. }
  3832. EXPORT_SYMBOL(interruptible_sleep_on);
  3833. long __sched
  3834. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3835. {
  3836. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3837. }
  3838. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3839. void __sched sleep_on(wait_queue_head_t *q)
  3840. {
  3841. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3842. }
  3843. EXPORT_SYMBOL(sleep_on);
  3844. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3845. {
  3846. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3847. }
  3848. EXPORT_SYMBOL(sleep_on_timeout);
  3849. #ifdef CONFIG_RT_MUTEXES
  3850. /*
  3851. * rt_mutex_setprio - set the current priority of a task
  3852. * @p: task
  3853. * @prio: prio value (kernel-internal form)
  3854. *
  3855. * This function changes the 'effective' priority of a task. It does
  3856. * not touch ->normal_prio like __setscheduler().
  3857. *
  3858. * Used by the rt_mutex code to implement priority inheritance logic.
  3859. */
  3860. void rt_mutex_setprio(struct task_struct *p, int prio)
  3861. {
  3862. unsigned long flags;
  3863. int oldprio, on_rq, running;
  3864. struct rq *rq;
  3865. const struct sched_class *prev_class = p->sched_class;
  3866. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3867. rq = task_rq_lock(p, &flags);
  3868. update_rq_clock(rq);
  3869. oldprio = p->prio;
  3870. on_rq = p->se.on_rq;
  3871. running = task_current(rq, p);
  3872. if (on_rq)
  3873. dequeue_task(rq, p, 0);
  3874. if (running)
  3875. p->sched_class->put_prev_task(rq, p);
  3876. if (rt_prio(prio))
  3877. p->sched_class = &rt_sched_class;
  3878. else
  3879. p->sched_class = &fair_sched_class;
  3880. p->prio = prio;
  3881. if (running)
  3882. p->sched_class->set_curr_task(rq);
  3883. if (on_rq) {
  3884. enqueue_task(rq, p, 0);
  3885. check_class_changed(rq, p, prev_class, oldprio, running);
  3886. }
  3887. task_rq_unlock(rq, &flags);
  3888. }
  3889. #endif
  3890. void set_user_nice(struct task_struct *p, long nice)
  3891. {
  3892. int old_prio, delta, on_rq;
  3893. unsigned long flags;
  3894. struct rq *rq;
  3895. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3896. return;
  3897. /*
  3898. * We have to be careful, if called from sys_setpriority(),
  3899. * the task might be in the middle of scheduling on another CPU.
  3900. */
  3901. rq = task_rq_lock(p, &flags);
  3902. update_rq_clock(rq);
  3903. /*
  3904. * The RT priorities are set via sched_setscheduler(), but we still
  3905. * allow the 'normal' nice value to be set - but as expected
  3906. * it wont have any effect on scheduling until the task is
  3907. * SCHED_FIFO/SCHED_RR:
  3908. */
  3909. if (task_has_rt_policy(p)) {
  3910. p->static_prio = NICE_TO_PRIO(nice);
  3911. goto out_unlock;
  3912. }
  3913. on_rq = p->se.on_rq;
  3914. if (on_rq) {
  3915. dequeue_task(rq, p, 0);
  3916. dec_load(rq, p);
  3917. }
  3918. p->static_prio = NICE_TO_PRIO(nice);
  3919. set_load_weight(p);
  3920. old_prio = p->prio;
  3921. p->prio = effective_prio(p);
  3922. delta = p->prio - old_prio;
  3923. if (on_rq) {
  3924. enqueue_task(rq, p, 0);
  3925. inc_load(rq, p);
  3926. /*
  3927. * If the task increased its priority or is running and
  3928. * lowered its priority, then reschedule its CPU:
  3929. */
  3930. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3931. resched_task(rq->curr);
  3932. }
  3933. out_unlock:
  3934. task_rq_unlock(rq, &flags);
  3935. }
  3936. EXPORT_SYMBOL(set_user_nice);
  3937. /*
  3938. * can_nice - check if a task can reduce its nice value
  3939. * @p: task
  3940. * @nice: nice value
  3941. */
  3942. int can_nice(const struct task_struct *p, const int nice)
  3943. {
  3944. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3945. int nice_rlim = 20 - nice;
  3946. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3947. capable(CAP_SYS_NICE));
  3948. }
  3949. #ifdef __ARCH_WANT_SYS_NICE
  3950. /*
  3951. * sys_nice - change the priority of the current process.
  3952. * @increment: priority increment
  3953. *
  3954. * sys_setpriority is a more generic, but much slower function that
  3955. * does similar things.
  3956. */
  3957. asmlinkage long sys_nice(int increment)
  3958. {
  3959. long nice, retval;
  3960. /*
  3961. * Setpriority might change our priority at the same moment.
  3962. * We don't have to worry. Conceptually one call occurs first
  3963. * and we have a single winner.
  3964. */
  3965. if (increment < -40)
  3966. increment = -40;
  3967. if (increment > 40)
  3968. increment = 40;
  3969. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3970. if (nice < -20)
  3971. nice = -20;
  3972. if (nice > 19)
  3973. nice = 19;
  3974. if (increment < 0 && !can_nice(current, nice))
  3975. return -EPERM;
  3976. retval = security_task_setnice(current, nice);
  3977. if (retval)
  3978. return retval;
  3979. set_user_nice(current, nice);
  3980. return 0;
  3981. }
  3982. #endif
  3983. /**
  3984. * task_prio - return the priority value of a given task.
  3985. * @p: the task in question.
  3986. *
  3987. * This is the priority value as seen by users in /proc.
  3988. * RT tasks are offset by -200. Normal tasks are centered
  3989. * around 0, value goes from -16 to +15.
  3990. */
  3991. int task_prio(const struct task_struct *p)
  3992. {
  3993. return p->prio - MAX_RT_PRIO;
  3994. }
  3995. /**
  3996. * task_nice - return the nice value of a given task.
  3997. * @p: the task in question.
  3998. */
  3999. int task_nice(const struct task_struct *p)
  4000. {
  4001. return TASK_NICE(p);
  4002. }
  4003. EXPORT_SYMBOL(task_nice);
  4004. /**
  4005. * idle_cpu - is a given cpu idle currently?
  4006. * @cpu: the processor in question.
  4007. */
  4008. int idle_cpu(int cpu)
  4009. {
  4010. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4011. }
  4012. /**
  4013. * idle_task - return the idle task for a given cpu.
  4014. * @cpu: the processor in question.
  4015. */
  4016. struct task_struct *idle_task(int cpu)
  4017. {
  4018. return cpu_rq(cpu)->idle;
  4019. }
  4020. /**
  4021. * find_process_by_pid - find a process with a matching PID value.
  4022. * @pid: the pid in question.
  4023. */
  4024. static struct task_struct *find_process_by_pid(pid_t pid)
  4025. {
  4026. return pid ? find_task_by_vpid(pid) : current;
  4027. }
  4028. /* Actually do priority change: must hold rq lock. */
  4029. static void
  4030. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4031. {
  4032. BUG_ON(p->se.on_rq);
  4033. p->policy = policy;
  4034. switch (p->policy) {
  4035. case SCHED_NORMAL:
  4036. case SCHED_BATCH:
  4037. case SCHED_IDLE:
  4038. p->sched_class = &fair_sched_class;
  4039. break;
  4040. case SCHED_FIFO:
  4041. case SCHED_RR:
  4042. p->sched_class = &rt_sched_class;
  4043. break;
  4044. }
  4045. p->rt_priority = prio;
  4046. p->normal_prio = normal_prio(p);
  4047. /* we are holding p->pi_lock already */
  4048. p->prio = rt_mutex_getprio(p);
  4049. set_load_weight(p);
  4050. }
  4051. /**
  4052. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4053. * @p: the task in question.
  4054. * @policy: new policy.
  4055. * @param: structure containing the new RT priority.
  4056. *
  4057. * NOTE that the task may be already dead.
  4058. */
  4059. int sched_setscheduler(struct task_struct *p, int policy,
  4060. struct sched_param *param)
  4061. {
  4062. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4063. unsigned long flags;
  4064. const struct sched_class *prev_class = p->sched_class;
  4065. struct rq *rq;
  4066. /* may grab non-irq protected spin_locks */
  4067. BUG_ON(in_interrupt());
  4068. recheck:
  4069. /* double check policy once rq lock held */
  4070. if (policy < 0)
  4071. policy = oldpolicy = p->policy;
  4072. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4073. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4074. policy != SCHED_IDLE)
  4075. return -EINVAL;
  4076. /*
  4077. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4078. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4079. * SCHED_BATCH and SCHED_IDLE is 0.
  4080. */
  4081. if (param->sched_priority < 0 ||
  4082. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4083. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4084. return -EINVAL;
  4085. if (rt_policy(policy) != (param->sched_priority != 0))
  4086. return -EINVAL;
  4087. /*
  4088. * Allow unprivileged RT tasks to decrease priority:
  4089. */
  4090. if (!capable(CAP_SYS_NICE)) {
  4091. if (rt_policy(policy)) {
  4092. unsigned long rlim_rtprio;
  4093. if (!lock_task_sighand(p, &flags))
  4094. return -ESRCH;
  4095. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4096. unlock_task_sighand(p, &flags);
  4097. /* can't set/change the rt policy */
  4098. if (policy != p->policy && !rlim_rtprio)
  4099. return -EPERM;
  4100. /* can't increase priority */
  4101. if (param->sched_priority > p->rt_priority &&
  4102. param->sched_priority > rlim_rtprio)
  4103. return -EPERM;
  4104. }
  4105. /*
  4106. * Like positive nice levels, dont allow tasks to
  4107. * move out of SCHED_IDLE either:
  4108. */
  4109. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4110. return -EPERM;
  4111. /* can't change other user's priorities */
  4112. if ((current->euid != p->euid) &&
  4113. (current->euid != p->uid))
  4114. return -EPERM;
  4115. }
  4116. #ifdef CONFIG_RT_GROUP_SCHED
  4117. /*
  4118. * Do not allow realtime tasks into groups that have no runtime
  4119. * assigned.
  4120. */
  4121. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4122. return -EPERM;
  4123. #endif
  4124. retval = security_task_setscheduler(p, policy, param);
  4125. if (retval)
  4126. return retval;
  4127. /*
  4128. * make sure no PI-waiters arrive (or leave) while we are
  4129. * changing the priority of the task:
  4130. */
  4131. spin_lock_irqsave(&p->pi_lock, flags);
  4132. /*
  4133. * To be able to change p->policy safely, the apropriate
  4134. * runqueue lock must be held.
  4135. */
  4136. rq = __task_rq_lock(p);
  4137. /* recheck policy now with rq lock held */
  4138. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4139. policy = oldpolicy = -1;
  4140. __task_rq_unlock(rq);
  4141. spin_unlock_irqrestore(&p->pi_lock, flags);
  4142. goto recheck;
  4143. }
  4144. update_rq_clock(rq);
  4145. on_rq = p->se.on_rq;
  4146. running = task_current(rq, p);
  4147. if (on_rq)
  4148. deactivate_task(rq, p, 0);
  4149. if (running)
  4150. p->sched_class->put_prev_task(rq, p);
  4151. oldprio = p->prio;
  4152. __setscheduler(rq, p, policy, param->sched_priority);
  4153. if (running)
  4154. p->sched_class->set_curr_task(rq);
  4155. if (on_rq) {
  4156. activate_task(rq, p, 0);
  4157. check_class_changed(rq, p, prev_class, oldprio, running);
  4158. }
  4159. __task_rq_unlock(rq);
  4160. spin_unlock_irqrestore(&p->pi_lock, flags);
  4161. rt_mutex_adjust_pi(p);
  4162. return 0;
  4163. }
  4164. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4165. static int
  4166. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4167. {
  4168. struct sched_param lparam;
  4169. struct task_struct *p;
  4170. int retval;
  4171. if (!param || pid < 0)
  4172. return -EINVAL;
  4173. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4174. return -EFAULT;
  4175. rcu_read_lock();
  4176. retval = -ESRCH;
  4177. p = find_process_by_pid(pid);
  4178. if (p != NULL)
  4179. retval = sched_setscheduler(p, policy, &lparam);
  4180. rcu_read_unlock();
  4181. return retval;
  4182. }
  4183. /**
  4184. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4185. * @pid: the pid in question.
  4186. * @policy: new policy.
  4187. * @param: structure containing the new RT priority.
  4188. */
  4189. asmlinkage long
  4190. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4191. {
  4192. /* negative values for policy are not valid */
  4193. if (policy < 0)
  4194. return -EINVAL;
  4195. return do_sched_setscheduler(pid, policy, param);
  4196. }
  4197. /**
  4198. * sys_sched_setparam - set/change the RT priority of a thread
  4199. * @pid: the pid in question.
  4200. * @param: structure containing the new RT priority.
  4201. */
  4202. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4203. {
  4204. return do_sched_setscheduler(pid, -1, param);
  4205. }
  4206. /**
  4207. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4208. * @pid: the pid in question.
  4209. */
  4210. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4211. {
  4212. struct task_struct *p;
  4213. int retval;
  4214. if (pid < 0)
  4215. return -EINVAL;
  4216. retval = -ESRCH;
  4217. read_lock(&tasklist_lock);
  4218. p = find_process_by_pid(pid);
  4219. if (p) {
  4220. retval = security_task_getscheduler(p);
  4221. if (!retval)
  4222. retval = p->policy;
  4223. }
  4224. read_unlock(&tasklist_lock);
  4225. return retval;
  4226. }
  4227. /**
  4228. * sys_sched_getscheduler - get the RT priority of a thread
  4229. * @pid: the pid in question.
  4230. * @param: structure containing the RT priority.
  4231. */
  4232. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4233. {
  4234. struct sched_param lp;
  4235. struct task_struct *p;
  4236. int retval;
  4237. if (!param || pid < 0)
  4238. return -EINVAL;
  4239. read_lock(&tasklist_lock);
  4240. p = find_process_by_pid(pid);
  4241. retval = -ESRCH;
  4242. if (!p)
  4243. goto out_unlock;
  4244. retval = security_task_getscheduler(p);
  4245. if (retval)
  4246. goto out_unlock;
  4247. lp.sched_priority = p->rt_priority;
  4248. read_unlock(&tasklist_lock);
  4249. /*
  4250. * This one might sleep, we cannot do it with a spinlock held ...
  4251. */
  4252. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4253. return retval;
  4254. out_unlock:
  4255. read_unlock(&tasklist_lock);
  4256. return retval;
  4257. }
  4258. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4259. {
  4260. cpumask_t cpus_allowed;
  4261. cpumask_t new_mask = *in_mask;
  4262. struct task_struct *p;
  4263. int retval;
  4264. get_online_cpus();
  4265. read_lock(&tasklist_lock);
  4266. p = find_process_by_pid(pid);
  4267. if (!p) {
  4268. read_unlock(&tasklist_lock);
  4269. put_online_cpus();
  4270. return -ESRCH;
  4271. }
  4272. /*
  4273. * It is not safe to call set_cpus_allowed with the
  4274. * tasklist_lock held. We will bump the task_struct's
  4275. * usage count and then drop tasklist_lock.
  4276. */
  4277. get_task_struct(p);
  4278. read_unlock(&tasklist_lock);
  4279. retval = -EPERM;
  4280. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4281. !capable(CAP_SYS_NICE))
  4282. goto out_unlock;
  4283. retval = security_task_setscheduler(p, 0, NULL);
  4284. if (retval)
  4285. goto out_unlock;
  4286. cpuset_cpus_allowed(p, &cpus_allowed);
  4287. cpus_and(new_mask, new_mask, cpus_allowed);
  4288. again:
  4289. retval = set_cpus_allowed_ptr(p, &new_mask);
  4290. if (!retval) {
  4291. cpuset_cpus_allowed(p, &cpus_allowed);
  4292. if (!cpus_subset(new_mask, cpus_allowed)) {
  4293. /*
  4294. * We must have raced with a concurrent cpuset
  4295. * update. Just reset the cpus_allowed to the
  4296. * cpuset's cpus_allowed
  4297. */
  4298. new_mask = cpus_allowed;
  4299. goto again;
  4300. }
  4301. }
  4302. out_unlock:
  4303. put_task_struct(p);
  4304. put_online_cpus();
  4305. return retval;
  4306. }
  4307. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4308. cpumask_t *new_mask)
  4309. {
  4310. if (len < sizeof(cpumask_t)) {
  4311. memset(new_mask, 0, sizeof(cpumask_t));
  4312. } else if (len > sizeof(cpumask_t)) {
  4313. len = sizeof(cpumask_t);
  4314. }
  4315. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4316. }
  4317. /**
  4318. * sys_sched_setaffinity - set the cpu affinity of a process
  4319. * @pid: pid of the process
  4320. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4321. * @user_mask_ptr: user-space pointer to the new cpu mask
  4322. */
  4323. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4324. unsigned long __user *user_mask_ptr)
  4325. {
  4326. cpumask_t new_mask;
  4327. int retval;
  4328. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4329. if (retval)
  4330. return retval;
  4331. return sched_setaffinity(pid, &new_mask);
  4332. }
  4333. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4334. {
  4335. struct task_struct *p;
  4336. int retval;
  4337. get_online_cpus();
  4338. read_lock(&tasklist_lock);
  4339. retval = -ESRCH;
  4340. p = find_process_by_pid(pid);
  4341. if (!p)
  4342. goto out_unlock;
  4343. retval = security_task_getscheduler(p);
  4344. if (retval)
  4345. goto out_unlock;
  4346. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4347. out_unlock:
  4348. read_unlock(&tasklist_lock);
  4349. put_online_cpus();
  4350. return retval;
  4351. }
  4352. /**
  4353. * sys_sched_getaffinity - get the cpu affinity of a process
  4354. * @pid: pid of the process
  4355. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4356. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4357. */
  4358. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4359. unsigned long __user *user_mask_ptr)
  4360. {
  4361. int ret;
  4362. cpumask_t mask;
  4363. if (len < sizeof(cpumask_t))
  4364. return -EINVAL;
  4365. ret = sched_getaffinity(pid, &mask);
  4366. if (ret < 0)
  4367. return ret;
  4368. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4369. return -EFAULT;
  4370. return sizeof(cpumask_t);
  4371. }
  4372. /**
  4373. * sys_sched_yield - yield the current processor to other threads.
  4374. *
  4375. * This function yields the current CPU to other tasks. If there are no
  4376. * other threads running on this CPU then this function will return.
  4377. */
  4378. asmlinkage long sys_sched_yield(void)
  4379. {
  4380. struct rq *rq = this_rq_lock();
  4381. schedstat_inc(rq, yld_count);
  4382. current->sched_class->yield_task(rq);
  4383. /*
  4384. * Since we are going to call schedule() anyway, there's
  4385. * no need to preempt or enable interrupts:
  4386. */
  4387. __release(rq->lock);
  4388. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4389. _raw_spin_unlock(&rq->lock);
  4390. preempt_enable_no_resched();
  4391. schedule();
  4392. return 0;
  4393. }
  4394. static void __cond_resched(void)
  4395. {
  4396. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4397. __might_sleep(__FILE__, __LINE__);
  4398. #endif
  4399. /*
  4400. * The BKS might be reacquired before we have dropped
  4401. * PREEMPT_ACTIVE, which could trigger a second
  4402. * cond_resched() call.
  4403. */
  4404. do {
  4405. add_preempt_count(PREEMPT_ACTIVE);
  4406. schedule();
  4407. sub_preempt_count(PREEMPT_ACTIVE);
  4408. } while (need_resched());
  4409. }
  4410. int __sched _cond_resched(void)
  4411. {
  4412. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4413. system_state == SYSTEM_RUNNING) {
  4414. __cond_resched();
  4415. return 1;
  4416. }
  4417. return 0;
  4418. }
  4419. EXPORT_SYMBOL(_cond_resched);
  4420. /*
  4421. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4422. * call schedule, and on return reacquire the lock.
  4423. *
  4424. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4425. * operations here to prevent schedule() from being called twice (once via
  4426. * spin_unlock(), once by hand).
  4427. */
  4428. int cond_resched_lock(spinlock_t *lock)
  4429. {
  4430. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4431. int ret = 0;
  4432. if (spin_needbreak(lock) || resched) {
  4433. spin_unlock(lock);
  4434. if (resched && need_resched())
  4435. __cond_resched();
  4436. else
  4437. cpu_relax();
  4438. ret = 1;
  4439. spin_lock(lock);
  4440. }
  4441. return ret;
  4442. }
  4443. EXPORT_SYMBOL(cond_resched_lock);
  4444. int __sched cond_resched_softirq(void)
  4445. {
  4446. BUG_ON(!in_softirq());
  4447. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4448. local_bh_enable();
  4449. __cond_resched();
  4450. local_bh_disable();
  4451. return 1;
  4452. }
  4453. return 0;
  4454. }
  4455. EXPORT_SYMBOL(cond_resched_softirq);
  4456. /**
  4457. * yield - yield the current processor to other threads.
  4458. *
  4459. * This is a shortcut for kernel-space yielding - it marks the
  4460. * thread runnable and calls sys_sched_yield().
  4461. */
  4462. void __sched yield(void)
  4463. {
  4464. set_current_state(TASK_RUNNING);
  4465. sys_sched_yield();
  4466. }
  4467. EXPORT_SYMBOL(yield);
  4468. /*
  4469. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4470. * that process accounting knows that this is a task in IO wait state.
  4471. *
  4472. * But don't do that if it is a deliberate, throttling IO wait (this task
  4473. * has set its backing_dev_info: the queue against which it should throttle)
  4474. */
  4475. void __sched io_schedule(void)
  4476. {
  4477. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4478. delayacct_blkio_start();
  4479. atomic_inc(&rq->nr_iowait);
  4480. schedule();
  4481. atomic_dec(&rq->nr_iowait);
  4482. delayacct_blkio_end();
  4483. }
  4484. EXPORT_SYMBOL(io_schedule);
  4485. long __sched io_schedule_timeout(long timeout)
  4486. {
  4487. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4488. long ret;
  4489. delayacct_blkio_start();
  4490. atomic_inc(&rq->nr_iowait);
  4491. ret = schedule_timeout(timeout);
  4492. atomic_dec(&rq->nr_iowait);
  4493. delayacct_blkio_end();
  4494. return ret;
  4495. }
  4496. /**
  4497. * sys_sched_get_priority_max - return maximum RT priority.
  4498. * @policy: scheduling class.
  4499. *
  4500. * this syscall returns the maximum rt_priority that can be used
  4501. * by a given scheduling class.
  4502. */
  4503. asmlinkage long sys_sched_get_priority_max(int policy)
  4504. {
  4505. int ret = -EINVAL;
  4506. switch (policy) {
  4507. case SCHED_FIFO:
  4508. case SCHED_RR:
  4509. ret = MAX_USER_RT_PRIO-1;
  4510. break;
  4511. case SCHED_NORMAL:
  4512. case SCHED_BATCH:
  4513. case SCHED_IDLE:
  4514. ret = 0;
  4515. break;
  4516. }
  4517. return ret;
  4518. }
  4519. /**
  4520. * sys_sched_get_priority_min - return minimum RT priority.
  4521. * @policy: scheduling class.
  4522. *
  4523. * this syscall returns the minimum rt_priority that can be used
  4524. * by a given scheduling class.
  4525. */
  4526. asmlinkage long sys_sched_get_priority_min(int policy)
  4527. {
  4528. int ret = -EINVAL;
  4529. switch (policy) {
  4530. case SCHED_FIFO:
  4531. case SCHED_RR:
  4532. ret = 1;
  4533. break;
  4534. case SCHED_NORMAL:
  4535. case SCHED_BATCH:
  4536. case SCHED_IDLE:
  4537. ret = 0;
  4538. }
  4539. return ret;
  4540. }
  4541. /**
  4542. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4543. * @pid: pid of the process.
  4544. * @interval: userspace pointer to the timeslice value.
  4545. *
  4546. * this syscall writes the default timeslice value of a given process
  4547. * into the user-space timespec buffer. A value of '0' means infinity.
  4548. */
  4549. asmlinkage
  4550. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4551. {
  4552. struct task_struct *p;
  4553. unsigned int time_slice;
  4554. int retval;
  4555. struct timespec t;
  4556. if (pid < 0)
  4557. return -EINVAL;
  4558. retval = -ESRCH;
  4559. read_lock(&tasklist_lock);
  4560. p = find_process_by_pid(pid);
  4561. if (!p)
  4562. goto out_unlock;
  4563. retval = security_task_getscheduler(p);
  4564. if (retval)
  4565. goto out_unlock;
  4566. /*
  4567. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4568. * tasks that are on an otherwise idle runqueue:
  4569. */
  4570. time_slice = 0;
  4571. if (p->policy == SCHED_RR) {
  4572. time_slice = DEF_TIMESLICE;
  4573. } else if (p->policy != SCHED_FIFO) {
  4574. struct sched_entity *se = &p->se;
  4575. unsigned long flags;
  4576. struct rq *rq;
  4577. rq = task_rq_lock(p, &flags);
  4578. if (rq->cfs.load.weight)
  4579. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4580. task_rq_unlock(rq, &flags);
  4581. }
  4582. read_unlock(&tasklist_lock);
  4583. jiffies_to_timespec(time_slice, &t);
  4584. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4585. return retval;
  4586. out_unlock:
  4587. read_unlock(&tasklist_lock);
  4588. return retval;
  4589. }
  4590. static const char stat_nam[] = "RSDTtZX";
  4591. void sched_show_task(struct task_struct *p)
  4592. {
  4593. unsigned long free = 0;
  4594. unsigned state;
  4595. state = p->state ? __ffs(p->state) + 1 : 0;
  4596. printk(KERN_INFO "%-13.13s %c", p->comm,
  4597. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4598. #if BITS_PER_LONG == 32
  4599. if (state == TASK_RUNNING)
  4600. printk(KERN_CONT " running ");
  4601. else
  4602. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4603. #else
  4604. if (state == TASK_RUNNING)
  4605. printk(KERN_CONT " running task ");
  4606. else
  4607. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4608. #endif
  4609. #ifdef CONFIG_DEBUG_STACK_USAGE
  4610. {
  4611. unsigned long *n = end_of_stack(p);
  4612. while (!*n)
  4613. n++;
  4614. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4615. }
  4616. #endif
  4617. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4618. task_pid_nr(p), task_pid_nr(p->real_parent));
  4619. show_stack(p, NULL);
  4620. }
  4621. void show_state_filter(unsigned long state_filter)
  4622. {
  4623. struct task_struct *g, *p;
  4624. #if BITS_PER_LONG == 32
  4625. printk(KERN_INFO
  4626. " task PC stack pid father\n");
  4627. #else
  4628. printk(KERN_INFO
  4629. " task PC stack pid father\n");
  4630. #endif
  4631. read_lock(&tasklist_lock);
  4632. do_each_thread(g, p) {
  4633. /*
  4634. * reset the NMI-timeout, listing all files on a slow
  4635. * console might take alot of time:
  4636. */
  4637. touch_nmi_watchdog();
  4638. if (!state_filter || (p->state & state_filter))
  4639. sched_show_task(p);
  4640. } while_each_thread(g, p);
  4641. touch_all_softlockup_watchdogs();
  4642. #ifdef CONFIG_SCHED_DEBUG
  4643. sysrq_sched_debug_show();
  4644. #endif
  4645. read_unlock(&tasklist_lock);
  4646. /*
  4647. * Only show locks if all tasks are dumped:
  4648. */
  4649. if (state_filter == -1)
  4650. debug_show_all_locks();
  4651. }
  4652. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4653. {
  4654. idle->sched_class = &idle_sched_class;
  4655. }
  4656. /**
  4657. * init_idle - set up an idle thread for a given CPU
  4658. * @idle: task in question
  4659. * @cpu: cpu the idle task belongs to
  4660. *
  4661. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4662. * flag, to make booting more robust.
  4663. */
  4664. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4665. {
  4666. struct rq *rq = cpu_rq(cpu);
  4667. unsigned long flags;
  4668. __sched_fork(idle);
  4669. idle->se.exec_start = sched_clock();
  4670. idle->prio = idle->normal_prio = MAX_PRIO;
  4671. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4672. __set_task_cpu(idle, cpu);
  4673. spin_lock_irqsave(&rq->lock, flags);
  4674. rq->curr = rq->idle = idle;
  4675. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4676. idle->oncpu = 1;
  4677. #endif
  4678. spin_unlock_irqrestore(&rq->lock, flags);
  4679. /* Set the preempt count _outside_ the spinlocks! */
  4680. #if defined(CONFIG_PREEMPT)
  4681. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4682. #else
  4683. task_thread_info(idle)->preempt_count = 0;
  4684. #endif
  4685. /*
  4686. * The idle tasks have their own, simple scheduling class:
  4687. */
  4688. idle->sched_class = &idle_sched_class;
  4689. }
  4690. /*
  4691. * In a system that switches off the HZ timer nohz_cpu_mask
  4692. * indicates which cpus entered this state. This is used
  4693. * in the rcu update to wait only for active cpus. For system
  4694. * which do not switch off the HZ timer nohz_cpu_mask should
  4695. * always be CPU_MASK_NONE.
  4696. */
  4697. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4698. /*
  4699. * Increase the granularity value when there are more CPUs,
  4700. * because with more CPUs the 'effective latency' as visible
  4701. * to users decreases. But the relationship is not linear,
  4702. * so pick a second-best guess by going with the log2 of the
  4703. * number of CPUs.
  4704. *
  4705. * This idea comes from the SD scheduler of Con Kolivas:
  4706. */
  4707. static inline void sched_init_granularity(void)
  4708. {
  4709. unsigned int factor = 1 + ilog2(num_online_cpus());
  4710. const unsigned long limit = 200000000;
  4711. sysctl_sched_min_granularity *= factor;
  4712. if (sysctl_sched_min_granularity > limit)
  4713. sysctl_sched_min_granularity = limit;
  4714. sysctl_sched_latency *= factor;
  4715. if (sysctl_sched_latency > limit)
  4716. sysctl_sched_latency = limit;
  4717. sysctl_sched_wakeup_granularity *= factor;
  4718. }
  4719. #ifdef CONFIG_SMP
  4720. /*
  4721. * This is how migration works:
  4722. *
  4723. * 1) we queue a struct migration_req structure in the source CPU's
  4724. * runqueue and wake up that CPU's migration thread.
  4725. * 2) we down() the locked semaphore => thread blocks.
  4726. * 3) migration thread wakes up (implicitly it forces the migrated
  4727. * thread off the CPU)
  4728. * 4) it gets the migration request and checks whether the migrated
  4729. * task is still in the wrong runqueue.
  4730. * 5) if it's in the wrong runqueue then the migration thread removes
  4731. * it and puts it into the right queue.
  4732. * 6) migration thread up()s the semaphore.
  4733. * 7) we wake up and the migration is done.
  4734. */
  4735. /*
  4736. * Change a given task's CPU affinity. Migrate the thread to a
  4737. * proper CPU and schedule it away if the CPU it's executing on
  4738. * is removed from the allowed bitmask.
  4739. *
  4740. * NOTE: the caller must have a valid reference to the task, the
  4741. * task must not exit() & deallocate itself prematurely. The
  4742. * call is not atomic; no spinlocks may be held.
  4743. */
  4744. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4745. {
  4746. struct migration_req req;
  4747. unsigned long flags;
  4748. struct rq *rq;
  4749. int ret = 0;
  4750. rq = task_rq_lock(p, &flags);
  4751. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4752. ret = -EINVAL;
  4753. goto out;
  4754. }
  4755. if (p->sched_class->set_cpus_allowed)
  4756. p->sched_class->set_cpus_allowed(p, new_mask);
  4757. else {
  4758. p->cpus_allowed = *new_mask;
  4759. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4760. }
  4761. /* Can the task run on the task's current CPU? If so, we're done */
  4762. if (cpu_isset(task_cpu(p), *new_mask))
  4763. goto out;
  4764. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4765. /* Need help from migration thread: drop lock and wait. */
  4766. task_rq_unlock(rq, &flags);
  4767. wake_up_process(rq->migration_thread);
  4768. wait_for_completion(&req.done);
  4769. tlb_migrate_finish(p->mm);
  4770. return 0;
  4771. }
  4772. out:
  4773. task_rq_unlock(rq, &flags);
  4774. return ret;
  4775. }
  4776. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4777. /*
  4778. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4779. * this because either it can't run here any more (set_cpus_allowed()
  4780. * away from this CPU, or CPU going down), or because we're
  4781. * attempting to rebalance this task on exec (sched_exec).
  4782. *
  4783. * So we race with normal scheduler movements, but that's OK, as long
  4784. * as the task is no longer on this CPU.
  4785. *
  4786. * Returns non-zero if task was successfully migrated.
  4787. */
  4788. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4789. {
  4790. struct rq *rq_dest, *rq_src;
  4791. int ret = 0, on_rq;
  4792. if (unlikely(cpu_is_offline(dest_cpu)))
  4793. return ret;
  4794. rq_src = cpu_rq(src_cpu);
  4795. rq_dest = cpu_rq(dest_cpu);
  4796. double_rq_lock(rq_src, rq_dest);
  4797. /* Already moved. */
  4798. if (task_cpu(p) != src_cpu)
  4799. goto out;
  4800. /* Affinity changed (again). */
  4801. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4802. goto out;
  4803. on_rq = p->se.on_rq;
  4804. if (on_rq)
  4805. deactivate_task(rq_src, p, 0);
  4806. set_task_cpu(p, dest_cpu);
  4807. if (on_rq) {
  4808. activate_task(rq_dest, p, 0);
  4809. check_preempt_curr(rq_dest, p);
  4810. }
  4811. ret = 1;
  4812. out:
  4813. double_rq_unlock(rq_src, rq_dest);
  4814. return ret;
  4815. }
  4816. /*
  4817. * migration_thread - this is a highprio system thread that performs
  4818. * thread migration by bumping thread off CPU then 'pushing' onto
  4819. * another runqueue.
  4820. */
  4821. static int migration_thread(void *data)
  4822. {
  4823. int cpu = (long)data;
  4824. struct rq *rq;
  4825. rq = cpu_rq(cpu);
  4826. BUG_ON(rq->migration_thread != current);
  4827. set_current_state(TASK_INTERRUPTIBLE);
  4828. while (!kthread_should_stop()) {
  4829. struct migration_req *req;
  4830. struct list_head *head;
  4831. spin_lock_irq(&rq->lock);
  4832. if (cpu_is_offline(cpu)) {
  4833. spin_unlock_irq(&rq->lock);
  4834. goto wait_to_die;
  4835. }
  4836. if (rq->active_balance) {
  4837. active_load_balance(rq, cpu);
  4838. rq->active_balance = 0;
  4839. }
  4840. head = &rq->migration_queue;
  4841. if (list_empty(head)) {
  4842. spin_unlock_irq(&rq->lock);
  4843. schedule();
  4844. set_current_state(TASK_INTERRUPTIBLE);
  4845. continue;
  4846. }
  4847. req = list_entry(head->next, struct migration_req, list);
  4848. list_del_init(head->next);
  4849. spin_unlock(&rq->lock);
  4850. __migrate_task(req->task, cpu, req->dest_cpu);
  4851. local_irq_enable();
  4852. complete(&req->done);
  4853. }
  4854. __set_current_state(TASK_RUNNING);
  4855. return 0;
  4856. wait_to_die:
  4857. /* Wait for kthread_stop */
  4858. set_current_state(TASK_INTERRUPTIBLE);
  4859. while (!kthread_should_stop()) {
  4860. schedule();
  4861. set_current_state(TASK_INTERRUPTIBLE);
  4862. }
  4863. __set_current_state(TASK_RUNNING);
  4864. return 0;
  4865. }
  4866. #ifdef CONFIG_HOTPLUG_CPU
  4867. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4868. {
  4869. int ret;
  4870. local_irq_disable();
  4871. ret = __migrate_task(p, src_cpu, dest_cpu);
  4872. local_irq_enable();
  4873. return ret;
  4874. }
  4875. /*
  4876. * Figure out where task on dead CPU should go, use force if necessary.
  4877. * NOTE: interrupts should be disabled by the caller
  4878. */
  4879. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4880. {
  4881. unsigned long flags;
  4882. cpumask_t mask;
  4883. struct rq *rq;
  4884. int dest_cpu;
  4885. do {
  4886. /* On same node? */
  4887. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4888. cpus_and(mask, mask, p->cpus_allowed);
  4889. dest_cpu = any_online_cpu(mask);
  4890. /* On any allowed CPU? */
  4891. if (dest_cpu >= nr_cpu_ids)
  4892. dest_cpu = any_online_cpu(p->cpus_allowed);
  4893. /* No more Mr. Nice Guy. */
  4894. if (dest_cpu >= nr_cpu_ids) {
  4895. cpumask_t cpus_allowed;
  4896. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4897. /*
  4898. * Try to stay on the same cpuset, where the
  4899. * current cpuset may be a subset of all cpus.
  4900. * The cpuset_cpus_allowed_locked() variant of
  4901. * cpuset_cpus_allowed() will not block. It must be
  4902. * called within calls to cpuset_lock/cpuset_unlock.
  4903. */
  4904. rq = task_rq_lock(p, &flags);
  4905. p->cpus_allowed = cpus_allowed;
  4906. dest_cpu = any_online_cpu(p->cpus_allowed);
  4907. task_rq_unlock(rq, &flags);
  4908. /*
  4909. * Don't tell them about moving exiting tasks or
  4910. * kernel threads (both mm NULL), since they never
  4911. * leave kernel.
  4912. */
  4913. if (p->mm && printk_ratelimit()) {
  4914. printk(KERN_INFO "process %d (%s) no "
  4915. "longer affine to cpu%d\n",
  4916. task_pid_nr(p), p->comm, dead_cpu);
  4917. }
  4918. }
  4919. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4920. }
  4921. /*
  4922. * While a dead CPU has no uninterruptible tasks queued at this point,
  4923. * it might still have a nonzero ->nr_uninterruptible counter, because
  4924. * for performance reasons the counter is not stricly tracking tasks to
  4925. * their home CPUs. So we just add the counter to another CPU's counter,
  4926. * to keep the global sum constant after CPU-down:
  4927. */
  4928. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4929. {
  4930. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4931. unsigned long flags;
  4932. local_irq_save(flags);
  4933. double_rq_lock(rq_src, rq_dest);
  4934. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4935. rq_src->nr_uninterruptible = 0;
  4936. double_rq_unlock(rq_src, rq_dest);
  4937. local_irq_restore(flags);
  4938. }
  4939. /* Run through task list and migrate tasks from the dead cpu. */
  4940. static void migrate_live_tasks(int src_cpu)
  4941. {
  4942. struct task_struct *p, *t;
  4943. read_lock(&tasklist_lock);
  4944. do_each_thread(t, p) {
  4945. if (p == current)
  4946. continue;
  4947. if (task_cpu(p) == src_cpu)
  4948. move_task_off_dead_cpu(src_cpu, p);
  4949. } while_each_thread(t, p);
  4950. read_unlock(&tasklist_lock);
  4951. }
  4952. /*
  4953. * Schedules idle task to be the next runnable task on current CPU.
  4954. * It does so by boosting its priority to highest possible.
  4955. * Used by CPU offline code.
  4956. */
  4957. void sched_idle_next(void)
  4958. {
  4959. int this_cpu = smp_processor_id();
  4960. struct rq *rq = cpu_rq(this_cpu);
  4961. struct task_struct *p = rq->idle;
  4962. unsigned long flags;
  4963. /* cpu has to be offline */
  4964. BUG_ON(cpu_online(this_cpu));
  4965. /*
  4966. * Strictly not necessary since rest of the CPUs are stopped by now
  4967. * and interrupts disabled on the current cpu.
  4968. */
  4969. spin_lock_irqsave(&rq->lock, flags);
  4970. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4971. update_rq_clock(rq);
  4972. activate_task(rq, p, 0);
  4973. spin_unlock_irqrestore(&rq->lock, flags);
  4974. }
  4975. /*
  4976. * Ensures that the idle task is using init_mm right before its cpu goes
  4977. * offline.
  4978. */
  4979. void idle_task_exit(void)
  4980. {
  4981. struct mm_struct *mm = current->active_mm;
  4982. BUG_ON(cpu_online(smp_processor_id()));
  4983. if (mm != &init_mm)
  4984. switch_mm(mm, &init_mm, current);
  4985. mmdrop(mm);
  4986. }
  4987. /* called under rq->lock with disabled interrupts */
  4988. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4989. {
  4990. struct rq *rq = cpu_rq(dead_cpu);
  4991. /* Must be exiting, otherwise would be on tasklist. */
  4992. BUG_ON(!p->exit_state);
  4993. /* Cannot have done final schedule yet: would have vanished. */
  4994. BUG_ON(p->state == TASK_DEAD);
  4995. get_task_struct(p);
  4996. /*
  4997. * Drop lock around migration; if someone else moves it,
  4998. * that's OK. No task can be added to this CPU, so iteration is
  4999. * fine.
  5000. */
  5001. spin_unlock_irq(&rq->lock);
  5002. move_task_off_dead_cpu(dead_cpu, p);
  5003. spin_lock_irq(&rq->lock);
  5004. put_task_struct(p);
  5005. }
  5006. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5007. static void migrate_dead_tasks(unsigned int dead_cpu)
  5008. {
  5009. struct rq *rq = cpu_rq(dead_cpu);
  5010. struct task_struct *next;
  5011. for ( ; ; ) {
  5012. if (!rq->nr_running)
  5013. break;
  5014. update_rq_clock(rq);
  5015. next = pick_next_task(rq, rq->curr);
  5016. if (!next)
  5017. break;
  5018. migrate_dead(dead_cpu, next);
  5019. }
  5020. }
  5021. #endif /* CONFIG_HOTPLUG_CPU */
  5022. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5023. static struct ctl_table sd_ctl_dir[] = {
  5024. {
  5025. .procname = "sched_domain",
  5026. .mode = 0555,
  5027. },
  5028. {0, },
  5029. };
  5030. static struct ctl_table sd_ctl_root[] = {
  5031. {
  5032. .ctl_name = CTL_KERN,
  5033. .procname = "kernel",
  5034. .mode = 0555,
  5035. .child = sd_ctl_dir,
  5036. },
  5037. {0, },
  5038. };
  5039. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5040. {
  5041. struct ctl_table *entry =
  5042. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5043. return entry;
  5044. }
  5045. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5046. {
  5047. struct ctl_table *entry;
  5048. /*
  5049. * In the intermediate directories, both the child directory and
  5050. * procname are dynamically allocated and could fail but the mode
  5051. * will always be set. In the lowest directory the names are
  5052. * static strings and all have proc handlers.
  5053. */
  5054. for (entry = *tablep; entry->mode; entry++) {
  5055. if (entry->child)
  5056. sd_free_ctl_entry(&entry->child);
  5057. if (entry->proc_handler == NULL)
  5058. kfree(entry->procname);
  5059. }
  5060. kfree(*tablep);
  5061. *tablep = NULL;
  5062. }
  5063. static void
  5064. set_table_entry(struct ctl_table *entry,
  5065. const char *procname, void *data, int maxlen,
  5066. mode_t mode, proc_handler *proc_handler)
  5067. {
  5068. entry->procname = procname;
  5069. entry->data = data;
  5070. entry->maxlen = maxlen;
  5071. entry->mode = mode;
  5072. entry->proc_handler = proc_handler;
  5073. }
  5074. static struct ctl_table *
  5075. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5076. {
  5077. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5078. if (table == NULL)
  5079. return NULL;
  5080. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5081. sizeof(long), 0644, proc_doulongvec_minmax);
  5082. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5083. sizeof(long), 0644, proc_doulongvec_minmax);
  5084. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5085. sizeof(int), 0644, proc_dointvec_minmax);
  5086. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5087. sizeof(int), 0644, proc_dointvec_minmax);
  5088. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5089. sizeof(int), 0644, proc_dointvec_minmax);
  5090. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5091. sizeof(int), 0644, proc_dointvec_minmax);
  5092. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5093. sizeof(int), 0644, proc_dointvec_minmax);
  5094. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5095. sizeof(int), 0644, proc_dointvec_minmax);
  5096. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5097. sizeof(int), 0644, proc_dointvec_minmax);
  5098. set_table_entry(&table[9], "cache_nice_tries",
  5099. &sd->cache_nice_tries,
  5100. sizeof(int), 0644, proc_dointvec_minmax);
  5101. set_table_entry(&table[10], "flags", &sd->flags,
  5102. sizeof(int), 0644, proc_dointvec_minmax);
  5103. /* &table[11] is terminator */
  5104. return table;
  5105. }
  5106. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5107. {
  5108. struct ctl_table *entry, *table;
  5109. struct sched_domain *sd;
  5110. int domain_num = 0, i;
  5111. char buf[32];
  5112. for_each_domain(cpu, sd)
  5113. domain_num++;
  5114. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5115. if (table == NULL)
  5116. return NULL;
  5117. i = 0;
  5118. for_each_domain(cpu, sd) {
  5119. snprintf(buf, 32, "domain%d", i);
  5120. entry->procname = kstrdup(buf, GFP_KERNEL);
  5121. entry->mode = 0555;
  5122. entry->child = sd_alloc_ctl_domain_table(sd);
  5123. entry++;
  5124. i++;
  5125. }
  5126. return table;
  5127. }
  5128. static struct ctl_table_header *sd_sysctl_header;
  5129. static void register_sched_domain_sysctl(void)
  5130. {
  5131. int i, cpu_num = num_online_cpus();
  5132. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5133. char buf[32];
  5134. WARN_ON(sd_ctl_dir[0].child);
  5135. sd_ctl_dir[0].child = entry;
  5136. if (entry == NULL)
  5137. return;
  5138. for_each_online_cpu(i) {
  5139. snprintf(buf, 32, "cpu%d", i);
  5140. entry->procname = kstrdup(buf, GFP_KERNEL);
  5141. entry->mode = 0555;
  5142. entry->child = sd_alloc_ctl_cpu_table(i);
  5143. entry++;
  5144. }
  5145. WARN_ON(sd_sysctl_header);
  5146. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5147. }
  5148. /* may be called multiple times per register */
  5149. static void unregister_sched_domain_sysctl(void)
  5150. {
  5151. if (sd_sysctl_header)
  5152. unregister_sysctl_table(sd_sysctl_header);
  5153. sd_sysctl_header = NULL;
  5154. if (sd_ctl_dir[0].child)
  5155. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5156. }
  5157. #else
  5158. static void register_sched_domain_sysctl(void)
  5159. {
  5160. }
  5161. static void unregister_sched_domain_sysctl(void)
  5162. {
  5163. }
  5164. #endif
  5165. static void set_rq_online(struct rq *rq)
  5166. {
  5167. if (!rq->online) {
  5168. const struct sched_class *class;
  5169. cpu_set(rq->cpu, rq->rd->online);
  5170. rq->online = 1;
  5171. for_each_class(class) {
  5172. if (class->rq_online)
  5173. class->rq_online(rq);
  5174. }
  5175. }
  5176. }
  5177. static void set_rq_offline(struct rq *rq)
  5178. {
  5179. if (rq->online) {
  5180. const struct sched_class *class;
  5181. for_each_class(class) {
  5182. if (class->rq_offline)
  5183. class->rq_offline(rq);
  5184. }
  5185. cpu_clear(rq->cpu, rq->rd->online);
  5186. rq->online = 0;
  5187. }
  5188. }
  5189. /*
  5190. * migration_call - callback that gets triggered when a CPU is added.
  5191. * Here we can start up the necessary migration thread for the new CPU.
  5192. */
  5193. static int __cpuinit
  5194. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5195. {
  5196. struct task_struct *p;
  5197. int cpu = (long)hcpu;
  5198. unsigned long flags;
  5199. struct rq *rq;
  5200. switch (action) {
  5201. case CPU_UP_PREPARE:
  5202. case CPU_UP_PREPARE_FROZEN:
  5203. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5204. if (IS_ERR(p))
  5205. return NOTIFY_BAD;
  5206. kthread_bind(p, cpu);
  5207. /* Must be high prio: stop_machine expects to yield to it. */
  5208. rq = task_rq_lock(p, &flags);
  5209. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5210. task_rq_unlock(rq, &flags);
  5211. cpu_rq(cpu)->migration_thread = p;
  5212. break;
  5213. case CPU_ONLINE:
  5214. case CPU_ONLINE_FROZEN:
  5215. /* Strictly unnecessary, as first user will wake it. */
  5216. wake_up_process(cpu_rq(cpu)->migration_thread);
  5217. /* Update our root-domain */
  5218. rq = cpu_rq(cpu);
  5219. spin_lock_irqsave(&rq->lock, flags);
  5220. if (rq->rd) {
  5221. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5222. set_rq_online(rq);
  5223. }
  5224. spin_unlock_irqrestore(&rq->lock, flags);
  5225. break;
  5226. #ifdef CONFIG_HOTPLUG_CPU
  5227. case CPU_UP_CANCELED:
  5228. case CPU_UP_CANCELED_FROZEN:
  5229. if (!cpu_rq(cpu)->migration_thread)
  5230. break;
  5231. /* Unbind it from offline cpu so it can run. Fall thru. */
  5232. kthread_bind(cpu_rq(cpu)->migration_thread,
  5233. any_online_cpu(cpu_online_map));
  5234. kthread_stop(cpu_rq(cpu)->migration_thread);
  5235. cpu_rq(cpu)->migration_thread = NULL;
  5236. break;
  5237. case CPU_DEAD:
  5238. case CPU_DEAD_FROZEN:
  5239. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5240. migrate_live_tasks(cpu);
  5241. rq = cpu_rq(cpu);
  5242. kthread_stop(rq->migration_thread);
  5243. rq->migration_thread = NULL;
  5244. /* Idle task back to normal (off runqueue, low prio) */
  5245. spin_lock_irq(&rq->lock);
  5246. update_rq_clock(rq);
  5247. deactivate_task(rq, rq->idle, 0);
  5248. rq->idle->static_prio = MAX_PRIO;
  5249. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5250. rq->idle->sched_class = &idle_sched_class;
  5251. migrate_dead_tasks(cpu);
  5252. spin_unlock_irq(&rq->lock);
  5253. cpuset_unlock();
  5254. migrate_nr_uninterruptible(rq);
  5255. BUG_ON(rq->nr_running != 0);
  5256. /*
  5257. * No need to migrate the tasks: it was best-effort if
  5258. * they didn't take sched_hotcpu_mutex. Just wake up
  5259. * the requestors.
  5260. */
  5261. spin_lock_irq(&rq->lock);
  5262. while (!list_empty(&rq->migration_queue)) {
  5263. struct migration_req *req;
  5264. req = list_entry(rq->migration_queue.next,
  5265. struct migration_req, list);
  5266. list_del_init(&req->list);
  5267. complete(&req->done);
  5268. }
  5269. spin_unlock_irq(&rq->lock);
  5270. break;
  5271. case CPU_DYING:
  5272. case CPU_DYING_FROZEN:
  5273. /* Update our root-domain */
  5274. rq = cpu_rq(cpu);
  5275. spin_lock_irqsave(&rq->lock, flags);
  5276. if (rq->rd) {
  5277. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5278. set_rq_offline(rq);
  5279. }
  5280. spin_unlock_irqrestore(&rq->lock, flags);
  5281. break;
  5282. #endif
  5283. }
  5284. return NOTIFY_OK;
  5285. }
  5286. /* Register at highest priority so that task migration (migrate_all_tasks)
  5287. * happens before everything else.
  5288. */
  5289. static struct notifier_block __cpuinitdata migration_notifier = {
  5290. .notifier_call = migration_call,
  5291. .priority = 10
  5292. };
  5293. void __init migration_init(void)
  5294. {
  5295. void *cpu = (void *)(long)smp_processor_id();
  5296. int err;
  5297. /* Start one for the boot CPU: */
  5298. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5299. BUG_ON(err == NOTIFY_BAD);
  5300. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5301. register_cpu_notifier(&migration_notifier);
  5302. }
  5303. #endif
  5304. #ifdef CONFIG_SMP
  5305. #ifdef CONFIG_SCHED_DEBUG
  5306. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5307. {
  5308. switch (lvl) {
  5309. case SD_LV_NONE:
  5310. return "NONE";
  5311. case SD_LV_SIBLING:
  5312. return "SIBLING";
  5313. case SD_LV_MC:
  5314. return "MC";
  5315. case SD_LV_CPU:
  5316. return "CPU";
  5317. case SD_LV_NODE:
  5318. return "NODE";
  5319. case SD_LV_ALLNODES:
  5320. return "ALLNODES";
  5321. case SD_LV_MAX:
  5322. return "MAX";
  5323. }
  5324. return "MAX";
  5325. }
  5326. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5327. cpumask_t *groupmask)
  5328. {
  5329. struct sched_group *group = sd->groups;
  5330. char str[256];
  5331. cpulist_scnprintf(str, sizeof(str), sd->span);
  5332. cpus_clear(*groupmask);
  5333. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5334. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5335. printk("does not load-balance\n");
  5336. if (sd->parent)
  5337. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5338. " has parent");
  5339. return -1;
  5340. }
  5341. printk(KERN_CONT "span %s level %s\n",
  5342. str, sd_level_to_string(sd->level));
  5343. if (!cpu_isset(cpu, sd->span)) {
  5344. printk(KERN_ERR "ERROR: domain->span does not contain "
  5345. "CPU%d\n", cpu);
  5346. }
  5347. if (!cpu_isset(cpu, group->cpumask)) {
  5348. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5349. " CPU%d\n", cpu);
  5350. }
  5351. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5352. do {
  5353. if (!group) {
  5354. printk("\n");
  5355. printk(KERN_ERR "ERROR: group is NULL\n");
  5356. break;
  5357. }
  5358. if (!group->__cpu_power) {
  5359. printk(KERN_CONT "\n");
  5360. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5361. "set\n");
  5362. break;
  5363. }
  5364. if (!cpus_weight(group->cpumask)) {
  5365. printk(KERN_CONT "\n");
  5366. printk(KERN_ERR "ERROR: empty group\n");
  5367. break;
  5368. }
  5369. if (cpus_intersects(*groupmask, group->cpumask)) {
  5370. printk(KERN_CONT "\n");
  5371. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5372. break;
  5373. }
  5374. cpus_or(*groupmask, *groupmask, group->cpumask);
  5375. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5376. printk(KERN_CONT " %s", str);
  5377. group = group->next;
  5378. } while (group != sd->groups);
  5379. printk(KERN_CONT "\n");
  5380. if (!cpus_equal(sd->span, *groupmask))
  5381. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5382. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5383. printk(KERN_ERR "ERROR: parent span is not a superset "
  5384. "of domain->span\n");
  5385. return 0;
  5386. }
  5387. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5388. {
  5389. cpumask_t *groupmask;
  5390. int level = 0;
  5391. if (!sd) {
  5392. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5393. return;
  5394. }
  5395. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5396. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5397. if (!groupmask) {
  5398. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5399. return;
  5400. }
  5401. for (;;) {
  5402. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5403. break;
  5404. level++;
  5405. sd = sd->parent;
  5406. if (!sd)
  5407. break;
  5408. }
  5409. kfree(groupmask);
  5410. }
  5411. #else /* !CONFIG_SCHED_DEBUG */
  5412. # define sched_domain_debug(sd, cpu) do { } while (0)
  5413. #endif /* CONFIG_SCHED_DEBUG */
  5414. static int sd_degenerate(struct sched_domain *sd)
  5415. {
  5416. if (cpus_weight(sd->span) == 1)
  5417. return 1;
  5418. /* Following flags need at least 2 groups */
  5419. if (sd->flags & (SD_LOAD_BALANCE |
  5420. SD_BALANCE_NEWIDLE |
  5421. SD_BALANCE_FORK |
  5422. SD_BALANCE_EXEC |
  5423. SD_SHARE_CPUPOWER |
  5424. SD_SHARE_PKG_RESOURCES)) {
  5425. if (sd->groups != sd->groups->next)
  5426. return 0;
  5427. }
  5428. /* Following flags don't use groups */
  5429. if (sd->flags & (SD_WAKE_IDLE |
  5430. SD_WAKE_AFFINE |
  5431. SD_WAKE_BALANCE))
  5432. return 0;
  5433. return 1;
  5434. }
  5435. static int
  5436. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5437. {
  5438. unsigned long cflags = sd->flags, pflags = parent->flags;
  5439. if (sd_degenerate(parent))
  5440. return 1;
  5441. if (!cpus_equal(sd->span, parent->span))
  5442. return 0;
  5443. /* Does parent contain flags not in child? */
  5444. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5445. if (cflags & SD_WAKE_AFFINE)
  5446. pflags &= ~SD_WAKE_BALANCE;
  5447. /* Flags needing groups don't count if only 1 group in parent */
  5448. if (parent->groups == parent->groups->next) {
  5449. pflags &= ~(SD_LOAD_BALANCE |
  5450. SD_BALANCE_NEWIDLE |
  5451. SD_BALANCE_FORK |
  5452. SD_BALANCE_EXEC |
  5453. SD_SHARE_CPUPOWER |
  5454. SD_SHARE_PKG_RESOURCES);
  5455. }
  5456. if (~cflags & pflags)
  5457. return 0;
  5458. return 1;
  5459. }
  5460. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5461. {
  5462. unsigned long flags;
  5463. spin_lock_irqsave(&rq->lock, flags);
  5464. if (rq->rd) {
  5465. struct root_domain *old_rd = rq->rd;
  5466. if (cpu_isset(rq->cpu, old_rd->online))
  5467. set_rq_offline(rq);
  5468. cpu_clear(rq->cpu, old_rd->span);
  5469. if (atomic_dec_and_test(&old_rd->refcount))
  5470. kfree(old_rd);
  5471. }
  5472. atomic_inc(&rd->refcount);
  5473. rq->rd = rd;
  5474. cpu_set(rq->cpu, rd->span);
  5475. if (cpu_isset(rq->cpu, cpu_online_map))
  5476. set_rq_online(rq);
  5477. spin_unlock_irqrestore(&rq->lock, flags);
  5478. }
  5479. static void init_rootdomain(struct root_domain *rd)
  5480. {
  5481. memset(rd, 0, sizeof(*rd));
  5482. cpus_clear(rd->span);
  5483. cpus_clear(rd->online);
  5484. cpupri_init(&rd->cpupri);
  5485. }
  5486. static void init_defrootdomain(void)
  5487. {
  5488. init_rootdomain(&def_root_domain);
  5489. atomic_set(&def_root_domain.refcount, 1);
  5490. }
  5491. static struct root_domain *alloc_rootdomain(void)
  5492. {
  5493. struct root_domain *rd;
  5494. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5495. if (!rd)
  5496. return NULL;
  5497. init_rootdomain(rd);
  5498. return rd;
  5499. }
  5500. /*
  5501. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5502. * hold the hotplug lock.
  5503. */
  5504. static void
  5505. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5506. {
  5507. struct rq *rq = cpu_rq(cpu);
  5508. struct sched_domain *tmp;
  5509. /* Remove the sched domains which do not contribute to scheduling. */
  5510. for (tmp = sd; tmp; tmp = tmp->parent) {
  5511. struct sched_domain *parent = tmp->parent;
  5512. if (!parent)
  5513. break;
  5514. if (sd_parent_degenerate(tmp, parent)) {
  5515. tmp->parent = parent->parent;
  5516. if (parent->parent)
  5517. parent->parent->child = tmp;
  5518. }
  5519. }
  5520. if (sd && sd_degenerate(sd)) {
  5521. sd = sd->parent;
  5522. if (sd)
  5523. sd->child = NULL;
  5524. }
  5525. sched_domain_debug(sd, cpu);
  5526. rq_attach_root(rq, rd);
  5527. rcu_assign_pointer(rq->sd, sd);
  5528. }
  5529. /* cpus with isolated domains */
  5530. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5531. /* Setup the mask of cpus configured for isolated domains */
  5532. static int __init isolated_cpu_setup(char *str)
  5533. {
  5534. int ints[NR_CPUS], i;
  5535. str = get_options(str, ARRAY_SIZE(ints), ints);
  5536. cpus_clear(cpu_isolated_map);
  5537. for (i = 1; i <= ints[0]; i++)
  5538. if (ints[i] < NR_CPUS)
  5539. cpu_set(ints[i], cpu_isolated_map);
  5540. return 1;
  5541. }
  5542. __setup("isolcpus=", isolated_cpu_setup);
  5543. /*
  5544. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5545. * to a function which identifies what group(along with sched group) a CPU
  5546. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5547. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5548. *
  5549. * init_sched_build_groups will build a circular linked list of the groups
  5550. * covered by the given span, and will set each group's ->cpumask correctly,
  5551. * and ->cpu_power to 0.
  5552. */
  5553. static void
  5554. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5555. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5556. struct sched_group **sg,
  5557. cpumask_t *tmpmask),
  5558. cpumask_t *covered, cpumask_t *tmpmask)
  5559. {
  5560. struct sched_group *first = NULL, *last = NULL;
  5561. int i;
  5562. cpus_clear(*covered);
  5563. for_each_cpu_mask(i, *span) {
  5564. struct sched_group *sg;
  5565. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5566. int j;
  5567. if (cpu_isset(i, *covered))
  5568. continue;
  5569. cpus_clear(sg->cpumask);
  5570. sg->__cpu_power = 0;
  5571. for_each_cpu_mask(j, *span) {
  5572. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5573. continue;
  5574. cpu_set(j, *covered);
  5575. cpu_set(j, sg->cpumask);
  5576. }
  5577. if (!first)
  5578. first = sg;
  5579. if (last)
  5580. last->next = sg;
  5581. last = sg;
  5582. }
  5583. last->next = first;
  5584. }
  5585. #define SD_NODES_PER_DOMAIN 16
  5586. #ifdef CONFIG_NUMA
  5587. /**
  5588. * find_next_best_node - find the next node to include in a sched_domain
  5589. * @node: node whose sched_domain we're building
  5590. * @used_nodes: nodes already in the sched_domain
  5591. *
  5592. * Find the next node to include in a given scheduling domain. Simply
  5593. * finds the closest node not already in the @used_nodes map.
  5594. *
  5595. * Should use nodemask_t.
  5596. */
  5597. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5598. {
  5599. int i, n, val, min_val, best_node = 0;
  5600. min_val = INT_MAX;
  5601. for (i = 0; i < MAX_NUMNODES; i++) {
  5602. /* Start at @node */
  5603. n = (node + i) % MAX_NUMNODES;
  5604. if (!nr_cpus_node(n))
  5605. continue;
  5606. /* Skip already used nodes */
  5607. if (node_isset(n, *used_nodes))
  5608. continue;
  5609. /* Simple min distance search */
  5610. val = node_distance(node, n);
  5611. if (val < min_val) {
  5612. min_val = val;
  5613. best_node = n;
  5614. }
  5615. }
  5616. node_set(best_node, *used_nodes);
  5617. return best_node;
  5618. }
  5619. /**
  5620. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5621. * @node: node whose cpumask we're constructing
  5622. * @span: resulting cpumask
  5623. *
  5624. * Given a node, construct a good cpumask for its sched_domain to span. It
  5625. * should be one that prevents unnecessary balancing, but also spreads tasks
  5626. * out optimally.
  5627. */
  5628. static void sched_domain_node_span(int node, cpumask_t *span)
  5629. {
  5630. nodemask_t used_nodes;
  5631. node_to_cpumask_ptr(nodemask, node);
  5632. int i;
  5633. cpus_clear(*span);
  5634. nodes_clear(used_nodes);
  5635. cpus_or(*span, *span, *nodemask);
  5636. node_set(node, used_nodes);
  5637. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5638. int next_node = find_next_best_node(node, &used_nodes);
  5639. node_to_cpumask_ptr_next(nodemask, next_node);
  5640. cpus_or(*span, *span, *nodemask);
  5641. }
  5642. }
  5643. #endif /* CONFIG_NUMA */
  5644. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5645. /*
  5646. * SMT sched-domains:
  5647. */
  5648. #ifdef CONFIG_SCHED_SMT
  5649. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5650. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5651. static int
  5652. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5653. cpumask_t *unused)
  5654. {
  5655. if (sg)
  5656. *sg = &per_cpu(sched_group_cpus, cpu);
  5657. return cpu;
  5658. }
  5659. #endif /* CONFIG_SCHED_SMT */
  5660. /*
  5661. * multi-core sched-domains:
  5662. */
  5663. #ifdef CONFIG_SCHED_MC
  5664. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5665. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5666. #endif /* CONFIG_SCHED_MC */
  5667. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5668. static int
  5669. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5670. cpumask_t *mask)
  5671. {
  5672. int group;
  5673. *mask = per_cpu(cpu_sibling_map, cpu);
  5674. cpus_and(*mask, *mask, *cpu_map);
  5675. group = first_cpu(*mask);
  5676. if (sg)
  5677. *sg = &per_cpu(sched_group_core, group);
  5678. return group;
  5679. }
  5680. #elif defined(CONFIG_SCHED_MC)
  5681. static int
  5682. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5683. cpumask_t *unused)
  5684. {
  5685. if (sg)
  5686. *sg = &per_cpu(sched_group_core, cpu);
  5687. return cpu;
  5688. }
  5689. #endif
  5690. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5691. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5692. static int
  5693. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5694. cpumask_t *mask)
  5695. {
  5696. int group;
  5697. #ifdef CONFIG_SCHED_MC
  5698. *mask = cpu_coregroup_map(cpu);
  5699. cpus_and(*mask, *mask, *cpu_map);
  5700. group = first_cpu(*mask);
  5701. #elif defined(CONFIG_SCHED_SMT)
  5702. *mask = per_cpu(cpu_sibling_map, cpu);
  5703. cpus_and(*mask, *mask, *cpu_map);
  5704. group = first_cpu(*mask);
  5705. #else
  5706. group = cpu;
  5707. #endif
  5708. if (sg)
  5709. *sg = &per_cpu(sched_group_phys, group);
  5710. return group;
  5711. }
  5712. #ifdef CONFIG_NUMA
  5713. /*
  5714. * The init_sched_build_groups can't handle what we want to do with node
  5715. * groups, so roll our own. Now each node has its own list of groups which
  5716. * gets dynamically allocated.
  5717. */
  5718. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5719. static struct sched_group ***sched_group_nodes_bycpu;
  5720. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5721. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5722. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5723. struct sched_group **sg, cpumask_t *nodemask)
  5724. {
  5725. int group;
  5726. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5727. cpus_and(*nodemask, *nodemask, *cpu_map);
  5728. group = first_cpu(*nodemask);
  5729. if (sg)
  5730. *sg = &per_cpu(sched_group_allnodes, group);
  5731. return group;
  5732. }
  5733. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5734. {
  5735. struct sched_group *sg = group_head;
  5736. int j;
  5737. if (!sg)
  5738. return;
  5739. do {
  5740. for_each_cpu_mask(j, sg->cpumask) {
  5741. struct sched_domain *sd;
  5742. sd = &per_cpu(phys_domains, j);
  5743. if (j != first_cpu(sd->groups->cpumask)) {
  5744. /*
  5745. * Only add "power" once for each
  5746. * physical package.
  5747. */
  5748. continue;
  5749. }
  5750. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5751. }
  5752. sg = sg->next;
  5753. } while (sg != group_head);
  5754. }
  5755. #endif /* CONFIG_NUMA */
  5756. #ifdef CONFIG_NUMA
  5757. /* Free memory allocated for various sched_group structures */
  5758. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5759. {
  5760. int cpu, i;
  5761. for_each_cpu_mask(cpu, *cpu_map) {
  5762. struct sched_group **sched_group_nodes
  5763. = sched_group_nodes_bycpu[cpu];
  5764. if (!sched_group_nodes)
  5765. continue;
  5766. for (i = 0; i < MAX_NUMNODES; i++) {
  5767. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5768. *nodemask = node_to_cpumask(i);
  5769. cpus_and(*nodemask, *nodemask, *cpu_map);
  5770. if (cpus_empty(*nodemask))
  5771. continue;
  5772. if (sg == NULL)
  5773. continue;
  5774. sg = sg->next;
  5775. next_sg:
  5776. oldsg = sg;
  5777. sg = sg->next;
  5778. kfree(oldsg);
  5779. if (oldsg != sched_group_nodes[i])
  5780. goto next_sg;
  5781. }
  5782. kfree(sched_group_nodes);
  5783. sched_group_nodes_bycpu[cpu] = NULL;
  5784. }
  5785. }
  5786. #else /* !CONFIG_NUMA */
  5787. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5788. {
  5789. }
  5790. #endif /* CONFIG_NUMA */
  5791. /*
  5792. * Initialize sched groups cpu_power.
  5793. *
  5794. * cpu_power indicates the capacity of sched group, which is used while
  5795. * distributing the load between different sched groups in a sched domain.
  5796. * Typically cpu_power for all the groups in a sched domain will be same unless
  5797. * there are asymmetries in the topology. If there are asymmetries, group
  5798. * having more cpu_power will pickup more load compared to the group having
  5799. * less cpu_power.
  5800. *
  5801. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5802. * the maximum number of tasks a group can handle in the presence of other idle
  5803. * or lightly loaded groups in the same sched domain.
  5804. */
  5805. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5806. {
  5807. struct sched_domain *child;
  5808. struct sched_group *group;
  5809. WARN_ON(!sd || !sd->groups);
  5810. if (cpu != first_cpu(sd->groups->cpumask))
  5811. return;
  5812. child = sd->child;
  5813. sd->groups->__cpu_power = 0;
  5814. /*
  5815. * For perf policy, if the groups in child domain share resources
  5816. * (for example cores sharing some portions of the cache hierarchy
  5817. * or SMT), then set this domain groups cpu_power such that each group
  5818. * can handle only one task, when there are other idle groups in the
  5819. * same sched domain.
  5820. */
  5821. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5822. (child->flags &
  5823. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5824. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5825. return;
  5826. }
  5827. /*
  5828. * add cpu_power of each child group to this groups cpu_power
  5829. */
  5830. group = child->groups;
  5831. do {
  5832. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5833. group = group->next;
  5834. } while (group != child->groups);
  5835. }
  5836. /*
  5837. * Initializers for schedule domains
  5838. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5839. */
  5840. #define SD_INIT(sd, type) sd_init_##type(sd)
  5841. #define SD_INIT_FUNC(type) \
  5842. static noinline void sd_init_##type(struct sched_domain *sd) \
  5843. { \
  5844. memset(sd, 0, sizeof(*sd)); \
  5845. *sd = SD_##type##_INIT; \
  5846. sd->level = SD_LV_##type; \
  5847. }
  5848. SD_INIT_FUNC(CPU)
  5849. #ifdef CONFIG_NUMA
  5850. SD_INIT_FUNC(ALLNODES)
  5851. SD_INIT_FUNC(NODE)
  5852. #endif
  5853. #ifdef CONFIG_SCHED_SMT
  5854. SD_INIT_FUNC(SIBLING)
  5855. #endif
  5856. #ifdef CONFIG_SCHED_MC
  5857. SD_INIT_FUNC(MC)
  5858. #endif
  5859. /*
  5860. * To minimize stack usage kmalloc room for cpumasks and share the
  5861. * space as the usage in build_sched_domains() dictates. Used only
  5862. * if the amount of space is significant.
  5863. */
  5864. struct allmasks {
  5865. cpumask_t tmpmask; /* make this one first */
  5866. union {
  5867. cpumask_t nodemask;
  5868. cpumask_t this_sibling_map;
  5869. cpumask_t this_core_map;
  5870. };
  5871. cpumask_t send_covered;
  5872. #ifdef CONFIG_NUMA
  5873. cpumask_t domainspan;
  5874. cpumask_t covered;
  5875. cpumask_t notcovered;
  5876. #endif
  5877. };
  5878. #if NR_CPUS > 128
  5879. #define SCHED_CPUMASK_ALLOC 1
  5880. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5881. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5882. #else
  5883. #define SCHED_CPUMASK_ALLOC 0
  5884. #define SCHED_CPUMASK_FREE(v)
  5885. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5886. #endif
  5887. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5888. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5889. static int default_relax_domain_level = -1;
  5890. static int __init setup_relax_domain_level(char *str)
  5891. {
  5892. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  5893. return 1;
  5894. }
  5895. __setup("relax_domain_level=", setup_relax_domain_level);
  5896. static void set_domain_attribute(struct sched_domain *sd,
  5897. struct sched_domain_attr *attr)
  5898. {
  5899. int request;
  5900. if (!attr || attr->relax_domain_level < 0) {
  5901. if (default_relax_domain_level < 0)
  5902. return;
  5903. else
  5904. request = default_relax_domain_level;
  5905. } else
  5906. request = attr->relax_domain_level;
  5907. if (request < sd->level) {
  5908. /* turn off idle balance on this domain */
  5909. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  5910. } else {
  5911. /* turn on idle balance on this domain */
  5912. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  5913. }
  5914. }
  5915. /*
  5916. * Build sched domains for a given set of cpus and attach the sched domains
  5917. * to the individual cpus
  5918. */
  5919. static int __build_sched_domains(const cpumask_t *cpu_map,
  5920. struct sched_domain_attr *attr)
  5921. {
  5922. int i;
  5923. struct root_domain *rd;
  5924. SCHED_CPUMASK_DECLARE(allmasks);
  5925. cpumask_t *tmpmask;
  5926. #ifdef CONFIG_NUMA
  5927. struct sched_group **sched_group_nodes = NULL;
  5928. int sd_allnodes = 0;
  5929. /*
  5930. * Allocate the per-node list of sched groups
  5931. */
  5932. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5933. GFP_KERNEL);
  5934. if (!sched_group_nodes) {
  5935. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5936. return -ENOMEM;
  5937. }
  5938. #endif
  5939. rd = alloc_rootdomain();
  5940. if (!rd) {
  5941. printk(KERN_WARNING "Cannot alloc root domain\n");
  5942. #ifdef CONFIG_NUMA
  5943. kfree(sched_group_nodes);
  5944. #endif
  5945. return -ENOMEM;
  5946. }
  5947. #if SCHED_CPUMASK_ALLOC
  5948. /* get space for all scratch cpumask variables */
  5949. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5950. if (!allmasks) {
  5951. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5952. kfree(rd);
  5953. #ifdef CONFIG_NUMA
  5954. kfree(sched_group_nodes);
  5955. #endif
  5956. return -ENOMEM;
  5957. }
  5958. #endif
  5959. tmpmask = (cpumask_t *)allmasks;
  5960. #ifdef CONFIG_NUMA
  5961. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5962. #endif
  5963. /*
  5964. * Set up domains for cpus specified by the cpu_map.
  5965. */
  5966. for_each_cpu_mask(i, *cpu_map) {
  5967. struct sched_domain *sd = NULL, *p;
  5968. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5969. *nodemask = node_to_cpumask(cpu_to_node(i));
  5970. cpus_and(*nodemask, *nodemask, *cpu_map);
  5971. #ifdef CONFIG_NUMA
  5972. if (cpus_weight(*cpu_map) >
  5973. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5974. sd = &per_cpu(allnodes_domains, i);
  5975. SD_INIT(sd, ALLNODES);
  5976. set_domain_attribute(sd, attr);
  5977. sd->span = *cpu_map;
  5978. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5979. p = sd;
  5980. sd_allnodes = 1;
  5981. } else
  5982. p = NULL;
  5983. sd = &per_cpu(node_domains, i);
  5984. SD_INIT(sd, NODE);
  5985. set_domain_attribute(sd, attr);
  5986. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5987. sd->parent = p;
  5988. if (p)
  5989. p->child = sd;
  5990. cpus_and(sd->span, sd->span, *cpu_map);
  5991. #endif
  5992. p = sd;
  5993. sd = &per_cpu(phys_domains, i);
  5994. SD_INIT(sd, CPU);
  5995. set_domain_attribute(sd, attr);
  5996. sd->span = *nodemask;
  5997. sd->parent = p;
  5998. if (p)
  5999. p->child = sd;
  6000. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6001. #ifdef CONFIG_SCHED_MC
  6002. p = sd;
  6003. sd = &per_cpu(core_domains, i);
  6004. SD_INIT(sd, MC);
  6005. set_domain_attribute(sd, attr);
  6006. sd->span = cpu_coregroup_map(i);
  6007. cpus_and(sd->span, sd->span, *cpu_map);
  6008. sd->parent = p;
  6009. p->child = sd;
  6010. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6011. #endif
  6012. #ifdef CONFIG_SCHED_SMT
  6013. p = sd;
  6014. sd = &per_cpu(cpu_domains, i);
  6015. SD_INIT(sd, SIBLING);
  6016. set_domain_attribute(sd, attr);
  6017. sd->span = per_cpu(cpu_sibling_map, i);
  6018. cpus_and(sd->span, sd->span, *cpu_map);
  6019. sd->parent = p;
  6020. p->child = sd;
  6021. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6022. #endif
  6023. }
  6024. #ifdef CONFIG_SCHED_SMT
  6025. /* Set up CPU (sibling) groups */
  6026. for_each_cpu_mask(i, *cpu_map) {
  6027. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6028. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6029. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6030. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6031. if (i != first_cpu(*this_sibling_map))
  6032. continue;
  6033. init_sched_build_groups(this_sibling_map, cpu_map,
  6034. &cpu_to_cpu_group,
  6035. send_covered, tmpmask);
  6036. }
  6037. #endif
  6038. #ifdef CONFIG_SCHED_MC
  6039. /* Set up multi-core groups */
  6040. for_each_cpu_mask(i, *cpu_map) {
  6041. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6042. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6043. *this_core_map = cpu_coregroup_map(i);
  6044. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6045. if (i != first_cpu(*this_core_map))
  6046. continue;
  6047. init_sched_build_groups(this_core_map, cpu_map,
  6048. &cpu_to_core_group,
  6049. send_covered, tmpmask);
  6050. }
  6051. #endif
  6052. /* Set up physical groups */
  6053. for (i = 0; i < MAX_NUMNODES; i++) {
  6054. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6055. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6056. *nodemask = node_to_cpumask(i);
  6057. cpus_and(*nodemask, *nodemask, *cpu_map);
  6058. if (cpus_empty(*nodemask))
  6059. continue;
  6060. init_sched_build_groups(nodemask, cpu_map,
  6061. &cpu_to_phys_group,
  6062. send_covered, tmpmask);
  6063. }
  6064. #ifdef CONFIG_NUMA
  6065. /* Set up node groups */
  6066. if (sd_allnodes) {
  6067. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6068. init_sched_build_groups(cpu_map, cpu_map,
  6069. &cpu_to_allnodes_group,
  6070. send_covered, tmpmask);
  6071. }
  6072. for (i = 0; i < MAX_NUMNODES; i++) {
  6073. /* Set up node groups */
  6074. struct sched_group *sg, *prev;
  6075. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6076. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6077. SCHED_CPUMASK_VAR(covered, allmasks);
  6078. int j;
  6079. *nodemask = node_to_cpumask(i);
  6080. cpus_clear(*covered);
  6081. cpus_and(*nodemask, *nodemask, *cpu_map);
  6082. if (cpus_empty(*nodemask)) {
  6083. sched_group_nodes[i] = NULL;
  6084. continue;
  6085. }
  6086. sched_domain_node_span(i, domainspan);
  6087. cpus_and(*domainspan, *domainspan, *cpu_map);
  6088. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6089. if (!sg) {
  6090. printk(KERN_WARNING "Can not alloc domain group for "
  6091. "node %d\n", i);
  6092. goto error;
  6093. }
  6094. sched_group_nodes[i] = sg;
  6095. for_each_cpu_mask(j, *nodemask) {
  6096. struct sched_domain *sd;
  6097. sd = &per_cpu(node_domains, j);
  6098. sd->groups = sg;
  6099. }
  6100. sg->__cpu_power = 0;
  6101. sg->cpumask = *nodemask;
  6102. sg->next = sg;
  6103. cpus_or(*covered, *covered, *nodemask);
  6104. prev = sg;
  6105. for (j = 0; j < MAX_NUMNODES; j++) {
  6106. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6107. int n = (i + j) % MAX_NUMNODES;
  6108. node_to_cpumask_ptr(pnodemask, n);
  6109. cpus_complement(*notcovered, *covered);
  6110. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6111. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6112. if (cpus_empty(*tmpmask))
  6113. break;
  6114. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6115. if (cpus_empty(*tmpmask))
  6116. continue;
  6117. sg = kmalloc_node(sizeof(struct sched_group),
  6118. GFP_KERNEL, i);
  6119. if (!sg) {
  6120. printk(KERN_WARNING
  6121. "Can not alloc domain group for node %d\n", j);
  6122. goto error;
  6123. }
  6124. sg->__cpu_power = 0;
  6125. sg->cpumask = *tmpmask;
  6126. sg->next = prev->next;
  6127. cpus_or(*covered, *covered, *tmpmask);
  6128. prev->next = sg;
  6129. prev = sg;
  6130. }
  6131. }
  6132. #endif
  6133. /* Calculate CPU power for physical packages and nodes */
  6134. #ifdef CONFIG_SCHED_SMT
  6135. for_each_cpu_mask(i, *cpu_map) {
  6136. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6137. init_sched_groups_power(i, sd);
  6138. }
  6139. #endif
  6140. #ifdef CONFIG_SCHED_MC
  6141. for_each_cpu_mask(i, *cpu_map) {
  6142. struct sched_domain *sd = &per_cpu(core_domains, i);
  6143. init_sched_groups_power(i, sd);
  6144. }
  6145. #endif
  6146. for_each_cpu_mask(i, *cpu_map) {
  6147. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6148. init_sched_groups_power(i, sd);
  6149. }
  6150. #ifdef CONFIG_NUMA
  6151. for (i = 0; i < MAX_NUMNODES; i++)
  6152. init_numa_sched_groups_power(sched_group_nodes[i]);
  6153. if (sd_allnodes) {
  6154. struct sched_group *sg;
  6155. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6156. tmpmask);
  6157. init_numa_sched_groups_power(sg);
  6158. }
  6159. #endif
  6160. /* Attach the domains */
  6161. for_each_cpu_mask(i, *cpu_map) {
  6162. struct sched_domain *sd;
  6163. #ifdef CONFIG_SCHED_SMT
  6164. sd = &per_cpu(cpu_domains, i);
  6165. #elif defined(CONFIG_SCHED_MC)
  6166. sd = &per_cpu(core_domains, i);
  6167. #else
  6168. sd = &per_cpu(phys_domains, i);
  6169. #endif
  6170. cpu_attach_domain(sd, rd, i);
  6171. }
  6172. SCHED_CPUMASK_FREE((void *)allmasks);
  6173. return 0;
  6174. #ifdef CONFIG_NUMA
  6175. error:
  6176. free_sched_groups(cpu_map, tmpmask);
  6177. SCHED_CPUMASK_FREE((void *)allmasks);
  6178. return -ENOMEM;
  6179. #endif
  6180. }
  6181. static int build_sched_domains(const cpumask_t *cpu_map)
  6182. {
  6183. return __build_sched_domains(cpu_map, NULL);
  6184. }
  6185. static cpumask_t *doms_cur; /* current sched domains */
  6186. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6187. static struct sched_domain_attr *dattr_cur;
  6188. /* attribues of custom domains in 'doms_cur' */
  6189. /*
  6190. * Special case: If a kmalloc of a doms_cur partition (array of
  6191. * cpumask_t) fails, then fallback to a single sched domain,
  6192. * as determined by the single cpumask_t fallback_doms.
  6193. */
  6194. static cpumask_t fallback_doms;
  6195. void __attribute__((weak)) arch_update_cpu_topology(void)
  6196. {
  6197. }
  6198. /*
  6199. * Free current domain masks.
  6200. * Called after all cpus are attached to NULL domain.
  6201. */
  6202. static void free_sched_domains(void)
  6203. {
  6204. ndoms_cur = 0;
  6205. if (doms_cur != &fallback_doms)
  6206. kfree(doms_cur);
  6207. doms_cur = &fallback_doms;
  6208. }
  6209. /*
  6210. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6211. * For now this just excludes isolated cpus, but could be used to
  6212. * exclude other special cases in the future.
  6213. */
  6214. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6215. {
  6216. int err;
  6217. arch_update_cpu_topology();
  6218. ndoms_cur = 1;
  6219. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6220. if (!doms_cur)
  6221. doms_cur = &fallback_doms;
  6222. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6223. dattr_cur = NULL;
  6224. err = build_sched_domains(doms_cur);
  6225. register_sched_domain_sysctl();
  6226. return err;
  6227. }
  6228. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6229. cpumask_t *tmpmask)
  6230. {
  6231. free_sched_groups(cpu_map, tmpmask);
  6232. }
  6233. /*
  6234. * Detach sched domains from a group of cpus specified in cpu_map
  6235. * These cpus will now be attached to the NULL domain
  6236. */
  6237. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6238. {
  6239. cpumask_t tmpmask;
  6240. int i;
  6241. unregister_sched_domain_sysctl();
  6242. for_each_cpu_mask(i, *cpu_map)
  6243. cpu_attach_domain(NULL, &def_root_domain, i);
  6244. synchronize_sched();
  6245. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6246. }
  6247. /* handle null as "default" */
  6248. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6249. struct sched_domain_attr *new, int idx_new)
  6250. {
  6251. struct sched_domain_attr tmp;
  6252. /* fast path */
  6253. if (!new && !cur)
  6254. return 1;
  6255. tmp = SD_ATTR_INIT;
  6256. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6257. new ? (new + idx_new) : &tmp,
  6258. sizeof(struct sched_domain_attr));
  6259. }
  6260. /*
  6261. * Partition sched domains as specified by the 'ndoms_new'
  6262. * cpumasks in the array doms_new[] of cpumasks. This compares
  6263. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6264. * It destroys each deleted domain and builds each new domain.
  6265. *
  6266. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6267. * The masks don't intersect (don't overlap.) We should setup one
  6268. * sched domain for each mask. CPUs not in any of the cpumasks will
  6269. * not be load balanced. If the same cpumask appears both in the
  6270. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6271. * it as it is.
  6272. *
  6273. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6274. * ownership of it and will kfree it when done with it. If the caller
  6275. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6276. * and partition_sched_domains() will fallback to the single partition
  6277. * 'fallback_doms'.
  6278. *
  6279. * Call with hotplug lock held
  6280. */
  6281. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6282. struct sched_domain_attr *dattr_new)
  6283. {
  6284. int i, j;
  6285. mutex_lock(&sched_domains_mutex);
  6286. /* always unregister in case we don't destroy any domains */
  6287. unregister_sched_domain_sysctl();
  6288. if (doms_new == NULL) {
  6289. ndoms_new = 1;
  6290. doms_new = &fallback_doms;
  6291. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6292. dattr_new = NULL;
  6293. }
  6294. /* Destroy deleted domains */
  6295. for (i = 0; i < ndoms_cur; i++) {
  6296. for (j = 0; j < ndoms_new; j++) {
  6297. if (cpus_equal(doms_cur[i], doms_new[j])
  6298. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6299. goto match1;
  6300. }
  6301. /* no match - a current sched domain not in new doms_new[] */
  6302. detach_destroy_domains(doms_cur + i);
  6303. match1:
  6304. ;
  6305. }
  6306. /* Build new domains */
  6307. for (i = 0; i < ndoms_new; i++) {
  6308. for (j = 0; j < ndoms_cur; j++) {
  6309. if (cpus_equal(doms_new[i], doms_cur[j])
  6310. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6311. goto match2;
  6312. }
  6313. /* no match - add a new doms_new */
  6314. __build_sched_domains(doms_new + i,
  6315. dattr_new ? dattr_new + i : NULL);
  6316. match2:
  6317. ;
  6318. }
  6319. /* Remember the new sched domains */
  6320. if (doms_cur != &fallback_doms)
  6321. kfree(doms_cur);
  6322. kfree(dattr_cur); /* kfree(NULL) is safe */
  6323. doms_cur = doms_new;
  6324. dattr_cur = dattr_new;
  6325. ndoms_cur = ndoms_new;
  6326. register_sched_domain_sysctl();
  6327. mutex_unlock(&sched_domains_mutex);
  6328. }
  6329. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6330. int arch_reinit_sched_domains(void)
  6331. {
  6332. int err;
  6333. get_online_cpus();
  6334. mutex_lock(&sched_domains_mutex);
  6335. detach_destroy_domains(&cpu_online_map);
  6336. free_sched_domains();
  6337. err = arch_init_sched_domains(&cpu_online_map);
  6338. mutex_unlock(&sched_domains_mutex);
  6339. put_online_cpus();
  6340. return err;
  6341. }
  6342. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6343. {
  6344. int ret;
  6345. if (buf[0] != '0' && buf[0] != '1')
  6346. return -EINVAL;
  6347. if (smt)
  6348. sched_smt_power_savings = (buf[0] == '1');
  6349. else
  6350. sched_mc_power_savings = (buf[0] == '1');
  6351. ret = arch_reinit_sched_domains();
  6352. return ret ? ret : count;
  6353. }
  6354. #ifdef CONFIG_SCHED_MC
  6355. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6356. {
  6357. return sprintf(page, "%u\n", sched_mc_power_savings);
  6358. }
  6359. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6360. const char *buf, size_t count)
  6361. {
  6362. return sched_power_savings_store(buf, count, 0);
  6363. }
  6364. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6365. sched_mc_power_savings_store);
  6366. #endif
  6367. #ifdef CONFIG_SCHED_SMT
  6368. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6369. {
  6370. return sprintf(page, "%u\n", sched_smt_power_savings);
  6371. }
  6372. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6373. const char *buf, size_t count)
  6374. {
  6375. return sched_power_savings_store(buf, count, 1);
  6376. }
  6377. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6378. sched_smt_power_savings_store);
  6379. #endif
  6380. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6381. {
  6382. int err = 0;
  6383. #ifdef CONFIG_SCHED_SMT
  6384. if (smt_capable())
  6385. err = sysfs_create_file(&cls->kset.kobj,
  6386. &attr_sched_smt_power_savings.attr);
  6387. #endif
  6388. #ifdef CONFIG_SCHED_MC
  6389. if (!err && mc_capable())
  6390. err = sysfs_create_file(&cls->kset.kobj,
  6391. &attr_sched_mc_power_savings.attr);
  6392. #endif
  6393. return err;
  6394. }
  6395. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6396. /*
  6397. * Force a reinitialization of the sched domains hierarchy. The domains
  6398. * and groups cannot be updated in place without racing with the balancing
  6399. * code, so we temporarily attach all running cpus to the NULL domain
  6400. * which will prevent rebalancing while the sched domains are recalculated.
  6401. */
  6402. static int update_sched_domains(struct notifier_block *nfb,
  6403. unsigned long action, void *hcpu)
  6404. {
  6405. switch (action) {
  6406. case CPU_UP_PREPARE:
  6407. case CPU_UP_PREPARE_FROZEN:
  6408. case CPU_DOWN_PREPARE:
  6409. case CPU_DOWN_PREPARE_FROZEN:
  6410. detach_destroy_domains(&cpu_online_map);
  6411. free_sched_domains();
  6412. return NOTIFY_OK;
  6413. case CPU_UP_CANCELED:
  6414. case CPU_UP_CANCELED_FROZEN:
  6415. case CPU_DOWN_FAILED:
  6416. case CPU_DOWN_FAILED_FROZEN:
  6417. case CPU_ONLINE:
  6418. case CPU_ONLINE_FROZEN:
  6419. case CPU_DEAD:
  6420. case CPU_DEAD_FROZEN:
  6421. /*
  6422. * Fall through and re-initialise the domains.
  6423. */
  6424. break;
  6425. default:
  6426. return NOTIFY_DONE;
  6427. }
  6428. #ifndef CONFIG_CPUSETS
  6429. /*
  6430. * Create default domain partitioning if cpusets are disabled.
  6431. * Otherwise we let cpusets rebuild the domains based on the
  6432. * current setup.
  6433. */
  6434. /* The hotplug lock is already held by cpu_up/cpu_down */
  6435. arch_init_sched_domains(&cpu_online_map);
  6436. #endif
  6437. return NOTIFY_OK;
  6438. }
  6439. void __init sched_init_smp(void)
  6440. {
  6441. cpumask_t non_isolated_cpus;
  6442. #if defined(CONFIG_NUMA)
  6443. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6444. GFP_KERNEL);
  6445. BUG_ON(sched_group_nodes_bycpu == NULL);
  6446. #endif
  6447. get_online_cpus();
  6448. mutex_lock(&sched_domains_mutex);
  6449. arch_init_sched_domains(&cpu_online_map);
  6450. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6451. if (cpus_empty(non_isolated_cpus))
  6452. cpu_set(smp_processor_id(), non_isolated_cpus);
  6453. mutex_unlock(&sched_domains_mutex);
  6454. put_online_cpus();
  6455. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6456. hotcpu_notifier(update_sched_domains, 0);
  6457. init_hrtick();
  6458. /* Move init over to a non-isolated CPU */
  6459. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6460. BUG();
  6461. sched_init_granularity();
  6462. }
  6463. #else
  6464. void __init sched_init_smp(void)
  6465. {
  6466. sched_init_granularity();
  6467. }
  6468. #endif /* CONFIG_SMP */
  6469. int in_sched_functions(unsigned long addr)
  6470. {
  6471. return in_lock_functions(addr) ||
  6472. (addr >= (unsigned long)__sched_text_start
  6473. && addr < (unsigned long)__sched_text_end);
  6474. }
  6475. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6476. {
  6477. cfs_rq->tasks_timeline = RB_ROOT;
  6478. INIT_LIST_HEAD(&cfs_rq->tasks);
  6479. #ifdef CONFIG_FAIR_GROUP_SCHED
  6480. cfs_rq->rq = rq;
  6481. #endif
  6482. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6483. }
  6484. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6485. {
  6486. struct rt_prio_array *array;
  6487. int i;
  6488. array = &rt_rq->active;
  6489. for (i = 0; i < MAX_RT_PRIO; i++) {
  6490. INIT_LIST_HEAD(array->xqueue + i);
  6491. INIT_LIST_HEAD(array->squeue + i);
  6492. __clear_bit(i, array->bitmap);
  6493. }
  6494. /* delimiter for bitsearch: */
  6495. __set_bit(MAX_RT_PRIO, array->bitmap);
  6496. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6497. rt_rq->highest_prio = MAX_RT_PRIO;
  6498. #endif
  6499. #ifdef CONFIG_SMP
  6500. rt_rq->rt_nr_migratory = 0;
  6501. rt_rq->overloaded = 0;
  6502. #endif
  6503. rt_rq->rt_time = 0;
  6504. rt_rq->rt_throttled = 0;
  6505. rt_rq->rt_runtime = 0;
  6506. spin_lock_init(&rt_rq->rt_runtime_lock);
  6507. #ifdef CONFIG_RT_GROUP_SCHED
  6508. rt_rq->rt_nr_boosted = 0;
  6509. rt_rq->rq = rq;
  6510. #endif
  6511. }
  6512. #ifdef CONFIG_FAIR_GROUP_SCHED
  6513. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6514. struct sched_entity *se, int cpu, int add,
  6515. struct sched_entity *parent)
  6516. {
  6517. struct rq *rq = cpu_rq(cpu);
  6518. tg->cfs_rq[cpu] = cfs_rq;
  6519. init_cfs_rq(cfs_rq, rq);
  6520. cfs_rq->tg = tg;
  6521. if (add)
  6522. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6523. tg->se[cpu] = se;
  6524. /* se could be NULL for init_task_group */
  6525. if (!se)
  6526. return;
  6527. if (!parent)
  6528. se->cfs_rq = &rq->cfs;
  6529. else
  6530. se->cfs_rq = parent->my_q;
  6531. se->my_q = cfs_rq;
  6532. se->load.weight = tg->shares;
  6533. se->load.inv_weight = 0;
  6534. se->parent = parent;
  6535. }
  6536. #endif
  6537. #ifdef CONFIG_RT_GROUP_SCHED
  6538. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6539. struct sched_rt_entity *rt_se, int cpu, int add,
  6540. struct sched_rt_entity *parent)
  6541. {
  6542. struct rq *rq = cpu_rq(cpu);
  6543. tg->rt_rq[cpu] = rt_rq;
  6544. init_rt_rq(rt_rq, rq);
  6545. rt_rq->tg = tg;
  6546. rt_rq->rt_se = rt_se;
  6547. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6548. if (add)
  6549. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6550. tg->rt_se[cpu] = rt_se;
  6551. if (!rt_se)
  6552. return;
  6553. if (!parent)
  6554. rt_se->rt_rq = &rq->rt;
  6555. else
  6556. rt_se->rt_rq = parent->my_q;
  6557. rt_se->rt_rq = &rq->rt;
  6558. rt_se->my_q = rt_rq;
  6559. rt_se->parent = parent;
  6560. INIT_LIST_HEAD(&rt_se->run_list);
  6561. }
  6562. #endif
  6563. void __init sched_init(void)
  6564. {
  6565. int i, j;
  6566. unsigned long alloc_size = 0, ptr;
  6567. #ifdef CONFIG_FAIR_GROUP_SCHED
  6568. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6569. #endif
  6570. #ifdef CONFIG_RT_GROUP_SCHED
  6571. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6572. #endif
  6573. #ifdef CONFIG_USER_SCHED
  6574. alloc_size *= 2;
  6575. #endif
  6576. /*
  6577. * As sched_init() is called before page_alloc is setup,
  6578. * we use alloc_bootmem().
  6579. */
  6580. if (alloc_size) {
  6581. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6582. #ifdef CONFIG_FAIR_GROUP_SCHED
  6583. init_task_group.se = (struct sched_entity **)ptr;
  6584. ptr += nr_cpu_ids * sizeof(void **);
  6585. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6586. ptr += nr_cpu_ids * sizeof(void **);
  6587. #ifdef CONFIG_USER_SCHED
  6588. root_task_group.se = (struct sched_entity **)ptr;
  6589. ptr += nr_cpu_ids * sizeof(void **);
  6590. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6591. ptr += nr_cpu_ids * sizeof(void **);
  6592. #endif /* CONFIG_USER_SCHED */
  6593. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6594. #ifdef CONFIG_RT_GROUP_SCHED
  6595. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6596. ptr += nr_cpu_ids * sizeof(void **);
  6597. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6598. ptr += nr_cpu_ids * sizeof(void **);
  6599. #ifdef CONFIG_USER_SCHED
  6600. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6601. ptr += nr_cpu_ids * sizeof(void **);
  6602. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6603. ptr += nr_cpu_ids * sizeof(void **);
  6604. #endif /* CONFIG_USER_SCHED */
  6605. #endif /* CONFIG_RT_GROUP_SCHED */
  6606. }
  6607. #ifdef CONFIG_SMP
  6608. init_defrootdomain();
  6609. #endif
  6610. init_rt_bandwidth(&def_rt_bandwidth,
  6611. global_rt_period(), global_rt_runtime());
  6612. #ifdef CONFIG_RT_GROUP_SCHED
  6613. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6614. global_rt_period(), global_rt_runtime());
  6615. #ifdef CONFIG_USER_SCHED
  6616. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6617. global_rt_period(), RUNTIME_INF);
  6618. #endif /* CONFIG_USER_SCHED */
  6619. #endif /* CONFIG_RT_GROUP_SCHED */
  6620. #ifdef CONFIG_GROUP_SCHED
  6621. list_add(&init_task_group.list, &task_groups);
  6622. INIT_LIST_HEAD(&init_task_group.children);
  6623. #ifdef CONFIG_USER_SCHED
  6624. INIT_LIST_HEAD(&root_task_group.children);
  6625. init_task_group.parent = &root_task_group;
  6626. list_add(&init_task_group.siblings, &root_task_group.children);
  6627. #endif /* CONFIG_USER_SCHED */
  6628. #endif /* CONFIG_GROUP_SCHED */
  6629. for_each_possible_cpu(i) {
  6630. struct rq *rq;
  6631. rq = cpu_rq(i);
  6632. spin_lock_init(&rq->lock);
  6633. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6634. rq->nr_running = 0;
  6635. init_cfs_rq(&rq->cfs, rq);
  6636. init_rt_rq(&rq->rt, rq);
  6637. #ifdef CONFIG_FAIR_GROUP_SCHED
  6638. init_task_group.shares = init_task_group_load;
  6639. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6640. #ifdef CONFIG_CGROUP_SCHED
  6641. /*
  6642. * How much cpu bandwidth does init_task_group get?
  6643. *
  6644. * In case of task-groups formed thr' the cgroup filesystem, it
  6645. * gets 100% of the cpu resources in the system. This overall
  6646. * system cpu resource is divided among the tasks of
  6647. * init_task_group and its child task-groups in a fair manner,
  6648. * based on each entity's (task or task-group's) weight
  6649. * (se->load.weight).
  6650. *
  6651. * In other words, if init_task_group has 10 tasks of weight
  6652. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6653. * then A0's share of the cpu resource is:
  6654. *
  6655. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6656. *
  6657. * We achieve this by letting init_task_group's tasks sit
  6658. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6659. */
  6660. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6661. #elif defined CONFIG_USER_SCHED
  6662. root_task_group.shares = NICE_0_LOAD;
  6663. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6664. /*
  6665. * In case of task-groups formed thr' the user id of tasks,
  6666. * init_task_group represents tasks belonging to root user.
  6667. * Hence it forms a sibling of all subsequent groups formed.
  6668. * In this case, init_task_group gets only a fraction of overall
  6669. * system cpu resource, based on the weight assigned to root
  6670. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6671. * by letting tasks of init_task_group sit in a separate cfs_rq
  6672. * (init_cfs_rq) and having one entity represent this group of
  6673. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6674. */
  6675. init_tg_cfs_entry(&init_task_group,
  6676. &per_cpu(init_cfs_rq, i),
  6677. &per_cpu(init_sched_entity, i), i, 1,
  6678. root_task_group.se[i]);
  6679. #endif
  6680. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6681. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6682. #ifdef CONFIG_RT_GROUP_SCHED
  6683. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6684. #ifdef CONFIG_CGROUP_SCHED
  6685. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6686. #elif defined CONFIG_USER_SCHED
  6687. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6688. init_tg_rt_entry(&init_task_group,
  6689. &per_cpu(init_rt_rq, i),
  6690. &per_cpu(init_sched_rt_entity, i), i, 1,
  6691. root_task_group.rt_se[i]);
  6692. #endif
  6693. #endif
  6694. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6695. rq->cpu_load[j] = 0;
  6696. #ifdef CONFIG_SMP
  6697. rq->sd = NULL;
  6698. rq->rd = NULL;
  6699. rq->active_balance = 0;
  6700. rq->next_balance = jiffies;
  6701. rq->push_cpu = 0;
  6702. rq->cpu = i;
  6703. rq->online = 0;
  6704. rq->migration_thread = NULL;
  6705. INIT_LIST_HEAD(&rq->migration_queue);
  6706. rq_attach_root(rq, &def_root_domain);
  6707. #endif
  6708. init_rq_hrtick(rq);
  6709. atomic_set(&rq->nr_iowait, 0);
  6710. }
  6711. set_load_weight(&init_task);
  6712. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6713. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6714. #endif
  6715. #ifdef CONFIG_SMP
  6716. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6717. #endif
  6718. #ifdef CONFIG_RT_MUTEXES
  6719. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6720. #endif
  6721. /*
  6722. * The boot idle thread does lazy MMU switching as well:
  6723. */
  6724. atomic_inc(&init_mm.mm_count);
  6725. enter_lazy_tlb(&init_mm, current);
  6726. /*
  6727. * Make us the idle thread. Technically, schedule() should not be
  6728. * called from this thread, however somewhere below it might be,
  6729. * but because we are the idle thread, we just pick up running again
  6730. * when this runqueue becomes "idle".
  6731. */
  6732. init_idle(current, smp_processor_id());
  6733. /*
  6734. * During early bootup we pretend to be a normal task:
  6735. */
  6736. current->sched_class = &fair_sched_class;
  6737. scheduler_running = 1;
  6738. }
  6739. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6740. void __might_sleep(char *file, int line)
  6741. {
  6742. #ifdef in_atomic
  6743. static unsigned long prev_jiffy; /* ratelimiting */
  6744. if ((in_atomic() || irqs_disabled()) &&
  6745. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6746. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6747. return;
  6748. prev_jiffy = jiffies;
  6749. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6750. " context at %s:%d\n", file, line);
  6751. printk("in_atomic():%d, irqs_disabled():%d\n",
  6752. in_atomic(), irqs_disabled());
  6753. debug_show_held_locks(current);
  6754. if (irqs_disabled())
  6755. print_irqtrace_events(current);
  6756. dump_stack();
  6757. }
  6758. #endif
  6759. }
  6760. EXPORT_SYMBOL(__might_sleep);
  6761. #endif
  6762. #ifdef CONFIG_MAGIC_SYSRQ
  6763. static void normalize_task(struct rq *rq, struct task_struct *p)
  6764. {
  6765. int on_rq;
  6766. update_rq_clock(rq);
  6767. on_rq = p->se.on_rq;
  6768. if (on_rq)
  6769. deactivate_task(rq, p, 0);
  6770. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6771. if (on_rq) {
  6772. activate_task(rq, p, 0);
  6773. resched_task(rq->curr);
  6774. }
  6775. }
  6776. void normalize_rt_tasks(void)
  6777. {
  6778. struct task_struct *g, *p;
  6779. unsigned long flags;
  6780. struct rq *rq;
  6781. read_lock_irqsave(&tasklist_lock, flags);
  6782. do_each_thread(g, p) {
  6783. /*
  6784. * Only normalize user tasks:
  6785. */
  6786. if (!p->mm)
  6787. continue;
  6788. p->se.exec_start = 0;
  6789. #ifdef CONFIG_SCHEDSTATS
  6790. p->se.wait_start = 0;
  6791. p->se.sleep_start = 0;
  6792. p->se.block_start = 0;
  6793. #endif
  6794. if (!rt_task(p)) {
  6795. /*
  6796. * Renice negative nice level userspace
  6797. * tasks back to 0:
  6798. */
  6799. if (TASK_NICE(p) < 0 && p->mm)
  6800. set_user_nice(p, 0);
  6801. continue;
  6802. }
  6803. spin_lock(&p->pi_lock);
  6804. rq = __task_rq_lock(p);
  6805. normalize_task(rq, p);
  6806. __task_rq_unlock(rq);
  6807. spin_unlock(&p->pi_lock);
  6808. } while_each_thread(g, p);
  6809. read_unlock_irqrestore(&tasklist_lock, flags);
  6810. }
  6811. #endif /* CONFIG_MAGIC_SYSRQ */
  6812. #ifdef CONFIG_IA64
  6813. /*
  6814. * These functions are only useful for the IA64 MCA handling.
  6815. *
  6816. * They can only be called when the whole system has been
  6817. * stopped - every CPU needs to be quiescent, and no scheduling
  6818. * activity can take place. Using them for anything else would
  6819. * be a serious bug, and as a result, they aren't even visible
  6820. * under any other configuration.
  6821. */
  6822. /**
  6823. * curr_task - return the current task for a given cpu.
  6824. * @cpu: the processor in question.
  6825. *
  6826. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6827. */
  6828. struct task_struct *curr_task(int cpu)
  6829. {
  6830. return cpu_curr(cpu);
  6831. }
  6832. /**
  6833. * set_curr_task - set the current task for a given cpu.
  6834. * @cpu: the processor in question.
  6835. * @p: the task pointer to set.
  6836. *
  6837. * Description: This function must only be used when non-maskable interrupts
  6838. * are serviced on a separate stack. It allows the architecture to switch the
  6839. * notion of the current task on a cpu in a non-blocking manner. This function
  6840. * must be called with all CPU's synchronized, and interrupts disabled, the
  6841. * and caller must save the original value of the current task (see
  6842. * curr_task() above) and restore that value before reenabling interrupts and
  6843. * re-starting the system.
  6844. *
  6845. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6846. */
  6847. void set_curr_task(int cpu, struct task_struct *p)
  6848. {
  6849. cpu_curr(cpu) = p;
  6850. }
  6851. #endif
  6852. #ifdef CONFIG_FAIR_GROUP_SCHED
  6853. static void free_fair_sched_group(struct task_group *tg)
  6854. {
  6855. int i;
  6856. for_each_possible_cpu(i) {
  6857. if (tg->cfs_rq)
  6858. kfree(tg->cfs_rq[i]);
  6859. if (tg->se)
  6860. kfree(tg->se[i]);
  6861. }
  6862. kfree(tg->cfs_rq);
  6863. kfree(tg->se);
  6864. }
  6865. static
  6866. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6867. {
  6868. struct cfs_rq *cfs_rq;
  6869. struct sched_entity *se, *parent_se;
  6870. struct rq *rq;
  6871. int i;
  6872. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6873. if (!tg->cfs_rq)
  6874. goto err;
  6875. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6876. if (!tg->se)
  6877. goto err;
  6878. tg->shares = NICE_0_LOAD;
  6879. for_each_possible_cpu(i) {
  6880. rq = cpu_rq(i);
  6881. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6882. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6883. if (!cfs_rq)
  6884. goto err;
  6885. se = kmalloc_node(sizeof(struct sched_entity),
  6886. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6887. if (!se)
  6888. goto err;
  6889. parent_se = parent ? parent->se[i] : NULL;
  6890. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  6891. }
  6892. return 1;
  6893. err:
  6894. return 0;
  6895. }
  6896. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6897. {
  6898. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6899. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6900. }
  6901. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6902. {
  6903. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6904. }
  6905. #else /* !CONFG_FAIR_GROUP_SCHED */
  6906. static inline void free_fair_sched_group(struct task_group *tg)
  6907. {
  6908. }
  6909. static inline
  6910. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6911. {
  6912. return 1;
  6913. }
  6914. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6915. {
  6916. }
  6917. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6918. {
  6919. }
  6920. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6921. #ifdef CONFIG_RT_GROUP_SCHED
  6922. static void free_rt_sched_group(struct task_group *tg)
  6923. {
  6924. int i;
  6925. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6926. for_each_possible_cpu(i) {
  6927. if (tg->rt_rq)
  6928. kfree(tg->rt_rq[i]);
  6929. if (tg->rt_se)
  6930. kfree(tg->rt_se[i]);
  6931. }
  6932. kfree(tg->rt_rq);
  6933. kfree(tg->rt_se);
  6934. }
  6935. static
  6936. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6937. {
  6938. struct rt_rq *rt_rq;
  6939. struct sched_rt_entity *rt_se, *parent_se;
  6940. struct rq *rq;
  6941. int i;
  6942. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6943. if (!tg->rt_rq)
  6944. goto err;
  6945. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6946. if (!tg->rt_se)
  6947. goto err;
  6948. init_rt_bandwidth(&tg->rt_bandwidth,
  6949. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6950. for_each_possible_cpu(i) {
  6951. rq = cpu_rq(i);
  6952. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6953. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6954. if (!rt_rq)
  6955. goto err;
  6956. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6957. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6958. if (!rt_se)
  6959. goto err;
  6960. parent_se = parent ? parent->rt_se[i] : NULL;
  6961. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  6962. }
  6963. return 1;
  6964. err:
  6965. return 0;
  6966. }
  6967. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6968. {
  6969. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6970. &cpu_rq(cpu)->leaf_rt_rq_list);
  6971. }
  6972. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6973. {
  6974. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6975. }
  6976. #else /* !CONFIG_RT_GROUP_SCHED */
  6977. static inline void free_rt_sched_group(struct task_group *tg)
  6978. {
  6979. }
  6980. static inline
  6981. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6982. {
  6983. return 1;
  6984. }
  6985. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6986. {
  6987. }
  6988. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6989. {
  6990. }
  6991. #endif /* CONFIG_RT_GROUP_SCHED */
  6992. #ifdef CONFIG_GROUP_SCHED
  6993. static void free_sched_group(struct task_group *tg)
  6994. {
  6995. free_fair_sched_group(tg);
  6996. free_rt_sched_group(tg);
  6997. kfree(tg);
  6998. }
  6999. /* allocate runqueue etc for a new task group */
  7000. struct task_group *sched_create_group(struct task_group *parent)
  7001. {
  7002. struct task_group *tg;
  7003. unsigned long flags;
  7004. int i;
  7005. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7006. if (!tg)
  7007. return ERR_PTR(-ENOMEM);
  7008. if (!alloc_fair_sched_group(tg, parent))
  7009. goto err;
  7010. if (!alloc_rt_sched_group(tg, parent))
  7011. goto err;
  7012. spin_lock_irqsave(&task_group_lock, flags);
  7013. for_each_possible_cpu(i) {
  7014. register_fair_sched_group(tg, i);
  7015. register_rt_sched_group(tg, i);
  7016. }
  7017. list_add_rcu(&tg->list, &task_groups);
  7018. WARN_ON(!parent); /* root should already exist */
  7019. tg->parent = parent;
  7020. list_add_rcu(&tg->siblings, &parent->children);
  7021. INIT_LIST_HEAD(&tg->children);
  7022. spin_unlock_irqrestore(&task_group_lock, flags);
  7023. return tg;
  7024. err:
  7025. free_sched_group(tg);
  7026. return ERR_PTR(-ENOMEM);
  7027. }
  7028. /* rcu callback to free various structures associated with a task group */
  7029. static void free_sched_group_rcu(struct rcu_head *rhp)
  7030. {
  7031. /* now it should be safe to free those cfs_rqs */
  7032. free_sched_group(container_of(rhp, struct task_group, rcu));
  7033. }
  7034. /* Destroy runqueue etc associated with a task group */
  7035. void sched_destroy_group(struct task_group *tg)
  7036. {
  7037. unsigned long flags;
  7038. int i;
  7039. spin_lock_irqsave(&task_group_lock, flags);
  7040. for_each_possible_cpu(i) {
  7041. unregister_fair_sched_group(tg, i);
  7042. unregister_rt_sched_group(tg, i);
  7043. }
  7044. list_del_rcu(&tg->list);
  7045. list_del_rcu(&tg->siblings);
  7046. spin_unlock_irqrestore(&task_group_lock, flags);
  7047. /* wait for possible concurrent references to cfs_rqs complete */
  7048. call_rcu(&tg->rcu, free_sched_group_rcu);
  7049. }
  7050. /* change task's runqueue when it moves between groups.
  7051. * The caller of this function should have put the task in its new group
  7052. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7053. * reflect its new group.
  7054. */
  7055. void sched_move_task(struct task_struct *tsk)
  7056. {
  7057. int on_rq, running;
  7058. unsigned long flags;
  7059. struct rq *rq;
  7060. rq = task_rq_lock(tsk, &flags);
  7061. update_rq_clock(rq);
  7062. running = task_current(rq, tsk);
  7063. on_rq = tsk->se.on_rq;
  7064. if (on_rq)
  7065. dequeue_task(rq, tsk, 0);
  7066. if (unlikely(running))
  7067. tsk->sched_class->put_prev_task(rq, tsk);
  7068. set_task_rq(tsk, task_cpu(tsk));
  7069. #ifdef CONFIG_FAIR_GROUP_SCHED
  7070. if (tsk->sched_class->moved_group)
  7071. tsk->sched_class->moved_group(tsk);
  7072. #endif
  7073. if (unlikely(running))
  7074. tsk->sched_class->set_curr_task(rq);
  7075. if (on_rq)
  7076. enqueue_task(rq, tsk, 0);
  7077. task_rq_unlock(rq, &flags);
  7078. }
  7079. #endif /* CONFIG_GROUP_SCHED */
  7080. #ifdef CONFIG_FAIR_GROUP_SCHED
  7081. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7082. {
  7083. struct cfs_rq *cfs_rq = se->cfs_rq;
  7084. struct rq *rq = cfs_rq->rq;
  7085. int on_rq;
  7086. spin_lock_irq(&rq->lock);
  7087. on_rq = se->on_rq;
  7088. if (on_rq)
  7089. dequeue_entity(cfs_rq, se, 0);
  7090. se->load.weight = shares;
  7091. se->load.inv_weight = 0;
  7092. if (on_rq)
  7093. enqueue_entity(cfs_rq, se, 0);
  7094. spin_unlock_irq(&rq->lock);
  7095. }
  7096. static DEFINE_MUTEX(shares_mutex);
  7097. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7098. {
  7099. int i;
  7100. unsigned long flags;
  7101. /*
  7102. * We can't change the weight of the root cgroup.
  7103. */
  7104. if (!tg->se[0])
  7105. return -EINVAL;
  7106. if (shares < MIN_SHARES)
  7107. shares = MIN_SHARES;
  7108. else if (shares > MAX_SHARES)
  7109. shares = MAX_SHARES;
  7110. mutex_lock(&shares_mutex);
  7111. if (tg->shares == shares)
  7112. goto done;
  7113. spin_lock_irqsave(&task_group_lock, flags);
  7114. for_each_possible_cpu(i)
  7115. unregister_fair_sched_group(tg, i);
  7116. list_del_rcu(&tg->siblings);
  7117. spin_unlock_irqrestore(&task_group_lock, flags);
  7118. /* wait for any ongoing reference to this group to finish */
  7119. synchronize_sched();
  7120. /*
  7121. * Now we are free to modify the group's share on each cpu
  7122. * w/o tripping rebalance_share or load_balance_fair.
  7123. */
  7124. tg->shares = shares;
  7125. for_each_possible_cpu(i)
  7126. set_se_shares(tg->se[i], shares);
  7127. /*
  7128. * Enable load balance activity on this group, by inserting it back on
  7129. * each cpu's rq->leaf_cfs_rq_list.
  7130. */
  7131. spin_lock_irqsave(&task_group_lock, flags);
  7132. for_each_possible_cpu(i)
  7133. register_fair_sched_group(tg, i);
  7134. list_add_rcu(&tg->siblings, &tg->parent->children);
  7135. spin_unlock_irqrestore(&task_group_lock, flags);
  7136. done:
  7137. mutex_unlock(&shares_mutex);
  7138. return 0;
  7139. }
  7140. unsigned long sched_group_shares(struct task_group *tg)
  7141. {
  7142. return tg->shares;
  7143. }
  7144. #endif
  7145. #ifdef CONFIG_RT_GROUP_SCHED
  7146. /*
  7147. * Ensure that the real time constraints are schedulable.
  7148. */
  7149. static DEFINE_MUTEX(rt_constraints_mutex);
  7150. static unsigned long to_ratio(u64 period, u64 runtime)
  7151. {
  7152. if (runtime == RUNTIME_INF)
  7153. return 1ULL << 16;
  7154. return div64_u64(runtime << 16, period);
  7155. }
  7156. #ifdef CONFIG_CGROUP_SCHED
  7157. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7158. {
  7159. struct task_group *tgi, *parent = tg->parent;
  7160. unsigned long total = 0;
  7161. if (!parent) {
  7162. if (global_rt_period() < period)
  7163. return 0;
  7164. return to_ratio(period, runtime) <
  7165. to_ratio(global_rt_period(), global_rt_runtime());
  7166. }
  7167. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7168. return 0;
  7169. rcu_read_lock();
  7170. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7171. if (tgi == tg)
  7172. continue;
  7173. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7174. tgi->rt_bandwidth.rt_runtime);
  7175. }
  7176. rcu_read_unlock();
  7177. return total + to_ratio(period, runtime) <
  7178. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7179. parent->rt_bandwidth.rt_runtime);
  7180. }
  7181. #elif defined CONFIG_USER_SCHED
  7182. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7183. {
  7184. struct task_group *tgi;
  7185. unsigned long total = 0;
  7186. unsigned long global_ratio =
  7187. to_ratio(global_rt_period(), global_rt_runtime());
  7188. rcu_read_lock();
  7189. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7190. if (tgi == tg)
  7191. continue;
  7192. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7193. tgi->rt_bandwidth.rt_runtime);
  7194. }
  7195. rcu_read_unlock();
  7196. return total + to_ratio(period, runtime) < global_ratio;
  7197. }
  7198. #endif
  7199. /* Must be called with tasklist_lock held */
  7200. static inline int tg_has_rt_tasks(struct task_group *tg)
  7201. {
  7202. struct task_struct *g, *p;
  7203. do_each_thread(g, p) {
  7204. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7205. return 1;
  7206. } while_each_thread(g, p);
  7207. return 0;
  7208. }
  7209. static int tg_set_bandwidth(struct task_group *tg,
  7210. u64 rt_period, u64 rt_runtime)
  7211. {
  7212. int i, err = 0;
  7213. mutex_lock(&rt_constraints_mutex);
  7214. read_lock(&tasklist_lock);
  7215. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7216. err = -EBUSY;
  7217. goto unlock;
  7218. }
  7219. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7220. err = -EINVAL;
  7221. goto unlock;
  7222. }
  7223. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7224. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7225. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7226. for_each_possible_cpu(i) {
  7227. struct rt_rq *rt_rq = tg->rt_rq[i];
  7228. spin_lock(&rt_rq->rt_runtime_lock);
  7229. rt_rq->rt_runtime = rt_runtime;
  7230. spin_unlock(&rt_rq->rt_runtime_lock);
  7231. }
  7232. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7233. unlock:
  7234. read_unlock(&tasklist_lock);
  7235. mutex_unlock(&rt_constraints_mutex);
  7236. return err;
  7237. }
  7238. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7239. {
  7240. u64 rt_runtime, rt_period;
  7241. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7242. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7243. if (rt_runtime_us < 0)
  7244. rt_runtime = RUNTIME_INF;
  7245. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7246. }
  7247. long sched_group_rt_runtime(struct task_group *tg)
  7248. {
  7249. u64 rt_runtime_us;
  7250. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7251. return -1;
  7252. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7253. do_div(rt_runtime_us, NSEC_PER_USEC);
  7254. return rt_runtime_us;
  7255. }
  7256. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7257. {
  7258. u64 rt_runtime, rt_period;
  7259. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7260. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7261. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7262. }
  7263. long sched_group_rt_period(struct task_group *tg)
  7264. {
  7265. u64 rt_period_us;
  7266. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7267. do_div(rt_period_us, NSEC_PER_USEC);
  7268. return rt_period_us;
  7269. }
  7270. static int sched_rt_global_constraints(void)
  7271. {
  7272. int ret = 0;
  7273. mutex_lock(&rt_constraints_mutex);
  7274. if (!__rt_schedulable(NULL, 1, 0))
  7275. ret = -EINVAL;
  7276. mutex_unlock(&rt_constraints_mutex);
  7277. return ret;
  7278. }
  7279. #else /* !CONFIG_RT_GROUP_SCHED */
  7280. static int sched_rt_global_constraints(void)
  7281. {
  7282. unsigned long flags;
  7283. int i;
  7284. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7285. for_each_possible_cpu(i) {
  7286. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7287. spin_lock(&rt_rq->rt_runtime_lock);
  7288. rt_rq->rt_runtime = global_rt_runtime();
  7289. spin_unlock(&rt_rq->rt_runtime_lock);
  7290. }
  7291. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7292. return 0;
  7293. }
  7294. #endif /* CONFIG_RT_GROUP_SCHED */
  7295. int sched_rt_handler(struct ctl_table *table, int write,
  7296. struct file *filp, void __user *buffer, size_t *lenp,
  7297. loff_t *ppos)
  7298. {
  7299. int ret;
  7300. int old_period, old_runtime;
  7301. static DEFINE_MUTEX(mutex);
  7302. mutex_lock(&mutex);
  7303. old_period = sysctl_sched_rt_period;
  7304. old_runtime = sysctl_sched_rt_runtime;
  7305. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7306. if (!ret && write) {
  7307. ret = sched_rt_global_constraints();
  7308. if (ret) {
  7309. sysctl_sched_rt_period = old_period;
  7310. sysctl_sched_rt_runtime = old_runtime;
  7311. } else {
  7312. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7313. def_rt_bandwidth.rt_period =
  7314. ns_to_ktime(global_rt_period());
  7315. }
  7316. }
  7317. mutex_unlock(&mutex);
  7318. return ret;
  7319. }
  7320. #ifdef CONFIG_CGROUP_SCHED
  7321. /* return corresponding task_group object of a cgroup */
  7322. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7323. {
  7324. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7325. struct task_group, css);
  7326. }
  7327. static struct cgroup_subsys_state *
  7328. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7329. {
  7330. struct task_group *tg, *parent;
  7331. if (!cgrp->parent) {
  7332. /* This is early initialization for the top cgroup */
  7333. init_task_group.css.cgroup = cgrp;
  7334. return &init_task_group.css;
  7335. }
  7336. parent = cgroup_tg(cgrp->parent);
  7337. tg = sched_create_group(parent);
  7338. if (IS_ERR(tg))
  7339. return ERR_PTR(-ENOMEM);
  7340. /* Bind the cgroup to task_group object we just created */
  7341. tg->css.cgroup = cgrp;
  7342. return &tg->css;
  7343. }
  7344. static void
  7345. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7346. {
  7347. struct task_group *tg = cgroup_tg(cgrp);
  7348. sched_destroy_group(tg);
  7349. }
  7350. static int
  7351. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7352. struct task_struct *tsk)
  7353. {
  7354. #ifdef CONFIG_RT_GROUP_SCHED
  7355. /* Don't accept realtime tasks when there is no way for them to run */
  7356. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7357. return -EINVAL;
  7358. #else
  7359. /* We don't support RT-tasks being in separate groups */
  7360. if (tsk->sched_class != &fair_sched_class)
  7361. return -EINVAL;
  7362. #endif
  7363. return 0;
  7364. }
  7365. static void
  7366. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7367. struct cgroup *old_cont, struct task_struct *tsk)
  7368. {
  7369. sched_move_task(tsk);
  7370. }
  7371. #ifdef CONFIG_FAIR_GROUP_SCHED
  7372. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7373. u64 shareval)
  7374. {
  7375. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7376. }
  7377. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7378. {
  7379. struct task_group *tg = cgroup_tg(cgrp);
  7380. return (u64) tg->shares;
  7381. }
  7382. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7383. #ifdef CONFIG_RT_GROUP_SCHED
  7384. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7385. s64 val)
  7386. {
  7387. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7388. }
  7389. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7390. {
  7391. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7392. }
  7393. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7394. u64 rt_period_us)
  7395. {
  7396. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7397. }
  7398. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7399. {
  7400. return sched_group_rt_period(cgroup_tg(cgrp));
  7401. }
  7402. #endif /* CONFIG_RT_GROUP_SCHED */
  7403. static struct cftype cpu_files[] = {
  7404. #ifdef CONFIG_FAIR_GROUP_SCHED
  7405. {
  7406. .name = "shares",
  7407. .read_u64 = cpu_shares_read_u64,
  7408. .write_u64 = cpu_shares_write_u64,
  7409. },
  7410. #endif
  7411. #ifdef CONFIG_RT_GROUP_SCHED
  7412. {
  7413. .name = "rt_runtime_us",
  7414. .read_s64 = cpu_rt_runtime_read,
  7415. .write_s64 = cpu_rt_runtime_write,
  7416. },
  7417. {
  7418. .name = "rt_period_us",
  7419. .read_u64 = cpu_rt_period_read_uint,
  7420. .write_u64 = cpu_rt_period_write_uint,
  7421. },
  7422. #endif
  7423. };
  7424. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7425. {
  7426. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7427. }
  7428. struct cgroup_subsys cpu_cgroup_subsys = {
  7429. .name = "cpu",
  7430. .create = cpu_cgroup_create,
  7431. .destroy = cpu_cgroup_destroy,
  7432. .can_attach = cpu_cgroup_can_attach,
  7433. .attach = cpu_cgroup_attach,
  7434. .populate = cpu_cgroup_populate,
  7435. .subsys_id = cpu_cgroup_subsys_id,
  7436. .early_init = 1,
  7437. };
  7438. #endif /* CONFIG_CGROUP_SCHED */
  7439. #ifdef CONFIG_CGROUP_CPUACCT
  7440. /*
  7441. * CPU accounting code for task groups.
  7442. *
  7443. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7444. * (balbir@in.ibm.com).
  7445. */
  7446. /* track cpu usage of a group of tasks */
  7447. struct cpuacct {
  7448. struct cgroup_subsys_state css;
  7449. /* cpuusage holds pointer to a u64-type object on every cpu */
  7450. u64 *cpuusage;
  7451. };
  7452. struct cgroup_subsys cpuacct_subsys;
  7453. /* return cpu accounting group corresponding to this container */
  7454. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7455. {
  7456. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7457. struct cpuacct, css);
  7458. }
  7459. /* return cpu accounting group to which this task belongs */
  7460. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7461. {
  7462. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7463. struct cpuacct, css);
  7464. }
  7465. /* create a new cpu accounting group */
  7466. static struct cgroup_subsys_state *cpuacct_create(
  7467. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7468. {
  7469. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7470. if (!ca)
  7471. return ERR_PTR(-ENOMEM);
  7472. ca->cpuusage = alloc_percpu(u64);
  7473. if (!ca->cpuusage) {
  7474. kfree(ca);
  7475. return ERR_PTR(-ENOMEM);
  7476. }
  7477. return &ca->css;
  7478. }
  7479. /* destroy an existing cpu accounting group */
  7480. static void
  7481. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7482. {
  7483. struct cpuacct *ca = cgroup_ca(cgrp);
  7484. free_percpu(ca->cpuusage);
  7485. kfree(ca);
  7486. }
  7487. /* return total cpu usage (in nanoseconds) of a group */
  7488. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7489. {
  7490. struct cpuacct *ca = cgroup_ca(cgrp);
  7491. u64 totalcpuusage = 0;
  7492. int i;
  7493. for_each_possible_cpu(i) {
  7494. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7495. /*
  7496. * Take rq->lock to make 64-bit addition safe on 32-bit
  7497. * platforms.
  7498. */
  7499. spin_lock_irq(&cpu_rq(i)->lock);
  7500. totalcpuusage += *cpuusage;
  7501. spin_unlock_irq(&cpu_rq(i)->lock);
  7502. }
  7503. return totalcpuusage;
  7504. }
  7505. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7506. u64 reset)
  7507. {
  7508. struct cpuacct *ca = cgroup_ca(cgrp);
  7509. int err = 0;
  7510. int i;
  7511. if (reset) {
  7512. err = -EINVAL;
  7513. goto out;
  7514. }
  7515. for_each_possible_cpu(i) {
  7516. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7517. spin_lock_irq(&cpu_rq(i)->lock);
  7518. *cpuusage = 0;
  7519. spin_unlock_irq(&cpu_rq(i)->lock);
  7520. }
  7521. out:
  7522. return err;
  7523. }
  7524. static struct cftype files[] = {
  7525. {
  7526. .name = "usage",
  7527. .read_u64 = cpuusage_read,
  7528. .write_u64 = cpuusage_write,
  7529. },
  7530. };
  7531. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7532. {
  7533. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7534. }
  7535. /*
  7536. * charge this task's execution time to its accounting group.
  7537. *
  7538. * called with rq->lock held.
  7539. */
  7540. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7541. {
  7542. struct cpuacct *ca;
  7543. if (!cpuacct_subsys.active)
  7544. return;
  7545. ca = task_ca(tsk);
  7546. if (ca) {
  7547. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7548. *cpuusage += cputime;
  7549. }
  7550. }
  7551. struct cgroup_subsys cpuacct_subsys = {
  7552. .name = "cpuacct",
  7553. .create = cpuacct_create,
  7554. .destroy = cpuacct_destroy,
  7555. .populate = cpuacct_populate,
  7556. .subsys_id = cpuacct_subsys_id,
  7557. };
  7558. #endif /* CONFIG_CGROUP_CPUACCT */